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Abstract In this supplement, we give details of the asymptotic normality in
Lemma 5, an additional test procedure, an R-code to calculate yij(l)s, proofs
of the theoretical results in the main work in Ishii et al. (2020) together with
additional propositions and proofs of the propositions. The equation numbers
and the mathematical symbols used in the supplement are the same as those
which are made reference to in the main document.

Appendix A: Details of the asymptotic normality in Lemma 5

In Lemma 5, we established the asymptotic normality under the SSE model.
However, in general, high-dimensional statistics do not hold the asymptotic
normality under the SSE model. See Aoshima and Yata (2018, 2019) and Ishii
et al. (2019) for the details. We emphasize that the asymptotic normality given
in Lemma 5 is a rare case for the SSE model. In this section, we explain the
details of the asymptotic normality.

We assume r1 = 1 in (7). Then, we write that

∆ = 2∥Ω1∥2F + tr(Ω2
2)− tr(Σ2

∗(1)),
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where Σ∗(1) =
∑q

s=2 κsAs. From (11) and (21), it follows that

∆̃n +Bn(2) =2

n∑
i<j

q∑
s=2

tr(Y ij(1),1Y ij(2),s) + tr(Y ij(1),sY ij(2),1)

n(n− 1)

+ 2

n∑
i<j

q∑
s,s′=2

tr(Y ij(1),sY ij(2),s′)

n(n− 1)
(= V1 + V2, say). (A.1)

Thus, one can ignore the following term:

2

n∑
i<j

tr(Y ij(1),1Y ij(2),1)

n(n− 1)
.

This is the key to prove the asymptotic normality of ∆̃n since its variance
is huge under (C-v) because Var{2

∑n
i<j tr(Y ij(1),1Y ij(2),1)/n

2} = O(κ4
1/n

2)
under (A-i). For V1, by noting that A1As = O for s > 1, we have that

V1 =2

n∑
i<j

q∑
s=2

tr(Y ij(1),1Y ij(2),s) + tr(Y ij(1),sY ij(2),1)

n(n− 1)

=4

n∑
i<j

yT
ij(1)A1yij(2)y

T
ij(1)A(1)yij(2)

n(n− 1)
.

Note that E(V1) = 2∥Ω1∥2F . Now, we give asymptotic properties of V1. Let
yij(l),1 = aT

1 yij(l) and yij(l),2 = (a2, . . . ,ap)
Tyij(l) for all i, j, l, where A1 =

a1a
T
1 and a2, . . . ,ap are eigenvectors of A(1) such that A(1) =

∑p
j=2 aja

T
j .

Then, it follows that

V1 = 4

n∑
i<j

yij(1),1yij(2),1y
T
ij(1),2yij(2),2

n(n− 1)
.

Note that

E(yij(l),1yij(l),2) = Cov{aT
1 xj , (a2, . . . ,ap)

Txj} = (a2, . . . ,ap)
TΣa1

for l = 1, 2; i < j, and ∥(a2, . . . ,ap)
TΣa1∥2 = ∥Ω1∥2F . Thus, V is an unbiased

estimator of the squared norm of the covariance vector between aT
1 xj and

(a2, . . . ,ap)
Txj . Yata and Aoshima (2013, 2016) gave asymptotic properties

of the ECDM estimator for such a covariance vector. Let

LV = 8κ2
1tr(Ω

2
2)/n

2.

From Theorem 3.2 in Yata and Aoshima (2016), we have the following result.

Proposition A1 Assume (A-ii) and (C-i’). Assume also

(C-iii”) lim sup
m→∞

∥Ω1∥2F
L
1/2
V

< ∞.
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Then, it holds that as m → ∞

V1 − 2∥Ω1∥2F
L
1/2
V

⇒ N(0, 1).

Next, we consider the variance of V2 in (A.1). Note that

E(V2) = tr(Ω2
2)− tr(Σ2

∗(1)) ≤ ∆.

We write that

q∑
s,s′=2

tr(Y ij(1),sY ij(2),s′)

n(n− 1)

= 2

n∑
i<j

tr
{
A(1)(yij(1)y

T
ij(1) −Σ∗)A(1)(yij(2)y

T
ij(2) −Σ∗)

}
n(n− 1)

.

Then, from Lemma 1, we have the following result.

Proposition A2 Assume (A-i). It holds that as m → ∞

Var(V2) = O(tr(Ω2
2)

2/n2) +O(∆tr(Ω2
2)/n).

From Proposition A2, under (A-i), (C-iii’) and (C-v), we have that as
m → ∞

Var(V2) = o(L) (A.2)

because tr(Ω2
2) = o(κ2

1) under (C-v). By noting that ∥Ω1∥2F ≤ ∆, under
(C-iii’) and (C-v), it follows that as m → ∞

LV /L = 1 + o(1).

Thus, the union of (C-iii’) and (C-v) implies (C-iii”). Then, from (A.1) with
Proposition A1 and (A.2), under (A-ii), (C-i’), (C-iii’) and (C-v), it holds that
as m → ∞

∆̃n +Bn(2)−∆

L1/2
=

V1 − 2∥Ω1∥2F
L
1/2
V

+ oP (1) ⇒ N(0, 1). (A.3)

Hence, we can establish the asymptotic normality even under the SSE model.
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Appendix B: Test of the eigenvector

In this section, we apply the asymptotic normality given in Proposition A1 to
testing whether a given vector is the eigenvector of Σ or not.

We assume κ1 > 0 and r1 = 1 in (7). Then, we consider the following test:

H0 : Σa1 = κ1a1 vs. H1 : Σa1 ̸= κ1a1, (B.1)

where a1 is a given vector. Note that ∥Ω1∥2F = aT
1 ΣA(1)Σa1 = 0 under H0

and ∥Ω1∥2F > 0 under H1 from the facts that A1 = a1a
T
1 and A(1)a1 = 0.

Thus, the asymptotic normality in Proposition A1 is available.
Let

Q1 = 2

n∑
i<j

(yT
ij(1)A1yij(2))

2

n(n− 1)
and Q2 = 2

n∑
i<j

(yT
ij(1)A(1)yij(2))

2

n(n− 1)
.

Note that E(Q1) = κ2
1 and E(Q2) = tr(Ω2

2). Let

T̃n(V ) =
nV1√
8Q1Q2

.

Then, we propose a test procedure for (B.1) by

rejecting H0 ⇐⇒ T̃n(V ) > zα. (B.2)

We have the following results.

Proposition B1 Assume (A-ii) and (C-i’). For the test procedure (B.2), we
have that

Size = α+ o(1) and Power = Φ

(
2∥Ω1∥2F
L
1/2
V

− zα
L
1/2
V ∗

L
1/2
V

)
+ o(1) as m → ∞,

where LV ∗ = 8κ2
1tr(Σ

2
∗(1))/n

2.

Proposition B2 Assume (A-i). Assume also L
1/2
V /∥Ω1∥2F → 0 as m → ∞.

For the test procedure (B.2), we have (18).

We checked the performance of the test procedure (B.2) by using a mi-
croarray data set in Section 6.

Appendix C: R-code to calculate yij(l)s

We give the following R-code to calculate yij(l)s given by (9):

Input Y(X); a p by n (≥ 4) matrix X as X = (x1, ...,xn).
Output The (i, j, l) element is yij(l) for all i < j; l = 1, 2.
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Y <− function (X){
p <− dim(X) [ 1 ]
n <− dim(X) [ 2 ]
n1 <− as . integer ( cei l ing (n/2) )
n2 <− n−n1
u1 <− n1/ (n1−1)
u2 <− n2/ (n2−1)
S <− c ( 3 : ( 2∗n−1))
L <− length (S)
X var <− array (0 , dim=c (2 , L , p ) )
for ( l in 1 :L){
V <− l i s t ( )
dv <− as . integer ( f loor (S [ l ] /2) )
i f ( dv >= n1 ){
V <− append(V, l i s t (c ( ( dv−n1+1): dv ) ) )

} else {
V <− append(V, l i s t (c (c ( 1 : dv ) , c ( ( dv+n2+1): n ) ) ) )

}
i f ( dv <= n1 ){
V <− append(V, l i s t (c ( ( dv+1): ( dv+n2 ) ) ) )

} else {
V <− append(V, l i s t (c (c ( 1 : (dv−n1 ) ) , c ( ( dv+1): n ) ) ) )

}
for ( i in 1 : 2 ){

X var [ i , l , ] <− apply (X[ , V [ [ i ] ] ] , 1 , mean)
}

}
y <− array (0 , dim=c (n , n , 2 , p ) )
for ( j in 1 : n){
for ( i in 1 : j ){

i f ( i != j ){
y [ i , j , 1 , ] <− sqrt ( u1 )∗ (X[ , i ]−X var [ 1 , ( i+j −2) , ] )
y [ i , j , 2 , ] <− sqrt ( u2 )∗ (X[ , j ]−X var [ 2 , ( i+j −2) , ] )

}
}

}
return ( y )

}
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Appendix D: Proofs

Throughout this section, we assume µ = 0 without loss of generality. Let

∆́n = 2

n∑
i<j

tr{(xix
T
i −Σ∗)(xjx

T
j −Σ∗)}/{n(n− 1)} and

∆́n(t) = 2

n∑
i<j

t∑
s=1

tr{(xix
T
i As − κsAs)(xjx

T
j As − κsAs)}/{n(n− 1)}

for t = 1, . . . , q. Let Σ0 = Σ −Σ∗.

D.1 Proofs of Lemma 1, Theorems 1 and 2

From Lemma 5.1 in Yata and Aoshima (2016), we have that

Var(∆̂n) =
{
K +

8tr{(ΣΣ0)
2}+ 4

∑d
j=1(Mj − 2)(γT

j Σ0γj)
2

n

}
{1 + o(1)}

+O
( tr(Σ4)

n2

)
(D.1)

as m → ∞ under (A-i). We note that

d∑
j=1

(γT
j Σ0γj)

2 ≤ tr{(ΣΣ0)
2} ≤ λ1tr(ΣΣ2

0) ≤ λ2
1∆ ≤ tr(Σ4)1/2∆. (D.2)

By noting that tr(Σ4)1/2∆/n = o(K) under (C-i) and (C-iii), from (D.1)
and (D.2), we can conclude the results of Lemma 1. By noting that tr(Σ4) ≤
tr(Σ2)2, from the first result of Lemma 1 and (D.2), we have that Var(∆̂n)/∆ =
o(1) under (A-i) and (C-ii). We can conclude the result of Theorem 1. From
Corollary 5.2 in Yata and Aoshima (2016), we can conclude the result of The-
orem 2.

D.2 Proofs of Theorem 3 and Corollary 1

We note that

K
1/2
∗ /∆ = o(1) as m → ∞ (D.3)

under (C-ii) because tr(Σ2
∗) = ∆{1+o(1)} under tr(Σ2)/tr(Σ2

∗) = o(1). Thus,
from Theorem 1, we have that

P (Tn > zα) = P (∆̂n/∆ > zαK
1/2
∗ /∆) = P{1 + oP (1) > o(1)} = 1 + o(1)

under (A-i) and (C-ii). It concludes the result of Corollary 1.
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Next, we consider the proof of Theorem 3. By using Theorem 2, we can
conclude the result of the size in Theorem 3. From Theorem 2, under (A-ii),
(C-i) and (C-iii), it holds that

P (Tn > zα) = P
{
(∆̂n −∆)/K1/2 > zαK

1/2
∗ /K1/2 −∆/K1/2

}
= Φ

(
∆/K1/2 − zαK

1/2
∗ /K1/2

)
+ o(1). (D.4)

Thus, we can conclude the results of the power when (C-iii) is met in Theorem
3. From (D.3) we note that

Φ(∆/K1/2 − zαK
1/2
∗ /K1/2) = 1 + o(1) (D.5)

under (C-ii), so that from Corollary 1 we obtain the result of the power when
(C-ii) is met. Hence, by considering the convergent subsequence of ∆/K1/2, we
can conclude the result of the power in Theorem 3. The proofs are completed.

D.3 Proofs of Proposition 1 and Corollary 2

Note that ∆ =
∑p

j=1(λj − 1)2 (= ∆I, say) when Σ∗ = Ip. If tr(Σ)/tr(Σ2) =

o(1) as p → ∞, it holds that ∆I/tr(Σ
2) = 1+o(1), so that (C-ii) with Σ∗ = Ip

holds. Thus, under (C-iii) with Σ∗ = Ip, it follows that tr(Σ2)/p ∈ (0,∞)
as p → ∞. If lim infp→∞ λ1/p

1/2 > 0 and tr(Σ2)/p ∈ (0,∞) as p → ∞,
(C-ii) with Σ∗ = Ip holds. Thus, under (C-iii) with Σ∗ = Ip it follows that
λ1/p

1/2 = o(1), so that

tr(Σ4)/tr(Σ2)2 ≤ λ2
1tr(Σ

2)/tr(Σ2)2 = o(1)

under (C-iii). It concludes the result of Proposition 1. From Theorem 3 in view
of (D.4), (D.5) and Corollary 1, we can conclude the results of Corollary 2.

D.4 Proofs of Proposition 2 and Lemma 2

Assume (A-i), (7) and 2 ≤ q⋆ < q. We first consider the proof of Proposition
2. Let A⋆ =

∑q⋆
s=1 As and A(⋆) =

∑q
s=q⋆+1 As. Then, we write that

∆́n − ∆́n(q⋆)−∆ = 2

n∑
i<j

( tr{(xix
T
i −Σ)A(⋆)(xjx

T
j −Σ)A(⋆)}

n(n− 1)

+ 2
tr{(xix

T
i −Σ)A⋆(xjx

T
j −Σ)A(⋆)}

n(n− 1)

)
+

q⋆∑
s̸=s′

tr{(xix
T
i −Σ)As(xjx

T
j −Σ)As′}

n(n− 1)

)
+ 2

n∑
j=1

tr{(Σ −Σ∗)(xix
T
i −Σ)}

n
. (D.6)
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Note that

d∑
t,t′=1

(γT
t A⋆γt′γ

T
t′A(⋆)γt)

2 ≤
d∑

t=1

(γT
t A(⋆)ΣA(⋆)γt)(γ

T
t A⋆ΣA⋆γt)

≤
{ d∑

t=1

(γT
t A(⋆)ΣA(⋆)γt)

2
d∑

t′=1

(γT
t′A⋆ΣA⋆γt′)

2

}1/2

≤ tr{(ΣA(⋆))
4}1/2tr{(ΣA⋆)

4}1/2. (D.7)

Also, note that when Σ = Σ∗,

q⋆∑
s̸=s′

d∑
t,t′=1

(γT
t Asγt′γ

T
t′As′γt)

2 ≤
q⋆∑
s,s′

d∑
t=1

(γT
t Σ∗Asγt)(γ

T
t Σ∗As′γt)

=

d∑
t=1

(γT
t A⋆Σ∗γt)

2 ≤ tr{(Σ∗A⋆)
4}.

Then, from (D.6), when Σ = Σ∗, we have that as m → ∞

Var{∆́n − ∆́n(q⋆)} = (4Ψ/n2){1 + o(1)}+O{tr(Σ4
∗)/n

2}. (D.8)

Let un(l) = n(l)/(n(l) − 1) for l = 1, 2. We note that

yij(1) =
xi

u
1/2
n(1)

−
∑

k∈V n(1)(i+j)\{i}

u
1/2
n(1)

xk

n(1)
and

yij(2) =
xj

u
1/2
n(2)

−
∑

k∈V n(2)(i+j)\{j}

u
1/2
n(2)

xk

n(2)
(D.9)

for all i < j. Similar to (A.4) in Yata and Aoshima (2016), when Σ = Σ∗, it
holds that

Var[∆̃n +Bn(q⋆ + 1)− {∆́n − ∆́n(q⋆)}] = o(Ψ/n2).

Hence, when Σ = Σ∗, from (D.8) we have that

Var{∆̃n +Bn(q⋆ + 1)}

= Var{∆́n − ∆́n(q⋆)}+Var[∆̃n +Bn(q⋆ + 1)− {∆́n − ∆́n(q⋆)}]

+O
[
Var{∆́n − ∆́n(q⋆)}1/2Var

{
∆̃n +Bn(q⋆ + 1)−

(
∆́n − ∆́n(q⋆)

)}1/2
]

= (4Ψ/n2){1 + o(1)}+O{tr(Σ4
∗)/n

2}. (D.10)

As for q⋆ < 2 or q⋆ = q, we obtain the result similarly. The proof of Proposition
2 is completed.

As for Lemma 2, by noting that

tr(ΣAjΣAj′)

d∑
s=1

γT
s Ajγsγ

T
s Aj′γs ≤ tr(ΣAjΣAj′)

2+
( d∑

s=1

γT
s Ajγsγ

T
s Aj′γs

)2

and (D.9), we can conclude the result.
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D.5 Proofs of Lemma 3, Theorem 4 and Corollary 3

Assume (A-i) and (7). We first consider the proof of Lemma 3. From (20) we
write that

Un − tr(Σ2
∗) = Bn(1) + 2

n∑
i<j

∑2
l=1 tr{(yij(l)y

T
ij(l) −Σ)Σ∗}

n(n− 1)
. (D.11)

We note that as m → ∞
q∑

j,j′=1

(
∑d

s=1 γ
T
s Ajγsγ

T
s Aj′γs)

2

rjrj′n2
≤

q∑
j,j′=1

tr{(ΣAj)
2}tr{(ΣAj′)

2}
rjrj′n2

≤ tr(Σ2
∗)

2/n2 = o{tr(Σ2
∗)

2};
q∑

j,j′=1

tr(ΣAjΣAj′)
2

rjrj′n2
≤ tr(Σ2

∗)
2/n2 = o{tr(Σ2

∗)
2} (D.12)

because it holds that

tr(ΣAjΣAj′)
2 ≤ tr{(ΣAj)

2}tr{(ΣAj′)
2} ≤ tr(ΣAj)

2tr(ΣAj′)
2 = r2j r

2
j′κ

2
jκ

2
j′

for all j, j′. From Lemma 2 it follows that

Bn(1) = oP {tr(Σ2
∗)}. (D.13)

For the second term in (D.11), we have that for l = 1, 2

Var

( n∑
i<j

tr{(yij(l)y
T
ij(l) −Σ)Σ∗}

n(n− 1)

)
= O[tr{(ΣΣ∗)

2}/n] = o{tr(Σ2
∗)

2}

from the fact that tr{(ΣΣ∗)
2} ≤ tr(ΣΣ∗)

2 = tr(Σ2
∗)

2. Then, from (D.11)
and (D.13), it holds that

Un/tr(Σ
2
∗) = 1 + oP (1). (D.14)

We have that under (C-iv)

q⋆∑
s=1

E
{(

2

n∑
i<j

yT
ij(1)Asyij(1)y

T
ij(2)Asyij(2)

n(n− 1)

)2}
= O

( q⋆∑
s=1

tr{(ΣAs)
2}2

)
= o{tr(Σ2

∗)
2}, (D.15)

so that Ψ̃n = U2
n + oP {tr(Σ2

∗)
2} from Markov’s inequality. Then, from (D.14),

we can conclude the result of Lemma 3.
Next, we consider the proof of Corollary 3. From Lemma 2, (D.12) and

tr(Σ2
∗) ≤ tr(Σ2), it holds that Bn(1)/∆ = oP (1) under (C-ii). Thus, from

Theorem 1 and (21), it holds that ∆̃n/∆ = 1 + oP (1) under (C-ii). Similar to
the proof of Corollary 1, we can conclude the result of Corollary 3.

For Theorem 4, from (24) and Theorem 3 in view of (D.4) and (D.5), we
can conclude the result.
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D.6 Proofs of Lemmas 4, 5 and Theorem 5

Assume (A-i), (7) and r1 = 1. We first consider the proof of Lemma 4. Similar
to (D.2), it holds that tr{(Ω2Σ0)

2} ≤ tr(Ω4
2)

1/2∆. Note that

tr{(ΣA1Σ0A(1))
2} ≤ ∥Σ1/2A1Σ0A(1)Σ

1/2∥2F = ∥Σ1/2A1Ω1Ω
1/2
2 ∥2F

≤ λmax(Ω2)κ1∥Ω1∥2F ≤ ∆tr(Ω4
2)

1/4κ1

because A1Σ0A(1) = A1ΣA(1) and ∆ = 2∥Ω1∥2F + ∥A(1)Σ0A(1)∥2F , where
λmax(Ω2) denotes the largest eigenvalue of Ω2. By noting that A1Σ0A1 = O
and tr{(ΣA(1)Σ0A(1))

2} = tr{(Ω2Σ0)
2}, from (D.2) we have that asm → ∞

Var

( n∑
j=1

tr{(Σ −Σ∗)(xix
T
i −Σ)}

n

)
= O

(∆tr(Ω4
2)

1/4{tr(Ω4
2)

1/4 + κ1}
n

)
.

(D.16)

Similar to (D.6) and (D.7), from (D.16) we have that

Var{∆́n − ∆́n(1)} = L{1 + o(1)}+O
(∆tr(Ω4

2)
1/4{tr(Ω4

2)
1/4 + κ1}

n

)
+O

( tr(Ω4
2)

1/2{κ2
1 + tr(Ω4

2)
1/2}

n2

)
.

Then, similar to (D.8) and (D.10), we have that

Var{∆̃n +Bn(2)} = Var{∆́n − ∆́n(1)}{1 + o(1)}.

It concludes the first result of Lemma 4. Note that

∆tr(Ω4)1/4{tr(Ω4)1/4 + κ1}
n

= o(L) and
tr(Ω4

2)
1/2{κ2

1 + tr(Ω4
2)

1/2}
n2

= o(L)

under (C-i’) and (C-iii’). Thus, from the first result of Lemma 4, we can con-
clude the second result of Lemma 4.

For Lemma 5 and Theorem 5, from (A.3), it concludes the result of Lemma
5. From (26) and Lemma 5, we can conclude the result of Theorem 5.

D.7 Proofs of Lemma 6, Theorem 6 and Corollary 4

Assume (A-i), (7) and r1 = 1. We first consider the proof of Lemma 6. Let

ξs = 2

n∑
i<j

yT
ij(1)Asyij(1)y

T
ij(2)Asyij(2)/{rsn(n− 1)}

for s = 1, . . . , q. We write that

U2
n − ξ21 = 2ξ1

q∑
s=2

ξs +
( q∑

s=2

ξs

)2

. (D.17)
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Similar to (D.11) to (D.14), we have that as m → ∞

q∑
s=2

ξs =
( q∑

s=2

rsκ
2
s

)
{1 + oP (1)}.

Note that Var(ξ1) = O(κ4
1/n), so that ξ1 = κ2

1{1 + oP (1)}. Thus, from (D.17)
it holds that

U2
n − ξ21 = Ψ1{1 + oP (1)}. (D.18)

We note that when q⋆ ≥ 2,

q⋆∑
s=2

tr{(ΣAs)
4} =

q⋆∑
s=2

κ4
s = o(Ψ1) (D.19)

under (C-v) because tr(Σ2) ≥ (
∑q

s=2 rsκ
2
s)

2+κ2
1 and

∑q⋆
s=2 κ

4
s ≤ (

∑q
s=2 rsκ

2
s)

2.
Similar to (D.15), from (D.18) and (D.19), we can conclude the result of
Lemma 6.

Next, we consider the proof of Corollary 4. From (26), it holds thatBn(2)/∆ =

oP (1) under (C-ii’). From Lemma 4 we have that Var{∆̃n+Bn(2)}/∆2 = o(1)

under (C-ii’). Thus, it follows that ∆̃n/∆ = 1+ oP (1) under (C-ii’). Note that
tr(Σ2

∗)−κ2
1 +2∥Ω1∥2F ≤ tr(Σ2

∗)−κ2
1 +∆ = tr(Σ2)−κ2

1 = tr(Ω2
2)+ 2∥Ω1∥2F .

It holds that
∑q

s=2 rsκ
2
s ≤ tr(Ω2

2), so that L∗ = O(L). Then, similar to the
proof of Corollary 1, from Lemma 6 we can conclude the result of Corollary 4.

For Theorem 6, similar to the proof of Theorem 3, from Theorem 5 and
Lemma 6 we can conclude the result.

D.8 Proofs of Proposition 3 and Corollary 5

From (A.4) and (A.5) in Yata et al. (2018), we can conclude the result of
Proposition 3. From Theorem 4 in view of (D.4)-(D.5), (28), Proposition 3
and Corollary 3, we can conclude the results of Corollary 5.

D.9 Proofs of Proposition 4 and Corollary 6

Assume Σ∗ = ΣD. Note that

tr(Σ2)/tr(Σ2
D) ∈ (0,∞) as p → ∞ (D.20)

under (C-iii). We write that h1 = (h11, . . . , h1p)
T . Note that hT

1 (Σ−ΣD)h1 =

λ1−
∑p

j=1 h
2
1jσjj . Also, note that∆D ≥ {hT

1 (Σ−ΣD)h1}2 and
∑p

j=1 h
2
1jσjj =

O(1) from the fact that σjj = O(1) for all j. Then, if lim infp→∞ λ2
1/tr(Σ

2
D) >

0, it holds that lim infp→∞ ∆D/tr(Σ
2
D) > 0, so that (C-ii) holds. Then, from
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(D.20), under (C-iii) it follows that λ2
1/tr(Σ

2) → 0 as p → ∞. Thus, (C-iii)
implies (C-i). On the other hand, we have that

q∑
j,j′=1

(
∑d

s=1 γ
T
s Ajγsγ

T
s Aj′γs)

2

rjrj′
≤ max

j=1,...,p
σ2
jj

q∑
j,j′=1

d∑
s=1

γT
s Ajγsγ

T
s Aj′γs

≤ max
j=1,...,p

σ2
jjtr(Σ

2)

and

q∑
j,j′=1

tr(ΣAjΣAj′)
2

rjrj′
=

p∑
j,j′=1

σ4
jj′ ≤ tr(Σ4) (D.21)

because
∑d

s=1 γ
T
s Ajγsγ

T
s Aj′γs ≤ tr(ΣAj)tr(ΣAj′) = σiiσjj . From (D.20)

we note that maxj=1,...,p σ
2
jjtr(Σ

2) = o{tr(Σ2
D)

2} and tr(Σ4) = o{tr(Σ2
D)

2}
under (C-i) and (C-iii). Thus, (C-iii) implies (C-iv). It concludes the results of
Proposition 4.

Next, we consider the proof of Corollary 6. From Theorem 1, Lemma 2,
(21) and (D.21), we have that ∆̃n/∆ = 1+oP (1) under (A-i) and (C-ii). Then,
from Theorem 4 in view of (D.4)-(D.5), Proposition 4 and Corollary 3, we can
conclude the results of Corollary 6.

D.10 Proof of Corollary 7

Note that (C-v’) implies (C-v). Then, from Theorem 6 and Corollary 4, we
can conclude the results.

D.11 Proofs of Propositions A1 and A2

LetHa = (a1, . . .ap), xj,H = HT
axij = (xj1,H , . . . , xjp,H)T (j = 1, . . . , n) and

ΓH = HT
aΓ . We write that xj,H = ΓHwj . Then, for xj1,H and (xj2,H , . . . ,

xjp,H)T , from Theorem 3.2 in Yata and Aoshima (2016), we can conclude the
result of Proposition A1.

For Proposition A2, let xj,A = A(1)xj (j = 1, . . . , n). Note that Var(xj,A) =
Ω2. Then, from Lemma 1 we can conclude the result of Proposition A2.

D.12 Proofs of Propositions B1 and B2

From Lemma 3.3 in Yata and Aoshima (2016), we have that as m → ∞

Q1/κ
2
1 = 1 + oP (1) and Q2/tr(Ω

2
2) = 1 + oP (1)

under (A-i). Then, from Corollary 4.1 in Yata and Aoshima (2016), we can
conclude the result of Proposition B2. From Theorem 4 in view of (D.4)-(D.5),
Propositions A1 and B2, we can conclude the result of Proposition B1.
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