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Abstract In this paper, we propose two Bailey–Borwein–Plouffe (BBP)-type
formulas for π. We show that computation and verification of π using the
two different BBP-type formulas require 20% fewer terms than verification by
shifting the starting position of a few hexadecimal digits of π using Huvent’s
formula, which is known as the BBP-type formula with the least number of
terms.

Keywords BBP-type formulas · arctangent relations · Taylor series

Mathematics Subject Classification (2000) 65D20 · 11Y16 · 65Y20

1 Introduction

The Bailey–Borwein–Plouffe (BBP) formula for π was discovered by Plouffe
in 1995 and published in 1997 [4], and is named after the paper’s authors. The
BBP formula was found experimentally using the PSLQ algorithm [11,7]. This
formula enables a specific bit in π to be computed without computing all the
previous bits. Several BBP-type formulas for π have since been proposed [1,
2,9,13,10,3,6]. Using these BBP-type formulas, a few hexadecimal digits of π
starting at a position n can be verified by computing the digit at position n−1
(or n + 1) [5]. Such computations have been carried out for a large starting
position [4,8,16,20,14,15,21].

Another way to verify a calculation of π is to make a comparison of results
calculated using two different formulas. For example, Shanks and Wrench [17]
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computed π to 100,000 decimal digits by using Størmer’s formula [18]:

π = 24 arctan
1

8
+ 8 arctan

1

57
+ 4 arctan

1

239
. (1)

They then verified the result by using Gauss’s formula [12]:

π = 48 arctan
1

18
+ 32 arctan

1

57
− 20 arctan

1

239
. (2)

Between (1) and (2), the terms arctan(1/57) and arctan(1/239) are common.
Thus, the common terms calculated in (1) can be reused for the verification
using (2). When there exist different BBP-type formulas that have common
terms, it is possible to reduce the number of terms for the verification of a π
calculation using these formulas.

In this paper, we propose two BBP-type formulas for π that have common
terms. These BBP-type formulas are derived from the two-term arctangent
relations for π [22].

The remainder of this paper is organized as follows. Section 2 describes the
conventional BBP-type formulas for π. In Section 3, we propose two BBP-type
formulas for π. Finally, Section 4 presents some concluding remarks.

2 Conventional BBP-type formulas for π

The BBP formula [4] is as follows:

π =

∞∑
k=0

1

16k

(
4

8k + 1
− 2

8k + 4
− 1

8k + 5
− 1

8k + 6

)
. (3)

Consider computing a few hexadecimal digits of π starting at position n+1 for
a positive integer n. Note that this is equivalent to computing {16nπ}, where
{·} denotes the fractional part [5]. From (3), we have

{16nπ} = {4 {16nS(1)} − 2 {16nS(4)} − {16nS(5)} − {16nS(6)}} , (4)

where

S(j) =

∞∑
k=0

1

16k(8k + j)
. (5)

We note that

{16nS(j)} =

{{
n∑

k=0

16n−k

8k + j

}
+

∞∑
k=n+1

16n−k

8k + j

}

=

{{
n∑

k=0

16n−k mod (8k + j)

8k + j

}
+

∞∑
k=n+1

16n−k

8k + j

}
. (6)

The reason for mod (8k+j) appearing in the numerator of the first summation
in (6) is that we only need to compute the fractional part.



On the computation and verification of π using BBP-type formulas 3

The numerator of the first summation in (6), namely, 16n−k mod (8k+ j),
can be computed efficiently using the binary method for modular exponen-
tiation. Since the exponent of 16 is negative in the numerator of the second
summation in (6), it is only necessary to compute until the remaining terms
are less than the machine epsilon of the floating-point arithmetic being used
[4]. The number of terms for the second summation in (6) is negligible when n
is sufficiently large. For simplicity, we do not consider the second summation
in this paper. In this case, the BBP formula requires 4n terms for the compu-
tation of a few hexadecimal digits of π starting at position n. By converting
the final result to hexadecimal representation, a few hexadecimal digits of π
starting at position n+ 1 can be obtained.

Similar to the BBP formula, a few hexadecimal digits of π starting at
position n+1 can be computed using the BBP-type formulas described below.
Adamchik and Wagon [1,2] proposed the following simple BBP-type formula:

π =

∞∑
k=0

(−1)k

4k

(
2

4k + 1
+

2

4k + 2
+

1

4k + 3

)
. (7)

The following BBP-type formula [13,10] requires 20% fewer terms than the
BBP formula:

π =
1

22

∞∑
k=0

(−1)k

26k

(
23

4k + 1
+

22

4k + 2
+

1

4k + 3

)

+
1

26

∞∑
k=0

(−1)k

210k

(
25

4k + 1
+

23

4k + 2
+

1

4k + 3

)
. (8)

Bellard’s formula [9], which requires 30% fewer terms than the BBP formula,
is as follows:

π =
1

26

∞∑
k=0

(−1)k

210k

(
− 25

4k + 1
− 1

4k + 3
+

28

10k + 1
− 26

10k + 3
− 22

10k + 5

− 22

10k + 7
+

1

10k + 9

)
. (9)

The following formula by Huvent [13] requires approximately 33% fewer terms
than the BBP formula:

π =
1

128

∞∑
k=0

1

212k

(
768

24k + 3
+

512

24k + 4
+

128

24k + 6
− 16

24k + 12
− 16

24k + 14

− 12

24k + 15
+

2

24k + 20
− 1

24k + 22

)
. (10)

BBP-type formulas require a bit complexity of O(n log nM(log n)) where
M(d) is the complexity of multiplying d-bit integers [4].
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3 Two proposed BBP-type formulas for π

The two-term arctangent relations for π found by Machin in 1706 [22] are as
follows:

π = 4arctan
1

2
+ 4 arctan

1

3
, (11)

π = 8arctan
1

2
− 4 arctan

1

7
, (12)

π = 8arctan
1

3
+ 4 arctan

1

7
, (13)

π = 16 arctan
1

5
− 4 arctan

1

239
. (14)

The Taylor series of arctanx is given by

arctanx =

∞∑
k=0

(−1)k

2k + 1
x2k+1. (15)

With x = 1/2 in (15), we have

arctan
1

2
=

1

2

∞∑
k=0

(−1)k

22k(2k + 1)
. (16)

Bellard presented the following relation [9]:

arctan
1

a− 1
= Im

[
− log

(
1− 1 + i

a

)]
=

∞∑
k=0

(−1)k22k

a4k+3

(
a2

4k + 1
+

2a

4k + 2
+

2

4k + 3

)
. (17)

Using a = 2 in (17) yields Adamchik and Wagon’s formula in (7). With a = 4
in (17), we obtain

arctan
1

3
=

1

25

∞∑
k=0

(−1)k

26k

(
23

4k + 1
+

22

4k + 2
+

1

4k + 3

)
. (18)

Furthermore, with a = 8 in (17), we obtain

arctan
1

7
=

1

28

∞∑
k=0

(−1)k

210k

(
25

4k + 1
+

23

4k + 2
+

1

4k + 3

)
. (19)
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From (13), (18), and (19), we have the BBP-type formula in (8). By expanding
(16) 15 times with respect to k, we have

arctan
1

2
=

1

229

∞∑
k=0

(−1)k

230k

(
228

30k + 1
− 226

30k + 3
+

224

30k + 5
− 222

30k + 7

+
220

30k + 9
− 218

30k + 11
+

216

30k + 13
− 214

30k + 15
+

212

30k + 17

− 210

30k + 19
+

28

30k + 21
− 26

30k + 23
+

24

30k + 25
− 22

30k + 27

+
1

30k + 29

)
. (20)

By expanding (18) five times with respect to k, we have

arctan
1

3
=

1

229

∞∑
k=0

(−1)k

230k

(
225

10k + 1
− 219

10k + 3
+

213

10k + 5
− 27

10k + 7

+
21

10k + 9
+

227

20k + 1
+

224

20k + 3
− 221

20k + 5
− 218

20k + 7

+
215

20k + 9
+

212

20k + 11
− 29

20k + 13
− 26

20k + 15
+

23

20k + 17

+
1

20k + 19

)
. (21)

By expanding (19) three times with respect to k, we have

arctan
1

7
=

1

228

∞∑
k=0

(−1)k

230k

(
222

6k + 1
− 212

6k + 3
+

22

6k + 5
+

225

12k + 1

+
220

12k + 3
− 215

12k + 5
− 210

12k + 7
+

25

12k + 9
+

1

12k + 11

)
.

(22)

Consider the computation and verification of π using BBP-type formulas
derived from (11), (12), and (20)–(22). From (12), the subtraction between
the terms with denominators of 30k + 5j for j = 1, 3, 5 in (20) and the terms
with denominators of 6k + j for j = 1, 3, 5 in (22) can be reduced to terms
with common denominators of 30k + 5j for j = 1, 3, 5. Thus, we obtain the
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following BBP-type formula from (12), (20), and (22):

π =
1

226

∞∑
k=0

(−1)k

230k

(
− 225

12k + 1
− 220

12k + 3
+

215

12k + 5
+

210

12k + 7
− 25

12k + 9

− 1

12k + 11
+

228

30k + 1
− 226

30k + 3
− 222

30k + 5
− 222

30k + 7
+

220

30k + 9

− 218

30k + 11
+

216

30k + 13
+

212

30k + 15
+

212

30k + 17
− 210

30k + 19

+
28

30k + 21
− 26

30k + 23
− 22

30k + 25
− 22

30k + 27
+

1

30k + 29

)
. (23)

The identity (23) can also be obtained by expanding Bellard’s formula in (9)
three times with respect to k. The identity (23) can be expressed as follows:

π = −2−1S(12, 1)− 2−6S(12, 3) + 2−11S(12, 5) + 2−16S(12, 7)− 2−21S(12, 9)

− 2−26S(12, 11) + 22S(30, 1)− S(30, 3)− 2−4S(30, 5)− 2−4S(30, 7)

+ 2−6S(30, 9)− 2−8S(30, 11) + 2−10S(30, 13) + 2−14S(30, 15)

+ 2−14S(30, 17)− 2−16S(30, 19) + 2−18S(30, 21)− 2−20S(30, 23)

− 2−24S(30, 25)− 2−24S(30, 27) + 2−26S(30, 29), (24)

where

S(m, j) =

∞∑
k=0

(−1)k

230k(mk + j)
. (25)

On the other hand, from (11), the subtraction between the terms with
denominators of 30k+ 3j for j = 1, 3, 7, 9 in (20) and the terms with denomi-
nators of 10k+j for j = 1, 3, 7, 9 in (21) can be reduced to terms with common
denominators of 30k+3j for j = 1, 3, 7, 9. Thus, we obtain the following BBP-
type formula from (11), (20), and (21):

π =
1

227

∞∑
k=0

(−1)k

230k

(
213

10k + 5
+

227

20k + 1
+

224

20k + 3
− 221

20k + 5
− 218

20k + 7

+
215

20k + 9
+

212

20k + 11
− 29

20k + 13
− 26

20k + 15
+

23

20k + 17

+
1

20k + 19
+

228

30k + 1
+

225

30k + 3
+

224

30k + 5
− 222

30k + 7
− 219

30k + 9

− 218

30k + 11
+

216

30k + 13
− 214

30k + 15
+

212

30k + 17
− 210

30k + 19

− 27

30k + 21
− 26

30k + 23
+

24

30k + 25
+

21

30k + 27
+

1

30k + 29

)
. (26)
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Table 1 Number of terms for the computation and verification of hexadecimal digits of π
starting at position n. Lower-order terms were not computed.

Number of Number of
Total numberFormula terms for terms for

of terms
Ratio

computation verification
Adamchik–Wagon [1,2] 6n 6n 12n 1.500

Bailey–Borwein–Plouffe [4] 4n 4n 8n 1.000
Bellard [9] (14/5)n (14/5)n (28/5)n 0.700
Huvent [13] (8/3)n (8/3)n (16/3)n 0.667

Proposed (23) (14/5)n (14/5)n (28/5)n 0.700
Proposed (26) (52/15)n (52/15)n (104/15)n 0.867

Proposed (23) + (26) (14/5)n (22/15)n (64/15)n 0.533

The identity (26) can be expressed as follows:

π = 2−14S(10, 5) + S(20, 1) + 2−3S(20, 3)− 2−6S(20, 5)− 2−9S(20, 7)

+ 2−12S(20, 9) + 2−15S(20, 11)− 2−18S(20, 13)− 2−21S(20, 15)

+ 2−24S(20, 17) + 2−27S(20, 19) + 21S(30, 1) + 2−2S(30, 3)

+ 2−3S(30, 5)− 2−5S(30, 7)− 2−8S(30, 9)− 2−9S(30, 11)

+ 2−11S(30, 13)− 2−13S(30, 15) + 2−15S(30, 17)− 2−17S(30, 19)

− 2−20S(30, 21)− 2−21S(30, 23) + 2−23S(30, 25) + 2−26S(30, 27)

+ 2−27S(30, 29), (27)

where

S(m, j) =

∞∑
k=0

(−1)k

230k(mk + j)
. (28)

In (27), the subtraction between 2−14S(10, 5) and 2−13S(30, 15) can also
be reduced to 2−14S(30, 15). However, 2−14S(30, 15) also exists in (24). In this
case, if an error occurs in the calculation of S(30, 15), that error cannot be
detected. Thus, the reduction between 2−14S(10, 5) and 2−13S(30, 15) should
not be performed.

Between (24) and (27), the terms S(30, j) for j = 1, 3, 5, . . . , 29 are com-
mon. Thus, the common terms calculated in (24) can be reused for the verifi-
cation using (27). That is, it is sufficient to compute only the terms S(10, 5)
and S(20, j) for j = 1, 3, 5, . . . , 19.

Performance evaluation of three BBP-type formulas, the original BBP for-
mula, Bellard’s formula, and the Adamchik–Wagon formula, has previously
been presented [19]. For comparison, Table 1 lists the number of terms for the
computation and verification of hexadecimal digits of π starting at position n.
We assume that the results are verified by shifting the starting position of a
few hexadecimal digits of π, except when combining the two proposed BBP-
type formulas (23) and (26). In the proposed two BBP-type formulas and their
combination, the calculation result of (23) is verified using (26). As shown in
Table 1, the proposed BBP-type formula in (23) requires (14/5)n terms for a
given starting position n, which is the same as Bellard’s formula in (9). On the
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Table 2 Execution time to compute the 1011-th hexadecimal digit of π on an Intel Xeon
Phi 7250.

Computation Verification Total
Ratiotime (sec) time (sec) time (sec)

Adamchik–Wagon 761.96 761.92 1523.88 1.534
Bailey–Borwein–Plouffe 496.58 496.55 993.13 1.000

Bellard 355.57 355.57 711.14 0.716
Huvent 331.25 331.26 662.51 0.667

Proposed (23) 353.93 353.92 707.85 0.713
Proposed (26) 438.18 438.18 876.36 0.882

Proposed (23) + (26) 353.93 185.39 539.32 0.543

other hand, the proposed BBP-type formula in (26) requires (52/15)n terms
for a given starting position n. However, computation and verification using
the two proposed BBP-type formulas require 20% fewer terms than those of
Huvent’s formula in (7). This is because the common terms calculated in (24)
can be reused for the verification using (27).

Table 2 shows the execution time required to compute the 1011-th hex-
adecimal digit of π on an Intel Xeon Phi 7250. The programs used for the
execution are implemented based on [21]. It can be seen that the execution
time of each formula in Table 2 is approximately proportional to the number
of terms shown in Table 1. As shown in Table 2, computation and verification
using the two proposed BBP-type formulas require approximately 19% less
execution time than those using Huvent’s formula.

4 Conclusion

In this paper, we have proposed two BBP-type formulas for π. We have shown
that computation and verification of π using these two formulas require 20%
fewer terms than verification by shifting the starting position of a few hex-
adecimal digits of π using Huvent’s formula, which is known as the BBP-type
formula with the least number of terms.

References

1. Adamchik, V., Wagon, S.: π: A 2000-year-old search changes direction. Mathematica
in Education and Research 5, 11–19 (1996)

2. Adamchik, V., Wagon, S.: A simple formula for π. Am. Math. Mon. 104, 852–855
(1997)

3. Adegoke, K., Lafont, J.O., Layeni, O.: A class of digit extraction BBP-type formulas in
general binary bases. Notes Number Theory Discrete Math. 17, 18–32 (2011)

4. Bailey, D., Borwein, P., Plouffe, S.: On the rapid computation of various polylogarithmic
constants. Math. Comput. 66, 903–913 (1997)

5. Bailey, D.H.: The BBP algorithm for pi (2006). URL
http://www.davidhbailey.com/dhbpapers/bbp-alg.pdf

6. Bailey, D.H.: A compendium of BBP-type formulas for mathematical constants (2017).
URL http://www.davidhbailey.com/dhbpapers/bbp-formulas.pdf



On the computation and verification of π using BBP-type formulas 9

7. Bailey, D.H., Broadhurst, D.J.: Parallel integer relation detection: Techniques and ap-
plications. Math. Comput. 70, 1719–1736 (2000)

8. Bellard, F.: The 1000 billionth binary digit of pi is ’1’ ! (1997). URL
http://bellard.org/pi-challenge/announce220997.html

9. Bellard, F.: A new formula to compute the n’th binary digit of pi (1997). URL
http://bellard.org/pi/pi bin.pdf

10. Borwein, J., Bailey, D.: Mathematics by Experiment: Plausible Reasoning in the 21st
Century. A K Peters, Natick, MA (2003)

11. Ferguson, H.R.P., Bailey, D.H., Arno, S.: Analysis of PSLQ, an integer relation finding
algorithm. Math. Comput. 68, 351–369 (1999)

12. Gauss, C.F.: Werke, vol. 2. Königlichen Gesellschaft der Wissenschaften, Göttingen
(1863)

13. Huvent, G.: Formules BBP (2001). URL http://gery.huvent.pagesperso-orange.fr/pi/
huvent seminaire.pdf

14. Karrels, E.: Computing the quadrillionth digit of π (2013). URL http://on-
demand.gputechconf.com/gtc/2013/presentations/S3071-Computing-the-
Quadrillionth-Digit-of-Pi.pdf

15. Karrels, E.: Computing digits of π with CUDA (2017). URL http://www.karrels.org/pi/
16. Percival, C.: PiHex a distributed effort to calculate pi (2000). URL

http://wayback.cecm.sfu.ca/projects/pihex/
17. Shanks, D., Wrench, Jr., J.W.: Calculation of π to 100,000 decimals. Math. Comput.

16, 76–99 (1962)
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