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Chapter 1

Introduction

In recent years, the task of separating the foreground and the background from a photograph
has become increasingly important, since video production and graphic creation has become
widely practiced. This task is called alpha matting, which the aim is to assign a probability
to each pixel representing how likely it is to be a part of the foreground. It is closely related
to semantic segmentation tasks but needs to be performed at a much more sufficient scale.
Alpha matting is usually carried out in two steps: identifying the area of the main object
and separating the object from the background.

In many implementations, the area of the main object is represented using a trimap, as
illustrated in the second column in Figure 1.1. Trimaps have a data format where each
pixel is classified into three classes: foreground, background, and ambiguous (or unknown).
In a typical alpha matting system, trimaps must be created manually. It is much easier
than manual alpha matting since whenever the boundary between the foreground and the
background is too intricate, the user can label the whole area as ambiguous.

Trimap generation somewhat resembles semantic image segmentation, but two tasks are
different. Areas labeled as ambiguous in trimap generation do not correspond to physical
entities. In fact, ambiguous areas are not extracted as image segments in the regular
semantic image segmentation task. Many algorithms of semantic image segmentation are
optimized for extracting physical objects from an image, and they are unsuitable for trimap
generation. The second step in a common system for alpha matting is to produce a grayscale
image that separates the main object and the background on the basis of the original image
and the trimap generated from it. The output of this step is called an alpha matte. In an
alpha matte, each pixel takes a probability value between 0 and 1, representing how likely
it is to be part of the foreground of the image. The following equation expresses image
composition using an alpha matte.

Ii = αiFi + (1 − αi)Bi αi ∈ [0, 1], (1.1)

where i is an index representing a pixel. For pixel i, αi is the value of the alpha matte,
Ii is the color vector of the final image, Fi is the color vector of the first image, and Bi is
the color vector of the second image. With this transformation, the foreground of the first
image is placed on top of the second image.

There are many semi-automatic trimap generation algorithms, but most of them require
some user intervention. In most cases, these methods ask the user to indicate where the
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original photo trimap alpla matte composed image

Figure 1.1: Trimaps, alpha mattes, and composed images generated by the proposed method. It
can accurately detect the contours of people and non-human animals, even for non-living objects.

main object is located in the image. With that information, the system can automatically
find the extent of the object and its ambiguous surrounding area. However, such inter-
vention becomes too cumbersome when processing numerous images contained in a video.
Full-automatic trimap generation is a relatively unexplored topic, and it is of significant
importance in the field of image processing.

In this paper, we propose to automate the whole process by finding the most attention-
attracting parts of images using a recently developed saliency map detection algorithm. The
algorithm produces a binary image indicating the areas in an original image that are likely to
attract human attention. The accuracy of saliency map detection has drastically improved
in recent years due to the development of generative model using deep neural networks. To
our knowledge, this paper is the first attempt to introduce saliency map detection using
deep learning to the task of trimap generation. Our method enables to conduct alpha
matting on videos fully-automatically. This can benefit a number of applications such as
movie production and desktop video editing. Figure 1.1 shows trimaps generated by our
method, alpha mattes generated from them using deep image matting (DIM) [1], and final
overlaid images. As can be seen from this figure, our method can automatically crop the
most prominent objects in images irrespective of types of objects.

There are at least two merits in generating a trimap first and then converting it into an
alpha matte, instead of directly generating an alpha matte. One is that trimaps are much
easier to edit than alpha mattes because pixels in trimaps take only three values, and also
the user does not need to edit it on a fine scale. When the user is not satisfied with the
final alpha matte, the trimap can be edited and the change is reflected in the final alpha
matte. In other words, a trimap provides an intermediate representation for handling the
alpha matte. It is much more difficult to edit alpha mattes since the user must carefully
assign an appropriate grayscale value to each pixel at a fine granularity. Another benefit
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of generating a trimap is that there are already numerous applications that can convert it
to an alpha matte. Any of these applications can be used to obtain an alpha matte from a
trimap, and the user can choose the one that is most suited for his/her purpose. The user
will have more options than directly generating alpha mattes.

In this work, we make the following contributions:

• We propose a neural network model and an accompanying loss function that detect
salient areas from an image and generate a trimap corresponding to the main object.

• We trained the proposed model using publicly-available datasets and achieved high
performance in trimap generation tasks.

• The method is fully automatic and fast enough to be used for alpha matting in the
video editing scene.

The rest of the paper is organized as follows. Chapter 2 discusses related work. Chapter 3
describes the proposed method, and Chapter 4 gives the results of our experiments. Chapter
5 concludes the paper.
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Chapter 2

Related work

In this section, we describe existing work on alpha matting, trimap generation, and saliency
map detection. We also discuss semantic image segmentation in the trimap generation
section.

2.1 Alpha matting

The sampling-based approaches [2, 3, 4] and propagation approaches [5] are most widely
used for alpha matting, but many methods using deep learning have recently been proposed.
Shen et al. proposed a method targeting portrait photographs [6]. They focused on images
where the person’s upper body has similar postures. From such an image, their method
creates a shadow-like outline of the person. An alpha matte is created using the extracted
outline instead of using a trimap. Cho et al. proposed a method in which rough matting
results are obtained by a non-neural network process, which are refined using a neural
network [7]. However, this network can not directly learn the alpha matte from an image and
trimap. Xu et al. proposed a convolutional neural network (CNN)-based encoder-decoder
network that predicts the alpha matte from the image and trimap input by end-to-end
training in DIM [1]. They achieved state-of-the-art results with higher accuracy compared
with a manually constructed alpha matte. Their model consists of two parts. The first part
is an encoder-decoder network that predicts the alpha matte from the original image and
trimap. The second part is a simple network that converts the rough alpha matte generated
in the previous step into a more accurate one. They also provided a dataset consisting
of original images, trimaps, and ground-truth alpha mattes. Many other methods which
train by end-to-end training that use trimap as input have been published in recent years
[8, 9, 10, 11]. Several methods have also been proposed to separate the foreground and
background directly from the photo without using trimap as input [12, 13]. However, these
methods have a fundamental problem in that they do not allow the user to make corrections
when the model chooses a wrong object.

2.2 Trimap generation

In many existing methods, the main object is recognized and its outline is then expanded
to create trimap. Hsieh et al. used images that are roughly separated into foreground and
background. The trimap is generated by enlarging the outline of the object on the basis
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of the texture of the image [14]. Al-Kabbany et al. used the Gestalt laws of perceptual
organization to identify objects that are likely to be recognized by humans [15]. Their
method can generate a trimap from images without requiring any other input from the
user. The method developed by Cho et al. generates a binary segmentation image by
using depth information [16]. An accurate trimap was created using the Kullback-Leibler
divergence between each background and foreground image. Gupta et al. used a superpixel
image generated by simple linear image clustering (SLIC) instead of a binary segmentation
image as used in Cho et al. [17, 18]. Semantic Human Matting (SHM) by Chen et al.
[19] uses a fusion module that combines two encoder-decoder networks, a trimap generation
stage, and an alpha matting stage, to enable end-to-end training.

Semantic Human Matting and our work incorporate semantic image segmentation tech-
niques into the model for generating trimaps. This is because the goal of these two tasks
is the same: to predict the class of each pixel. The following is a list of previous studies
on semantic image segmentation. Semantic image segmentation is a popular research topic,
and many methods and datasets are provided for this task [20, 21, 22, 23, 24]. Common
practice had been to learn features by using random forests or Bayesian models, but more
recently, it has become increasingly popular to use deep neural networks [25, 26, 27, 28].
An example of semantic image segmentation that relies only on color images is the pyramid
scene parsing network developed by Zhao et al. [29]. They proposed a pyramid pooling
module to capture features with different resolutions and achieved state-of-the-art perfor-
mance on multiple benchmarks. We used their PSP-Net as the baseline method in our
comparative experiment.

2.3 Saliency map detection

Saliency map detection aims to find important parts of a natural image that humans pay
attention to. This task is used as a pre-processing stage for many other image recognition
applications. Examples include semantic image segmentation and image retrieval. In classi-
cal approaches of saliency map detection, hand-crafted features have been used extensively.
These methods make use of color contrast [30, 31] or background prior [32] and can pro-
duce results that better capture local features. However, it was difficult to obtain high-level
and semantic information with these classical approaches, and now neural network-based
methods have become increasingly popular. In addition, several large datasets are being
developed to go along with this trend. [33, 32, 34, 35]

Currently, various CNN-based networks have been proposed, but many of them have
modules for looking at multi-scale features. Liu et al. [36] and Li and Yu [37, 38] proposed
models with pixel-wise and super-pixel-wise receptive fields to capture both local and global
features. A number of methods have predicted saliency maps hierarchically, from global
views to finer local views, using a U-Net-based encoder-decoder network [39, 40, 41]. The
pyramid feature attention network (PFAN) for saliency detection of Zhao et al. [42] is an
efficient neural network-based saliency detection method. They introduced a new feature
extraction module and two attention modules to get multi-scale features. We also developed
a method to generate trimaps on the basis of this PFAN saliency map detection method.
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Chapter 3

Method

In our proposed method, two types of images, namely a trimap and a saliency map, are
trained multi-modally during the training phase. The following subsections describe its
components.

3.1 Network structure

Figure 3.1 shows our proposed network. The main contribution of this work is to propose
a network having multiple outputs, namely the saliency map and the trimap. It is illus-
trated in the upper half of the figure. The losses from both outputs contribute to training.
They enable the network to learn to focus on regions with more salience and to generate
an appropriate trimap in the focused region. The network is supplied with images, each
represented as a tensor having the shape of (w, h, c), where h is the image height, w is the
image width, and c is the number of color channels. Our proposed network has two outputs.
The first is a trimap represented by one-hot vectors. For each pixel in the image, there is a
one-hot vector. For a pixel at location (i, j), Iij = [1, 0, 0] represents that the pixel is in the
background. Iij = [0, 1, 0] represents that it is an ambiguous pixel. Finally, Iij = [0, 0, 1]
represents that it is in the foreground. We call this representation a one-hot trimap and
it has the shape of (w, h, 3). The second output is a saliency map. Here, each pixel takes
a value between 0 and 1, similar to the format of a grayscale image and has the shape of
(w, h).

The goal of the trimap generator is to classify each pixel into three classes, namely fore-
ground, background, and ambiguous. This task is similar to semantic image segmentation.
As in saliency map detection, we wanted to capture the subject for a wide range of domain
photos, so we used the PFAN [42]. for this part of the network. It is shown in the bottom
half of Figure 3.1. PFAN consists of three modules. Context-aware pyramid feature ex-
traction is a module that extracts invariant features in terms of scale, shape, and location
using an atrous convolution. Outputs from three high-level feature layers from the feature
extractor are input to multiple convolution layers having various dilations and padding, and
then concatenated. The two attention modules, channel-wise attention and spatial atten-
tion, are designed to reduce redundant information and focus on critical information. We
applied channel-wise attention to the high-level features and spatial attention to the high-
and low-level features, respectively, in the same way as in the PFAN network.

In the original PFAN paper, the pre-trained VGG16[43] was used for the feature extractor,
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Figure 3.1: Network structure of the proposed model. The input image is put through feature
extractors. Low- and high-level features are processed through different paths and then merged.
The path is split to produce two output images and sent to two terms (the saliency loss and trimap
loss) in the loss function.

but we have extended this module to be replaceable with several other models.

conv(1, 1, 32)conv(1, 1, 32)conv(1, 1, 32)

B

conv(3, 3, 32), dilation=3

conv(3, 3, 32), dilation=5
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high-level features

CPFE
module
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low-level features

A

Figure 3.2: Processing of low- and high-level features in the proposed network.

The shapes of the low- and high-level features in our network are different for each feature
extractor and are also slightly different from the original implementation of PFAN. If the
five feature layers from the feature extractor are Ln(n ∈ [1..5]) in order of shallowness, and
the shape of each feature layer is (wn, hn, cn), then the low-level and high-level features
(created through the CPFE module) are created as shown in Figure 3.2-A and B.
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3.2 Loss function

We use three loss functions for training in the trimap stage: cross-entropy loss for the
trimap, cross-entropy loss for the saliency map, and edge-hold loss. The cross-entropy loss
is commonly used in saliency map detection and is defined as the cross-entropy between the
final predicted saliency map and the ground-truth saliency map, namely

LS = −
size(Y )∑

i=0
(αsYi log(Pi) + (1 − αs)(1 − Yi) log(1 − Pi))

where Y is the ground-truth saliency map and P is the saliency map predicted from the
network. αs is a balance parameter that is calculated from the ground truth of the training
set; we set αs to 0.528. The cross-entropy loss mainly considers the difference of positions
between objects, so the difference of intricate parts of the object boundaries does not con-
tribute much. To solve this problem, PFAN uses the edge-hold loss, which uses the Laplace
operator to calculate the cross-entropy loss after extracting edges from both saliency maps.
This enables the network to focus more on correcting errors around boundaries. Convolution
with the Laplace operator is defined as

∆f̃ = abs(tanh(conv(f, KLap)))

where KLap is the Laplace kernel. We used a 3 × 3 matrix,
((−1, −1, −1), (−1, 8, −1), (−1, −1, −1)), for KLap.

The edge-hold loss function is defined as

LB = −
size(Y )∑

i=0
(∆Yi log(∆Pi) + (1 − ∆Yi) log(1 − ∆Pi))

The overall loss that we used for training is

Loverall = β(αLS + (1 − α)LB) + (1 − β)LT

where LT is the cross-entropy loss of trimap prediction. We set α to 0.5 and β to 0.4 in the
experiment.
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Chapter 4

Experiment

To evaluate the proposed method, we conducted experiments using benchmark datasets
commonly used for alpha matting and saliency map detection. In the following subsections,
we describe the datasets used for training, the details of implementation, and the result of
experiments.

4.1 Dataset and prepossessing

We used the DUTS image dataset (DUTS) [34] to train the proposed network. This dataset
is a commonly-used benchmark dataset for saliency map detection tasks. All images come
from the ImageNet DET training/evaluation/test datasets and also the SUN dataset. In
addition, salient areas are annotated for each images manually. We used 10,553 training
images and 1,000 test images from this dataset. The data contains natural images and their
saliency maps, but does not contain ground-truth trimaps nor ground-truth alpha mattes.
Therefore, we generated pseudo-ground-truth trimaps from the saliency maps.

The ground-truth saliency map was expanded and contracted, and the pixels that did not
match between the two images were considered as ambiguous pixels. Kernel size used in this
erosion / dilation process was randomly selected for each iteration between 1 and 10. We
overlaid the ambiguous part on the original binary mask and used it as a trimap, as indicated
in Figure 4.1. In the training phase, trimaps were converted into the one-hot-trimap format.

saliency map

trimap

eroded

dilated get diff

overlay

Figure 4.1: Steps in creating a pseudo-ground-truth trimap from a saliency map.
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Figure 4.3: Learning curves for different network structures.

4.2 Hyperparameters for training

We implemented our proposed method using Python programming language and PyTorch
[44] framework. We prepared three models for the experiment, each having a unique pre-
trained feature extractor as a backend, namely Resnet18, VGG16, and Densenet. All feature
extractors are pre-trained by the ImageNet classification task. Figure 4.2 illustrates feature
layers used in the model. The names of each layer in the figure conform to implementations
in torchvision for VGG16 [45], Densenet [46], and Resnet [47].

We used Adam as the optimizer, setting the learning rate to 10−5. We also used early
stopping in test loss in all models to determine when to terminate the training. Figure 4.3
illustrates the learning curves for different network structures.

4.3 Results

Two steps are required for image matting by the proposed method: generating trimaps by
our proposed network and generating alpha mattes using the predicted trimap. We used
DIM [1] and its PyTorch implementation [48] to implement the latter part.

4.3.1 Performance comparison

We used PSPNet [29] as the basic structure of the baseline models. It is a network that
achieved high accuracy in the field of semantic segmentation. We prepared several models
having different backend feature extractors. We trained the baseline models using the same
loss as the proposed method. Since there is no ground-truth alpha mattes in the saliency
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orignal photo proposed psuedo trimap proposed psuedo trimap proposed psuedo trimapPSPNet PSPNet PSPNet

orignal photo proposed psuedo trimap proposed psuedo trimap proposed psuedo trimapPSPNet PSPNet PSPNet

A B C D

Figure 4.4: Visual comparison of original and generated images. A: Original photographs, B:
Trimaps generated by each method. C: Alpha mattes generated by each trimap and DIM. D:
Composition results by using each alpha matte.

map detection datasets, we generated pseudo-ground-truth data. First, we created pseudo-
trimaps from the ECSSD [33] dataset using the same approach as in the training stage.
Then we applied DIM to create pseudo-ground-truth alpha mattes. The sum of absolute
differences (SAD), mean square error (MSE), gradient error, and connectivity error were
measured with respect to the pseudo-ground-truth alpha matte. These four metrics are
commonly used in the field of image matting; SAD and MSE directly correlate with the
distance from ground-truth data in the image matting data; gradient error and connectivity
error are metrics proposed by Rhemann et al. [49] to reflect the visual quality of the alpha
matte when annotated by a human. When calculating these metrics, we normalized both
the predicted alpha matte and ground-truth from 0 to 1, and computed metrics for pixels
labeled as "ambiguous" in the corresponding trimap.

Table 4.1 summarizes the results. The pseudo-ground-truth alpha mattes were generated
by mechanically expanding trimap boundaries, so their details may differ from real alpha
mattes. Table 4.1 compares the performance of extracting main objects from images. It
shows that for the ECSSD dataset, the proposed method performed better than other
methods in each of the metrics except for the connectivity error when using Resnet18.
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Method SAD MSE
(×10−2)

Gradient
(×103) Connectivity

VGG16
PSPNet 17.560 9.811 3.608 1.356
proposed 13.680 7.490 2.799 1.178
Resnet18
PSPNet 16.572 9.326 3.489 1.146
proposed 12.681 6.825 2.543 1.228
Densenet
PSPNet 15.043 8.475 3.172 1.101
proposed 12.580 6.844 2.550 1.151

Table 4.1: Performance results for the ECSSD dataset.

Method SAD MSE
(×10−2)

Gradient
(×103) Connectivity

VGG16
PSPNet 23.179 13.792 5.046 0.538
proposed 11.654 6.769 2.446 0.215
Resnet18
PSPNet 21.252 12.686 4.651 0.304
proposed 15.870 9.424 3.440 0.190
Densenet
PSPNet 16.528 9.848 3.611 0.138
proposed 15.176 9.011 3.271 0.152

Table 4.2: Performance results for the Matting Human Datasets.

We also conducted trimap generation using the Matting Human Dataset [50]. Note that
the ground-truth alpha mattes in the Matting Human Datasets are manually created, unlike
alpha mattes in ECSSD that are mechanically generated from pseudo-trimaps. The former
is therefore more suitable to compare how different methods generate fine details of alpha
mattes. However, one drawback of the Matting Human Datasets is that it contains human
portraits only.

Table 4.2 summarizes the result for the Matting Human Dataset. As indicated in the
table, the model adopting the PFAN network scored better than the PSP model on each
of the metrics except for the connectivity error when using Densenet. This result, together
with that of ECSSD, indicates that our method performs better than baseline methods in
terms of both recognizing main objects and matting in details.

4.3.2 Visual comparison

Figure 4.4 compares trimaps generated by the proposed method, those generated by PSPNet
using ResNet18, and the pseudo-ground-truth masks. From each trimap, an alpha matte
was generated using DIM. Foregrounds extracted by alpha mattes are presented also. Images
in the upper rows are from the ECSSD dataset, and those in the lower rows are from the
Matting Human Datasets. The result shows that our method can generate trimaps nearly
equal to pseudo-trimaps generated using correct saliency maps. The first row shows that
both the proposed method and PSPNet can extract the overall image of the object with
reasonable quality. However, the trimaps generated by PSPNet have smoothed outlines
and do not reflect the detailed shapes of the objects. The difference is also perceivable after
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Method SAD MSE
(×10−2)

Gradient
(×103) Connectivity

ECSSD
no SA 13.313 7.159 2.682 1.296
no CA 15.293 8.472 3.173 1.161
no LT 14.398 8.000 2.971 1.140
proposed 12.681 6.825 2.543 1.228
Human Matting Dataset
no SA 14.010 8.211 3.013 0.256
no CA 17.935 10.678 3.906 0.226
no LT 20.947 12.568 4.574 0.242
proposed 15.870 9.424 3.440 0.190

Table 4.3: Contributions from each component. We used ECSSD and Human Matting Dataset as
a dataset and Resnet18 as a feature extractor.

matting them with DIM. The second and third rows show that the trimaps generated by
the proposed method have finer edges and tend to capture local features more. The fourth
row shows that the proposed method can generate accurate trimaps even for non-living
objects. The results from the Matting Human Dataset show a smaller difference between
the proposed method and PSPNet than the results from the ECSSD, indicating that both
methods can capture the contours of portrait images successfully. However, the proposed
method tends to be more capable of tracing local features. In addition, a number of the
contours are missing in the results generated by PSPNet.

4.3.3 Contributions from each component

We trained the model by omitting each component and evaluated it in the same way as
mentioned earlier for ECSSD to see the extent to which the components of the proposed
method have an impact on the final prediction results. The results are listed in Table 4.3.
We used the Resnet18 backend for this experiment.

When compared with the models having components removed, the proposed method
scored better for all criteria except for the connectivity error. It indicates the effectiveness
of multi-modal training and also the use of PFAN as the network structure.

4.3.4 Processing of high-resolution images

In the experiments, we trained the neural network model using images consisting of 400×400
pixels. In practice, the user would want to process images of various sizes. The network
itself can accept images of different sizes without downsampling, but we expected the quality
would differ if the sizes of the training images and test images were different. We conducted
experiments to investigate how the size of the image affects the quality of the generated
trimap and the computation time.

Figure 4.5 shows the results of generating trimaps of different resolutions using a network
trained by images of 400 × 400 pixels. It shows that there are more errors when generating
higher resolution images such as the one having 600 × 600 pixels. As shown in Figure
4.7, the result suggests that when processing high-resolution images, it would be better to
downsample the original image to the size of the training images, generate a trimap using the
proposed method, upsample the trimap, and perform image matting. Since image matting
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Figure 4.5: Generated trimaps of different resolutions from a network trained by images of 400×400
pixels.
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Figure 4.6: Computation time of the proposed method. The upper graph shows the the FPS for
generating trimaps only. The lower graph shows the FPS for generating trimaps having 400 × 400
pixels and then image matting using DIM. The graphs show the average FPS for 1, 000 images.

methods such as DIM do not require the input trimap to have fine details, upsampling of the
trimap would not reduce the quality. Examples of using the proposed method to produce
image matting for high-resolution images are indicated in Figure 1.1.

We used an NVIDIA Quadro RTX 8000 as the GPU to measure the computation time.
The left graph of Figure 4.6 shows the frames per second (FPS) for generating trimaps of
different sizes. The right graph compares the FPS for the whole process of image matting
when the resolution of the trimap generation was set to 400 × 400. The results show that it
is difficult to use the system in real time, but it works very efficiently in offline video editing
situations, for example.
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Figure 4.7: Proposed image matting process for a high-resolution image. 1. The image is down-
sampled to match the size of the training images. 2. A trimap is generated from the downsampled
image by a trained network. 3. The trimap is upsampled to match the size of the original image.
4. The trimap and the original image is processed by an image matting algorithm to produce an
alpha matte.
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Chapter 5

Conclusion

We proposed a method for converting a natural image into a trimap that can then be used to
generate an alpha matte, the standard representation used for foreground extraction. Our
method generates trimaps and saliency maps simultaneously and computes the loss function
for both images. We verified the effectiveness of the proposed method by measuring its
performance on generating alpha mattes for both the DUTS test dataset and the Matting
Human Dataset [50].

Future work includes training the model using larger datasets. The Matting Human
Dataset that we used in the evaluation is limited to portrait photographs. A larger subject-
matting dataset for general objects will be needed to improve the accuracy of this task.

Also, the generative adversarial network (GAN) is now widely used for generating new
images that resemble existing images in a training dataset [51]. It trains two networks,
namely a generator that generates images from random number sequences and a discrim-
inator that tries to judge whether it is a "real" image contained in the training dataset
or a "fake" image generated by the generator. After training, the generator can generate
images that are not easily distinguishable from the training images. Isola et al. proposed
an extension of this method called Pix2Pix [52], which converts an image to another style.
These methods are known to produce outputs with low noise [53, 54]. The critical point of
these methods is that by using a discriminator, we can tackle problems where it is difficult
to define an optimal loss function for each task. Incorporating them into trimap generation
may result in images that have even more natural segmentation.

Drawing a trimap is a tedious task that requires a significant amount of time. Our
method will reduce that time significantly. It will make alpha matting accessible to more
users, enabling them to create more interesting contents through integrating multiple images
and videos.
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