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Abstract We consider hypothesis testing for high-dimensional covariance struc-
tures in which the covariance matrix is a (i) scaled identity matrix, (ii) diagonal
matrix, or (iii) intraclass covariance matrix. Our purpose is to systematically
establish a nonparametric approach for testing the high-dimensional covari-
ance structures (i) - (iii). We produce a new common test statistic for each
covariance structure and show that the test statistic is an unbiased estimator
of its corresponding test parameter. We prove that the test statistic estab-
lishes the asymptotic normality. We propose a new test procedure for (i) -
(iii) and evaluate its asymptotic size and power theoretically when both the
dimension and sample size increase. We investigate the performance of the
proposed test procedure in simulations. As an application of testing the co-
variance structures, we give a test procedure to identify an eigenvector. Finally,
we demonstrate the proposed test procedure by using a microarray data set.
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1 Introduction

Suppose we take samples, xj = (x1j , . . . , xpj)T , j = 1, . . . , n, of size n (≥ 4),
which are independent and identically distributed (i.i.d.) as a p (≥ 2)-variate
distribution. We assume that xj has an unknown mean vector µ and un-
known (positive-semidefinite) covariance matrix Σ. We introduce the spectral
decomposition Σ = HΛHT , where Λ = diag(λ1, ..., λp) is a diagonal ma-
trix of eigenvalues of Σ, λ1 ≥ · · · ≥ λp ≥ 0, and H = (h1, ...,hp) is an
orthogonal matrix of the corresponding eigenvectors. Let xj = HΛ1/2zj + µ,
where zj = (z1j , . . . , zpj)T is a random vector having zero mean and iden-
tity covariance matrix. Let σ = tr(Σ)/p. Let σij be the (i, j)th element of Σ
for i, j = 1, . . . , p. We assume that σjj ∈ (0,∞) as p → ∞ for all j. For a
function, f(·), “f(p) ∈ (0,∞) as p → ∞” implies that lim infp→∞ f(p) > 0
and lim supp→∞ f(p) < ∞. Then, it holds that σ ∈ (0,∞) as p → ∞. Let
ρ =

∑p
i ̸=j σij/{σp(p − 1)}. Note that

1T
p Σ1p

p
= σ{1 + ρ(p − 1)} (1)

and ρ ∈ [−(p−1)−1, 1], where 1p = (1, . . . , 1)T . We denote the identity matrix
of dimension p by Ip.

In this paper, we consider testing

H0 : Σ = Σ∗ vs. H1 : Σ ̸= Σ∗, (2)

where Σ∗ is a candidate (positive-semidefinite) covariance matrix. For Σ∗ we
mainly consider the following covariance structures: (i) scaled identity matrix,
(ii) diagonal matrix, and (iii) intraclass covariance matrix. Let

ΣS = σIp, ΣD = diag(σ11, . . . , σpp) and ΣIC = σ{(1 − ρ)Ip + ρ1p1T
p }.

Ledoit and Wolf (2002) derived test procedures for

H0 : Σ = Ip vs. H1 : Σ ̸= Ip (3)

and

H0 : Σ = ΣS vs. H1 : Σ ̸= ΣS (4)

when p/n → c > 0 and xj is Gaussian. Schott (2005) and Bao et al. (2015)
derived test procedures for

H0 : Σ = ΣD vs. H1 : Σ ̸= ΣD (5)

when p/n → c > 0 and xj is Gaussian. Srivastava et al. (2011) considered test
procedures for (3) - (5) when n/p → 0 under an assumption that is stronger
than (A-ii) given in Section 2. On the other hand, Srivastava and Reid (2012)
derived a test procedure for

H0 : Σ = ΣIC vs. H1 : Σ ̸= ΣIC (6)
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when n/p → 0 and xj is Gaussian. Meanwhile, Zhong et al. (2017) considered
a high-dimensional regression model and testing (6) for the covariance matrix
associated with error vectors when the error vectors are Gaussian. However, it
is known that those test statistics do not always give a preferable performance
unless xj is Gaussian. As for a nonparametric approach, Chen et al. (2010)
considered test statistics based on a U-statistic for (3) and (4). In the cur-
rent paper, we take a different nonparametric approach and produce new test
statistics for (2). We utilize the extended cross-data-matrix (ECDM) method
developed by Yata and Aoshima (2013) which is an extension of the cross-data-
matrix methodology created by Yata and Aoshima (2010). The ECDM method
is a nonparametric method to produce an unbiased estimator for a function
of Σ at a low computational cost even for ultra high-dimensional data. In
addition, the ECDM method possesses a high versatility in high-dimensional
data analysis. See Yata and Aoshima (2016) for the details. In this paper, we
consider test statistics, for (2), derived by the ECDM method.

When Σ∗ = ΣS, Σ∗ = ΣD or Σ∗ = ΣIC, the eigenstructures are iden-
tified, however, they involve unknown parameters. Hence, we consider testing
the high-dimensional covariance structures by using the following model: Let
Aj be a p × p known idempotent matrix with rank rj (≥ 1) for j = 1, . . . , q,
such that

∑q
j=1 rj = p and

∑q
j=1 Aj = Ip, where r1 ≤ · · · ≤ rq when q ≥ 2.

Note that tr(Aj) = rj , A2
j = Aj and AjAj′ = O for all j (̸= j′). Let κj (≥ 0)

be an unknown scalar such that tr(ΣAj) = rjκj for all j. We assume that Σ∗
has the following structure:

Σ∗ = κ1A1 + · · · + κqAq. (7)

One can summarize as follows:

(I) A1 = Ip, κ1 = σ, r1 = p and q = 1 when Σ∗ = ΣS;

(II) Aj = diag(0, . . . , 0, 1, 0, . . . , 0) whose j-th diagonal element is 1, κj = σjj ,
rj = 1 for all j and q = p when Σ∗ = ΣD;

(III) A1 = 1p1T
p /p, A2 = Ip − 1p1T

p /p, κ1 = σ{1 + (p − 1)ρ}, κ2 = σ(1 − ρ),
r1 = 1, r2 = p − 1 and q = 2 when Σ∗ = ΣIC.

In this paper, we consider constructing new test procedures for (2), includ-
ing (3), (4), (5) and (6). In Section 2, we produce a test statistic when Σ∗
is known such as Σ∗ = Ip. We show that the test statistic is an unbiased
estimator of its test parameter even in a high-dimensional setting. In Section
3, we produce a test statistic for the structure (7). We propose a new test pro-
cedure based on the test statistic and evaluate its asymptotic size and power
theoretically when both p and n increase. In Section 4, we apply the new test
procedure to testing (4) - (6). In Sections 5 and 6, we investigate the perfor-
mance of the proposed test procedure in simulations and actual data analyses.
We also give a test procedure to identify an eigenvector in Appendix B of the
online supplementary material.
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Remark 1 We consider the following model: Let σ1 and σ2 be unknown non-
negative scalars, and Θ = (θij) be a known symmetric matrix. We assume

Σ∗ = σ1Ip + σ2Θ. (8)

Then, (8) implies (7) because the eigenstructure of Θ can be identified. Note
that (8) includes the case that Σ∗ = ΣIC. In other examples, (8) includes
the case of a moving-average model of order 1 (MA(1)) since θij = 1 when
|i − j| = 1, otherwise θij = 0 for MA(1). Also, (8) includes the case of an
autoregressive model of order 1 (AR(1)) when the autoregressive parameter ϕ
is known since θii = 0 and θij = ϕ|i−j| when i ̸= j for AR(1). Thus one can
apply hypothesis testing under (7) to test some covariance structures for time
series models.

2 A test procedure for (2) when Σ∗ is known

In this section, we propose a test procedure for (2) when Σ∗ is known and
evaluate its asymptotic size and power theoretically. Let

∆ = ∥Σ − Σ∗∥2
F = tr{(Σ − Σ∗)2},

where ∥ · ∥F is the Frobenius norm. Note that ∆ = 0 under H0 and ∆ > 0
under H1. We regard ∆ as a test parameter and construct a test procedure
for (2) by using an estimator of ∆.

2.1 Unbiased estimator of ∆

We first give an unbiased estimator of ∆ by using the ECDM method. Let
n(1) = ⌈n/2⌉ and n(2) = n− n(1), where ⌈x⌉ denotes the smallest integer ≥ x.
Let

V n(1)(k) =

{
{⌊k/2⌋ − n(1) + 1, . . . , ⌊k/2⌋} if ⌊k/2⌋ ≥ n(1),

{1, . . . , ⌊k/2⌋} ∪ {⌊k/2⌋ + n(2) + 1, . . . , n} otherwise;

V n(2)(k) =

{
{⌊k/2⌋ + 1, . . . , ⌊k/2⌋ + n(2)} if ⌊k/2⌋ ≤ n(1),

{1, . . . , ⌊k/2⌋ − n(1)} ∪ {⌊k/2⌋ + 1, . . . , n} otherwise

for k = 3, . . . , 2n − 1, where ⌊x⌋ denotes the largest integer ≤ x. Let #S
denote the number of elements in a set S. Note that #V n(l)(k) = n(l), l = 1, 2,
V n(1)(k)∩V n(2)(k) = ∅ and V n(1)(k)∪V n(2)(k) = {1, . . . , n} for k = 3, . . . , 2n−
1. Also, note that i ∈ V n(1)(i+j) and j ∈ V n(2)(i+j) for i < j (≤ n). Let

x(1)(k) = n−1
(1)

∑
j∈V n(1)(k)

xj and x(2)(k) = n−1
(2)

∑
j∈V n(2)(k)

xj
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for k = 3, . . . , 2n − 1. Let

yij(1) =
n

1/2
(1) (xi − x(1)(i+j))

(n(1) − 1)1/2
and yij(2) =

n
1/2
(2) (xj − x(2)(i+j))

(n(2) − 1)1/2
(9)

for all i < j. We note that E(yij(l)) = 0, E(yij(l)y
T
ij(l)) = Σ for l = 1, 2, and

yij(1) and yij(2) are independent for all 1 ≤ i < j ≤ n.

For example, Yata and Aoshima (2013) gave an estimator of tr(Σ2) as

Wn =
2

n(n − 1)

n∑
i<j

(yT
ij(1)yij(2))

2 (10)

by the ECDM method. Then, it holds that E(Wn) = tr(Σ2).

Remark 2 One can save the computational cost of Wn by using previously
calculated x(i)(k), k = 3, ..., 2n− 1; i = 1, 2. The computational cost of Wn is
of the order, O(n2p).

We provide in Appendix C of the online supplementary material a program
in R-code to calculate the yij(l).

Now, we can give an unbiased estimator of ∆ as

∆̂n = 2
n∑

i<j

tr
{
(yij(1)y

T
ij(1) − Σ∗)(yij(2)y

T
ij(2) − Σ∗)

}
n(n − 1)

(11)

by the ECDM method. Note that E(∆̂n) = ∆. Here, we write that

∆̂n =Wn + tr(Σ2
∗) − 2

n∑
i<j

(
yT

ij(1)Σ∗yij(1) + yT
ij(2)Σ∗yij(2)

)
n(n − 1)

. (12)

Since one can avoid calculating p× p matrices in (12), the computational cost
of ∆̂n by (12) is much lower than that by (11) when n = o(p).

2.2 Asymptotic properties of ∆̂n

We assume the following model:

xj = Γwj + µ,

where Γ = (γ1, . . . ,γd) is a p× d matrix for some d > 0 such that ΓΓ T = Σ,
and wj = (w1j , . . . , wdj)T , j = 1, . . . , n, are i.i.d. random vectors having
E(wj) = 0 and Var(wj) = Id. Let Var(w2

sj) = Ms for s = 1, . . . , d. We
assume that lim supp→∞ Ms < ∞ for all s. Similar to Bai and Saranadasa
(1996), Chen and Qin (2010) and Aoshima and Yata (2015), we assume that
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(A-i) E(w2
sjw

2
tj) = E(w2

sj)E(w2
tj) = 1 and E(wsjwtjwujwvj) = 0 for all

s ̸= t, u, v.

We make the following assumption instead of (A-i) as necessary:

(A-ii) E(wα1
s1jw

α2
s2j · · ·w

αv
svj) = E(wα1

s1j)E(wα2
s2j) · · ·E(wαv

svj) for all s1 ̸= s2 ̸=
· · · ≠ sv ∈ [1, d] and αi ∈ [1, 4], i = 1, . . . , v, where v ≤ 8 and

∑v
i=1 αi ≤ 8.

Note that (A-ii) implies (A-i). When xj is Gaussian and Γ = HΛ1/2, it holds
that wj = zj and zj is distributed as Np(0, Ip), so that (A-ii) is naturally
satisfied.

For Σ we assume the following condition as necessary:

(C-i)
tr(Σ4)
tr(Σ2)2

→ 0 as p → ∞.

Note that (C-i) is equivalent to “λ1/tr(Σ2)1/2 → 0 as p → ∞”. Aoshima and
Yata (2018) called (C-i) the “non-strongly spiked eigenvalue (NSSE) model”.
When Σ = ΣS or ΣD, (C-i) holds. On the other hand, when Σ = ΣIC with
lim infp→∞ ρ > 0, (C-i) does not hold since it follows that

lim inf
p→∞

{ λ1

tr(Σ2)1/2

}
> 0 (13)

from the facts that λ1 = σ{1 + (p − 1)ρ} and tr(Σ2) = O(p2). Aoshima and
Yata (2018) called (13) the “strongly spiked eigenvalue (SSE) model”. For
instance, let us consider a spiked model as

λj = ajp
αj (j = 1, . . . , g) and λj = cj (j = g + 1, . . . , p), (14)

where ajs, cjs and αjs are positive (fixed) constants, and g is a positive (fixed)
integer. For (14), it is a NSSE model when α1 < 1/2 and a SSE model when
α1 ≥ 1/2. In Section 3.3, we consider a test procedure for the SSE model (13).

Let
m = min{p, n}.

We consider the divergence condition as

p → ∞ and n → ∞,

which is equivalent to m → ∞. Note that “m → ∞” includes the cases when
n/p = o(1) and p/n → c ∈ [0,∞). In this paper, we mainly consider the case
when n/p = o(1) such as p = O(nc) with c > 1 and n = O(log p). However, we
emphasize that our proposed test procedures can handle cases not only when
n/p = o(1) but also when p/n → c ∈ [0,∞). Let

K = 4tr(Σ2)2/n2 and K∗ = 4tr(Σ2
∗)

2/n2.

We assume one of the following assumptions as necessary:

(C-ii)
K1/2

∆
→ 0 as m → ∞; (C-iii) lim sup

m→∞

∆

K1/2
< ∞.
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Note that (C-iii) holds under H0 in (2). For ∆̂n in (11), we have the following
results.

Lemma 1 Assume (A-i). Then, it holds that as m → ∞

Var(∆̂n) =K{1 + o(1)} + O
( tr(Σ4)1/2∆

n
+

tr(Σ4)
n2

)
.

Furthermore, under (C-i) and (C-iii), it holds that as m → ∞

Var(∆̂n) = K{1 + o(1)}.

From Lemma 1 we obtain the following result under (C-ii).

Theorem 1 Assume (A-i) and (C-ii). Then, it holds that as m → ∞

∆̂n/∆ = 1 + oP (1).

On the other hand, we obtain the following result under (C-iii).

Theorem 2 Assume (A-ii), (C-i) and (C-iii). Then, it holds that as m → ∞

∆̂n − ∆

K1/2
⇒ N(0, 1),

where “⇒” denotes the convergence in distribution and N(0, 1) denotes a ran-
dom variable distributed as the standard normal distribution.

Remark 3 We note that K1/2 is the main term in the standard deviation of
∆̂n. The condition (C-ii) means that the intrinsic information about Σ − Σ∗
is larger than the noise. Thus, if the difference between Σ and Σ∗ is quite
large enough to claim (C-ii), ∆̂n has the consistency in Theorem 1. On the
other hand, the condition (C-iii) means that the noise is as large as the intrinsic
information or more. Thus, if the difference is not large enough to claim (C-ii),
∆̂n has the asymptotic normality in Theorem 2.

2.3 A test procedure based on ∆̂n

Note that tr(Σ2) = tr(Σ2
∗) under H0 in (2). Let

Tn =
n∆̂n

2tr(Σ2
∗)

. (15)

From Theorem 2 we propose a test procedure for (2) by

rejecting H0 ⇐⇒ Tn > zα, (16)

where zα is a constant such that P{N(0, 1) > zα} = α with α ∈ (0, 1/2).
Then, we have the following result.
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Theorem 3 Assume (A-ii) and (C-i). For the test procedure (16), we have
that as m → ∞

Size = α + o(1) and Power = Φ

(
∆

K1/2
− zα

K
1/2
∗

K1/2

)
+ o(1) (17)

where Φ(·) denotes the c.d.f. of N(0, 1).

We note that Theorem 3 holds not only when n/p = o(1) but also when
p/n → c ∈ [0,∞). When (C-ii) is met, we have the following result.

Corollary 1 Assume (A-i). Assume also (C-ii) under H1 in (2). For the test
procedure (16), we have that as m → ∞

Power → 1. (18)

From Corollary 1, if the difference between Σ and Σ∗ is large enough to
claim (C-ii), the power tends to 1. In the next section, we apply the test
procedure (16) to testing the identity structure in (3).

2.4 A test of the identity structure in (3)

We consider the case when Σ∗ = Ip. Note that ∆ = tr(Σ2)+p−2tr(Σ) when
Σ∗ = Ip. From (15) we write that when Σ∗ = Ip,

Tn =
n∆̂n(Ip)

2p
(= Tn(Ip), say),

where ∆̂n(Ip) = Wn +p−2
∑n

i<j(∥yij(1)∥2 +∥yij(2)∥2)/{n(n−1)}. Here, ∥ · ∥
denotes the Euclidean norm.

Proposition 1 The condition (C-iii) with Σ∗ = Ip implies (C-i).

Thus, from Theorem 3 and Corollary 1, we have the following result.

Corollary 2 For the test procedure (16) with Tn = Tn(Ip) for (3)

(i) (17) holds as m → ∞ under (A-ii),
(ii) (18) holds as m → ∞ under (A-i) and (C-ii) with Σ∗ = Ip.

Remark 4 For (3) Chen et al. (2010) gave a test procedure based on the fol-
lowing U-statistic:

∆̂CZZ = An − 2
( n∑

j=1

xT
j xj

n
−

n∑
j ̸=j′

xT
j xj′

n(n − 1)

)
+ p,

where

An =
n∑

j ̸=j′

(xT
j xj′)2

n(n − 1)
− 2

n∑
j ̸=j′ ̸=j′′

xT
j′xjx

T
j xj′′

n(n − 1)(n − 2)

+
n∑

j ̸=j′ ̸=l ̸=l′

xT
j xj′xT

l xl′

n(n − 1)(n − 2)(n − 3)
.
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Note that E(An) = tr(Σ2) and E(∆̂CZZ) = tr(Σ2) + p − 2tr(Σ). The test
procedure by ∆̂CZZ is asymptotically equivalent to (16) with Σ∗ = Ip. It should
be noted that the test of the identity structure is obtained as an example of
the test procedure (16).

3 Test procedure for (2) under the structure (7)

In this section, we construct an unbiased estimator of ∆ under the structure
(7) and propose a test procedure by using the unbiased estimator.

3.1 Test procedure

Hereafter, we assume the structure (7) for Σ∗. Then, we note that

tr(Σ2
∗) =

q∑
j=1

rjκ
2
j and ∆ = tr(Σ2) − tr(Σ2

∗),

so that tr(Σ2) ≥ tr(Σ2
∗). Also, note that {tr(ΣAj)}2/rj = rjκ

2
j for all j.

Then, we give an estimator of tr(Σ2
∗) as

Un = 2
q∑

s=1

n∑
i<j

yT
ij(1)Asyij(1)y

T
ij(2)Asyij(2)

rsn(n − 1)
(19)

by the ECDM method. Note that E(Un) = tr(Σ2
∗). Let

∆̃n = Wn − Un,

where Wn is given by (10). Then, it holds that E(∆̃n) = ∆. Here, we write
that

Un = Bn(1) − tr(Σ2
∗)

+ 2
n∑

i<j

yT
ij(1)Σ∗yij(1) + yT

ij(2)Σ∗yij(2)

n(n − 1)
, (20)

where

Bn(t) = 2
n∑

i<j

q∑
s=t

(yT
ij(1)Asyij(1) − κsrs)(yT

ij(2)Asyij(2) − κsrs)

rsn(n − 1)

for t = 1, . . . , q. By combining (12) and (20), we have that

∆̃n = ∆̂n − Bn(1). (21)



10 Aki Ishii et al.

Note that E{Bn(t)} = 0 for all t. Let us consider an asymptotic variance of
∆̃n. Let q⋆ be the maximum integer such that

r1 = · · · = rq⋆ = 1 < rq⋆+1 ≤ · · · ≤ rq.

If r1 = · · · = rq = 1, we set q⋆ = q. We set Bn(q⋆ + 1) = 0 when q⋆ = q. If
rj ≥ 2 for all j, we set q⋆ = 0. Let

Y ij(l),s = yij(l)y
T
ij(l)As − κsAs

for all i, j, l, s. Then, from (11), it follows that

∆̃n =



2
n∑

i<j

( q∑
s ̸=s′

tr(Y ij(1),sY ij(2),s′)
n(n − 1)

+
q∑

s=q⋆+1

tr(Y ij(1),sY ij(2),s)
n(n − 1)

)
−Bn(q⋆ + 1) (q⋆ < q),

2
n∑

i<j

q∑
s ̸=s′

tr(Y ij(1),sY ij(2),s′)
n(n − 1)

(q⋆ = q).

We have the following result.

Proposition 2 Assume (A-i). Under H0 in (2), it holds that as m → ∞

Var{∆̃n + Bn(q⋆ + 1)} =
4Ψ

n2
{1 + o(1)} + O

( tr(Σ4
∗)

n2

)
,

where Ψ = tr(Σ2
∗)

2 −
∑q⋆

s=1 κ4
s when q⋆ ≥ 1 and Ψ = tr(Σ2

∗)
2 when q⋆ = 0.

Since Bn(q⋆ + 1) is a redundant term, we can regard the term “4Ψ/n2” as
an asymptotic variance of ∆̃n under H0 in (2). We note that

E
(
2

n∑
i<j

yT
ij(1)Asyij(1)y

T
ij(2)Asyij(2)

rsn(n − 1)

)
= rsκ

2
s

in view of (19). We give an estimator of Ψ by

Ψ̃n =

U2
n −

q⋆∑
s=1

(
2

n∑
i<j

yT
ij(1)Asyij(1)y

T
ij(2)Asyij(2)

n(n − 1)

)2

(q⋆ ≥ 1),

U2
n (q⋆ = 0)

in view of r1 = · · · = rq⋆ = 1 when q⋆ ≥ 1. Note that P (Ψ̃n ≥ 0) = 1. Let

T̃n =
n∆̃n

2Ψ̃
1/2
n

. (22)

Then, for (2) with (7), we propose a test procedure by

rejecting H0 ⇐⇒ T̃n > zα. (23)

In Sections 3.2 and 3.3, we investigate the test procedure (23) under the NSSE
model (C-i) and the SSE model (13), respectively.
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3.2 The test procedure (23) under the NSSE model

We consider the test procedure (23) under the NSSE model (C-i). For Bn(t),
we have the following result.

Lemma 2 Assume (A-i). It holds that as m → ∞

Var{Bn(t)} = O

( q∑
j,j′=t

tr(ΣAjΣAj′)2 + (
∑d

s=1 γT
s Ajγsγ

T
s Aj′γs)2

rjrj′n2

)
for t ≤ q.

Then, under (A-i) and

(C-iv)
q∑

j,j′=1

tr(ΣAjΣAj′)2 + (
∑d

s=1 γT
s Ajγsγ

T
s Aj′γs)2

rjrj′tr(Σ2
∗)2

→ 0 as p → ∞,

it follows from Chebyshev’s inequality that as m → ∞

Bn(1) = oP (K1/2
∗ ).

Note that tr(Σ2) ≥ tr(Σ2
∗). From (21) and Theorem 2, under (A-ii), (C-i),

(C-iii) and (C-iv), it holds that as m → ∞

∆̃n − ∆

K1/2
=

∆̂n − ∆

K1/2
+ oP (1) ⇒ N(0, 1). (24)

We have the following result.

Lemma 3 Assume (A-i) and (C-iv). It holds that Ψ̃n/tr(Σ2
∗)

2 = 1+ oP (1) as
m → ∞.

From (24) and Lemma 3, we have the following results.

Theorem 4 Assume (A-ii), (C-i) and (C-iv). For the test procedure (23), we
have (17) as m → ∞.

Corollary 3 Assume (A-i). Assume also (C-ii) under H1 in (2). For the test
by (23), we have (18) as m → ∞.

3.3 The test procedure (23) under the SSE model

For the SSE model (13), we focus on the following model:

λ1

tr(Σ2)1/2
→ 1 as p → ∞. (25)

Note that (25) is one of the SSE models. When Σ = ΣIC and lim infp→∞ ρ > 0,
(25) is met. When α1 > max{α2, 1/2} in the spiked model (14), (25) is met.
We call (25) the “uni-SSE (USSE) model”. See Ishii et al. (2016, 2019) for
several statistical inferences under the USSE model.

We consider the test procedure (23) under the USSE model (25). One may
suppose r1 = 1. We assume the following condition:
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(C-v)
κ1

tr(Σ2)1/2
→ 1 as p → ∞.

Note that (25) holds under (C-v) from the fact that λ1 ≥ κ1 = tr(ΣA1). Let
A(1) = Ip − A1, Ω1 = A1ΣA(1) and Ω2 = A(1)ΣA(1). Note that (C-v) is
equivalent to

tr(Ω2
2)

1/2/κ1 → 0 as p → ∞
from the facts that tr(Σ2) = κ2

1+tr(Ω2
2)+2∥Ω1∥2

F and ∥Ω1∥2
F ≤ κ1tr(Ω2

2)
1/2.

As for Ω2, we assume the following model:

(C-i’)
tr(Ω4

2)
tr(Ω2

2)2
→ 0 as p → ∞.

Note that (C-i’) holds when Σ = ΣIC and lim supp→∞ ρ < 1 because Ω2 =
σ(1 − ρ)(Ip − 1p1T

p /p) and tr(Ω4
2)/tr(Ω2

2)
2 = 1/tr(Ip − 1p1T

p /p) = 1/(p − 1)
when Σ = ΣIC. Here, we write that

∆̃n =2
n∑

i<j

( q∑
s ̸=s′

tr(Y ij(1),sY ij(2),s′)
n(n − 1)

+
q∑

s=2

tr(Y ij(1),sY ij(2),s)
n(n − 1)

)
− Bn(2).

Let

Υ = 2κ2
1tr(Ω

2
2) + tr(Ω2

2)
2 + 2∥Ω1∥4

F + 4∥Ω1∥2
F tr(Ω2

2) and

L = 4Υ/n2.

Note that

Υ = 2κ2
1

q∑
s=2

rsκ
2
s +

( q∑
s=2

rsκ
2
s

)2

= tr(Σ2
∗)

2 − κ4
1 (= Ψ1, say)

when Σ = Σ∗. Then, we have the following results.

Lemma 4 Assume (A-i). It holds that as m → ∞

Var{∆̃n + Bn(2)} = L{1 + o(1)} + O
(∆tr(Ω4)1/4{tr(Ω4)1/4 + κ1}

n

)
+ O

( tr(Ω4
2)1/2{κ2

1 + tr(Ω4
2)1/2}

n2

)
.

Furthermore, under (C-i’) and

(C-iii’) lim sup
m→∞

∆

L1/2
< ∞,

it holds that as m → ∞

Var{∆̃n + Bn(2)} = L{1 + o(1)}.

Lemma 5 Assume (A-ii), (C-i’) and (C-v). Assume also (C-iii’). It holds
that as m → ∞

∆̃n + Bn(2) − ∆

L1/2
⇒ N(0, 1).
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See Appendix A of the online supplementary material for the details of the
asymptotic normality in Lemma 5.

We note that
∑q

j,j′=2(
∑d

s=1 γT
s Ajγsγ

T
s Aj′γs)2 ≤ {

∑d
s=1(γ

T
s A(1)γs)2}2 ≤

tr{(ΣA(1))2}2 = tr(Ω2
2)2 and

∑q
j,j′=2 tr(ΣAjΣAj′)2 ≤ tr(Ω2

2)2. Then, from
Lemma 2, under (A-i) and (C-v), it holds that as m → ∞

Var{Bn(2)} = o(L). (26)

Thus, from Lemma 5, we have the following result.

Theorem 5 Assume (A-ii), (C-i’), (C-iii’) and (C-v). It holds that as m →
∞

∆̃n − ∆

L1/2
⇒ N(0, 1).

For Ψ̃n, we have the following result.

Lemma 6 Assume (A-i) and (C-v). It holds that Ψ̃n/Ψ1 = 1 + oP (1) as m →
∞.

From Theorem 5 and Lemma 6, we have the following results.

Theorem 6 Assume (A-ii), (C-i’) and (C-v). For the test procedure (23), we
have that as m → ∞

Size = α + o(1) and Power = Φ

(
∆

L1/2
− zα

L
1/2
∗

L1/2

)
+ o(1) (27)

where L∗ = 4Ψ1/n2.

Corollary 4 Assume (A-i) and (C-v). Assume also

(C-ii’)
L1/2

∆
→ 0 as m → ∞

under H1 in (2). For the test procedure (23), we have (18) as m → ∞.

4 Applications of the test procedure (23) to testing (4) - (6)

In this section, we apply the test procedure (23) to testing (4) - (6).

4.1 The scaled identity structure (4)

We consider the case when Σ∗ = ΣS. Note that ∆ = tr(Σ2) − pσ2, q⋆ = 0
and q = 1, so that Ψ1/2 = tr(Σ2

∗) = pσ2 and Ψ̃
1/2
n = Un. From (22) we write

that
T̃n =

nWn

2Un(S)
− n/2 (= T̃n(S), say),

where

Un(S) = 2
n∑

i<j

∥yij(1)∥2∥yij(2)∥2

pn(n − 1)
.

Note that E(Un(S)) = pσ2.



14 Aki Ishii et al.

Proposition 3 The condition (C-iii) implies (C-i) when Σ∗ = ΣS.

We note that (C-iv) holds under (C-iii) when Σ∗ = ΣS because tr(Σ2) =
O{tr(Σ2

S)} under (C-iii) and
q∑

j,j′=1

tr(ΣAjΣAj′)2 + (
∑d

s=1 γT
s Ajγsγ

T
s Aj′γs)2

rjrj′
= O{tr(Σ2)2/p2} (28)

when Σ∗ = ΣS. From Theorem 4 and Corollary 3, we have the following
result.

Corollary 5 For the test procedure (23) with T̃n = T̃n(S) for (4)

(i) (17) holds as m → ∞ under (A-ii),
(ii) (18) holds as m → ∞ under (A-i) and (C-ii) with Σ∗ = ΣS.

Remark 5 For (4) Chen et al. (2010) gave the following test statistic:

TCZZ =
npAn

2
(
n−1

∑n
i=1 xT

i xi − {n(n − 1)}−1
∑n

i ̸=j xT
i xj

)2 − n

2
, (29)

where An is defined in Remark 4. Under H0 in (4), they showed that as m → ∞

TCZZ ⇒ N(0, 1)

under a similar condition of (A-ii). Although the test procedure by Chen et
al. (2010) is asymptotically equivalent to (23) with T̃n = T̃n(S), the latter is
more applicable to the sequential analysis ensuring prespecified accuracy. See
Yata et al. (2018) for the details.

4.2 The diagonal structure (5)

We consider the case when Σ∗ = ΣD. Note that ∆ = tr(Σ2) −
∑p

j=1 σ2
jj (=

∆D, say) and q⋆ = p. Also, note that Ψ = tr(Σ2
D)2 −

∑p
j=1 σ4

jj . Let yij(l) =
(y1ij(l), ..., ypij(l))T for all i, j, l. From (22) we write that

T̃n =
n∆̃n(D)

2Ψ̃
1/2
n(D)

(= T̃n(D), say),

where ∆̃n(D) = Wn − Un(D) and

Ψ̃n(D) = U2
n(D) −

p∑
s=1

(
2

n∑
i<j

y2
sij(1)y

2
sij(2)

n(n − 1)

)2

with

Un(D) = 2
n∑

i<j

p∑
s=1

y2
sij(1)y

2
sij(2)

n(n − 1)
.
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Proposition 4 The condition (C-iii) implies (C-i) and (C-iv) when Σ∗ =
ΣD.

From Theorem 4 and Corollary 3, we have the following result.

Corollary 6 For the test procedure (23) with T̃n = T̃n(D) for (5)

(i) (17) holds as m → ∞ under (A-ii),
(ii) (18) holds as m → ∞ under (A-i) and (C-ii) with Σ∗ = ΣD.

Remark 6 For (5) Srivastava et al. (2011) gave the following test statistic:

TS =
(n − 1)[cn{tr(S2

n) − tr(Sn)2/(n − 1)} − cn

∑p
j=1 s2

j ]

2

√(
cn

∑p
j=1 s2

j

)2

−
∑p

j=1 s4
j

, (30)

where Sn is the sample covariance matrix, sj is the j-th diagonal element of
Sn and cn = (n− 1)2/{(n− 2)(n + 1)}. Under H0 in (5), they showed that as
m → ∞

TS ⇒ N(0, 1)

under the assumptions that zijs are i.i.d., E(z8
ij)s are uniformly bounded

and some regularity conditions. Note that cn{tr(S2
n) − tr(Sn)2/(n − 1)} −

cn

∑p
j=1 s2

j (= ∆̂S, say) is an estimator of ∆D. It should be noted that
∆̂S is heavily biased unless xj is Gaussian. In addition, one cannot claim
Var(∆̂S/∆D) < ∞ unless E(z8

ij)s are uniformly bounded. Contrary to that,
the proposed estimator, ∆̃n(D), is robust against the Gaussian assumption
and one can claim that E(∆̃n(D)) = ∆D without any assumptions. See Section
5 for numerical comparisons.

4.3 The intraclass covariance structure (6)

We consider the case when Σ∗ = ΣIC. Note that q⋆ = 1 and q = 2. Let
A1(IC) = 1p1T

p /p, A2(IC) = Ip − A1(IC), κ1(IC) = σ{1 + (p − 1)ρ}, κ2(IC) =
σ(1 − ρ),

Ω1(IC) = A1(IC)ΣA2(IC) and Ω2(IC) = A2(IC)ΣA2(IC).

Note that tr(Σ2) = tr[{Σ(A1(IC) + A2(IC))}2] and tr{(ΣA1(IC))2} = κ2
1(IC)

from (1). Then, we write that

∆ = 2∥Ω1(IC)∥2
F + tr(Ω2

2(IC)) − (p − 1)κ2
2(IC) (= ∆IC, say) and

Υ = 2κ2
1(IC)tr(Ω

2
2(IC)) + tr(Ω2

2(IC))
2 + 2∥Ω1(IC)∥4

F + 4∥Ω1(IC)∥2
F tr(Ω2

2(IC)).

Note that (C-i’) holds when Σ = ΣIC because

tr(Ω4
2(IC))

tr(Ω2
2(IC))2

=
tr(A4

2(IC))

tr(A2
2(IC))2

=
1

tr(A2(IC))
=

1
p − 1

when Σ = ΣIC. Here, we consider the following condition:
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(C-v’) ρ
p

tr(Ω2
2(IC))1/2

→ ∞ as p → ∞ and lim sup
p→∞

ρ < 1.

Note that (C-v’) implies (C-v) with Σ∗ = ΣIC from the fact that κ1(IC) ≥ σpρ
when Σ∗ = ΣIC. Also, note that the first condition of (C-v’) is met when
Σ = ΣIC and ρp1/2 → ∞ as p → ∞. From (22) we write that

T̃n =
n∆̃n(IC)

2Ψ̃
1/2
n(IC)

(= T̃n(IC), say),

where ∆̃n(IC) = Wn − Un(IC) and

Ψ̃n(IC) = U2
n(IC) −

(
2

n∑
i<j

yT
ij(1)A1(IC)yij(1)y

T
ij(2)A1(IC)yij(2)

n(n − 1)

)2

= U2
n(IC) −

(
2

n∑
i<j

(yT
ij(1)1p)2(yT

ij(2)1p)2

p2n(n − 1)

)2

with

Un(IC) = 2
n∑

i<j

yT
ij(1)A1(IC)yij(1)y

T
ij(2)A1(IC)yij(2)

n(n − 1)

+ 2
n∑

i<j

yT
ij(1)A2(IC)yij(1)y

T
ij(2)A2(IC)yij(2)

(p − 1)n(n − 1)

= 2
n∑

i<j

(yT
ij(1)1p)2(yT

ij(2)1p)2

p2n(n − 1)

+ 2
n∑

i<j

{∥yij(1)∥2 − (yT
ij(1)1p)2/p}{∥yij(2)∥2 − (yT

ij(2)1p)2/p}
(p − 1)n(n − 1)

.

Note that E(∆̃n(IC)) = ∆IC. From Theorem 6 and Corollary 4, we have the
following result.

Corollary 7 For the test procedure (23) with T̃n = T̃n(IC) for (6)

(i) (27) holds as m → ∞ under (A-ii), (C-i’) with Σ∗ = ΣIC and (C-v’),
(ii) (18) holds as m → ∞ under (A-i), (C-ii’) with Σ∗ = ΣIC and (C-v’).

Remark 7 For (6) Srivastava and Reid (2012) gave the following test statistic:

TSR =
n − 1√

2

(
δ̂1(SR)√

2κ̂1(SR)δ̂2(SR)

+
δ̂2(SR) − κ̂2

2(SR)

2δ̂2(SR)

)
, (31)

where δ̂1(SR) = tr(A1(IC)SnA2(IC)Sn) − κ̂1(SR)κ̂2(SR)/(n − 1) and δ̂2(SR) =
tr{(A2(IC)Sn)2} − κ̂2

2(SR)/(n − 1) with κ̂1(SR) = tr(A1(IC)Sn) and κ̂2(SR) =
tr(A2(IC)Sn). Under H0 in (6), they showed that as m → ∞

TSR ⇒ N(0, 1)
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under the assumption that xj is Gaussian and some regularity conditions.
It should be noted that the test procedure by TSR cannot ensure accuracy
unless xj is Gaussian. However, the test procedure (23) with T̃n(IC) can ensure
the accuracy even in non-Gaussian situations. See Section 5 for numerical
comparisons.

5 Simulation studies

In this section, we check the performance of the proposed test procedure in
simulations.

Throughout this section, we set α = 0.05, n = 2⌈p1/2⌉ and p = 2s for
s = 7, . . . , 12. We handled the following three cases:

(i) xj is Np(0,Σ);

(ii) zsj = (vsj − 10)/201/2 (s = 1, . . . , p) in which vsjs are i.i.d. as the
chi-squared distribution with 10 degrees of freedom; and

(iii) (z1j , . . . , zpj)T s are i.i.d. as p-variate t-distribution, tp(Ip, ν), with
mean zero, covariance matrix Ip and degrees of freedom ν = 20.

Note that (A-ii) holds for (i) and (ii). However, neither (A-i) nor (A-ii) hold
for (iii).

5.1 The scaled identity structure (4)

For (4), we compared the performance of the test procedure (23) between TCZZ

in (29) and T̃n(S). We considered Σ = Ip for H0. As for H1, we considered Σ =
diag(1, ..., 1, 2, ..., 2) of which the last ⌈p2/3⌉ elements were 2 and the remaining
elements were 1, so that lim infp→∞ ∆/p2/3 > 0. Thus, from Corollary 5, (18)
holds because tr(Σ2) = O(p) under H1. For each case in (i) to (iii), we checked
the performance by 2000 replications. We defined Pr = 1 (or 0) when H0 was
falsely rejected (or not) for r = 1, . . . , 2000, and calculated ᾱ =

∑2000
r=1 Pr/2000

to estimate the size. We also defined Pr = 1 (or 0) when H1 was falsely rejected
(or not) for r = 1, . . . , 2000, and calculated 1 − β̄ = 1 −

∑2000
r=1 Pr/2000 to

estimate the power. Note that their standard deviations are less than 0.011.
In Fig. 1, we plotted ᾱ in the left panel and 1 − β̄ in the right panel

for (i) - (iii). We observed that T̃n(S) and TCZZ give similar and preferable
performances both for the size and power in (i) - (iii). This is because the
asymptotic alternative distribution of T̃n(S) is equivalent to that of TCZZ. See
Section 3 in Chen et al. (2010) for the asymptotic distribution of TCZZ.

[Fig. 1 should be inserted here]
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5.2 The diagonal structure (5)

For (5), we compared the performance of the test procedure (23) between TS

in (30) and T̃n(D). We considered Σ = Ip for H0. As for H1, we considered
Σ = (0.2|i−j|1/3

), so that lim infp→∞ ∆/p > 0. Thus, from Corollary 6, (18)
holds because tr(Σ2) = O(p) under H1. Similar to Section 5.1, we checked the
performance by 2000 replications and estimated the size and power.

In Fig. 2, we plotted ᾱ in the left panel and 1 − β̄ in the right panel for
(i) - (iii). We observed that T̃n(D) gives preferable performances both for the
size and power in (i) - (iii). On the other hand, TS gave poor performances
because of huge bias in high dimension.

[Fig. 2 should be inserted here]

5.3 The intraclass covariance structure (6)

For (6), we compared the performance of the test procedure (23) between TSR

in (31) and T̃n(IC). We considered Σ = 0.5Ip + 0.51p1T
p for H0. As for H1, we

considered

Σ =
(

Σ1 O(p−2,2)

O(2,p−2) I2

)
,

where Σ1 = 0.5Ip−2 + 0.51p−21T
p−2 and O(p−2,2) denotes the (p− 2)× 2 zero

matrix. Similar to Section 5.1, we checked the performance by 2000 replications
and estimated the size and power.

In Fig. 3, we plotted α in the left panel and 1− β in the right panel for (i)
- (iii). We observed that T̃n(IC) gives preferable performances both for the size
and power in (i) - (iii). On the other side, TSR gave poor performances for (ii)
and (iii) because TSR assumes that xj is Gaussian.

[Fig. 3 should be inserted here]

6 Data analysis

In this section, we demonstrate the test procedure (23) by using gene expres-
sion data. Since the SSE model often appears when we analyze a microarray
data set, we considered testing (6). First, we compared the performance be-
tween TSR in (31) and T̃n(IC). It should be noted that high correlation among
components of Σ is one of the reasons why a microarray data set has the SSE
model. Actually, we can find several gene clusters in a high-dimensional space
and genes in a cluster are usually highly correlated to each other. See Aoshima
and Yata (2018, 2019) for the details.

We used microarray data sets of colon cancer with 2000(= p) genes. The
data sets consist of two classes: π1 : tumor (40 samples) and π2 : normal
colon (22 samples). See Alon et al. (1999) for the details. The data sets are
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available at Jeffery’s web page (URL: http://www.bioinf.ucd.ie/people/ian/).
In order to determine whether the data sets belong to the NSSE model or the
SSE model, we calculated λ1/tr(Σ2)1/2. We estimated tr(Σ2) by Wn in (10)
and λ1 by using the noise-reduction methodology given by Yata and Aoshima
(2012). Then, we obtained that the estimates of λ1/tr(Σ2)1/2 were 0.732 for
π1 and 0.839 for π2. We confirmed that each class fits the SSE model in (13).
Since the data sets fit the SSE model, we considered Σ∗ = ΣIC as a candidate
covariance structure.

We tested (6) at a significance level 0.05. Then, H0 was rejected by T̃n(IC)

for π1 and π2. The results were summarized in Table 1.

Table 1. Test of the intraclass covariance structure (6) by TSR and T̃n(IC). We used two
data sets of colon cancer with 2000(= p) genes in Alon et al. (1999). We set α = 0.05, so
that z0.05 = 1.64.

TSR T̃n(IC)

π1 : tumor (n = 40) 13.75 1858
π2 : normal colon (n = 22) 8.11 827.9

Next, we considered testing the following structure:

H0 : ΣA1(IC) = κ1(IC)A1(IC) vs. H1 : ΣA1(IC) ̸= κ1(IC)A1(IC). (32)

We used the same data sets and applied the test procedure (B.2) in Appendix
B of the online supplementary material to the data sets. We tested (32) at a
significance level 0.05. The value of the test statistic, T̃n(V ), for (32) is −0.154
for π1 and 0.98 for π2. Thus, H0 was accepted both for π1 and π2. From
this data analysis we can conclude both for π1 and π2 that 1p/p1/2 is an
eigenvector of Σ. Remember that H0 in (6) was rejected both for π1 and π2.
We can conclude that ΣA2(IC) ̸= κ2(IC)A2(IC).

7 Conclusion

In this paper, we considered testing covariance structures systematically. By
using the ECDM method, we constructed a common test procedure for a
(i) scaled identity matrix, (ii) diagonal matrix, or (iii) intraclass covariance
matrix in a non-parametric approach. We emphasize that its test statistic can
be calculated at a low computational cost. Any eigenstructure of a covariance
matrix is classified into the SSE model or the NSSE model given by Aoshima
and Yata (2018). We showed that the proposed test procedure can establish
its asymptotic normality under both of the above models. We evaluated the
asymptotic size and power of the test procedure theoretically and numerically.
In conclusion, we recommend using the test procedure (23).
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Supplementary Material

We give details of the asymptotic normality in Lemma 5, an additional test
procedure, an R-code to calculate yij(l)s and proofs of the theoretical results
in the online supplementary material.
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(i) When xj is Np(0,Σ).

(ii) When zsj = (vsj − 10)/201/2 (s = 1, . . . , p) in which vsjs are i.i.d. as the chi-squared
distribution with 10 degrees of freedom.

(iii) When (z1j , . . . , zpj)
T s are i.i.d. as p-variate t-distribution, tp(Ip, ν), with mean zero,

covariance matrix Ip and degrees of freedom ν = 20.

Fig. 1 The performance of the test procedures given by TCZZ and T̃n(S) in (i) - (iii). The

value of α is denoted by the dashed line in the left panels. The value of 1 − β is denoted by
the dashed line in the right panels together with the asymptotic power (17) which is in the
solid line.
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(i) When xj is Np(0,Σ).

(ii) When zsj = (vsj − 10)/201/2 (s = 1, . . . , p) in which vsjs are i.i.d. as the chi-squared
distribution with 10 degrees of freedom.

(iii) When (z1j , . . . , zpj)
T s are i.i.d. as p-variate t-distribution, tp(Ip, ν), with mean zero,

covariance matrix Ip and degrees of freedom ν = 20.

Fig. 2 The performance of the test procedures given by TS and T̃n(D) in (i) - (iii). The

value of α is denoted by the dashed line in the left panels. The value of 1 − β is denoted by
the dashed line in the right panels together with the asymptotic power (17) which is in the
solid line.
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(i) When xj is Gaussian, Np(0,Σ).

(ii) When zsj = (vsj − 10)/201/2 (s = 1, . . . , p) in which vsjs are i.i.d. as the chi-squared
distribution with 10 degrees of freedom.

(iii) When (z1j , . . . , zpj)
T s are i.i.d. as p-variate t-distribution, tp(Ip, ν), with mean zero,

covariance matrix Ip and degrees of freedom ν = 20.

Fig. 3 The performance of the test procedures by TSR and T̃n(IC) in (i) - (iii). The value

of α is denoted by the dashed line in the left panels. The value of 1 − β is denoted by the
dashed line in the right panels together with the asymptotic power (27) which is in the solid
line.


