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Abstract
Layer exchange (LE) is an interesting phenomenon in which metal and semiconductor layers
exchange during heat treatment. A great deal of effort has been put into research on the
mechanism and applications of LE, which has allowed various group IV materials (Si, SiGe,
Ge, GeSn and C) to form on arbitrary substrates using appropriate metal catalysts. Depending
on the LE material combination and growth conditions, the resulting semiconductor layer
exhibits various features: low-temperature crystallization (80 ◦C–500 ◦C), grain size control
(nm to mm orders), crystal orientation control to (100) or (111) and high impurity doping
(>1020 cm−3). These features are useful for improving the performance, productivity and
versatility of various devices, such as solar cells, transistors, thermoelectric generators and
rechargeable batteries. We briefly review the findings and achievements from over 20 years of
LE studies, including recent progress on device applications.

Keywords: layer exchange, semiconductor, graphene, low temperature synthesis, flexible devices

(Some figures may appear in colour only in the online journal)

1. Introduction

Group IVmaterials have been studied and used since the emer-
gence of electronics. In addition to Si, the most common elec-
tronic material, there are many other group IV materials with
excellent characteristics. Ge has been used in photodetectors
and multi-junction solar cells because of its unique optical
characteristics [1]. Ge’s high carrier mobilities are potentially
attractive for high-speed transistors [2], which are gaining
attention again with recent advances in device technology
[3–5]. SiGe alloy has long been used as a thermoelectricmater-
ial because of its large Seebeck coefficient and low thermal
conductivity [6]. Additionally, tuning the SiGe composition
enables us to control physical properties such as bandgap and
lattice constant [7]. GeSn alloy has attracted intense interest

Original content from this workmay be used under the terms
of the Creative Commons Attribution 4.0 licence. Any fur-

ther distribution of this work must maintain attribution to the author(s) and the
title of the work, journal citation and DOI.

because it provides direct transition in the near infrared region
and theoretically exhibits high carrier mobilities exceeding Ge
[8, 9]. Graphitic carbon (C) is used in various devices because
of its excellent electrical and thermal conductivities, mech-
anical strength and electrochemical stability. In addition to
the individual attractive features, group IV materials are also
environmentally friendly and compatible with widely used Si
processes.

From the above features, the thin film formation of group
IV materials on insulators such as SiO2, glass and plastics
has been conducted to improve device performance, increase
functionality, reduce production cost and expand applications
[10, 11]. However, obtaining high-quality crystals on insulat-
ing substrates is quite challenging because most of the insu-
lators are amorphous and not resistant to high temperature.
Therefore, techniques for synthesizing high quality thin films
at low temperatures have been widely studied. Metal-induced
crystallization (MIC) lowers the crystallization temperature of
amorphous semiconductor thin films and has beenwell studied
for Si [12–14], Ge [15–17] and SiGe [18]. The layer exchange
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(LE) phenomenon in MIC was first reported in 1998 by Nast
et al in the Si-Al system [19]. Since this finding, LE has attrac-
ted many researchers interested in the phenomenon itself,
the various features changing dramatically with a little con-
ditional modulation and the tremendous potential for device
applications. Enormous effort has been devoted to studying
the LE mechanism, high-quality crystallization at low temper-
atures and applications to variousmaterials and devices. In this
review, we will briefly summarize the past 20 years of these
LE studies.

2. Metal-induced layer exchange

2.1. Mechanism

The LE mechanism has been well studied both experiment-
ally and theoretically using the Si-Al system [20–27]. Accord-
ing to those reports, the LE process can be summarized as
shown in figure 1. First, a metal layer and an amorphous semi-
conductor (including C here) layer, generally ranging from 5
to 500 nm thickness, are sequentially deposited on an arbit-
rary substrate and heat-treated at a temperature lower than
the eutectic point (figure 1(a)). The LE process itself is cost
effective because various thin-film-preparation methods can
be used, such as sputtering, thermal evaporation and chem-
ical vapor deposition (CVD). Inert gases such as N2 or Ar are
generally used as the heat treatment atmosphere but H2 [28]
or vacuum [29] are also useful. LE occurs even if the order
of the layers is inverted [30, 31], which enables formation of
the lower electrode in a self-organizing manner [32, 33]. Dur-
ing annealing, semiconductor atoms diffuse from the amorph-
ous layer into the metal layer, mainly through the metal grain
boundaries (figure 1(a)). When the semiconductor concentra-
tion in metal is supersaturated, the semiconductor nucleates
in metal (figure 1(b)). The position and shape of the nucleus
will be discussed later. After that, semiconductor atoms dis-
solving in metal contact the nuclei, which induces semicon-
ductor crystals’ lateral growth (figure 1(c)). The lateral growth
stresses metal and pushes it to the upper layer (figure 1(c))
in a process called push-up phenomenon. Eventually, crystal-
line semiconductor forms a bottom layer while metal forms
an upper layer (figure 1(d)). Thermodynamically, the driving
force of the LE process is the difference in Gibbs free energy
between amorphous and crystalline semiconductor [22, 25].
The metastability and high free energy of the amorphous layer
cause supersaturation, which leads to nucleation in the metal
layer [23, 26]. Therefore, to induce LE, the initial semicon-
ductor layer must be amorphous or at least poorly crystalline
[34]. Once LE is completed, LE does not occur again because
the resulting semiconductor layer is completely crystalline.
When the substrate is crystalline and lattice-matched to the
semiconductor layer, epitaxial growth can be induced by tun-
ing the growth conditions [35–37].

LE can be observed in the following ways. By removing the
metal after the LE, a crystalline semiconductor film is obtained
on the substrate. Generally, the metal layer is removed using
wet etching, where the etchant selection is important so as not

Substrate

Amorphous

Metal

(a) Diffusion

Crystal

(b) Nucleation

(c) Lateral growth and push up

Substrate

Crystal

Metal

(d) Completion of layer exchange

Figure 1. Schematic of the LE process. (a) Diffusion of
semiconductor atoms from the amorphous layer into the metal layer.
(b) Nucleation of semiconductor in metal. (c) Lateral growth of
semiconductor crystals and metal push up. (d) Completion of LE.

to damage the semiconductor film. The color of the sample
surface (and the back surface when the substrate is transpar-
ent) changes according the stage of LE (figure 2(a)) [38].
For most material combinations, LE can be confirmed by the
naked eye. The detailed LE process can be observed with a
microscope. In situ optical micrographs indicate that semi-
conductor nuclei form, grow laterally and cover the entire
surface of the substrate (figure 2(b)) [27, 39, 40]. More spe-
cifically, the complete LE is determined using a transmission
electron microscope (TEM; figure 2(c)) with an energy dis-
persive x-ray analysis [41]. Some studies directly observed
the in situ microscopic cross-section [23, 42] and plane-view
showing the push-up phenomenon [43] during LE. Cross-
section images using focused-ion-beam microscopy and scan-
ning electron microscopy (SEM) are also useful to observe
the LE process [20]. Such confirmations of LE are essen-
tial because the success or failure of LE depends on various
factors, as mentioned in this paper.

2.2. Material combinations

According to the LE mechanism, the basic conditions
necessary for LE are: (i) the semiconductor dissolves well
in the metal, (ii) the semiconductor and metal do not form
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Figure 2. Observation of the LE process. (a) Schematic and
photographs of the samples of Al-induced LE of Si0.7Ge0.3
corresponding to each stage [38]. (b) In situ optical microscopy
observation of the Al-induced LE of Ge annealed at 350 ◦C, through
which back surfaces are observed through the transparent SiO2

substrate [40]. The annealing time is shown in each image. (c)
Bright-field TEM cross-section of the sample after the LE between
Al and Ge [41].

compounds and (iii) the semiconductor diffuses into the metal
before the metal diffuses into the semiconductor. Both (i) and
(ii) can be determined from the phase diagram [23, 26]. This
will be the quickest guide to roughly finding the material com-
bination of LE. Conversely, (iii) is difficult to judge quantitat-
ively because few papers have shown the relationship between
amorphous semiconductor and metal diffusion rates. How-
ever, the diffusion coefficients of crystalline semiconductors
and metals are known in many cases and are helpful [44, 45].
For example, Sn and Ag diffuse into amorphous Ge quickly,
which contributes to low-temperature crystallization but does
not induce LE, which results in the metal-Ge mixed structure
[46, 47]. However, even in such cases, it is possible to control
the diffusion rate and achieve LE by inserting an appropriate
interlayer between metal and semiconductor [47]. The qual-
ity of the metal and amorphous semiconductor layers, which
varies with preparation method and conditions, also affects
the possibility and various morphology of LE [48–51], which
likely reflects the diffusion rate. Oxygen contamination should
be avoided because too much oxygen in metals or semicon-
ductors inhibits complete LE [52, 53].

So far, LE has been reported in the following material com-
binations: Si-Al [19], Si-Ag [54, 55], Si-Au [56, 57], Ge-
Al [41, 58], Ge-Ag [47], Ge-Au [59] and Ge-Zn [60]. These
metals are also useful for the LE of amorphous SiGe alloy

SiO2SiO2

SiO2

a-C

metal

SiO2

carbide

(2) Carbonization

(4) No graphitization

(1) Layer exchange

SiO2

MLG

metal

Before annealing

(3) Local MLG formation

4

5

1110987654

CuNiCoFeMnCrVTi

AgPdRhRuTcMoNbZr

AuPtIrOsReWTaHf6

(a)

(b)

Figure 3. Classification of interactions between transition metals
and amorphous C (a-C) [71]. (a) Schematic sample structure
showing interactions between metals and a-C classified into four
groups. (b) Organization on the periodic table. The elements are
colored by the classification of interactions between transition
metals and a-C: blue shows group (1) layer exchange, green
shows group (2) carbonization, yellow shows group (3) local
MLG formation and red shows group (4) no graphitization.

[61–65], where the growth conditions should be optimized
according to the SiGe composition [40, 66]. Crystalline semi-
conductor alloys such as SiGe and GeSn can be also formed
by inducing the reaction between each single element [67–69].
Sb also induces LE with Si and Ge, but has a problem in
thin film stability. For C, we found that Ni, Co, Fe, Cr, Mn,
Ru, Ir and Pt can induce LE and provide multilayer graphene
(MLG) (figure 3) [70, 71]. Taking C as an example, it will
be also important for LE that C has sufficient solid solubil-
ity in the metal and that the metal layer is not aggregated
during annealing, in addition to not forming a compound.
Fe is an exception: it induces LE while it potentially makes
compounds with C [72]. This is presumably because diffu-
sion, solid solution and nucleation occur before compound
formation.

2.3. Characteristics of layer-exchanged thin films

2.3.1. Film shape. In LE, the initial bottom and top lay-
ers serve as ‘molds’ for the eventual top and bottom layers,
respectively and thereby almost determine the film shapes. We
define this phenomenon as LE, which differs from the precip-
itation methods often used for graphene synthesis. As can be
inferred from the schematic image in figure 1, when the initial
metal and semiconductor film thicknesses are the same, a uni-
form semiconductor layer is likely achieved after LE. How-
ever, in practice, ‘holes’ and ‘islands’ (also called hillocks)
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101

500 nm

(b) (c)

bottom-Ge

island-Ge

hole

bottom-Ge

island-Ge

SiO2

50 nm

Al
(a)

Figure 4. Properties of the island formed by the LE between Al and
Ge (each 50 nm thick) at 350 ◦C. (a) Bright-field TEM cross-section
image showing the island of the sample before Al removal [74].
(b) SEM and (c) IPF showing the island of the sample after Al
removal [75]. The coloration indicates the crystal orientation (refer
to the inset legend).

form depending on the material combination and growth con-
ditions [20, 21, 73]. Figure 4 shows an example of the Ge-Al
system [74, 75]. After LE, the top layer comprises Al and Ge
parts (figure 4(a)). The bottom layer is uniformly Ge in this
region. However, in some parts, Al remains at the bottom to
conserve the Al and Ge volumes, which become holes after Al
etching. In fact, the Ge layer clearly has holes and islands after
Al removal (figure 4(b)). The Ge island comprises randomly
oriented small grains, while the bottom Ge layer is completely
(111) oriented (figure 4(c)).

The thickness ratio between the metal and semiconductor
layers greatly affects the appearance of the holes and islands
[74, 76–78]. When the initial semiconductor layer is thin-
ner than the metal layer, the island area decreases while the
hole area increases, which results in poor semiconductor layer
coverage on the substrate. Conversely, when the initial semi-
conductor layer is thicker than the metal layer, the hole area
decreases while the island area increases, which results in the
poor semiconductor surface crystallinity. Thus, the island and
hole are in a trade-off relationship. This aspect also depends
on the type and even the thickness of the substrate [79, 80].
This is because the stress applied to the metal and semicon-
ductor layers during LE considerably affect growth morpho-
logy [81–84]. The islands can be removed by peeling off
with tape [85] or using dry [86] and wet etching techniques
[74, 87]. The best way to obtain high-quality semiconductor
films with high surface coverage is to remove the islands
in the island-rich samples [75]. For applications requiring a
rough surface instead of a uniform film, nanostructures can
be obtained in a self-organizing manner by stopping the LE
growth halfway [88].

In the field of graphene synthesis, LE is a unique method
that can uniformly control graphene film thickness over a
wide range [89], which is difficult using conventional precip-
itation methods [90]. Ni-induced LE can selectively produce

5 mm 5 µm

MLG

3 mm

(a) (b) (c)

5 nm

(d)

C {002}

SiO2

Ni

Figure 5. MLG thickness control on a SiO2 glass substrate using
the Ni-induced LE of amorphous C. (a) Photograph of a 50-nm-thick
MLG formed at 600 ◦C [70]. (b) Photograph and (c) SEM image of
a 5-nm-thick MLG formed at 800 ◦C [89]. (d) High-resolution TEM
lattice image of a 10-nm-thick MLG formed at 800 ◦C [89].

MLG in a thick layer (figure 5(a)) and a transparent thin layer
(figures 5(b) and (c)). The MLG is oriented to the substrate
(figure 5(d)), which leads to a high electrical conductivity in
the in-plane direction [89]. Therefore, the film thickness can
be controlled according to the application, such as transparent
electrodes, wiring and anodes for batteries.

2.3.2. Low temperature crystallization. Metal-induced LE
lowers the crystallization temperature of amorphous semicon-
ductors by several hundred degrees. This feature enables syn-
thesis of crystalline semiconductor films on integrated circuits,
glass and even flexible plastic substrates [91–93]. The effect
of lowering the crystallization temperature, i.e. increasing the
crystallization rate, strongly depends on the kind of metal cata-
lyst (figure 6). Therefore, the annealing time required for com-
pleting LE depends on the material combination in addition
to the annealing temperature and thereby has a wide range
from minutes to hundreds of hours. Zn remarkably increases
both the nucleation rate and lateral growth velocity in Ge and
enables crystallization at 80 ◦C [60]. The lower eutectic point
tends lower LE temperature, but does not limit this because
the LE temperature is affected by various factors, as described
below.

Lowering the crystallization temperature is because of the
reduction of activation energies for nucleation and/or lat-
eral growth (figure 6). This is likely caused by the follow-
ing three effects: (i) the screening effect weakens the atomic
bond of amorphous semiconductors [94], (ii) diffusion of
semiconductor atoms in a metal and its grain boundaries is
generally much faster than self-diffusion in an amorphous
semiconductor [44, 45, 95] and (iii) semiconductor nucleation
in ametal occurs with lower interfacial energies [96] compared

4
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Figure 6. Comparison of the growth rates for LE of Ge using Al
[40], Ag [47] and Zn [60]. Arrhenius plots of the (a) nucleation rate
and (b) lateral growth velocity, determined by in situ optical
microscopy observations. T is the growth temperature. Data from
SPC are also shown [97, 98]. Values indicate the activation energies
obtained from the Arrhenius equation and the slopes of the lines.

(d)

100 µm2 µm200 nm

(a) (b) (c)111

101001

Figure 7. Grain size of the LE-Ge. IPFs for the Ge layers formed by
LE using (a) Zn at 80 ◦C [60], (b) Ag at 250 ◦C [47] and (c) Al at
350 ◦C [74] where black solid lines indicate the random grain
boundaries. The coloration indicates the crystal orientation
(refer to the inset legend in (b)). (d) Au-induced LE using an
amorphous-Ge/Au multilayer structure for promoting lateral growth
of Ge grains: schematic before LE and the optical micrograph of the
resulting Ge layer after LE [99]. Reprinted from [99], with the
permission of AIP Publishing.

with solid-phase crystallization (SPC), in which the semicon-
ductor nucleates in the amorphous layer [97, 98]. These effects
depend on the metal species, which reflects the deference of
the screening effect, diffusion rate and interfacial energies [14,
17, 96]. The crystallization temperature can be also lowered
(that is, LE can be facilitated) by: (i) controlling the semicon-
ductor/metal interlayer [58, 100, 101], (ii) tuning the grain size
of the metal layer [102–104], (iii) modulating the substrate
surface condition [105], (iv) initial semiconductor doping in
the metal layer [27, 106, 107], (v) applying eternal voltage
during annealing [108] and (vi) introducing defects [109] or
impurities [110–112] into the amorphous semiconductor layer.

2.3.3. Grain size control. LE can control the grain size of
the resulting semiconductor layer to a wide degree from nm to
mm. In LE, the grain size greatly depends on the metal spe-
cies. Electron backscattering diffraction analysis is a powerful
method for assessing net grain size because a domain visible
under optical micrographs is divided into a few to thousands
of crystal grains. For Ge, Zn provides several tens of nm [60],
Ag provides a few µm [47] and Al and Au provide more than
50µm [59, 74] (figures 7(a)–(c)). A small grain size effectively
lowers the thermal conductivity of the thermoelectric thin film
[60, 113], while a large grain size effectively reduces grain
boundary defects in solar cells [114] or transistors [115]. Com-
mon to all metal species, the guideline for increasing grain
size is to suppress nucleation, as with SPC without metal cata-
lysts [116, 117]. Lowering the growth temperature [118–123]
or preparing an interlayer between semiconductor/metal are
effective for this [124–129]. Thin film preparation also con-
tributes to large grain growth because the thinner metal layer
requires greater lattice diffusion of semiconductor atoms in
addition to grain boundary diffusion, which delays nucleation
[96]. The metal grain size, that is the grain boundary dens-
ity, affects the grain size of the resulting semiconductor layer
because it changes the diffusion rate of the semiconductor
atoms into themetal [102–104]. Higashi et al improved the lat-
eral diffusion rate and induced large grain growth in the Ge-Au
system by preparing a thin multilayer structure of Ge and Au
(figure 7(d)) [99]. The Ge grain size approached themm range,
which can be called pseudo-single crystals for many thin film
devices. This multilayer technique is also useful for the LE
in materials other than Ge [130]. In such a system capable of
obtaining a large grain size, single crystals can be obtained at
arbitrary positions by limiting the area of the initially prepared
film [49, 131–133].

2.3.4. Crystal orientation control. Some material combina-
tions in LE can synthesize crystal-orientation-controlled semi-
conductor films even on amorphous substrates. This is a
unique feature of LE and likely originates from the highmobil-
ity of semiconductor atoms in metal bringing the growth pro-
cess closer to equilibrium [134–136]. The crystal orientation
is often evaluated by inverse pole figures (IPFs) derived from
electron backscattering diffraction analysis. Especially in the
Si-Al system, the crystal orientation of Si on amorphous sub-
strates can be selectively controlled to (100) and (111) [137–
139]. Therefore, both techniques and mechanisms for con-
trolling the crystal orientation have been well studied in the
Si-Al system [25, 100, 140]. The following four paramet-
ers influence the crystal orientation: (i) initial thickness of
Al (figure 8(a)) [66, 139], (ii) annealing temperature (figure
8(a)) [139, 141], (iii) thickness and material of the interlayer
between Si/Al (figure 8(b)) [129, 137, 142] and (iv) substrate
(underlying) material and its surface condition (figure 8(c))
[143–147]. In particular, the Al thickness and underlying
material have a large influence: thick Al (>100 nm) provides
the (100) orientation [148, 149], while thin Al (<100 nm)
provides the crystal orientation depending on the underly-
ing material, such as (111) for SiO2 and (100) for ZnO:Al

5
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(figure 8(c)). With an Al thickness of approximately 100 nm,
Si crystal orientation is sensitive to the annealing temperat-
ure and interlayer (figures 8(a) and (b)). When the substrate is
SiO2, high annealing temperatures and thin interlayers (fast Si
diffusion) induce (100) orientation, while low annealing tem-
peratures and thick interlayers (slow Si diffusion) induce (111)
orientation (figures 8(a) and (b)). These behaviors are identical
for inverted LE structures in the Si-Al system [139, 150]. This
is helpful in considering the mechanism of the orientation
control.

Crystal orientation has been well discussed in terms of min-
imizing the surface free energy of the Si nucleus [151]. In
crystalline Si (and Ge), the 111 faces have the lowest sur-
face energy and thus are preferentially formed [152]. The Si
111 face also likely appears on the interfaces with SiO2 and
Al [25, 100]. In the LE process, Si diffuses at the Al grain
boundaries and nucleates when reaching a certain volume [24].
When the Al layer is thick or the Si diffusion is fast, trian-
gular (pyramid-shaped) nuclei are heterogeneously formed in
contact with the interlayer (figure 8(d)), which was confirmed
experimentally [20, 42]. In this case, most of the surface area
of the Si nucleus is in contact with Al. Because of the Si/Al
interface becoming the 111 faces to minimize the total sur-
face energy of Si nucleus, the Si/interlayer interface becomes
the 100 face [25, 148]. Conversely, when the Al layer is thin
or the Si diffusion is slow, the Si atoms reach the substrate
[25, 125], likely forming a trapezoidal nucleus. In this case,
the Si nucleus has an interface area in contact with the sub-
strate and interlayer, which become the 111 faces for lowering
the total surface energy of Si (figure 8(d)). Therefore, when
the quality of the substrate (and interlayer) changes, the crys-
tal orientation changes according to the interfacial energies.
Although the value of each interfacial energy is needed for
accurate discussion, this model is consistent with the various
experimental results for the Si-Al system.

These four parameters of thickness, annealing temperat-
ure, interlayer and substrate likely influence the crystal ori-
entation and grain size for any material combination in LE;
however, the situation changes slightly depending on the com-
bination. For the Al-induced LE of Ge, when the Ge layer is
thin (<100 nm) and Ge diffusion is slow, the crystal orientation
can be controlled to (111) or (100) depending on the underly-
ing layer, as in the case of Si [59, 153, 154]. Conversely, when
the Ge layer is thick (>100 nm) and Ge diffusion is fast, the
crystal orientation is random [41, 155]. Although the reason
remains unclear, the orientation anisotropy of the Ge/Al inter-
facial energy may be small. In a material with large surface
energy anisotropy such as graphene, the resulting film after
LE is almost completely oriented under any condition (figure
5(d)) [71, 89].

2.3.5. High impurity doping. MIC generally has a problem
with metal contamination in resulting semiconductor layers.
Although some techniques use the lateral growth region as
a contamination free layer [156–158], these techniques have
difficulty in large area formation. In LE, many metal atoms
also remain in the islands; however, the metal content in the

bottom semiconductor layer is almost limited by the solid solu-
bility of metal in semiconductor [20, 40]. This is also a unique
feature of LE. According to this principle, metals with small
solid solubility (such as Ag and Au) are expected to provide a
semiconductor layer with little metal contamination [54, 93].
Conversely, high impurity doping into a semiconductor layer
is also possible by positively using this feature. In the Si-Al
system, the resulting Si layer shows p-type conduction [20]
because Al works as an acceptor. The higher growth temper-
ature provides higher hole concentration, which likely reflects
the increased solid solubility [159, 160]. In the SiGe-Al sys-
tem, an amount (1018–1020 cm−3) of Al is doped in the res-
ulting Si1-xGex (x: 0–1) layer according to the solid solubil-
ity limit in each SiGe composition [40, 161] (figure 9(a)).
These features enable low-temperature SiGe synthesis with
high electrical conductivity (figure 9(b)), which is useful for
thermoelectric generators (TEGs) [38, 60] and contact layers
for optical devices [162, 163]. Adding an impurity to the ini-
tial semiconductor [163–165] or metal [166, 167] layers also
can highly dope the impurity into the resulting semiconductor
layer in a self-organizing manner during LE. This feature is
also effective for forming a semiconductor alloy. In the Ge-Al
system, Sn preparation in the initial LE structure results in the
crystalline GeSn alloy, though the Sn concentration is equival-
ent to the solid solubility limit (∼2%) [69]. This behavior is
considered to more likely occur as the LE is closer to the equi-
librium state. Some papers reported that the hole concentration
in the Si layer formed by Al-induced LE, where Al works as an
acceptor, can be controlled, that is, not completely restricted
with the solid solubility limit [168–170]. These behaviors pos-
sibly occur by bringing LE closer to a non-equilibrium state.

3. Device applications of layer exchange

3.1. Solar cells

Solar cells have long been studied as an application of LE
because the Si-Al system can produce a large-grained Si layer
[171]. The ability to lower the process temperature is also
attractive because it allows the use of inexpensive substrates
such as glass. The seed layer approach, that is, the epitaxial
growth of Si on large-grained p-type Si formed by Al-induced
LE, has been studied (figure 10(a)) [162, 172, 173]. In line
with this, epitaxial thickening of Si on the seed layer has
been performed in various techniques, such as ion-assisted
deposition [174, 175], CVD [176–181] and solid-phase epi-
taxy [182–184]. However, the conversion efficiency remains
low (8.5%) compared with other Si thin-film solar cell tech-
nologies (figure 10(b)) [171]. There remains a problem in
improving the quality of the LE-Si seed layer after Al removal.
Fabricating a bottom electrode under LE-Si is also an issue
[185, 186]. The inverted LE structure is promising because it
provides a self-organized Al bottom electrode and no islands
and holes on the Si surface [187]. In addition to the seed
layer, the LE-Si was demonstrated to be useful as a field-effect
passivation layer [165] and a heterojunction-photodetector
material [150].
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The seed layer approach using the Ge layer formed by Al-
induced LE is also attractive. The motivation to replace the
bulk Ge substrate, used in multijunction solar cells, with a Ge
film on insulating substrates is quite high because the Ge sub-
strate is expensive while Ge can absorb light even in a thin
film. The Ge film, grown epitaxially from a large-grained p-
type Ge seed layer formed by the Al-induced LE, exhibited
a bulk minority carrier lifetime of 5.6 µs, which is close to
that of a single-crystal Ge [188]. Ge is also useful as a seed
layer for group III–V compound semiconductors because of
lattice matching. The GaAs film, grown epitaxially from the
Ge seed layer formed by Al-induced LE, became a pseudo-
single crystal (grain size >100 µm) with high (111) orientation
(figures 11(a)–(c)) [189]. Reflecting the large grain size, the
photoresponsivity approached that of a simultaneously formed
GaAs film on a single-crystal Ge wafer (figure 11(d)). The
internal quantum efficiency reached 90% under a bias voltage
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Figure 10. Polycrystalline silicon thin-film solar cells using the Si
seed layer formed by Al-induced LE. (a) Schematic of the proposed
seed layer approach [162]. (b) Current density—voltage curve of the
record Si solar cell using the LE seed layer, featuring an energy
conversion efficiency of 8.5%, an open circuit voltage of 522 mV,
a short circuit current of 21.6 mA cm−2 and a fill factor of 75.8%
[171]. (a) Reprinted from [162], Copyright (2004), with permission
from Elsevier. (b) Reprinted from [171], Copyright (2013), with
permission from Elsevier.

of 0.3 V, which is the highest for a GaAs film synthesized on
glass [190]. Use of the seed layer approach using the LE-Ge
has just begun and is expected to reduce the fabrication cost of
high-efficiency solar cells.

3.2. Thin film transistors

With the development of crystal growth and transistor
technologies for Ge, study on Ge thin film transistors (TFTs)
has recently become more active [191, 192]. In line with this,
TFTs using the Ge channel layer formed by LE with Au and
Ag catalysts have been reported [115, 166]. Because both
Au and Ag have a small solid solubility in Ge, little metal
contamination in the LE-Ge layer is expected [93]. The Au-
induced LE can provide large-grained Ge layers at quite low
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temperatures. The resulting Ge layer after Au removal exhib-
its Hall hole mobility of 210 cm2 Vs−1, which is the highest
as semiconductor thin films formed at <300 ◦C [193]. Tran-
sistor operation was demonstrated using the pseudo-single
crystal Ge layer formed on glass and even on a plastic substrate
(figure 12) [193, 194]. The field-effect mobilities exceeded
70 cm2 Vs−1 on glass and 10 cm2 Vs−1 on a plastic sub-
strate. Although the challenge remains in reducing leakage
current, the field-effect mobility is the highest among the p-
channel TFTs fabricated at ⩽400 ◦C on flexible plastic sub-
strates. Suzuki et al formed n- and p-type Ge layers at 330 ◦C
using LE with an AgSb and Ag catalyst, respectively [163].
These resulted in both p- and n-channel TFTs, which will con-
figure complementary-metal-oxide-semiconductor devices on
flexible substrates.

3.3. Thermoelectric generators

SiGe alloy is the most well-known, reliable and tested
thermoelectric material [6]; however, the bulk-SiGe formed
by sintering methods is generally expensive, which limits
its application. Conversely, a SiGe alloy film can be easily
synthesized using sputtering [195], CVD [196, 197], SPC
[198] and MIC [199]. To obtain high power factor in SiGe
for TEGs, a high temperature process is generally required,
mainly for the dopant activation, which is necessary for
improving electrical conductivity (figure 13(a)). Conversely,

(a) (b)

Figure 12. Flexible TFT based on the pseudo-single crystal Ge
layer formed on a polyimide substrate using Au-induced LE [194].
(a) ID-VD characteristics. (b) ID-VG characteristics at a VD of
−0.1V. The inset shows a photograph of the sample. Reprinted
from [194], with the permission of AIP Publishing.
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Figure 13. TEG application of LE-SiGe. (a) Comparison of the
power factor at room temperature and the process temperature of
p-type SiGe. The growth method (metal species) and the reference
number are shown near each symbol. (b) Photograph and (c) bend
angle dependent power factor of the SiGe sample formed at 350 ◦C
using Al-induced LE [38]. The inset photograph in (c) shows the
measurement setup of the sample with a bend angle of 80◦.

LE can provide SiGe films with high electrical conductivity
even at low temperatures by inducing both impurity doping
and its activation according to the solid solubility. With this
feature, LE using Al or Zn simultaneously achieved a high
power factor and a low temperature process in p-type SiGe
(figure 13(a)) [38, 60]. Excellent performance on a flexible
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Figure 14. Rechargeable battery anode application of MLG formed
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plastic substrate was also demonstrated (figures 13(b) and (c)).
A Si0.4Ge0.6 layer fabricated on a polyimide substrate using
Al:B-induced LE exhibited a power factor of 240 µW mK−2,
which is the best recorded for environmentally-friendly inor-
ganic semiconductors formed on flexible plastic substrates
[167]. By using Ag or Au as the LE metal and initially doping
them with n-type impurities, the conduction type of the SiGe
film can be controlled to n-type. Therefore, the LE technique
is promising for developing active SiGe films which are useful
for highly-reliable flexible TEGs.

3.4. Rechargeable batteries

Research on a thin-film rechargeable battery has progressed
remarkably for next-generation batteries suitable for mobile
devices or sensors [200]. To achieve this, techniques for form-
ing anode, solid electrolyte and cathode materials on an arbit-
rary substrate are essential. Graphite, an anode material for
general rechargeable batteries, cannot be directly synthesized
on most substrates because its synthesis temperature is too
high (∼3000 ◦C). Conversely, the inverted LE allowed low-
temperature (⩽600 ◦C) self-organization of the anode elec-
trode structure, that is, a graphite thin film (MLG) on a cur-
rent collector metal (figure 14(a)) [72]. To evaluate the anode
performance, the same structure was formed on a Mo sub-
strate (figure 14(b)), which exhibited Li-ion batteries’ anode
operation (figures 14(c) and (d)). Si and Ge are also considered
as anode materials because of their high capacity [201]. Qu et
al formed a nanostructured Si anode with high surface area
using LE and demonstrated Li-ion batteries’ excellent anode
characteristics (1650 mAh g−1 after 500 cycles) [88]. Because
these group IV materials, which are useful as an anode, can
be synthesized on plastic substrates using LE, the findings
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will increase the potential for developing flexible rechargeable
batteries.

3.5. Epitaxial buffer layers

LE allows for controlling of the crystal orientation of semi-
conductor thin films on amorphous substrates. For example,
Al-induced LE provides highly (111)-oriented SiGe with large
grains (>50µm) over the entire composition range [40]. There-
fore, the lattice constant is tunable by controlling the SiGe
composition.With these features, the semiconductor thin films
formed by LE can be used as epitaxial buffer layers for devel-
oping various functional materials on different substrates.
The (111) plane in SiGe and GeSn are lattice matched with
many materials such as compound semiconductors, silicides
[202, 203] or nitrides [204] (figure 15(a)). The lattice tunable
buffer layer will be also useful for applying strain to Si and
Ge to increase the carrier mobilities [205, 206]. In fact, differ-
ent materials such as GaAs [188, 207], BaSi2 [208, 209], ZnO
[150] and GaN [210] were developed on glass using the LE
buffer layer. Additionally, aligned nanowires were synthes-
ized on glass [123, 211–213] and even on a flexible plastic
substrate [214] using the property that the nanowires grow in
a specific orientation (figures 15(b) and (c)). The LE layer
is also useful for seeding rapid-melting growth of Ge [215].
Kurosawa et al demonstrated single-crystal Ge wires with
(100), (111) and (110) hybrid orientations on a Si platform
[216]. Therefore, LE has high potential as a technology that
can develop and integrate various functionalmaterials on arbit-
rary substrates.
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Table 1. Summary of LE material combinations and their features. T is the growth temperature for LE. GS, orientation, and p are the net
grain size, controllable crystal orientation perpendicular to the substrate, and hole concentration of the resulting group IV layer, respectively.
Applications show the device applications that have been mainly investigated. References show the representative papers for each
combination or application.

Group IV Metal T (◦C) GS (µm) Orientation p (cm−3) Applications References

Si Al 280–550 5–400 111, 100 1018–1019 Solar cells [19, 162, 171]
Si Ag 500–800 Intrinsic [54]
Si Au 250–400 Intrinsic [56]
Ge Al 180–410 1–200 111, 100 ∼1020 Solar cells [41, 188, 189]
Ge Ag 250–420 0.1–2 Weak 111 TFTs [47, 166]
Ge Au 250–300 1–600 111, Weak 100 1017–1018 TFTs [59, 193]
Ge Zn 80–200 0.01–0.2 Random ∼1020 TEGs [60]
SiGe Al 300–450 10–200 111, 100 1018–1020 TEGs [38, 66]
SiGe Au 250–300 ∼10 Weak 111 [65]
GeSn Al 300–350 20–60 111, 100 [69]
C Ni 500–1000 0.1–2 002 1019–1020 Electrodes [70, 89]
C Fe 600–1000 ∼0.1 002 Batteries [72]
C Pt etc 600–1000 002 [71]

4. Summary

We reviewed the LE research to date, from the mechanism
to device applications. LE allows various group IV materials
(Si, SiGe, Ge, GeSn and C) with various properties to form
on arbitrary substrates by selecting the appropriate metal cata-
lysts and growth conditions (table 1). The features obtained
using LE and the corresponding device applications are
summarized as follows. (i) Low-temperature crystallization
(80 ◦C–500 ◦C) enables us to use heat-sensitive Si integrated
circuits, glass and even flexible plastic as the substrates. (ii)
Grain size can be controlled in a wide range: large grains
(∼mm) for high-performance thin-film solar cells and tran-
sistors; small grains (∼nm) for thermoelectric films with high
thermal resistance. (iii) Crystal orientation control is effect-
ive for forming epitaxial buffer layers of various functional
materials on amorphous substrates. (iv) Impurity concentra-
tion control according to the solid solubility is attractive for
various devices: high concentration for TEGs and contact lay-
ers of optical devices; low concentration for channel layers of
TFTs. Thus, by properly selecting material combinations and
growth conditions, LE can synthesize the desired film accord-
ing to the application.

5. Future perspective

Although the history of LE is long, its applications to mater-
ials other than the Si-Al system and devices other than solar
cells have only just begun. The effects of the crystallinity and
doping level on the film and device performance are largely
unknown. The related studies should be continued and accel-
erated in each field. While thin films (<500 nm) are suffi-
cient for the seed layer and TFT channel applications, thick
films (>500 nm) are preferred for the TEGs and rechargeable
batteries. There is much room for LE research from the per-
spective of thick film synthesis. Further, there will be vari-
ous material combinations and device applications other than
those introduced in this paper. For example, LE synthesis of

compound semiconductors is unprecedented but attractive for
flexible electronics with optical elements and power devices.
The potential for further development of LE is large.
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