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Orexins are hypothalamic neuropeptides that were initially identified in the rat brain as
endogenous ligands for an (previously) orphan G-protein-coupled receptor (GPCR).
They are multitasking peptides involved in many physiological functions, including
regulation of feeding behavior, wakefulness and autonomic/neuroendocrine functions,
and sleep/wakefulness states in mammals. There are two isopeptides of orexin,
orexin A and orexin B, which are produced from a common precursor peptide,
prepro-orexin. Structures of orexins, as well as orexin genes, are highly conserved
throughout mammalian species, suggesting strong evolutionary pressure that maintains
the structures. Their lengths and structure suggested that orexin B is the ancestral form
of the orexin neuropeptide. In mammals, orexins bind to two subtypes of GPCRs, i.e.,
orexin 1 receptor (OX1R) and orexin 2 receptor (OX2R). Phylogenetically, the orexin
system is present exclusively in vertebrates. In genomes of species outside mammals,
there is only one orexin receptor, which is similar to OX2R, suggesting that OX2R is the
prototype receptor for orexins. OX1R is likely to have evolved during early mammalian
evolution. Orexin-producing neurons (orexin neurons) are mainly located in the lateral
hypothalamic area (LHA) in mammals and are also found in hypothalamic regions in
many other vertebrates. Orexins are likely to be closely related to the regulation of
active, motivated behavior in many species. The orexin system seems to have evolved
as a system that supports active and purposeful behavior which is closely related
with wakefulness.

Keywords: neuropeptide, orexin, OX1R, OX2R, hypothalamus, vertebrate

INTRODUCTION

Orexins were initially recognized as regulators of feeding behavior. Subsequently, the finding that
orexin deficiency causes narcolepsy in several mammalian species revealed that orexins play a
critical role in regulation of sleep/wakefulness states, especially in maintenance of wakefulness in
mammals. Orexins were also shown to be involved in the regulation of a wide range of physiological

Abbreviations: A, anterior; BNST, bed nucleus of the stria terminalis; Chr, chromosome number; D, dorsal; DMH,
dorsomedial nuclei of hypothalamus; DR, dorsal raphe; GPCR, G-protein-coupled receptor; Hd, dorsal zone of
periventricular hypothalamus; Hv, ventral zone of periventricular hypothalamus; ICV, intracerebroventricular; LC, locus
coeruleus; LHA, lateral hypothalamic area; NAc, nucleus accumbens; NLT, nucleus lateralis tuberis; NPPv, nucleus posterioris
periventricularis; NPY, neuropeptide Y; OC, optic chiasm; OX1R, orexin 1 receptor; OX2R, orexin 2 receptor; P, posterior;
PaF, parafornical nucleus; PeF, perifornical hypothalamus; PHN, periventricular hypothalamic nucleus; POA, preoptic
area; PVN, paraventricular nucleus; SCN, suprachiasmatic nucleus; TMN, tuberomammillary nucleus; V, ventral; 3V, third
ventricle; VM, ventromedial thalamic nucleus.
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functions, suggesting that orexins are multitasking peptides.
Any purposeful behavior requires certain internal body states,
including appropriate tuning of the autonomic nervous system
and endocrine function. Maintenance of wakefulness and
vigilance is also important for pursuing behaviors, because
appropriate arousal levels are especially necessary for executing
any purposeful behavior that requires high motivation. The
systems involved in these functions are closely related and are
interconnected with the orexin system (Sakurai, 2014). Orexin-
producing neurons (orexin neurons), which locate in the LHA,
receive input by forebrain structures including the extended
amygdala and nucleus accumbens (NAc)—which are implicated
in the processing of emotion and motivation—and send output
to brain stem regions, which are implicated in the regulation of
wakefulness. Orexin neurons play an important role as a link
between emotional states and wakefulness states.

In non-mammalian species, sleep/wakefulness states are
generally solely defined by behavioral criteria, and wakefulness
is defined as a state with active behavior. Orexins are likely to
play an important role in regulation of active behavior also in
non-mammalian species, and these factors are also recognized
as regulators of wakefulness. This review focuses on how the
structures of orexins and their receptors, neuronal circuits, and
their functions have evolved in the animal kingdom.

SUMMARY OF THE MAMMALIAN
OREXIN SYSTEM

The hypothalamus plays a central role in the integrated control
of feeding and energy homeostasis. We identified two novel
neuropeptides, both derived from the same precursor by
proteolytic processing, that bind and activate two closely related
previously orphan GPCRs. These peptides, termed orexins A and
B, had no significant structural similarities to known families of
regulatory peptides (Sakurai et al., 1998). Prepro-orexin mRNA
and immunoreactive orexin are specifically localized in neurons
within and around the lateral and posterior hypothalamus in
the adult rat brain. When administered centrally to rats, these
peptides increased food consumption. Prepro-orexin mRNA level
is upregulated by fasting, suggesting a physiological role of
these peptides as mediators in the central feedback mechanism
that regulates feeding behavior (Sakurai et al., 1998). Molecular
cloning studies showed that orexins A and B are derived from a
common precursor peptide, prepro-orexin. An mRNA encoding
the same precursor peptide was independently identified by De
Lecea et al. (1998) as a hypothalamus-specific transcript. The
authors predicted that the transcript encoded a polypeptide
precursor that is cleaved to form two neuropeptides, termed
hypocretin-1 and hypocretin-2 (corresponding to orexins A and
B, respectively).

Our structural analysis of the purified peptides revealed
that orexin A is a 33-amino-acid peptide with an N-terminal
pyroglutamyl residue, two intrachain disulfide bonds, and
C-terminal amidation. Strikingly, this structure is completely
conserved among all mammalian species so far identified
(human, gorilla, rat, mouse, cow, pig, sheep, dog, seal, and

dolphin). Mammalian orexin B is a 28-amino-acid, C-terminally
amidated linear peptide, which also has a highly conserved
structure among mammalian species. The C-terminal half of
orexin B is very similar to that of orexin A, whereas the
N-terminal half is more variable (Sakurai et al., 1998) (Figure 2).
The unusually conserved structures of orexins suggest strong
evolutionary pressure that preserves the structure, which is likely
to be related with the function of these peptides.

The best understood role of orexins in mammals is regulation
of sleep and wakefulness states, especially in the maintenance of
long, consolidated wakefulness. This is highlighted by findings
that orexin deficiency caused narcolepsy in several mammalian
species including mice, rats, dogs, and humans (Chemelli et al.,
1999; Lin et al., 1999; Peyron et al., 2000; Thannickal et al.,
2000; Sakurai, 2007). Sleep and wakefulness are regulated to
occur at appropriate times, in accordance with the internal
and external environments. Avoiding danger and finding food,
which are life-essential activities that are regulated by emotion,
reward, and energy balance, require vigilance and therefore,
by definition, wakefulness. The orexin system is involved in
these functions (Sakurai et al., 1998; Yamanaka et al., 2003).
Other than that, orexin has been implicated in a variety of
functions including regulation of food intake, emotion, the
reward system, and the autonomic nervous system. These
functions of orexins are mediated by two GPCRs, OX1R and
OX2R. OX1R has a greater affinity for orexin A over orexin
B, whereas OX2R binds both ligands with similar affinities.
Orexin receptors exhibit a markedly different distribution. They
are abundantly expressed by monoaminergic neurons in the
brain stem (Mieda et al., 2011). Orexin neurons, which have
been assumed to number around 3,000 in the rat brain and
around 70,000 in the human brain, are localized exclusively
in the hypothalamus, including the LHA, perifornical area,
and posterior hypothalamus. These neurons send widespread
projections to the brain, with particularly dense projections to
monoaminergic and cholinergic nuclei in the brain stem, where
OX1R and OX2R are differentially expressed.

The functions of orexins and the architecture of orexin
neurons are also highly conserved among mammalian species.
On the other hand, orexin-like genes are not found in
invertebrates, suggesting that the orexin system originated in
early vertebrates.

EVOLUTION OF OREXIN GENES AND
PEPTIDES

Thanks to genome research and previous molecular cloning
studies, the amino acid sequences of orexins in several
mammalian species (human, gorilla, golden monkey, baboon,
gibbon, mouse, rat, pig, dog, camel, alpaca, seal, and dolphin)
(Sakurai et al., 1998; Dyer et al., 1999; Peyron et al., 2000; Elbers
et al., 2019), as well as reptiles (cobra and turtle) (Vonk et al.,
2013), amphibians (Xenopus laevis) (Shibahara et al., 1999), birds
(chicken, turkey, and finch) (Ohkubo et al., 2002), and fish
(goldfish, zebrafish, cod, stickleback, medaka, pufferfish) (Kaslin
and Panula, 2001), are currently available.
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The genes encoding prepro-orexin show highly conserved
loci throughout vertebrate evolution, including the two-exon
structure, with a larger exon 2, which includes sequences
encoding orexins A and B. Exon 1 generally contains 5’-UTR
and part of the signal sequence. In the prepro-orexin sequence,
orexin A sequences are directly preceded by signal peptides.
Both mature peptides are followed by a putative consensus
motif for C-terminal amidation (G-R/K-R/K) (Figures 1, 2).
The C-terminal regions of prepro-orexin sequences following
the orexin sequence are variable among species, suggesting that
no other functional peptides are encoded in the region. Rat
orexin A has been purified, and its structure analyzed by peptide
sequencing and mass spec analyses. It has a 33-amino-acid
peptide sequence with two intrachain disulfide bridges formed
by four cysteine residues (C6–C12 and C7–C14), an N-terminal
glutamate residue, and C-terminal amidation. The primary
sequence of mammalian orexin A was shown to be modified
to have an N-terminal pyroglutamyl residue and C-terminal
amidation. The structure of orexin A is completely conserved
among all mammalian species thus far identified. Mammalian
orexin B is a 28-amino-acid linear peptide not having disulfide
bridges and has minor amino acid differences among mammalian
species. In particular, the second amino acid residue is P or S
depending on the species (Figure 2).

Non-mammalian orexins are also very similar to mammalian
orexin A but show more variations than those in mammals.
Generally, there is no N-terminal pyroglutamylation in the orexin
A structure due to lack of an N-terminal glutamate residue.

Bird (chicken, turkey, and finch) orexin A sequences contain
34 amino-acid residues and have two intra-disulfide bridges (C7–
C13 and C8–C15), while orexin B sequences are 28-amino-acid
linear peptides.

In reptiles, turtle (Terrapene carolina triunguis) orexin A is
34 amino acids long and is predicted to have a similar structure
to that of mammalian orexin A, including two intra-disulfide
bridges (C7–C13 and C8–C15), while orexin B is 28 amino acids
long, which is the same as mammalian orexin B. C-terminal
residues (L and M for orexins A and B, respectively) are likely
to be amidated as mammalian orexin B, being predicted from
glycine residues preceding dibasic pairs of amino acids. Snake
(cobra) orexin A is 32 amino acids long and has two intra-
disulfide bridges (C5–C11 and C6–C13).

In amphibians, Xenopus laevis orexin A is a 31-amino-
acid-residue peptide and has six-amino-acid substitutions when
compared with human orexin A (Shibahara et al., 1999). Xenopus
orexin A does not have an N-terminal pyroglutamate residue
either. The relative positions of the four cysteine residues
(positions 4, 5, 10, and 12) are well conserved, and it is predicted
to form two intrachain disulfide bonds (C4–C10 and C5–C12).

Teleost orexin A sequences are generally much longer than
mammalian orexin A. For example, Fugu orexin A has 43
amino acid residues. Goldfish and zebrafish orexin A have 47
amino acid residues, and cod orexin A has 50 amino acid
residues. These longer sequences are due to the existence of
an additional sequence between residues 24 and 25 (Kaslin and
Panula, 2001; Xu and Volkoff, 2007). The inserted sequences are
non-detrimental to orexin activity (Kaslin and Panula, 2001).
Because teleost orexin A does not have C12, it does not have
a disulfide bond between C6 and C12 as found in mammalian
orexin A, although it is likely to form another disulfide bridge
with a cysteine positioned at 21. Teleost orexin B consists of 28
amino acid residues, which is the same as mammals’ and other
species’ orexin B (Kaslin and Panula, 2001), with the exception of
cod orexin B (29 amino acids) (Xu and Volkoff, 2007).

FIGURE 1 | Gene structure of orexin in vertebrates. Chromosome numbers (Chr) in which the orexin gene is located are shown in each vertebrate. The drawing
shows the length of gene structures of orexin including intron (black line), UTR (gray), coding sequences (brown), exon 1 (E1; red), and exon 2 (E2; blue) in different
species (human, mouse, rat, dog, chicken, lizard, and zebrafish). Amino acid sequences of orexin A (magenta) and orexin B (dark green) with GKR (pink) and/or GRR
(light green) amidation are also shown under their coding sequences.
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FIGURE 2 | Overview of amino acid sequences of orexins in vertebrates. The cartoon shows the sequences of amino acids coding orexins A and B in different
species (human: Homo sapiens; pig: Sus scrofa; mouse: Mus musculus; rat: Rattus norvegicus; dog: Canis lupus familiaris; frog: Xenopus laevis; snake: Notechis
scutatus; chicken: Gallus gallus; lizard: Anolis carolinensis; fish: Danio rerio; and turtle: Chrysemys picta bellii). Conserved amino acid sequence (dark gray),
C-terminal amidation (GKR, pink), and C-terminal amidation (GRR, green) are highlighted. Amino acid sequences are aligned by ClustalW algorithm using MEGA
software (Stecher et al., 2020).

Overall, structures of orexins are exceptionally well conserved
in the animal kingdom from fish to mammalian species. Teleost
orexin A and human orexin A still have over 52% amino acid
identity. The lengths and structures of orexin B are well conserved
among species as compared with orexin A, suggesting that orexin
B might be a prototype of orexin peptides.

EVOLUTION OF OREXIN RECEPTORS

In mammals, there are two orexin receptor subtypes, OX1R and
OX2R, both of which are members of the class B GPCRs. Orexin
A shows similar affinity to both OX1R and OX2R, while orexin B
shows higher affinity to OX2R over OX1R. The human OX1R and
OX2R genes are located on chromosomes 1 and 6, respectively.
Human OX1R and OX2R share 63.5% amino acid identity.
They have also similarity to several other peptide receptors. For
example, human neuropeptide FF receptor 1 shows 25.1 and
31.2% amino acid identity to OX1R and OX2R, respectively
(Sakurai et al., 1998).

OX1R is exclusively found in mammalian species and is
thought to have evolved from ancestral OX2R, presumably

through gene duplication events during the evolution of early
mammals. OX2R is present in all vertebrate genomes, suggesting
that OX2R is the ancestral form of orexin receptors. The
chromosomal localization of these receptors also suggests that
OX1R is a product of a relatively recent gene duplication
event from OX2R. The flanking genes of OX2R (FAM83B and
GFRAL) are also well conserved in all known mammalian species.
While TINAGL1 and PEF1 genes are in close proximity to the
mammalian OX1R gene, they are not found in paralogous regions
in non-mammalian genomes.

Because OX1R was emerged later than OX2R phylogenetically,
it seems to play more complex physiological roles. We previously
found that OX1R-deficient mice show anxiety-like behavior
(Abbas et al., 2015). We also showed that OX1R in noradrenaline
neurons in the locus coeruleus (LC) plays a role in the expression
and/or consolidation of cued fear memory by exciting these
neurons that send innervations to the lateral amygdala (Soya
et al., 2013). Furthermore, this pathway was also involved in
generalization of fear memory (Soya et al., 2017; Soya and
Sakurai, 2018). OX1R was also shown to be involved in an
increase of response to conditioned cues to activate motivational
responses in rats (Sharf et al., 2010; Bentzley and Aston-jones,
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2015) and in reward-based feeding (Kakizaki et al., 2019). These
observations suggest that OX1R plays a role in emotive and
motivational functions in mammals.

EVOLUTION OF OREXIN NEURONAL
SYSTEM

Orexin neurons are localized in the LHA and adjacent regions,
including the dorsomedial and posterior hypothalamus, in all
mammalian species (Peyron et al., 1998; Date et al., 1999;
Nambu et al., 1999). These neurons send widespread axonal
projections to all over the brain except the cerebellum, with
especially abundant projections to monoaminergic nuclei in
the brain stem. In mammals, orexin neurons receive and
integrate internal and external information and regulate the
autonomic and neuroendocrine systems to stabilize arousal and
behavior accordingly. The hypothalamus is the main region in
which orexinergic neurons are localized in many species among
vertebrates. In the chicken, orexin neurons are also exclusively
found in the hypothalamus, including the paraventricular
hypothalamic nucleus (PVN) and LHA (Miranda et al., 2013).
In reptiles, orexin neurons are also found in the hypothalamus.
In the Pseudemys scripta elegans (turtle) and Anolis carolinensis
(lizard), these neurons are localized in the PVN, while in the
Gekko gecko (lizard), these cells are found in the dorsomedial
nuclei (DMH) (Farrell et al., 2003; Domínguez et al., 2010).

In amphibians, orexins are found in the hypothalamus but are
widely distributed in several regions outside the hypothalamus.
These cells are localized especially in the suprachiasmatic nucleus
(SCN) and to a lesser extent in the preoptic area (POA)
and tuberal region in anurans, urodeles, and gymnophionans
(Figure 3). Orexin-immunoreactive fibers innervate the whole-
brain region, especially the POA (Shibahara et al., 1999;
Galas et al., 2001; Singletary et al., 2005; Suzuki et al., 2008;
López et al., 2009).

In fish, distribution of orexin neurons is more variable among
species. For example, orexin neurons are localized in the POA
and SCN in the lungfish and zebrafish. These neurons are found
in the nucleus posterioris periventricularis (NPPv) in the medaka
and in the NPPv and nucleus lateralis tuberis (NLT) in the
goldfish. In zebrafish, orexin neurons are also localized in the
dorsal part of the hypothalamus (Figure 3). Orexin fibers were
shown to innervate the monoaminergic nuclei, including the
dorsal raphe (DR), LC, mesopontine-like area, dopaminergic
clusters, and histaminergic neurons in the tuberomammillary
nucleus (TMN), showing resemblance to the mammalian orexin
system (Kaslin and Panula, 2001; Huesa et al., 2005; Nakamachi
et al., 2006; Amiya et al., 2007; Kojima et al., 2009). These
findings suggest that orexin neurons are basically found in
the hypothalamus and send rich projections to monoaminergic
neurons. This basic structure is conserved in vertebrate evolution.

EVOLUTION OF OREXIN FUNCTIONS

In mammals, orexin neurons receive and integrate internal
and external information and regulate the autonomic and

neuroendocrine systems during performance of various
purposeful activities that require arousal. In this section, we
discuss the evolution of the orexin system, especially focusing on
two main functions of orexin, i.e., regulation of feeding behavior
and wakefulness.

Food Intake and Body Weight Regulation
Orexins were initially reported as factors that regulate feeding
behavior, mainly because orexin neurons are distributed within
the LHA (and adjacent regions), which is known to be implicated
in the regulation of feeding behavior (Sakurai et al., 1998). An
orexigenic effect of intracerebroventricular (ICV) administration
of orexins A and B in rats was first reported in 1998, and this effect
has been subsequently confirmed in many species, including
mammals and other species, including fish (Nakamachi et al.,
2006). Importantly, orexin signaling increased not only food
intake but also energy expenditure, and an increase in the overall
orexin tone generally results in decreased body weight (Funato
et al., 2009). Likewise, narcoleptic mice, which lack orexin
signaling, show mild obesity, especially when fed a high-fat diet.

The orexin system may contribute to the regulation of energy
homeostasis by integrating information regarding metabolic state
and regulating sleep/wakefulness states in order to support
feeding behavior (Sakurai et al., 1998; Haynes et al., 2000;
Yamada et al., 2000; Yamanaka et al., 2003; Funato et al.,
2009; Sakurai, 2014). Indeed, mice lacking orexin neurons do
not show an increase in wakefulness or locomotor activity in
response to starvation, unlike wild-type mice (Yamanaka et al.,
2003). Moreover, prepro-orexin mRNA is upregulated in fasted
animals, and several studies report that the firing rate of orexin
neurons is influenced by glucose, triglycerides, and amino acids
(Chang et al., 2004; Burdakov et al., 2005; Karnani et al., 2011).
Furthermore, orexin neurons are directly inhibited by leptin and
excited by ghrelin and are innervated by neurons in the arcuate
nucleus, which is the primary sensor for plasma leptin level (Elias
et al., 1998; Yamanaka et al., 2003). Together, these observations
suggest that orexin neurons sense the animal’s metabolic and
nutritional status and integrate this information in order to evoke
arousal necessary to promote food-seeking behavior in response
to a negative energy balance. The precise mechanisms by which
orexins regulate feeding behavior are detailed in our previous
review papers (Sakurai, 2007, 2014).

Other than in mammalian species, the roles of orexins in the
regulation of food intake are not very clear. In birds, orexin
neurons and fibers are present in the PVN and LHA. This
distribution is similar to that of mammalian orexin neurons.
However, mammalian orexins did not increase food intake in
birds (chicken and pigeon) (Furuse et al., 1999; da Silva et al.,
2008; Katayama et al., 2010). However, in these studies, orexins
were administered during the light period, which is the active
period for birds, when orexin neuronal activity might be highest
in the day. This may explain why additional orexin activity did
not increase food intake. In fact, when administered in the dark
period, orexins do not increase food intake even in rodents, which
are nocturnal animals. Also, studies using avian orexin peptides,
which are structurally different from mammalian orexins, are
necessary to confirm whether orexins play roles in regulation of
feeding behavior.
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FIGURE 3 | Neuronal system of orexin is highly conserved in vertebrates. Upper squares show a coronal view of the brain focusing on orexin neurons (red dots) in
different species [human (Peyron et al., 2000), rat (Nambu et al., 1999), bird (Ohkubo et al., 2002), amphibian (López et al., 2009), and fish (Appelbaum et al., 2009)].
Lower squares show a sagittal view of the brain focusing on the populations of orexin neurons in different species. Arrows show the anatomical orientation (A,
anterior; P, posterior; D, dorsal; and V, ventral). DMH, dorsomedial nuclei of hypothalamus; LHA, lateral hypothalamic area; PaF, parafornical nucleus; 3V, third
ventricle; PeF, perifornical hypothalamus; PHN, periventricular hypothalamic nucleus; VM, ventromedial thalamic nucleus; SC, suprachiasmatic nucleus; OC, optic
chiasm; Hd, dorsal zone of periventricular hypothalamus; Hv, ventral zone of periventricular hypothalamus.

There are a substantial number of reports about the
involvement of orexins in the regulation of feeding behavior in
fish. ICV injection of human orexins increased food intake in
goldfish (Volkoff et al., 1999; Nakamachi et al., 2006), and fasting
increased prepro-orexin mRNA levels in zebrafish, as in mammals
(Novak et al., 2005). Like mammals, a reciprocal relationship
between orexins and ghrelin was reported in fish. Ghrelin
increased the expression of prepro-orexin mRNA in the goldfish
diencephalon when administered ICV and vice versa (Miura
et al., 2007). Both neuropeptide Y (NPY)- and ghrelin-induced
food intake were completely inhibited by application of an orexin
receptor antagonist (Miura et al., 2007). The relationship between
orexin and NPY was also shown by the colocalization of these
peptides in the NPPv (Miura et al., 2007).

In other species, the roles of orexins in the regulation of
feeding behavior have not been clear so far.

Sleep/Wakefulness State Regulation
The involvement of orexins in the regulation of sleep/wakefulness
states in mammals has been extensively discussed in detail
in many review articles (Sakurai, 2007, 2014). The finding
that orexin deficiency caused narcolepsy in humans and other
mammalian species, like mice, rats, and dogs, clearly indicates
that orexin plays an important role in the maintenance of long,
consolidated wakefulness in mammals.

Other than in mammals, the roles of orexins in the
regulation of sleep/wakefulness states are not very clear, but
human orexin A induced dose-dependent arousal- and alertness-
promoting behavioral effects in birds (chicken and pigeon) when

administered ICV, along with a decrease in duration of sleep-like
postures (da Silva et al., 2008; Katayama et al., 2010).

In zebrafish, sleep is usually defined solely by behavioral
criteria based on periods of quiescence associated with a specific
posture (Hendricks et al., 2000; Tononi, 2000; Zhdanova et al.,
2001; Raizen et al., 2008). Genetic ablation of orexin neurons
demonstrated an increase in sleep time and sleep/wakefulness
transition in the daytime, with no effect on basal locomotor
activity in zebrafish (Elbaz et al., 2012). Consistently, global
overexpression of the orexin gene by an inducible heat-shock
promoter showed an increase in wakefulness, defined by active
behavior (Prober et al., 2006). A recent study showed that
orexin-induced arousal is regulated via noradrenaline signaling
in zebrafish (Singh et al., 2015). On the contrary, zebrafish orexins
were reported to be involved in melatonin production in the
pineal gland during the dark time, to regulate sleep consolidation
(Appelbaum et al., 2009). Evolutional sleep loss was reported in
the Mexican cavefish, Astyanax mexicanus, depending on their
ecological conditions. The populations living in caves are blind,
and their sleep time is shorter than that of other eyed populations
living in surface rivers (Duboué et al., 2011). A recent study
reported that the mechanism of this difference could stem from
genetic and neuronal changes of orexins in the hypothalamus
(Jaggard et al., 2018).

Other Functions
Arousal responses are tightly associated with the physiological
responses elicited by salient emotional stimuli. Several studies
have suggested the involvement of orexins in regulating

Frontiers in Neuroscience | www.frontiersin.org 6 July 2020 | Volume 14 | Article 691

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-14-00691 July 8, 2020 Time: 19:9 # 7

Soya and Sakurai Evolution of Orexin Neuropeptide System

emotional behavior. A possible role of orexins in panic disorders
has been reported in human and animal studies (Johnson et al.,
2010). The LHA is known as the “defense area,” and orexins have
functions to increase cardiovascular activity and stress response
(Wilson et al., 2001; Sakamoto et al., 2004; Winsky-Sommerer
et al., 2004; Zhang et al., 2009; Sakurai, 2014). Orexin neurons
receive dense innervations from limbic structures like the BNST
and the amygdala (González et al., 2016; Saito et al., 2018),
suggesting that orexins regulate autonomic/neuroendocrine
functions in response to emotional stimuli in mammals.

Other than in mammals, the roles of orexins in the
regulation of emotional behavior, autonomic function, and
neuroendocrine functions have not been clear, but psychomotor
activity in goldfish was affected by an ICV injection of orexin
A, suggesting an anxiogenic function of orexins, and this effect
was abolished by injection of an OX1R antagonist (SB334867)
(Nakamachi et al., 2014).

CONCLUSION

Orexins play a highly important role in the regulation of
sleep/wakefulness states in mammals. They are thought to be
especially important for consolidation of wakefulness. Orexin
deficiency results in narcolepsy, which is characterized by the
inability to maintain long consolidated wakefulness, which is

necessary to support any purposeful behaviors. Phylogenetically,
orexins first appeared in vertebrates. They seem to be involved
in the maintenance of wakefulness to pursue active motivated
behavior in both mammals and other lower species. Even
in mice, orexin neurons are relatively quiescent during quiet
wakefulness, while they are active during active wakefulness,
which accompanies purposeful behavior. This suggests that
orexins are closely related to functions that support active
behavior and consistently play a role as behavioral modulators
among a wide range of species.
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