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Chapter 1

Introduction

1.1 Motivation
Recently, research on ranking has been actively conducted in information retrieval. In
this thesis, we focus on the field of document retrieval. In document retrieval, ranking
was traditionally performed using a generative model [1, 2]. This approach is based on
a language model and ranks documents by the likelihood of the query according to the
language model. However, one of the shortcomings of this model is that it is difficult to
combine and handle many features between query and document. To overcome this problem
with the strength of machine learning, ranking model has shifted to a discriminative model
represented by learning-to-rank [3].

Learning-to-rank uses machine learning technologies to train the ranking model and
has shown great value in many fields, such as document retrieval, recommender system
and question answering. In the document retrieval, the learning-to-rank method learns
an optimal way of combining features (such as TF-IDF [4] and BM25 [5]) extracted from
query–document pairs through discriminative training. Given a query, the ranking model
assigns a score to each document, and ranks the documents in descending order of the scores.
The score represents the relevance of documents with respect to a query. By combining
learning-to-rank with rich learning methods (such as deep neural networks and decision
tree), it has become possible to realize a flexible and powerful ranking model. However, it
has a problem that it cannot find useful features from a large amount of unlabeled data.
Therefore, in recent years, studies have been conducted to try to solve this problem by
learning generative model and discriminative model at the same time.

In recent years, research on applying adversarial learning to learning-to-rank has been
actively conducted. Adversarial training is a learning method proposed by Generative Ad-
versarial Nets [6] where two models (Generator, Discriminator) improve themselves by beat-
ing the other one at every round of this competition. The generator makes its own generation
probability distribution close to the train data distribution and maximizes the probability
that the discriminator makes a mistake. On the other hand, the discriminator attempts
to distinguish whether the sample was obtained from ground-truth or the generator. This
machine learning framework has been successfully applied to various fields such as image
generation, natural language processing [7, 8] and speech processing [9, 10]. In particu-
lar, there is a lot of research on its application in image generation technology, and it is
now possible to generate images that can even be mistaken as real images. IRGAN [11]
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was the first attempt to propose a minimax game framework to train information retrieval
systems. They used the generator and discriminator to solve the problem where learn-
ing to rank has difficulty in dealing with unlabeled data. The generator aims to generate
(or select) documents that look like the ground-truth relevant documents, which may fool
the discriminator. On the other hand, the discriminator aims to make a clear distinction
between the ground-truth relevant documents and the ones generated by its opponent gen-
erator. By repeating the generator and discriminator training, the generator will be able
to sample more relevant documents, and the discriminator will be able to identify docu-
ments more accurately. Adversarial training for Information Retrieval (AdvIR) [12] also
applies adversarial training to the training of the traditional ad-hoc information retrieval
model. In addition to adversarial sampling, they generate documents that are difficult
to judge by adding adversarial perturbation on top of the existing documents. In these
approaches, GAN-divergence is used to minimize the difference between the probability dis-
tribution of the generator and the probability distribution of the training data, but it is
not known whether it is optimal for document retrieval. In the field of image generation,
there are examples where PC-divergence has been used to generate higher resolution images
than GAN-divergence [13], and where high holdout likelihood has been achieved using KL-
divergence compared to GAN-divergence [14]. In addition, the difficulty of stable learning
has been reported [15, 12] as a problem of IRGAN.

The aforementioned question motivates us to approach a new ranking model with
adversarial training. In the original GAN paper, the authors show that it is possible to train
a generative model by approximate minimization of the GAN-divergence. It is a special case
of divergence estimation. f-GAN [14] generalized it to arbitrary f-divergences and proposed
variational divergence minimization framework for image generation. Therefore, in this
thesis, in order to investigate the effects of different f-divergence for document retrieval, we
propose a ranking model that uses f-divergence [16] minimization approach on adversarial
learning-to-rank. We call this model IRf-GAN. It is possible to estimate the difference
between the probability distribution of the generator and the training data due to various
divergences by using f-divergence. The smaller the f-divergence, the more the generator will
be able to sample relevant documents. In addition, for a stable learning, we modified training
algorithm which took a single gradient update on both the generator and discriminator for
each iteration step, and in the pairwise method, we used weighted sampling and sampling
based on the probability obtained from the Bradley-Terry model. The purpose of this thesis
is thus to investigate the effects of different f-divergence functions for document retrieval
and make the training more stable by modifying the training algorithm to perform single-
step gradient update for both the generator and discriminator at each iteration step and
improving a sampling method for ground-truth and fake documents in the generator.

1.2 Contributions
The main contributions of this thesis are summarized as follows:

1. We proposed a novel adversarial training framework that applies f-divergence mini-
mization to the training of the generator and discriminator that allows us to investi-
gate the effect of different f-divergence functions on adversarial learning-to-rank, and
to achieve stable learning with the single-step gradient method to update generator
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and discriminator parameters in the same iteration and pair sampling method using
weighting and pair comparison models.

2. To understand the effectiveness of our approach, we conduct a series of experiments
using MSLR-WEB30K, Yahoo Learning to Rank Challenge corpus, MQ2008 and
MQ2008-semi. Experiments on any dataset demonstrate that proposed framework
for adversarial learning-to-rank shows better performance than the baseline approach
based on either pointwise or pairwise model, and it is suggested that the number of
features in the dataset used for learning affect the identification of optimal divergence
in adversarial learning-to-rank.

1.3 Outline
This thesis consists of six chapters. In chapter 2, we describe the related works. First,
we describe traditional information retrieval models (such as Boolean Model, Vector Space
Model and Language Model), and then introduce the learning-to-rank and adversarial train-
ing, and finally, we introduce the combination of these two techniques that are at the core
of this research. In chapter 3, we describe the proposed method. We take a closer look at
the objective function of the proposed method and how to learn the generator and discrim-
inator of pointwise and pairwise method, respectively. In chapter 4, we introduce the setup
of the experiment, including the dataset, evaluation metrics, and baseline, and in chapter
5, we analyze and discuss the results of the experiment. Finally, in chapter 6, we present
the conclusion to this work and propose directions for future work.
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Chapter 2

Related Work

In this chapter, we describe related work in my research. First, we describe the Boolean
Model, Vector Space Model, and Language Model as traditional generative models in infor-
mation retrieval. Then, we explain learning to rank as a discriminative model, and explain
the research on adversarial training, which is the key in this research. Finally, we introduce
recent research combining learning to rank and adversarial training.

2.1 Information Retrieval
Information retrieval is to retrieve relevant documents from a collection of information sys-
tem resources by various information retrieval strategies, thereby allowing users to easily
access the information that are satisfying a user’s information need [17]. In order to ef-
fectively search for relevant documents by those strategies, it is common to transform the
documents into an appropriate representation, and the traditional information retrieval
model differs in the way the documents are represented.

2.1.1 Boolean Model
The Boolean Model [18] is the earliest model that treats a document as a collection of words.
When a query is given by a user, the document containing the word that matches the query
is regarded as the related document. This model uses operators such as "AND, OR, NOT"
to match documents with logical expressions based on Boolean algebra as queries. For
example, "X AND Y" means that the document must contain two words, X and Y. "X OR
Y" means that it must contain at least one of the words X and Y, and "NOT X" means
that the document must not contain the word X. Such search method is used in libraries’
online catalogs, such as OPAC and search engines, which has the advantage of being fast
to search and easy to understand, but have the disadvantage of not being able to rank the
output documents.

2.1.2 Vector Space Model
In the case of Vector Space Model [19], queries and documents are represented as vectors,
and the vectors for each term are weighted according to their relative importance. TF-
IDF [4] is often used to calculate this weight. It is the product of TF, which indicates
the number of occurrences of the word in the document, and IDF, which is the inverse of
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the document frequency in which a word appears. TF-IDF is high if term t occurs many
times in a small set of documents, and low if term t occurs several times in a document or
very frequently in a large number of documents. Effective way to measure the similarity
between document and query vector is a vector matching operation such as cosine similarity.
This operation is used to measure the cosine of angle between vectors, and the smaller the
resulting value, the more similar it is considered. The similarity result is used to rank the
documents according to their estimated relevance to the query.

2.1.3 Language Model
The Language Model approach [1, 2] treats the process of document retrieval as probabilistic
inference. That is, it builds a model from each document and then ranks the documents
based on the probability that the document model generated a query. This document model
generates queries using probabilistic estimates by Bayes theorem, n-grams [20], and so on.
Although such a generative model for information retrieval is successful in modeling features
such as text information, it is difficult to rank documents based on various features such
as link and click information, which are obtained from search engine log data. In order to
properly weight these various features, learning-to-rank [3] has been actively studied.

2.2 Learning-to-Rank
Learning-to-Rank refers to the application of supervised machine learning techniques to
build a ranked model for information retrieval systems. It uses machine learning technolo-
gies to train the ranking model and has shown great value in many fields, such as document
retrieval [3], recommender system [21] and question answering [22]. In the document re-
trieval, the learning-to-rank method learns an optimal way of combining various features
extracted from query-document pairs through discriminative training. These features in-
clude features of the document itself that do not depend on the query, such as the number
of in-out links and PageRank [23], features that depend on the query, such as the length
and frequency of the query, and features that depend on both the query and the document,
such as BM25 and TF-IDF. Given a query, the ranking model assigns a score to each doc-
ument, and ranks the documents in descending order of the scores. The score represents
the relevance of documents with respect to the query. The goal is to rank highly relevant
documents higher than less relevant documents. Figure 2.1 shows a typical learning-to-rank
architecture. The training data consists of several pairs of queries and their associated doc-
ument sets, and each query-document pair has a label indicating its relevance. The ranking
model is trained by each machine learning algorithm using the training data, and ranks and
sorts the test data for which the ranking is not known. The learning-to-rank approach can
be classified into three categories according to the learning method: pointwise, pairwise,
and listwise methods.

2.2.1 Pointwise
In the pointwise approach, given a query group, a score is computed for each document
independent of the other documents. The loss for each document is defined as the difference
between its labeled score and its predicted score. The ranking of the result list is obtained
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Figure 2.1: Architecture of learning-to-rank

by simply sorting the documents by their predicted scores. A pointwise approach trains
a classifier or regressor that predicts the relevance of a document given a query, such as
standard ML models. The disadvantage of the pointwise model is that it can only predict the
relevance of a single document, making it difficult to rank it in relation to other documents
obtained from the same query. Typical pointwise models are PRank [24] and McRank [25].

2.2.2 Pairwise
In the pairwise model, each document in a query is paired with other documents in the
same query and fed into a scoring function to generate priorities among pairs of documents.
After all the pairs are compared, the overall order of the documents is obtained. The
loss function is set to minimize the number of pairs with wrong priorities between pairs of
documents. This model can rank documents by considering the relative order of document
pairs. Typical pointwise models are RankNet [26] and RankSVM [27].

2.2.3 Listwise
A listwise approach takes a list of all documents as input and tries to re-rank them an optimal
order. Many listwise approaches learn to directly optimize metrics that evaluate rankings,
such as Normalized Discounted Cumulative Gain (NDCG). Also, listwise approaches have
been found to perform better than other approaches [28]. Typical pointwise models are
ListNet [28] and LambdaRank [29].

These discriminative models can combine various features to output the best ranking,
but it is difficult to obtain useful features from massive unlabeled documents. Therefore,
there is an increasing movement to apply adversarial training, which trains generative mod-
els and discriminative models at the same time, to information retrieval.

6



2.3 Adversarial Training
Adversarial training is a learning method proposed by Generative Adversarial Nets (GAN) [6]
that two models (Generator, Discriminator) improve themselves by beating each other at
every round of this competition.

2.3.1 Generative Adversarial Nets
Figure 2.2 shows a typical architecture of GAN. The generator makes its own generation
probability distribution close to the train data distribution and maximizes the probability
that the discriminator makes a mistake. On the other hand, discriminator attempts to
Identify whether it is a training sample or one sampled by the generator. The goal of
GAN is to learn a distribution for the generator that approximates the distribution of real
data. The optimization of GAN is done by the following minmax game using the joint loss
function of discriminator and generator V (G, D).

min
G

max
D

V (D, G) = Ex∼pdata(x)[log D(x)] + Ez∼pz(z)[log(1 − D(G(z)))] (2.1)

where z denotes noise, pdata is a ground-truth distribution and pz(z) is input noise variables.
This machine learning framework is mainly used for image generation and data augmen-
tation [30]. DCGAN is one of the most popular studies in image generation. It uses a
convolutional layer to increase the expressive power of G, D, where a multilayer perceptron
was used. The result of the generation was extremely innovative, and it has become possible
to generate a fine image that is different from the conventional model. It is also possible
to add and subtract images by computing the input vector. Recently, by making various
learning techniques, it has become possible to generate a detailed image that can even be
mistaken as a real image from noise [31].

Figure 2.2: Architecture of Generative Adversarial Nets
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2.3.2 f-GAN
f-GAN is one of GANs, which proposed generative neural samplers using variational diver-
gence minimization [14]. In conventional GANs, GAN-divergence is used for optimization
of the objective function, but in f-GAN, f-divergence, which is a generalization of the GAN-
divergence, is used for learning. For a set χ of random variables x, f-divergence is defined
as follows.

Df (P ||Q) =
∫

χ
q(x)f

(
p(x)
q(x)

)
dx (2.2)

where P and Q are distributions, and p(x) and q(x) denote density function. Here, from
the divergence identity, f is a function satisfying f(1) = 0. For example, if f(x) = xlog(x)
gives KL-divergence, and f(x) = xlog(x) − (x + 1)log(x + 1) gives the GAN-divergence.
The variational divergence estimation framework is trained based on the following objective
function.

F (θ, ω) = Ex∼P [gf (Vω(x))] + Ex∼Qθ [−f∗ (gf (Vω(x)))] (2.3)

where θ and ω represent the parameters of the generator and discriminator, respectively, Vω

is the output of the discriminator, gf is the activation function of the output layer, and f∗

is the convex conjugate function. It was shown that the model trained for KL-divergence
achieved a higher holdout likelihood compared to the GAN model.

2.4 Divergence
The divergence is used as a measure of the difference between different probability distribu-
tions, and it weakens the axiom of distance, requiring only that non-negativity and Identity
of indiscernible be satisfied. In this thesis, the following five divergences were used to train
the proposed method.

2.4.1 Kullback-Leibler
Initially, the entropy with respect to a random variable x is defined as follows using its
probability distribution p(x).

I(p(x)) = −
∫

p(x) log(p(x))dx (2.4)

When approximating a complex probability distribution p(x) with a simple probability
distribution q(x), replacing the −log(p(x)) part, which indicates the amount of information,
with −log(q(x)), we obtain

I(q(x)) = −
∫

p(x) log(q(x))dx (2.5)

This is called cross-entropy, and it indicates the difficulty of predicting the distribution
q(x) of observed data generated under the assumption of a true probability distribution
p(x). To approximate the two probability distributions, taking the difference between the
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cross-entropy and the original entropy, we obtain
(

−
∫

p(x) log(q(x))dx
)

−
(

−
∫

p(x) log(p(x))dx
)

=
∫

p(x)(log(p(x)) − log(q(x)))dx

DKL(P ||Q) =
∫

p(x) log
(

p(x)
q(x)

)
dx (2.6)

This is called relative entropy, which is the difference between the two probability distribu-
tions when they are replaced by a probability distribution, i.e., how close the two probability
distributions are. Relative entropy is also called Kullback-Leiber divergence (KL-divergence)
KL-divergence calculates something like the distance between two probability distributions.

2.4.2 Pearson χ2

Pearson χ2 -divergence [32] is the squared loss of KL-divergence and is expressed as

DP C(P ||Q) =
∫ (q(x) − p(x))2

p(x) dx (2.7)

Pearson χ2 -divergence is a measure used in goodness-of-fit tests to test whether the observed
frequency distribution is the same as the theoretical distribution, and has similar properties
to KL-divergence. Since the squared function in Pearson χ2 -divergence is compatible with
the least-squares method, it can be computed more efficiently than KL-divergence and is
also known to be robust against outliers [33].

2.4.3 Jensen-Shannon
Jensen-Shannon-divergence [34] is a symmetry and smoothing of KL-divergence in order to
overcome the difficulty that KL-divergence does not satisfy the symmetry that is the axiom
of distance, and is expressed by the following formula.

DJS(P ||Q) = 1
2DKL(P || M) + 1

2DKL(Q || M)

= 1
2

∫
(p(x) log 2p(x)

p(x) + q(x) + q(x) log 2q(x)
p(x) + q(x))dx (2.8)

where M = 1
2(P + Q).

2.4.4 GAN
GAN-divergence [6] is the divergence used when learning GAN, and is represented by the
following equation.

DGAN = − log 4 + 2 · DJS(P ||Q)

=
∫

(p(x) log 2p(x)
p(x) + q(x) + q(x) log 2q(x)

p(x) + q(x))dx − log 4 (2.9)

In GAN training, when the probability distribution of the generator and the dataset match
(at Nash equilibrium), the objective function of the GAN takes the value of −log4, so −log4
is added to JS-divergence.
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2.4.5 Squared Hellinger
Unlike KL-divergence and Pearson χ2 -divergence, Squared Hellinger-distance [35] can be
treated as a distance because it satisfies the distance axioms of symmetry and trigonometric
inequality, and thus can be stably learned. Squared Hellinger-divergence is expressed by
the following formula.

DSH(P ||Q) =
∫

(
√

p(x) −
√

q(x))2 dx (2.10)

2.5 Adversarial Training for Learning-to-Rank
In recent years, research on applying adversarial training to learning-to-rank has been ac-
tively conducted [36, 37, 38]. Among them, IRGAN and AdvIR are the representative
examples of the application of adversarial training in web search.

2.5.1 IRGAN
In IRGAN [11], the minmax game theory used in GAN was applied to optimize the gen-
erative and discriminative models for information retrieval. Generative model learns to
make the distribution of document sampling close to the true distribution of the dataset
(so that it can sample documents with relevance), while the discriminative model identifies
whether the sampled documents are from the dataset or sampled by the generative model.
In IRGAN, the generative model performs probabilistic sampling from discrete data, while
GAN deals with images, which are continuous data. In other words, IRGAN does not gen-
erate documents, but samples them. This model is trained based on the following objective
function.

JG∗,D∗ = min
θ

max
ϕ

∑N
n=1(Ed∼ptrue(d|qn,r)[logD(d|qn)] + Ed∼pθ(d|qn,r)[log(1 − D(d|qn))]) (2.11)

where θ and φ represent the parameters of the generator and discriminator, pθ(d|qn, r) is
the probability distribution of sampling relevant documents from the set of documents for
the query qn, and ptrue(d|qn, r) is the true relevance distribution of the set of documents.

2.5.2 AdvIR
Adversarial training for Information Retrieval (AdvIR) [12] also applies adversarial training
to the training of the traditional ad-hoc information retrieval model. The model generates
documents that are difficult to judge by adding adversarial perturbation on top of the ex-
isting documents. Incorporating adversarial sampling with adversarial training, this model
can generate even more difficult negative examples based on the adversarially sampled neg-
ative examples. It uses Kullback-Leibler divergence in the objective function to reduce the
difference in distribution caused by the adversarial perturbation so that the model’s output
does not change dramatically due to the adversarial perturbation. This model is trained
based on the following objective function.

∑

q

(
Ed∼pdata (d|q,y=1) [J(q, d, y = 1; θ) + JKL(q, d; θ)] +

Ed∼pθ(d|q,y=1) [J(q, d, y = 0; θ) + JKL(q, d; θ)]
)

(2.12)
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where θ is a set of model parameter, and y ∈ {0, 1} denotes relevance label. pdata is a
distribution of positive example being selected from label data and pθ is a distribution that
a negative example is selected from unlabeled data. J(q, d, y = 0, 1; θ) and JKL(q, d; θ) are
expressed as follows;

JKL(q, d; θ) = KL [p(· | q, d; θ)‖p (· | q + ηq, d + ηd; θ)]
J(q, d, y; θ) = − log p(y | q, d; θ), where

p(y = 1 | q, d; θ) = σ (fθ(q, d)) , p(y = 0 | q, d; θ) = 1 − σ (fθ(q, d))

where p is a conditional relevance distribution. ηq and ηq are adversarial perturbations for
q and d, and σ is a sigmoid function, fθ is a scoring function.

These adversarial learning-to-rank approaches use GAN-divergence to train the model,
but it is not known whether it is optimal for document retrieval as well. In the field of
image retrieval, PC-divergence and KL-divergence achieved higher image accuracy and high
holdout likelihood than GAN-divergence [14, 13]. In addition, the difficulty of stable learning
is a problem in IRGAN [15, 12], especially in the pairwise model, it has been confirmed that
the performance of the generator decreases with learning. From these questions, we proposed
a variational divergence estimation framework using f-divergence minimization approach on
adversarial learning-to-rank.
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Chapter 3

Proposed Method

In this chapter, we describe how to perform adversarial learning-to-rank based on variational
divergence minimization.

3.1 The Variational Divergence Estimation Framework
Let Q and D be the query space and the document space, respectively. We use Φ : Q×D →
Z := Rd to denote the mapping function Φ that generates a feature vector for a document
under a specific query context, where Z represents the d-dimensional feature space and R
is a set of whole real numbers. We use T := R to denote the space of the ground-truth
labels each document receives. Thus, for each query, we have a list of document feature
vectors x = (x1, ..., xm) ∈ X := Zm and a corresponding list y∗ = (y∗

1, ..., y∗
m) ∈ Y := T m

of ground-truth labels. The subscript i like xi or y∗
i denotes the ith-position in the list. In

practice, we get independently and identically distributed (i.i.d) samples S = {(xj , y∗
j )}n

j=1
from an unknown joint distribution P (·, ·) over X × Y . We use h : x → Rm to denote
the real-valued scoring function, which assigns each document a score. The scores of the
documents associated with the same query, i.e., y = h(x) = (h(x1), h(x2), ..., h(xm)), are
used to sort the documents. In order to learn an optimal scoring function, many prior
studies are conducted based on the principle of empirical risk minimization [3].

Inspired by [11], we cast the process of learning-to-rank as a game between two op-
ponents: a generator and a discriminator. The generator aims to generate (or select)
documents that look like the ground-truth relevant documents, which may fool the dis-
criminator. On the other hand, the discriminator aims to make a clear distinction between
the ground-truth relevant documents and the ones generated by its opponent generator.
Figure 3.1 shows the framework of the proposed method, adversarial learning-to-rank based
on variational divergence minimization. Based on the variational divergence minimization
framework introduced in [14], we formulate the adversarial learning-to-rank as follows:

JG∗,D∗ = min
θ

max
φ

N∑

n=1
(Eπ!Ptrue(π|qn)[gf (Dφ(π|qn))] − Eπ!Pθ(π|qn)[f∗(gf (Dφ(π|qn)))]) (3.1)

where π represents a document, a single document di in the case of pointwise, or a pair of
documents 〈di, dj〉 in the case of pairwise. The generator G is denoted as Pθ(π|qn) that aims
to minimize the objective. On the one hand, the generator fits the true distribution over all
documents per query π ! Ptrue(π|q). On the other hand, it randomly samples documents in
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Figure 3.1: Architecture of the variational divergence estimation framework

order to fool the discriminator. The discriminator is denoted as Dφ(π|qn), which estimates
the probability of a document being either the ground-truth relevant document or not.
f denotes the f-divergence, and f∗ is the Fenchel conjugate of f . gf : R → domf∗ is
an output activation function which is specific to the adopted f-divergence. Table 3.1
shows a number of common instantiations of f-divergence, the corresponding conjugates and
activation functions. In IRGAN training, after pre-training the generator and discriminator

Table 3.1: Parameter of each divergence
f-divergence f Conjugate f∗ domain domf∗ output activation gf

Kullback-Leibler exp(t − 1) R v
Pearson χ2 1

4 t2 + t R v
Jensen-Shannon −log(2 − exp(t)) t < log(2) log(2) − log(1 + exp(−v))

Squared Hellinger t
1−t t < 1 1 − exp(−v)

GAN −log(1 − exp(t)) R_ −log(1 + exp(−v))

with training data, training of the generator several epochs and training of the discriminator
several epochs are repeated in order. This training procedure is difficult to propagate the
gradient between the generator and the discriminator, so it can be unstable and prone
to local optimum. In our study, we adopted the single-step gradient method [14], which
calculates the gradient of θ and φ by a single backpropagation. To optimize discriminative
and generative model, calculating the gradient of equation 3.1 with respect to φ, θ, then
update. Finally, the optimal generator G∗ and discriminator D∗ are obtained by minimizing
the variational divergence. We elaborate on the optimization of each opponent as below.
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Algorithm 1 Single-step gradient method
Initialize generator and discriminator with random weights;
for number of epochs do

Sample Xtrue = (x1, ..., xN ) from Ptrue.
Sample Xθ = (x′

1, ..., x′
N ) from Pθ.

D-step: Update φ.
φt+1 = φt + ∇φF (θt, φt).
G-step: Update θ.
θt+1 = θt − ∇θF (θt, φt).

end for

3.2 Generator Optimization
3.2.1 The Pointwise Case
The generator G samples a document d based on its own generation probability distribution
from a set of documents {d1, ..., dn} that are candidates for query q. In our model, the goal
of the generator G is to bring its own probability distribution closer to the ground truth
probability distribution Ptrue by minimizing f-divergence. Thereby, when q is given to the
generator, highly relevant d can be selected from the candidate pool. The ground-truth
document given to the discriminator is randomly selected from the positive documents.
On the other hand, fake documents are sampled by the generator. The probability that a
particular document dk is selected is then given by a softmax function.

Pθ (πk|qn) = exp (gθ (q, πk))
∑

π exp (gθ(q, π)) (3.2)

where, gθ shows a real-valued function reflecting the probability that document is selected
from query. After fixing the discriminator, the generator is learned by minimizing equation
(3.1) as follows:

θ∗ = min
θ

N∑

n=1
(Eπ!Ptrue(π|qn)[gf (Dφ(π|qn))] − Eπ!Pθ(π|qn)[f∗(gf (Dφ(π|qn)))]) (3.3)

According to [6], maximizing Eπ!Pθ(π|qn)[logDφ(x)] is used to speed up learning rather
than minimizing Eπ!Pθ(π|qn)[log(1 − Dφ(x))] , so following it, the generator was updated to
maximize the θ in Algorithm 1 as follows:

θt+1 = θt + ∇θEπ!Pθ(π|qn)[f∗(gf (Dφ(π|qn)))] (3.4)

Since document sampling is discrete, unlike image generation, it cannot be optimized by
gradient descent, so it is optimized by REINFORCE algorithm [39] according to [11]. The
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gradient is calculated as follows.

∇θEπ!Pθ(π|qn)[f∗(gf (Dφ(π|qn)))]

=
M∑

i=1
∇θPθ (π | qn) f∗(gf (Dφ(π|qn)))

=
M∑

i=1
Pθ (π | qn) ∇θ log Pθ (π | qn) f∗(gf (Dφ(π|qn)))

= Eπ∼Pθ(π|qn) [∇θ log Pθ (π | qn) f∗(gf (Dφ(π|qn)))]

) 1
K

K∑

k=1
∇θ log Pθ (πk | qn) f∗(gf (Dφ(πk|qn))) (3.5)

where m represents the total number of documents for a query, and πk represents the k-th
document sampled by the current generator Pθ(π|qn). Eq 3.5 approximates sampling by a
reinforcement learning algorithm.

3.2.2 The Pairwise Case
Here we show that our proposed framework also works in pairwise case. For each query qn,
we have a set of labelled document pairs Dn = {〈di, dj〉|di " dj}. The generator G tries to
generate a pair of documents from Dn. In pairwise, pairs are made between sorted sets of
documents of the same query, and each document pair is weighted by positions based on
the number of positive and explicit documents in the query. Initially, the difference in the
relevance of document pairs is weighted by the number of explicit documents as follows,

Ptrue (π|qn) = pi − pj

log2(ie + 2) (3.6)

pi, pj express the relevance of the document i, j and ie denotes the i-th position in the
explicit documents. Then weight them in the same way, according to the number of positive
documents as follows,

Ptrue (π|qn) = Ptrue (π|qn)
log2(ip + 2) (3.7)

ip denotes the i-th position in the positive documents. Based on the probability distribution,
ground-truth pairs are sampled. On the other hand, we sampled fake document pairs using
the Bradley-Terry model [40]. It is a probabilistic model that can predict the result of pair
comparison. Estimating the probability that i > j given a pair of individuals i, j selected
from a certain population. In our model, fake document pair sampling is performed based
on the following probabilities.

Pθ(i > j) = 1
1 + e−(pi−pj) (3.8)

ɹAs with pointwise case, after fixing the discriminator, the generator is learned as follows:

θ∗ = min
θ

N∑

n=1
(Eπ!Ptrue(π|qn)[gf (Dφ(π|qn))] − Eπ!Pθ(π|qn)[f∗(gf (Dφ(π|qn)))])

= max
θ

N∑

n=1
(Eπ!Pθ(π|qn)[f∗(gf (Dφ(π|qn)))]) (3.9)

where π = 〈di, dj〉 denotes real document pairs for qn.
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3.3 Discriminator Optimization
3.3.1 The Pointwise Case
The discriminator Dφ(π|qn) maximizes the likelihood of correctly discriminating d that
obtained from the generator and ground-truth. After training the generator, a set of doc-
uments sampled by the generator and ground truth are given. Using these documents, the
discriminator Dφ(π|qn) is trained as a binary classifier that classifies a given document-query
pair into either 0 (generated) or 1 (ground-truth). Therefore, the goal of the discriminator
Dφ(π|qn) is to distinguish correctly whether the document was sampled by the generator
or ground truth. In the discriminative model, the sigmoid function is used to estimate the
probability that a document d is related to a query q.

Dφ(π | qn) = σ (fφ(π, qn)) = exp (fφ(π, qn))
1 + exp (fφ(π, qn)) (3.10)

where fθ shows a real-valued function reflecting the probability that a document is gen-
erated from a query. After sampling documents by ground-truth and the generator, the
probability of each ground-truth document and fake document are estimated by the dis-
criminator, and the discriminator’s loss is calculated by the activation function and Fenchel
conjugate for each divergence. The activation function is applied to ground-truth docu-
ments, and the activation function and Fenchel conjugate are applied to fake documents,
i.e. the discriminator is learned as follows.

φ∗ = max
φ

N∑

n=1
(Eπ!Ptrue(π|qn)[gf (Dφ(π|qn))] − Eπ!Pθ(π|qn)[f∗(gf (Dφ(π|qn)))]) (3.11)

3.3.2 The Pairwise Case
After the generator G has sampled the document, the discriminator Dφ(π|qn) tries to distin-
guish such a generated document pair from a real document pair. As with the pointwise case,
after sampling documents by ground-truth and generator G, the discriminator is learned as
follows:

φ∗ = max
φ

N∑

n=1
(Eπ!Ptrue(π|qn)[gf (Dφ(π|qn))] − Eπ!Pθ(π|qn)[f∗(gf (Dφ(π|qn)))]) (3.12)

where π = 〈di, dj〉 denotes real document pairs for qn and Dφ(〈di, dj〉|q) = Dφ(di, q) −
Dφ(dj , q)
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Chapter 4

Experiment

In this chapter, we describe the experimental setup. We first introduce the data collection
and the way of evaluation. Finally, we explain the structure of the baseline and proposed
model.

4.1 Dataset
In our experiments, we used four publicly available learning-to-rank datasets, MQ2008 [41],
MQ2008-semi [41], MSLR-WEB30K [42], and Yahoo Learning to Rank Challenge cor-
pus [43].

4.1.1 MQ2008
MQ2008 is a query set from Million Query track of TREC 2008 provided by Microsoft, which
are crawled from Web sites in the .GOV domain. This dataset consists of feature vectors
extracted from query-url pairs along with relevance judgment labels. The ground truth is
a multiple-level relevance judgment, which takes 3-level values from 0 to 2. This dataset
contains more than 784 queries, and the query-url pair is represented by a 46-dimensional
feature vector.

4.1.2 MQ2008-semi
MQ2008-semi is designed for semi-supervised learning. This dataset consists of a small
number of pairs of labeled data and a large number of pairs of unlabeled data. There are
15,000 labeled query-document pairs and 531,050 unlabeled query-document pairs associ-
ated with 784 queries. The relevance of the documents is judged 4-level values from -1 to
2. -1 meansʠ unknownʡ, i.e., this query-document pairs are unlabeled examples. Each
query-url pair is also represented by a 46-dimensional feature vector.

4.1.3 MSLR-WEB30K
MSLR-WEB30K is a large scale dataset for research on learning to rank provided by Mi-
crosoft. This dataset contains queries and documents sampled from real search engines
(Microsoft Bing), and the relevance of the documents is judged 5-level values from 0 (irrel-
evant) to 4 (perfectly relevant). This dataset contains more than 30,000 queries, and the
query-url pair is represented by a 136-dimensional feature vector.
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4.1.4 Yahoo Learning to Rank Challenge corpus
Yahoo Learning to Rank Challenge corpus (Yahoo!LETOR) is a learning-to-rank collection
published by Yahoo!. Yahoo!LETOR consists of two collections: Set 1 and Set2. In this
work, we use only Set1. Set 1 was built based on the US Yahoo! search engines, and
the relevance of the documents is also judged at 5-level values from 0 (irrelevant) to 4
(perfectly relevant). This dataset contains more than 29,921 queries, and the query-url pair
is represented by a 700-dimensional feature vector.

MSLR-WEB30K, MQ2008 and MQ2008-semi are partitioned into five folds, and we
performed five-fold cross validation. In our experiment, we use training, validation and test
data. The training data is used to learn the ranking model, validation data is used to find
the best hyperparameters, and the testing data for evaluation. Relevance varies depending
on the dataset, but when evaluating, normalization is performed by nDCG.

Table 4.1: Properties of the four benchmark datasets
MQ2008 MQ2008-Semi MSLR-WEB30K Yahoo(Set1)

Queries 784 784 31,531 29,921
Documents 15,211 546,260 3,771,125 709,877
Features 46 46 136 700
Relevance labels {0, 1, 2} {-1, 0, 1, 2} {0, 1, 2, 3, 4} {0, 1, 2, 3, 4}
Avg relevant documents/query 3.7 3.7 58.0 17.5
Avg documents/query 19.4 696.8 119.6 23.7

4.2 Evaluation Metrics
We use nDCG to measure the performance. It is normalized by dividing the Discounted
Cumulative Gain (DCG) [44] obtained from the predicted ranking of the ranking model by
the DCG obtained from the ideal ranking. It takes into account the ranking position of
the item, where a higher position is assigned with a higher score. It is calculated as follow:
Given a query, nDCG is defined as

nDCG@k = DCG@k
IDCG@k (4.1)

where k is the cutoff value, which indicates the number of elements used for evaluation.
DCG is defined as

DCG@k =
k∑

i=1

2reli − 1
log2(i + 2) (4.2)

where, reli is the degree of relevance of the document at position i in the ranking list, which
is suggested by ranking model. IDCG is defined as

IDCG@k =
k∑

i=1

2ideali − 1
log2(i + 2) (4.3)

where, ideali is the degree of relevance of the document at position i if we rank the matched
documents by their ground truth relevance. We report the results with different cutoff
values 1, 3, 5 and 10 to show the performance of method at different positions and the
ranking performance based on the averaged nDCG scores across five folds with 100 epochs.
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4.3 Baseline Method and Model Configuration
We compare the proposed model (IRf-GAN) with IRGAN, pointwise and pairwise respec-
tively. For the fair comparison, the structure of each model and other hyperparameter
settings such as learning rate were set to the same value. Each model consists of simple
5-layer feed-forward neural network (a dropout rate of 0.01) and the dimension of a hid-
den layer is set as 100. We used the L2 regularization with a decaying rate of 0.001 and
the Adam [45] optimizer with a learning rate of 0.001. In order to find a more accurate
model, we experimented with three activation functions for each layer: Sigmoid, Relu and
CELU. In our proposed method, the divergence was selected from the divergence functions,
Kullback-Leibler, Pearson χ2, Jensen-Shannon, GAN, and Squared Hellinger.
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Chapter 5

Results and Discussion

In this chapter, we show the results of the involved methods on each dataset, and then
discuss the results by comparing different methods.

5.1 Results and Analysis
In this section, we first show the results of pointwise methods, and then the results of
pairwise methods.

5.1.1 MQ2008 dataset
Pointwise

Table 5.1 show the values of nDCG@k(k=1,3,5,10) for pointwise method of IRGAN and
IRf-GAN respectively. It is observed that the IRf-GAN outperforms the IRGAN at all
divergences. In particular, the performance is high when using the GAN-divergence, with
the highest values for all cases from nDCG@1 to nDCG@10. Comparing the IRGAN score
with the highest score among the IRf-GANs, there was an improvement of about 10.5%,
indicating a significant difference. When the activation function was set to Relu or CELU in
IRGAN, the prediction of the generator started to show nan in the middle of training, and
training could not be performed. It is probably because the output of the generator became
extremely small as the learning progressed and the loss of the generator diverged. As a
result, the generator will not be able to sample fake documents well, and the discriminator
will not be able to learn well. Therefore, in IRGAN learning, it is necessary to apply the
sigmoid function to each layer to limit the range of output values for stable learning. IRf-
GAN did not fail to learn, but when the activation function was set to sigmoid function,
the score was lower than the other activation functions. The same problem occurred on
other datasets (MQ2008-semi, MSLR-WEB30K). One possible reason is that by repeatedly
applying the sigmoid function, the output of the generator and discriminator only be the
same value, and learning does not proceed. Figure 5.1 shows a plot of the predicted value of
the generator when learning with GAN-divergence. The Figure 5.1(a) shows the change in
the predicted value when sigmoid is used as the activation function, and the Figure 5.1(b)
shows the change in the predicted value when Relu is used. We can see that the predicted
value converges to 0.5 early in the learning process. It is likely that the learning failure is
caused by the convergence of generator’s prediction.
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Figure 5.1: Changes in the value of prediction of generator, where the x-axis represents number of
epochs, and the y-axis represents the change of predicted value of generator.

Divergence Activation function nDCG@1 nDCG@3 nDCG@5 nDCG@10
S 0.4056 0.4271 0.4647 0.5591

IRGAN R 0.3495 0.3808 0.4122 0.4774
CE 0.0848 0.0904 0.0989 0.1175

KL S 0.2965 0.3367 0.3712 0.4478
R 0.4473 0.4623 0.5149 0.5990

CE 0.3989 0.4580 0.5062 0.5821
JS S 0.2110 0.2508 0.2887 0.3821

R 0.4249 0.4531 0.4882 0.5744
CE 0.4259 0.4544 0.4946 0.5784

PC S 0.2853 0.3050 0.3370 0.4183
IRf-GAN R 0.4272 0.4518 0.4911 0.5787

CE 0.4261 0.4652 0.5045 0.5860
GAN S 0.2746 0.3069 0.3343 0.4308

R 0.4524 0.4771 0.5121 0.5988
CE 0.4290 0.4687 0.5180 0.5916

SH S 0.3093 0.3269 0.3772 0.4661
R 0.3902 0.4481 0.4887 0.5744

CE 0.4222 0.4549 0.5026 0.5844

Impv-IRf-GAN 11.5% 11.7% 11.5% 7.1%

Table 5.1: The experimental results of pointwise method on the MQ2008 dataset. The best result
is indicated in bold, and the one that failed to learn in the middle is indicated in underline. The
last line shows the improvement rate calculated based on the IRGAN score and the highest score
among the IRf-GANs.

Pairwise

Table 5.2 show the performance for pairwise method of IRGAN and IRf-GAN respectively.
We can observe that IRf-GAN achieved better performance than IRGAN. Except for KL-
divergence and SH-divergence, the other divergences had stable and high performance,
especially JS-divergence scored highest in nDCG@1 and GAN-divergence scored highest
in nDCG@3,5,10. The improvement rate was lower than that of the pointwise method,
the average improvement rate was 1.1%, which was not enough to call it an improvement.
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Considering the results of the pointwise method, We can say that JS-divergence and GAN-
divergence are the best way to approximate probability distributions in this dataset.

Divergence Activation function nDCG@1 nDCG@3 nDCG@5 nDCG@10
S 0.4592 0.4805 0.5293 0.6079

IRGAN R 0.4078 0.4410 0.4849 0.5737
CE 0.4439 0.4631 0.5028 0.5802

KL S 0.4373 0.4674 0.5177 0.6010
R 0.4009 0.4373 0.4752 0.5600

CE 0.4374 0.4803 0.5273 0.6027
JS S 0.4529 0.4732 0.5211 0.6039

R 0.4707 0.4857 0.5188 0.6029
CE 0.4474 0.4799 0.5178 0.5989

PC S 0.4509 0.4774 0.5221 0.6071
IRf-GAN R 0.4422 0.4702 0.5201 0.5971

CE 0.4548 0.4727 0.5212 0.6009
GAN S 0.4563 0.4854 0.5289 0.6073

R 0.4610 0.4858 0.5228 0.6027
CE 0.4590 0.4847 0.5313 0.6103

SH S 0.4433 0.4726 0.5183 0.6069
R 0.4294 0.4568 0.4990 0.5873

CE 0.4409 0.4632 0.5179 0.6003

Impv-IRf-GAN 2.5% 1.1% 0.4% 0.4%

Table 5.2: The experimental results of pairwise method on the MQ2008 dataset. The best result
is indicated in bold. The last line shows the improvement rate calculated based on the IRGAN
score and the highest score among the IRf-GANs.

5.1.2 MQ2008-semi dataset
Pointwise

Table 5.3 show the performance of pointwise method of IRGAN and IRf-GAN on the
MQ2008-semi dataset. We can observe that IRf-GAN with JS-divergence performed bet-
ter for nDCG@1, 3, 5, 10. In IRf-GAN, there was not much difference in performance
between divergences, but relatively high performance was achieved when approximated by
JS-divergence. Although the improvement rate of nDCG@1 and nDCG@3 is low (1.6% and
4.4%), it increases as the number of documents used for ranking increases, and the average
of nDCG@1, 3, 5, and 10 is 10.2%, which can be concluded as an improvement.
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Divergence Activation function nDCG@1 nDCG@3 nDCG@5 nDCG@10
S 0.4389 0.4664 0.4687 0.4923

IRGAN R 0.0000 0.0000 0.0000 0.0000
CE 0.0000 0.0000 0.0000 0.0000

KL S 0.2096 0.2756 0.2978 0.3617
R 0.4452 0.4794 0.5135 0.5903

CE 0.4294 0.4720 0.5144 0.5983
JS S 0.1923 0.2462 0.2684 0.3273

R 0.4457 0.4870 0.5237 0.6053
CE 0.4259 0.4710 0.5170 0.5905

PC S 0.2331 0.3097 0.3425 0.4045
IRf-GAN R 0.4235 0.4653 0.5101 0.5899

CE 0.4115 0.4595 0.5038 0.5875
GAN S 0.1495 0.2367 0.2621 0.3139

R 0.4372 0.4558 0.5036 0.5866
CE 0.4283 0.4804 0.5197 0.5970

SH S 0.2585 0.3168 0.3385 0.3959
R 0.4361 0.4769 0.5170 0.5993

CE 0.4263 0.4650 0.5074 0.5879

Impv-IRf-GAN 1.6% 4.4% 11.7% 23.0%

Table 5.3: The experimental results of pointwise method on the MQ2008-semi dataset. The best
result is indicated in bold, and the one that failed to learn in the middle is indicated in underline.
The last line shows the improvement rate calculated based on the IRGAN score and the highest
score among the IRf-GANs.

Pairwise

Table 5.4 shows the performance of pairwise method of IRGAN and IRf-GAN on the
MQ2008-semi dataset. For the pairwise method, IRf-GAN outperformed IRGAN when
using JS-divergence and GAN-divergence. It was observed that GAN-divergence is the best
choice for nDCG@1,3,5 and JS-divergence is the best choice for nDCG@10. The improve-
ment rates for nDCG@1 and 3 were relatively high at 7.8% and 3.9%, while the improvement
rates for nDCG@5 and 10 were low, average was about 4.1%. The possibility of error can-
not be denied, so it would not be possible to say that there is a significant difference in
performance between IRGAN and IRf-GAN. The results of the MQ2008-semi dataset are
similar to those of MQ2008, and even in this dataset, the performance of both pointwise
and pairwise methods is superior when JS-divergence and GAN-divergence.
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Divergence Activation function nDCG@1 nDCG@3 nDCG@5 nDCG@10
S 0.4375 0.4776 0.5202 0.6001

IRGAN R 0.4378 0.4880 0.5163 0.5976
CE 0.4365 0.4816 0.5241 0.6062

KL S 0.4359 0.4856 0.5207 0.6028
R 0.4437 0.4797 0.5260 0.5982

CE 0.4324 0.4917 0.5236 0.6022
JS S 0.4416 0.4860 0.5303 0.6063

R 0.4478 0.4833 0.5259 0.6049
CE 0.4686 0.4977 0.5417 0.6136

PC S 0.4424 0.4790 0.5204 0.6006
IRf-GAN R 0.4442 0.4915 0.5296 0.6068

CE 0.4573 0.4810 0.5219 0.5947
GAN S 0.4472 0.4887 0.5313 0.6087

R 0.4658 0.4947 0.5353 0.6093
CE 0.4721 0.5072 0.5421 0.6131

SH S 0.4402 0.4885 0.5289 0.6042
R 0.4480 0.4923 0.5328 0.6019

CE 0.4685 0.4936 0.5385 0.6128

Impv-IRf-GAN 7.8% 3.9% 3.4% 1.2%

Table 5.4: The experimental results of pairwise method on the MQ2008-semi dataset. The best
result is indicated in bold. The last line shows the improvement rate calculated based on the
IRGAN score and the highest score among the IRf-GANs.

5.1.3 MSLR-WEB30K dataset
Pointwise

Table 5.5 shows the performance of pointwise method of IRGAN and IRf-GAN on the
MSLR-WEB30K dataset. From the table, we can observe that IRf-GAN outperforms IR-
GAN in terms of all nDCG@1,3,5,10. Among them, JS-divergence is the best for nDCG@1,
and PC-divergence is the best for nDCG@3,5,10. However, the improvement rate of IRf-
GAN was low, averaging less than 1.0%, indicating that there was not a significant difference
in performance.

Pairwise

Table 5.6 shows the performance of pairwise method of IRGAN and IRf-GAN on the MSLR-
WEB30K dataset. It was confirmed that IRf-GAN outperformed IRGAN at any divergence
was used. In particular, when training with PC-divergence, the performance was better for
all nDCG@1,3,5,10, no matter which activation function was used in the model. Unlike the
pointwise method, the IRf-GAN performance improvement rate is high, averaging 6.4%,
which can be said to be a significant difference. Considering the pointwise results, the
optimal divergence differs from the MQ2008 dataset and the MQ2008-semi dataset, and
PC-divergence is better for large dataset such as MSLR-WEB30K.
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Divergence Activation function nDCG@1 nDCG@3 nDCG@5 nDCG@10
S 0.3879 0.3809 0.3852 0.4022

IRGAN R 0.4121 0.3990 0.4023 0.4177
CE 0.0000 0.0000 0.0000 0.0000

KL S 0.1450 0.1595 0.1726 0.2016
R 0.3026 0.3114 0.3238 0.3522

CE 0.3338 0.3373 0.3469 0.3715
JS S 0.1390 0.1550 0.1690 0.1995

R 0.4094 0.3946 0.3970 0.4124
CE 0.4170 0.4002 0.4029 0.4177

PC S 0.1387 0.1552 0.1690 0.1985
IRf-GAN R 0.4169 0.4013 0.4041 0.4191

CE 0.2182 0.2244 0.2344 0.2547
GAN S 0.1388 0.1546 0.1688 0.1989

R 0.4114 0.3931 0.3954 0.4111
CE 0.4148 0.3963 0.3980 0.4132

SH S 0.1402 0.1552 0.1695 0.1998
R 0.4061 0.3921 0.3943 0.4094

CE 0.4100 0.3934 0.3961 0.4124

Impv-IRf-GAN 1.2% 0.6% 0.5% 0.4%

Table 5.5: The experimental results of pointwise method on the MSLR-WEB30K dataset. The
best result is indicated in bold, and the one that failed to learn in the middle is indicated in
underline. The last line shows the improvement rate calculated based on the IRGAN score and
the highest score among the IRf-GANs.

Divergence Activation function nDCG@1 nDCG@3 nDCG@5 nDCG@10
S 0.3970 0.3887 0.3938 0.4113

IRGAN R 0.4210 0.4029 0.4052 0.4175
CE 0.4319 0.4142 0.4179 0.4334

KL S 0.4571 0.4353 0.4379 0.4519
R 0.4574 0.4380 0.4410 0.4558

CE 0.4573 0.4381 0.4408 0.4552
JS S 0.4328 0.4134 0.4172 0.4320

R 0.4472 0.4261 0.4306 0.4463
CE 0.4513 0.4297 0.4320 0.4458

PC S 0.4612 0.4388 0.4407 0.4547
IRf-GAN R 0.4643 0.4417 0.4434 0.4571

CE 0.4628 0.4408 0.4426 0.4562
GAN S 0.4320 0.4146 0.4175 0.4326

R 0.4490 0.4276 0.4312 0.4464
CE 0.4484 0.4274 0.4306 0.4452

SH S 0.4364 0.4171 0.4203 0.4356
R 0.4481 0.4281 0.4314 0.4456

CE 0.4530 0.4302 0.4328 0.4474

Impv-IRf-GAN 7.5% 6.6% 6.1% 5.5%

Table 5.6: The experimental results of pairwise method on the MSLR-WEB30K dataset. The
best result is indicated in bold. The last line shows the improvement rate calculated based on the
IRGAN score and the highest score among the IRf-GANs.
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5.1.4 Yahoo dataset
Pointwise

Table 5.7 shows the performance of pointwise method of IRGAN and IRf-GAN on the Yahoo
dataset. IRf-GAN achieved better performance than IRGAN for all nDCG@1,3,5,10, and
showed the best performance when approximated by PC-divergence on this dataset as well.
The improvement in performance of IRf-GAN was low, averaging about 2.0%, which was not
a significant difference. Compared to the results of other datasets, the difference in nDCG
scores by divergence was large, and the performance of IRf-GANs trained with divergences
other than KL-divergence and PC-divergence was low. In this dataset, the percentage of
relevant documents in the set of documents for each query is larger than in other datasets.
Therefore, it is probable that the generator sampled the related document in the early
stage of learning and successfully deceived the discriminator, so that the same document
was sampled after that, and the learning did not proceed. So it indicates that it is important
to choose the appropriate divergence.

Pairwise

Table 5.8 shows the performance of pairwise method of IRGAN and IRf-GAN on the Yahoo
dataset. IRf-GAN’s performance far exceeded IRGAN’s performance. It stably achieved
good performance no matter which divergence it was approximated with, similar to the
pointwise method, and was especially better when approximated with PC-divergence. The
performance improvement was also very high for nDCG@1, 3, 5, and 10, at 17.8%, 11.0%,
8.9%, and 6.1%, averaging about 11.0%, which was the highest improvement across all
datasets. Similar to the results of the MSLR-WEB30K dataset, the Yahoo dataset also
suggests that approximating the probability distribution by PC-divergence is optimal for
both the pointwise and pairwise methods.
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Divergence Activation function nDCG@1 nDCG@3 nDCG@5 nDCG@10
S 0.3296 0.3699 0.4067 0.4920

IRGAN R 0.3445 0.3947 0.4349 0.5204
CE 0.5219 0.5490 0.5771 0.6429

KL S 0.3230 0.3636 0.4027 0.4891
R 0.5164 0.5464 0.5734 0.6400

CE 0.5033 0.5367 0.5675 0.6360
JS S 0.3230 0.3636 0.4027 0.4891

R 0.4302 0.4808 0.5188 0.5920
CE 0.3839 0.4326 0.4778 0.5628

PC S 0.3230 0.3636 0.4027 0.4891
IRf-GAN R 0.5371 0.5640 0.5866 0.6468

CE 0.4828 0.5197 0.5507 0.6207
GAN S 0.3230 0.3636 0.4027 0.4891

R 0.4150 0.4652 0.5051 0.5828
CE 0.4207 0.4678 0.5083 0.5868

SH S 0.3230 0.3636 0.4027 0.4891
R 0.3804 0.4300 0.4723 0.5574

CE 0.4054 0.4556 0.4973 0.5770

Impv-IRf-GAN 2.9% 2.7% 1.6% 0.6%

Table 5.7: The experimental results of pointwise method on the Yahoo dataset. The best result is
indicated in bold. The last line shows the improvement rate calculated based on the IRGAN score
and the highest score among the IRf-GANs.

Divergence Activation function nDCG@1 nDCG@3 nDCG@5 nDCG@10
S 0.5605 0.5852 0.6098 0.6708

IRGAN R 0.5652 0.5850 0.6092 0.6693
CE 0.5494 0.5739 0.5998 0.6625

KL S 0.6565 0.6465 0.6610 0.7090
R 0.6534 0.6436 0.6550 0.7042

CE 0.6581 0.6454 0.6599 0.7068
JS S 0.6441 0.6297 0.6442 0.6951

R 0.6563 0.6436 0.6569 0.7069
CE 0.6369 0.6278 0.6438 0.6941

PC S 0.6660 0.6495 0.6638 0.7116
IRf-GAN R 0.6589 0.6474 0.6625 0.7113

CE 0.6615 0.6450 0.6591 0.7094
GAN S 0.6362 0.6272 0.6439 0.6947

R 0.6543 0.6408 0.6576 0.7066
CE 0.6540 0.6416 0.6578 0.7058

SH S 0.6457 0.6326 0.6467 0.6972
R 0.6607 0.6439 0.6576 0.7053

CE 0.6368 0.6229 0.6357 0.6854

Impv-IRf-GAN 17.8% 11.0% 8.9% 6.1%

Table 5.8: The experimental results of pairwise method on the Yahoo dataset. The best result is
indicated in bold. The last line shows the improvement rate calculated based on the IRGAN score
and the highest score among the IRf-GANs.
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5.2 Discussion
Comparing the performance of IRf-GAN and IRGAN

The results for all four major learning-to-rank datasets showed that IRf-GAN outperformed
IRGAN in performance. In particular, the pairwise method of IRf-GAN achieved stable
and high performance. The possible reasons are as follows: First, the difference of the
learning method. In IRGAN, the generator is trained for several epochs and then the
discriminator is trained for several epochs. This process is repeated many times, so it
is difficult to back-propagate the gradients of the generator and discriminator, making it
difficult to stabilize the learning. On the other hand, IRf-GAN uses the single-step gradient
method for learning, which eliminates the learning instability of IRGAN and achieves higher
performance. Second, the difference of sampling method is thought to have an effect. In
the pairwise method in IRf-GAN, when ground-truth documents are sampled, the sampling
probability distribution is weighted according to the number of positive documents and the
number of explicit documents in the query. In addition, when sampling fake documents, we
consider the pairwise relation based on the Bradley-Terry model. This makes it difficult for
the discriminator to identify whether a given document pair is sampled by the generator
or ground-truth. As a result, the competition between the two models went well and each
model achieved good performance. Fig 5.2 shows the learning curve of IRGAN and IRf-
GAN on the MQ2008 dataset. In IRGAN, it can be observed that the performance of the
discriminator improves with learning, but the performance of the generator does not change
much. On the other hand, in IRf-GAN, the performance of both the discriminator and the
generator improves with learning, suggesting that IRf-GAN is more stable in learning.

When we observed the improvement rate of IRf-GAN in each dataset, we found that
the pointwise method was more significant for MQ2008 and MQ2008-semi dataset, while
the pairwise method was more significant for MSLR-WEB30K and Yahoo dataset. This
suggests that the importance of pair sampling increases for datasets with large number of
queries, documents, and features.

Figure 5.2: Learning curve of IRGAN and IRf-GAN on MQ2008 dataset, where the x-axis rep-
resents number of epochs, and the y-axis represents the nDCG@5 scores of the generator and
discriminator, respectively.
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Analyzing the effect of each divergence on each dataset

What is interesting throughout the experiment with the four major learning-to-rank datasets
is that the optimal divergence was clearly divided between the results of MQ2008 and
MQ2008-semi dataset and the results of MSLR-WEB30K and Yahoo dataset. It was shown
that JS and GAN-divergence are optimal for MQ2008 and MQ2008-semi datasets, and
PC-divergence is optimal for MSLR-WEB30K and Yahoo datasets. One possible reason
for the difference in optimal divergence among the datasets is the number of features in
the dataset. When comparing the results of the MSLR-WEB30K and Yahoo datasets, the
Yahoo dataset has a higher rate of performance improvement due to PC-divergence. This
means that as the number of features increases, PC-divergence becomes more effective. This
may be due to the fact that PC-divergence can produce overdispersed approximations [13].
Since the distribution of documents is dispersed as the features increase, PC-divergence
with such properties can be approximated better. In addition, in the experiment on Yahoo
dataset, the pointwise method of IRf-GAN sometimes failed to learn well due to divergence,
suggesting that it is important to choose the appropriate divergence.

5.3 Summary
In this section, we investigate the effectiveness of the proposed method (IRf-GAN), which
is an adversarial learning-to-rank framework based on variational divergence minimization,
on four major learning-to-rank datasets. Our main findings is that: 1) IRf-GAN achieved
better performance than IRGAN on most of the datasets, and the fact that IRf-GAN,
which approximates the probability distribution with GAN-divergence, performed better
than IRGAN in most cases indicates that the generator and discriminator can be stably
trained by the single-step gradient method. In addition, the pairwise method confirmed that
the sampling method used in this thesis is effective for the stability of learning, especially
for the MSLR-WEB30K and Yahoo datasets, suggesting the importance of pair sampling.
2) The optimal divergence differs depending on the dataset, suggesting that the number of
features in the dataset affects the optimal divergence.
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Chapter 6

Conclusions and Future Work

In this chapter, we first summarize the key contributions of this thesis, then describe the
some interesting directions for future work.

6.1 Conclusions
In this thesis, in order to investigate the effects of different f-divergence functions on ad-
versarial learning-to-rank, we proposed a novel adversarial training framework that applies
f-divergence minimization to the training of generator and discriminator. Moreover, we
adopted the single-step gradient method to smoothly update the gradient of the genera-
tor and the discriminator during training. In addition, in order for the generator to be
more able to fool the discriminator when sampling document pairs, we used the Bradley-
Terry model for fake document pairs and weighted sampling for ground-truth document
pairs. The results of experiments with four major learning-to-rank datasets show that the
proposed method outperforms the conventional adversarial learning-to-rank model. It is
because the learning progresses stably by the single-step gradient method and the pair
sampling method. In particular, it was suggested that the ability to sample pairs well on
large datasets such as MSLR-WEB30K and Yahoo affect performance. From the analysis of
the effect of each divergence on each dataset, it is inferred that the optimal divergence for
learning in adversarial learning-to-rank is affected by the number of features in the dataset
used for learning.

6.2 Directions for Future Work
For future work, we can consider listwise adversarial training framework that applies f-
divergence minimization to the training of generator and discriminator. In the case of the
listwise method, learning can be based on the total ordering relation between documents
associated with the same query, rather than the single document independent of the others
as in the pointwise method or the relative order between two documents as in the pairwise
method. Therefore, we can expect more improvement in evaluation metrics scores.
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