
 
 

1 

Contact-Line Behavior in Boiling on A Heterogeneous Surface: 
Physical Insights from Diffuse-Interface Modeling  
Biao Shen1*, Jiewei Liu2, Gustav Amberg2, Minh Do-Quang2, Junichiro 

Shiomi3, Koji Takahashi1,4, Yasuyuki Takata1,5 

1International Institute for Carbon-Neutral Energy Research (WPI-I2CNER), 

Kyushu University, Motooka 744, Fukuoka 819-3905, Japan 

2Department of Mechanics, The Royal Institute of Technology, S-100 44 Stockholm, 

Sweden 

3Department of Mechanical Engineering, The University of Tokyo, Hongo 7-3-1, 

Tokyo 113-8656, Japan 

4Department of Aeronautics and Astronautics, Kyushu University, Motooka 744, 

Fukuoka 819-3905, Japan 

5Department of Mechanical Engineering, Kyushu University, Motooka 744, Fukuoka 

819-3905, Japan 

 

Abstract 

Enhancement of boiling heat transfer on biphilic (mixed-wettability) surfaces 

faces a sudden reversal at low pressures, which is brought about by excessive contact-

line spreading across the wetting heterogeneities. We employ the diffuse-interface 

approach to numerically study bubble expansion on a heating surface that consists of 

opposing wettabilities. The results show a dramatic shift in the dynamics of traversing 

contact line across the wettability divide under different gravities, which correspond 

to variable bubble growth rates. Specifically, it is found that the contact-line 

propagation tends to follow closely the rapidly expanding bubble at low gravity, with 

only a brief interruption at the border between the hydrophobic and hydrophilic 

sections of the surface. Only when the bubble growth becomes sufficiently weakened 

at high gravity does the contact line get slowed down drastically to the point of being 
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nearly immobilized at the edge of the hydrophilic surface. The following bubble 

expansion, which faces strong limitations in the direction parallel to the surface, 

features a consistent apparent contact angle around 66.4o, regardless of the wettability 

combination. A simple theoretical model based on the force balance analysis is 

proposed to describe the physical mechanism behind such a dramatic transition in the 

contact-line behavior.  
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I. INTRODUCTION 

More than just an everyday experience, boiling offers one of the most efficient 

heat transfer solutions[1–3] to various industrial challenges ranging from nuclear 

reactor cooling[4,5] to thermal management of data centers[6,7], because it capitalizes 

on the vast reservoir of latent heat of vaporization as well as sensible heat. Dating back 

to the 1930s when Nukiyama[8] first discovered the so-called boiling curve, the modern 

research on boiling phenomena—which are inherently multiphase and multiscale[9] and 

fraught with intractable randomness[10]—continues to garner considerable attention 

beyond the conventional field of thermal engineering and has fascinated generations of 

scientists in the intervening years[11]. Pioneering studies by Han and Griffith[12], 

Mikic et al.[13], Zuber[14,15], and van Stralen et al.[16] all contributed to the classic 

theory about the pool boiling process: (i) isolated bubbles emerge from pre-existing 

cavities or defects in the solid surface; (ii) mostly driven by evaporation occurring 

around and underneath the bubbles (namely, that of a thin microlayer), the bubbles 

continues to expand under a thermally controlled regime until they turn large enough 

to be ejected from the surface by growing buoyancy; (iv) heat transfer mechanisms 

such as microconvection (namely, agitation effect), microlayer evaporation during 

bubble growth, and regeneration of the superheated liquid layer that is periodically 

stripped away by the departing bubbles are believed to be responsible for the enhanced 

heat transport, and (v) the transition to film boiling (i.e., the critical heat flux (CHF)) 

is mostly dictated by Helmholtz-Taylor instability, which triggers cascading merging 

of neighboring vapor jetflows and leads eventually to a precipitous decline in the heat 

transfer efficiency and cataclysmic temperature upsurges.  

However, this somewhat simplified physical depiction is now facing mounting 

challenges from recent advances in precise measurement and engineering innovations 

in boiling surface design and fabrication that defy conventional thinking. New findings 

such as the apparently strong dependence of the onset of nucleate boiling (ONB) on 

surface wettability[17] and the unusually early activation of nucleation sites at very 

low surface superheats on an ultra-smooth (with a nanoscale roughness) surface[18] 
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call into question the validity of the vapor-trapping-cavity theory for bubble nucleation 

in heterogeneous boiling. An unusually stable presence of dissolved gas near the solid 

surface[19,20] in the form of surface nanobubbles[21] has been proposed as a plausible 

alternative nucleation mechanism. Moreover, the significant CHF enhancement 

achieved through use of nanofluids[22], nanowires[23], microporous coatings[24], 

microchannels[25], and honeycomb structures[26] has upended the classic 

hydrodynamic interpretation of the boiling crisis, which is notably devoid of any inputs 

from the solid side. More accurate predictions of CHF have been made possible by 

taking into account several previously overlooked surface characteristics including 

surface wettability change (due to nanoparticle deposition)[27], contact angle 

hysteresis of the surface[28], capillary wicking of the microstructure[29], dry-out in the 

porous structure[30], and capillary rewetting of the nanotexture[31].  

Emerging from those developments in the understanding of boiling heat transfer 

is a consensus on the important role of active control of dynamic three-phase contact 

line. Preferred boiling conditions such as robust nucleate boiling with an effectively 

delayed CHF can be realized on highly hydrophobic surfaces but with a low receding 

contact angle (which represents essentially an ‘underwater’ Wenzel state). Techniques 

such as purging the surface of noncondensables[32], para-hydrophobic texturing[33], 

rapid pressurization[34], or electrowetting[35] have been demonstrated to give rise to 

a Cassie-to-Wenzel transition of the initial wetting state, whereby the minimized 

surface dewetting is effective in preventing excessive vapor spreading, particularly at 

high surface heat fluxes. Strong pinning of the contact lines on bi-philic (that is, with 

alternating wettabilities)[20,36] or bi-conductive (namely, endowed with in-plane 

variations of thermal conductivity)[37] surfaces can bring about ordered bubble growth 

with separate pathways for escaping vapor from and replenishing liquid to the surface, 

which was thought to underpin the exceptionally high heat transfer rates seen on 

micro-channeled surfaces[38]. Such an enhanced state of boiling, however, has been 

found to be particularly vulnerable to external perturbations such as pressure 

variations. Our previous study[39] of sub-atmospheric boiling on a biphilic copper 
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surface electroplated with an array of hydrophobic Ni-TFEO (tetrafluoroethylene 

oligomer) spots revealed a sudden transition from continuous boiling to a deleterious 

mode of intermittent boiling when the pressure dropped sufficiently low. It was further 

argued[40] that the lateral depinning of the bubble contact lines from the interface 

between the hydrophobic and hydrophilic surfaces during bubble growth and the 

resulting ‘flooding’ of the hydrophobic spots in the wake of bubble departure were 

responsible for the temporary deactivation of the nucleation sites, which can, in turn, 

result in a sharp deterioration of boiling heat transfer. Hence, it will be of particular 

interest to elucidate the mechanism of contact-line depinning on biphilic surfaces, 

which can possibly lead to an enhanced surface design that is immune to intermittent 

boiling-induced heat transport deterioration at all pressure levels. 

The pinning/depinning behavior of contact line has long attracted the attention 

of hydrodynamicists studying evaporation of a sessile droplet sitting on a periodic 

wettability-patterned surface, which shows a strong dependence on the size of the local 

inhomogeneities[41–43]. It was noted in particular that when crossing the boundary 

between the hydrophobic and hydrophilic nanotextures, the contact-line dynamics 

seems to undergo a ‘jump’ event[41,42] in addition to the famed “stick-slip” (staggered) 

motion induced by the wetting hysteresis[44]. This intriguing behavior was interpreted 

to be caused by a special form of contact-line breaking[45].  

In contrast, the three-phase contact line is expected to travel at a considerably 

faster speed in boiling (even reaching the order of 10-1 m/s on nano-enhanced 

surfaces[46]) due to the apparently more intense phase change. It will thus be 

reasonable to postulate that a commensurably stronger energy barrier is required at 

the surface heterogeneities so as to immobilize or slow down the rapid contact-line 

motion[42]. Indeed, tantalizing evidence can be found in previous experimental 

results[40] that the depinning of the bubble contact-line and the following rewetting of 

the hydrophobic spots tends to occur only at extremely low pressures when the pinning 

force can no longer hold back the considerably accelerated bubble growth. The aim of 

the present study is to characterize the three-phase contact line interaction with a 
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wettability-patterned surface in a single-component non-isothermal system, which 

mimics boiling on a biphilic surface. We investigate the contact-line dynamics under 

the influences of both the bubble growth rate and the local wettability contrast using 

numerical simulation, which is based on the diffuse-interface method[47]. As a matter 

of fact, a similar model for a dilute binary mixture of water and nitrogen has been 

employed to investigate the effect of dissolved gas on the growth and departure of 

bubbles on biphilic surfaces[20,48]. 

The remainder of the paper is organized as follows. In Sec. II we describe the 

diffuse-interface model along with the computational steps. Section III is devoted to 

the typical numerical results, which show contrasting contact-line spreading behaviors 

on the biphilic surface under various bubble growth rates. Based on the simulations, 

we set out to quantify the contact-line dynamics under different combinations of 

wetting heterogeneities in Sec. IV, which shows, among other things, that while a 

depinned contact line tends to behave differently in accordance with the local wetting 

characteristics, several universal features seem to emerge once the contact-line gets 

pinned at the wettability divide. We further discuss the physical mechanism and 

critical condition for contact-line pinning on a biphilic surface in Sec. V. Finally, a 

summary of the results and a few concluding remarks are given in Sec. VI.   

 

II. NUMERICAL SIMULATION 

Modeling of two-phase flows centers on the treatment of the liquid-vapor 

interface, which carries extra complexity when mass transfer due to phase change has 

to be taken into account[49]. The historical debate regarding the nature of the interface 

can be traced back to the times of Lord Rayleigh[50] and van der Waals[51]. The classic 

continuum hydrodynamic perspective considers the interface between two immiscible 

fluids to be a free boundary of zero thickness, where physical quantities exhibit 

discontinuities between the liquid and vapor phases[47]. Tracking of the interface relies 

on solving an auxiliary advection equation (notable examples of which include the 

level-set method[52] and the volume-of-fluid method[53]). Also, effects of capillarity 
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need to be explicitly taken into account at the interface. One of the major theoretical 

flaws of the sharp-interface approach lies with the inherent inconsistency between a 

moving contact line and the no-slip boundary condition under the Navier-Stokes 

framework[54]. Although the resulting paradox of unbounded viscous dissipation at 

the contact line can be remedied by a localized slip model based on the lubrication or 

thin-film approximation, additional efforts, however, are usually required to match the 

inner-region solution with that of the outer-region[55].  

The alternative approach is to assign a finite width to the interface, which is 

closer to physical reality especially near the liquid-vapor critical point. Under the 

diffuse-interface assumption, surface energy (tension) can be derived ‘organically’ from 

the smooth transition of density between the two phases. More importantly, the viscous 

stress singularity that plagues the sharp-interface description can be easily resolved as 

slip behavior is built in the local equilibrium in the contact-line region[56], which makes 

the diffuse-interface model a very useful tool to probe two-phase phenomena involving 

dynamic wetting[57]. For these reasons, we choose to employ the diffuse-interface 

model based on the dynamic van der Waals theory in an attempt to quantify the 

contact-line dynamics of a growing bubble on a wettability-patterned surface. That is 

despite the stringent time- and length-scale limitations and the significantly increased 

computational complexity, which the method is known to entail[48,58,59].   

A. Mathematical formulation 

We consider a two-phase single-component fluid occupying a volume Ω, where 

the extra cost of free energy associated with the formation of a diffuse liquid-vapor 

interface can be quantized, to a first approximation[60], by the extended Helmholtz 

free energy functional, 

   (1) 

The first term on the right-hand side represents the bulk contribution (i.e., the classic 

Helmholtz free energy density), which for a van der Waals fluid is written as 

F = dV f ρ,T( )+κ2 ∇ρ
2⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥Ω∫ .
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   (2) 

Here the number density is defined as NV(⍴)=⍴/mp (with mp being the molecular mass), 

kB is the Boltzmann constant, a and b are the molecular parameters in the van der 

Waals equation of state, and T is temperature. 

On the other hand, the second right-hand-side term of square-gradient density 

ρ of Eq. (1) denotes the energy excess in the interfacial region. Assuming the gradient 

energy coefficient κ=const[60], we can infer the interfacial thickness from the 

interpretation of the surface tension (energy) σ as the energy cost in creating a smooth  

liquid-vapor interface, 

   (3) 

where the subscripts l and v represent the liquid and vapor phases, respectively.  

 The equilibrium co-existence state of the system can be derived by minimizing 

the free-energy functional F under the constraint of mass conservation, which leads to 

a second-order stress tensor in the form of (for the detailed derivation, the interested 

reader is referred to[47,58,59]) 

   (4) 

Let  denote the identity tensor, and the thermodynamic pressure for a van der Waals 

fluid is given by 

   (5) 

With the divergence-free extended pressure tensor Eq. (4), we finally arrive at 

the nonequilibrium model for a viscous compressible two-phase flow with a finite-width 

interface: 

   (6) 

   (7) 

f ρ,T( ) = kBTNV(ρ) ln NV(ρ)T
3 2

1−bNV(ρ)
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
−1

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
−aNV(ρ)

2.

σ =κ dρ
dx

⎛

⎝
⎜

⎞

⎠
⎟

2

dx
ρv

ρl∫ ,

!
Π = p(ρ,T)−κρ∇2ρ − 1

2
κ ∇ρ

2⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

!
I +κ∇ρ⊗∇ρ.

!
I

p(ρ,T)= ρ ∂f(ρ,T)
∂ρ − f(ρ,T)= kBTNV(ρ)

1−bNV(ρ)
−aNV(ρ)

2.

∂ρ
∂t

+∇⋅ ρ!v( ) = 0,

∂
∂t

ρ!v( )+∇⋅ ρ!v⊗ !v( ) = ∇⋅
!
τ −∇⋅

!
Π+ ρg!eg ,
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where  is the fluid velocity,  is the unit vector in the direction of the gravitational 

force, and g is the acceleration due to gravity. Based on the Stokes’ hypothesis, the 

viscous stress tensor is given as , with η denoting the 

shear viscosity. 

For a non-isothermal system such as boiling, the governing equations (6) and 

(7) need to be appended by the balance equation for energy. It should be mentioned 

that the local energy flux ought to include both classic (based on Fourier’s law of heat 

conduction) and nonclassic (due to interstitial working[47]) contributions, which leads 

to 

   (8) 

In accordance with the van-del-Waals equation of state, the internal energy here can 

be evaluated as e(ρ,T)=f(ρ,T)-T∂f(ρ,T)/∂T=3kBTNV(ρ)/2-aNV(ρ)2. Furthermore, we 

postulate that simple linear dependences on density exist for the viscosity η and the 

thermal conductivity λ, which essentially entails[47,48,59] 

   (9) 

   (10) 

It is worth noting that alternatively, instead of the energy flux, the pressure 

tensor itself (Eq. (4)) can be modified to account for the effect of adiabatic interfacial 

forcing[61]. It appears that these two formulations will lead to more or less 

indistinguishable predictions for heterogeneous boiling behavior under constant-

temperature boundary heating[59].  	

B. Nondimensionalization 

The equations (6), (7), and (8), along with the equation of state (Eq. (5)) 

constitute the set of governing partial differential equations, which can be solved 

numerically in nondimensional form. The critical coordinates of water 

(Tc=8a/27kBb=647.1 K, pc=a/27b2=22.1 MPa, and ρc=mp/3b=322.0 kg/m3) are used 

!v
!eg

!
τ = η ∇"v + ∇"v( )T⎡

⎣
⎤
⎦ − 2
!
I∇ ⋅ "v / 3{ }

∂e
∂t

+∇⋅ e!v( ) = !τ −
!
Π( ) :∇!v +∇⋅ λ∇T −κ Dρ

Dt
∇ρ

⎛
⎝⎜

⎞
⎠⎟
.

η = η0ρ, 

λ = λ
0
ρ.
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as the scales for temperature, pressure, and density, respectively. Specifically, the 

reduced fluid variables read 

   (11) 

   (12) 

   (13) 

   (14) 

where the tildes mean dimensionless quantities.  

In order to fully resolve the diffuse interface, the length-scale is chosen to be 

l*=2b1/3=7.4×10-10 m, and the matching time-scale hence becomes 

t*=6b5/6(mp/a)1/2=2.8×10-12 s. Such miniscule values pose one of the main challenges 

facing the phase-field-based approach—rendering it extremely difficult, if not 

impossible, to perform meaningful quantitative comparisons with experiments except 

for cases involving critical phenomena or nanofluidic applications. However, we deem 

that the benefits of using the diffuse-interface method outweighs the disadvantages for 

it can lead to valuable and, more importantly, theoretically sound insights regarding 

the interfacial interactions[47].  

Based on the thermophysical properties of saturated water at T=0.5Tc, we 

adopt the following dimensionless parameters: =1.0, =30.0, and =1.0. More 

details with respect to the nondimensionalization can be found in[59]. Special care is 

taken when handling the external-force term in the momentum equation (7), which 

involves the nondimensional gravitational acceleration in the form of  

   (15) 

Given that t* and l* are both negligibly small, instead of the terrestrial value of 9.8 

m/s2, we rely on an artificial gravity, which incidentally needs to be inflated multiple 

orders of magnitude[48,62], to impose any meaningful impacts on bubble growth and, 

for that matter, contact-line propagation. (Actually, the effect of the consequently 

different bubble growth rates on contact-line motion will constitute the main focus of 

!T = T / Tc ,

!p = p / pc ,

!ρ = ρ / ρc ,

!e = e 27b
2

a
= e / pc ,

!η
0

!λ
0

!κ

!g = t
*2

l *
g.
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the following sections.) For the sake of conciseness and readability, without specific 

indication, the accents ~ will be dropped henceforth from the dimensionless variables. 

C. Numerical scheme 

We employ the finite-element-based symbolic computing toolbox FemLego[63], 

which features the characteristic-based split (CBS) scheme, to numerically solve the  

partial differential equations. Temporal terms are discretized using the first-order Euler 

forward method, whereas space discretization relies on the piecewise linear 

approximation with adaptive mesh refining in the vicinity of the liquid-vapor interface. 

The general minimal residual (GMRES) algorithm is used to solve the resulting linear 

systems with an iterative convergence tolerance set at a relatively strict threshold of 

10-8. The interested reader is referred to[59] for more technical details about the 

computational procedures and code verification. 

Figure 1(a) shows the two-dimensional asymmetrical computation domain 

(0<r≤200 and 0≤z≤300) used in the present study, which is filled with saturated liquid 

water at Tsat=0.79 and ρsat,l=1.95. Note that in order to avoid computational 

uncertainties associated with the cylindrical-coordinate singularity, the axis of 

symmetry is purposefully removed from the left boundary (located at r=0.001), where 

the symmetry boundary condition is enforced.  

The open boundary condition[59], which includes  

   (16) 

   (17) 

   (18) 

   (19) 

is assigned to the top boundary (z=300). Here δij denotes the Kronecker delta, and ∇n 

the gradient normal to the boundary. Essentially connecting the domain with an 

infinite virtual reservoir of saturated liquid, the open boundary condition approximates 

vigorous boiling under the external pressure of psat=0.29. Such a treatment is 

∇n
!v = 0;

ρ = ρsat ,l ;

T = Tsat ;

Πij = psat Tsat( )δ ij ,
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equivalent to maintaining a metastable liquid phase by placing a gaseous pocket above 

the growing bubble[62].  

At the bottom (z=0) and right walls (r=200), the no-slip condition can be safely 

imposed since the singularity of infinite stress at a moving contact line is readily 

resolved under the diffuse-interface framework[56]. Following the localized surface-

energy approach[59], we model the wetting boundary condition at an isothermal solid 

wall as  

   (20) 

Such a relation is derived from applying energy minimization again at the contact line, 

which leads to fast relaxation of the density distribution that approximates the 

equilibrium microscopic contact angle 𝜃s. Note that 𝛹(ρ) represents an interpolating 

third-order polynomial function of density that satisfies 𝛹(ρsat,v)=0 and 𝛹(ρsat,l)=1, 

along with the constraints ∂ρ𝛹(ρsat,v)=0 and ∂ρ𝛹(ρsat,l)=0 (such that Eq. (20) is nonzero 

only in the interfacial region).  

It should be mentioned that the wetting condition can be described alternatively 

by a so-called geometric formulation, which was claimed to result in more faithful 

reproduction of the imposed contact angle in, for instance, droplet spreading[64]. 

Notwithstanding, as was shown in one of our previous studies[59], the evolution of the 

particular interfacial shape under the surface-energy formulation eventually arrives at 

an apparent contact angle that closely matches (within 3 degrees) the set angle 𝜃s. 

Hence, we continue to use Eq. (20) in the present study. While the right wall has a 

trivial value of 𝜃s=90o, the bottom wall is divided into a hydrophobic region (r≤60.0) 

featured by 𝜃s,pho and a hydrophilic region (r>60.0) by 𝜃s,phi, which notably constitutes 

a biphilic surface.  

To simulate the robust growth of a vapor bubble in pool boiling, at t=0 a 

spherical bubble nucleus (ρv=0.31, Tv=0.73, and pv=0.38) with an initial radius of 50.0 

is artificially seeded atop the bottom wall, whose center is located at z=10.0. The 

interfacial density profile follows a hyperbolic tangent function set between ρv and 

ρl[60] over a tentative width of 5.0. Additionally, an isothermal (Dirichlet-type) 

∇nρ =
σ cosθs

κ
∂ρψ ρ( ).
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condition is imposed at the bottom wall (namely, at a superheat of ΔT=0.06). The 

computational domain is discretized by a 200×300 mesh. All simulation runs are carried 

out under a uniform time step of Δt=0.01.  

 
Fig. 1. Schematic illustration of the axisymmetric simulation domain. The top open boundary, 

which allows free flow of saturated liquid, mimics saturated heterogeneous boiling under surface 

superheating of ΔT. The initiation of boiling is realized by seeding a vapor bubble nucleus on the 

top of the heating wall. By use of the surface-energy formulation, contrasting wetting conditions 

can be applied to the bottom boundary, with the hydrophobic (marked in purple) and hydrophilic 

(marked in green) regions demarcated at r=60.0.  

 

III. CONTACT-LINE DYNAMICS 

In this section, we will study in many details the contact-line dynamics 

traversing a wettability divide on the solid surface under various gravities. It is worth 

noting that in choosing gravity as the sole parameter of interest, we can effectively 

eliminate other interfering factors such as various thermophysical properties. Moreover, 

because of the strong correlation between the gravity level and the bubble expansion 

rate in boiling[65], the results are expected to shed light on the unalloyed relationship 

of the bubble growth rate versus the pinning state of contact line as it straddles the 

border between contrasting hydrophobic and hydrophilic surfaces. 
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A. Low gravity (g=0.0002) 

We plot in Fig. 2 the time evolution of bubble shape (namely, the density 

distribution) as it is growing on the biphilic surface with 𝜃s,pho=130o and 𝜃s,phi=10o, 

under a low gravity level of g=0.0002. Due to the strong hydrophobicity of the surface 

underneath the bubble, the initial fast expansion of the contact line far precedes that 

of the rest of the bubble, as is evidenced by the protruding bubble base at t=0.5. Once 

the bubble grows beyond the border of the hydrophobic surface, however, the contact 

line appears to drag behind while the bubble continues growing, which results in a 

shift in the apparent contact angle that more or less reflects the surface’s nominally 

enhanced affinity for water.  
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Fig. 2. Snapshots of the density distribution at different times for the case with g=0.0002 at (a) 

t=0.5, (b) t=2.5, (c) t=5.0, and (d) t=10.0. The initial stage of the bubble growth features fast 

expansion of the bubble base on the hydrophobic surface (marked in purple, with 𝜃s,pho=130o). 

The local convex bubble outline near the heating surface quickly turns into a concave shape once 
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the contact line enters the hydrophilic territory (marked in green) at r=60.0, due largely to a 

shift in the surface wetting characteristics (𝜃s,pho=10o). 

 

A more quantitative depiction of the (horizontal) bubble growth on the biphilic 

surface can be found in Fig. 3, which traces the reaches of the bubble-base (contact-

line radius Rc) and the bubble itself (bubble width Rb, as defined using the rightmost 

point along the bubble interface) over time. Because the contact-line expansion leads 

the bubble growth during the initial bubble spreading on the hydrophobic surface, the 

results for Rc and Rb overlap with each other until around t=1.2. Then, a bifurcation 

starts to emerge between Rc and Rb when the bubble reaches the end of the 

hydrophobic region and the contact line gets overtaken by the rest of the bubble. 

Specifically, the contact-line motion faces strong resistance as it strives to overcome 

the wettability divide, as shown by the sharp decline of the corresponding time-

derivative Ṙc, whereas the bubble itself keeps growing. Note that the marked 

hinderance to the contact-line expansion appears to be only temporary, since the pace 

of the contact-line expansion quickly recovers and catches up to that of the remaining 

bubble after the contact line finally moves over onto the hydrophilic part of the surface.  
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Fig. 3. Plots of the bubble width Rb (in black) and the radius of the contact line Rc (in red) as 

functions of time and their corresponding time derivatives Ṙb and Ṙc, for the case with 

𝜃s,pho=130o , 𝜃s,phi=10o, and g=0.0002. The expansion of the bubble contact line seems to 

encounter a pronounced yet brief interruption as it traverses the border between the hydrophobic 

and the hydrophilic surfaces. 

 

B. High gravity (g=0.0007) 

Next we repeat the simulation but with an elevated gravity g=0.0007 while 

keeping everything else unchanged. The results describing bubble growth are shown in 

Fig. 4. Quite similar to the case with the low gravity (cf. Fig. 2), the bottom of the 

bubble seems to be expanding at an increasing rate on the hydrophobic surface at the 

early time of t=0.5, which leads to a bell-like shape. But what transpires after the 

contact line arrives at the interface of the contrasting wettabilities differs dramatically 

from the previous case. Instead of being only temporarily delayed, the contact line 

appears to remain pinned at the boundary (around r=60.0) between the hydrophobic 

and hydrophilic regions. Thereafter, the abruptly interrupted horizontal expansion 
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leaves bubble to grow mainly along the vertical direction. It is interesting to note that 

on account of the continuous pinning of the contact line, the bubble interface near the 

wall appears to turn increasingly stretched as the bubble grows, giving rise to formation 

of a sharp contact angle extending all the way to the midsection of the bubble at 

t=25.0. More discussion regarding the apparent contact angle will follow in Sec. IV. 
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Fig. 4. Snapshots of the density distribution for the case with g=0.0007 on a biphilic surface 

divided at r=60.0 between the hydrophobic section (marked in purple, 𝜃s,pho=130o) and the 

hydrophilic section (marked in green, 𝜃s,pho=10o) at (a) t=0.5, (b) t=5.0, (c) t=10.0, and (d) 

t=25.0. The bubble contact line is seen to get pinned at the wettability divide while the bubble 
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continues to grow vertically, which gives rise to the continued stretching of the lower half of the 

bubble interface all the way down to the surface. 

 

Similarly, we show plots of Rb and Rc as functions of time and their time-

derivatives in Fig. 5. Compared with their low-gravity counterparts in Fig. 3, here the 

bubble appears to grow appreciably slower. We notice that under such significantly 

decelerated bubble growth, the contact-line propagation on the surface eventually 

comes to a halt (Ṙc≈0) at the entrance to the hydrophilic region around r=60.0, while 

the rest of the bubble continues to grow (even at an apparently accelerated rate), in 

sharp contrast to Fig. 3. In the inset we show enlarged results depicting a gradual 

drastic slowdown, rather than a complete termination, of the contact-line expansion, 

which agrees with recent molecular dynamics (MD) simulations of droplet evaporation 

under the effect of surface heterogeneities[42,66]. Moreover, the pinning of the contact 

line at the wettability border seems to be particularly strong since no re-convergence 

occurs between the curves for Ṙb and Ṙc for the time period considered. In the case 

with g=0.0002 (see Fig. 3), by contrast, the depinned contact line finds itself being 

dragged along by the continuous bubble expansion on the hydrophilic surface, which 

results in Ṙc moving in almost perfect tandem with Ṙb. Also noted is the apparently 

elevated level of “noises” present in the results of Ṙb and Ṙc in Fig. 3, in comparison 

with Fig. 5. One possible explanation is that the increased instability could be caused 

by a propagating capillary wave along the bubble interface that is generated from the 

moving contact line[67]. 
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Fig. 5. Plots of the bubble width Rb (in black) and the radius of the contact line Rc (in red) as 

functions of time and their corresponding time derivatives Ṙb and Ṙc, for the case with 

𝜃s,pho=130o , 𝜃s,phi=10o, and g=0.0007. The results show clearly that the contact line fails to 

travel beyond the hydrophobic surface but remains hemmed in by the surrounding hydrophilic 

surface (r=60.0). Inset: enlarged view showing long-term slowing down of the contact-line 

expansion. 

C. From depinning to pinning 

As the above comparison of the cases of low and high gravities has shown, the 

level of gravity has interesting implications for contact-line behavior on a mixed-

wettability surface. Having performed more simulations under the same surface 

wettability contrast (𝜃s,pho=130o and 𝜃s,phi=10o) but at different g’s, we plot in Fig. 6 

with growing gravity the variations of the characteristic traversing bubble expansion 

rate <Ṙb> and the corresponding contact line speed <Ṙc>, respectively. The results 

represent the transition from the depinned-contact-line (DCL) mode to the pinned-

contact-line (PCL) mode. Note that here <Ṙb> and <Ṙc> are calculated averages 

based on the extracted data of Ṙb and Ṙc over the duration of wettability-border 
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crossing when the contact line dynamics is evidently under the influence of the 

wettability contrast (for instance, the highlighted parts in Figs. 3 and 5). The error 

bars denote data spread (as defined by standard deviation of the data set). 

It seems that the variation of <Ṙc> is nearly parallel to that of <Ṙb>, which 

attests to the strong correlation between the contact-line dynamics and the bubble 

growth rate in heterogeneous boiling. As g increases, both <Ṙc> and <Ṙb> diminish 

following quasi-linear relations. Around g=0.0005, a noticeable departure from the 

steep-sloped pattern begins to emerge, indicating a fundamental shift in the behavior 

of bubble spreading on the surface. With further increases in g the falling general 

bubble growth rate gradually levels off, whereas the contact line speed is reduced to 

vanishingly small values. Hence, such a dramatic transition suggests that a complete 

demobilization of contact line could indeed result from considerable deceleration of 

bubble expansion across the surface-wettability gap. In what follows, we will delve 

further into the different contact-line characteristics between the DCL and PCL modes 

and their transition under the influence of surface wettabilities.  
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Fig. 6. Variations of the average bubble growth rate <Ṙb> (black circles) and contact-line speed 

<Ṙc> (red circles) during the contact-line crossing at the wettability divide (𝜃s,pho=130o vs. 

𝜃s,phi=10o) on the surface over different gravities. Completely depinned contact lines appear to 

dominate under the effect of low gravity, which, in response to the slowing-down of bubble 

expansion, becomes less mobile following a similar linear relationship with g (marked by dash 

lines). When the gravity level is sufficiently high, however, <Ṙc> eventually drops to nearly zero, 

which indicates pinning of the contact line at the wetting border. The error bars represent 

standard deviations of the data sets. 

 

IV. EFFECT OF HETEROGENEOUS WETTABILITIES 

Encouraged by the promising results depicting divergent contact-line dynamics 

under the effect of the bubble expansion rate, we now set out to broaden the scope of 

the study to elucidate the effect of the surface wetting pattern. The objective is to 

derive a more complete description of the behavior of contact line traversing wetting 

heterogeneities. In what follows, a series of simulations are performed based on the 
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same problem setup but with different combinations of 𝜃s,pho and 𝜃s,phi. The results 

reveal some remarkable characteristics of the contact-line mobility in the DCL mode, 

and the interesting emergence of seemingly universal (effective) contact angle in the 

PCL mode. 

A. Contact-line mobility 

In Fig. 7 we show results delineating the influence of the biphilic pattern (that 

is, the contrast between 𝜃s,pho and 𝜃s,phi) on the dynamics of a more mobile contact line 

(namely, under the DCL regime) crossing the wettability interface. Here the vertical 

axes denote the relative movability of the traversing contact line, which is defined as 

   (21) 

Equation (21) measures the extent to which the contact line spreading gets slowed 

down as it is pulled by the expanding bubble across from the hydrophobic section onto 

the hydrophilic section of the surface.  

Γ =
!Rc
!Rb
.
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Fig. 7. Contact-line mobility as defined by the ratio of the traversing contact-line speed to the 

bubble expansion rate, Γ=<Ṙc/Ṙb>, under the influence of the wettability contrast of 𝜃s,pho and 

𝜃s,phi. In (a), the results demonstrate a quite moderate effect of the imposed contact angle 𝜃s,pho of 

the hydrophobic surface (r≤60.0)	on the overall distribution of Γ at different gravities. In (b), on 

the other hand, Γ is found to be more sensitive to the changing affinity for water (measured by 

𝜃s,phi) of the hydrophilic part of the surface (r>60.0). Note that the error bars denote the data-

reduction uncertainties.  

 

First, we examine the effect of surface hydrophobicity as is defined by 𝜃s,pho. As 

Fig. 7(a) shows, Γ falls sharply when the gravity level is raised from zero to g=0.0006: 

from an initial level close to Γ=0.9 down to around Γ=0.7 in the cases (marked in red) 

of 𝜃s,pho =100o (with 𝜃s,phi=70o) and 𝜃s,pho =130o (with 𝜃s,phi=70o), and from Γ=0.7 

down to a paltry Γ=0.2 in the cases (marked in black) of 𝜃s,pho =100o (with 𝜃s,phi=10o) 

and 𝜃s,pho =130o (with 𝜃s,phi=10o). The consistently diminishing contact-line mobility 

relative to the general bubble expansion rate indicates growing resistance in the 

presence of clear wettability contrast, which, incidentally, will lead the contact line to 

an ultimate standstill if g is allowed to increase even further (see Fig. 6). More 

interestingly though, the variations of Γ appear to depend only weakly on the assigned 

hydrophobic contact angle since the results differ ostensibly less between the cases with 

different 𝜃s,pho’s than those with different 𝜃s,phi’s. In other words, the dynamics of 

propagating contact lines across opposing wettabilities seems to rely mainly on the 

more wettable side of the divide.  

Such a dominant role of surface hydrophilicity is made clear in Fig. 7(b), which 

plots similar calculations of Γ for varying degrees of water affinity (of the hydrophilic 

section, r>60.0) ranging from 𝜃s,phi=5o up to		𝜃s,phi=70o, while the assigned equilibrium 

hydrophobic contact angle is maintained at a constant value of 𝜃s,pho=130o. Besides 

the similar trend of steadily dwindling Γ with increasing g, one can detect increasing 

retardation to the contact-line motion on the more hydrophilic surface for Γ decreases 

ever lower when 𝜃s,phi lessens. The apparently strong dependence of Γ on 𝜃s,phi can be 

explained in a somewhat straightforward manner. On account of the specific direction 
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of contact-line propagation (i.e. from the hydrophobic part to the hydrophilic part of 

the surface in the present simulation), it is reasonable to expect the motion to be 

affected more by the hydrophilic surface ahead. Furthermore, it is also more likely to 

encounter greater resistance in displacing liquid with vapor, as does the moving contact 

line, on the surface that exhibits apparent preference for the former.  

It is noteworthy that the impedance to the traversing contact line across the 

wettability divide seems to ‘saturate’ at 𝜃s,phi=10o, beyond which point further 

decreases in 𝜃s,phi only brings about marginal reductions to the contact-line mobility. 

This raises the implication of diminished effectiveness of enforcing contact-line pinning, 

in order to avoid the transition to low-efficiency intermittent boiling on biphilic surfaces, 

by merely enlarging the wettability gap alone.  

B. Apparent contact angle 

Despite the imposed wetting boundary conditions through the equilibrium 

contact angle 𝜃s,pho and 𝜃s,phi, the liquid-vapor interface finds itself meeting the solid 

surface at a somewhat different apparent angle, which is susceptible to (local) 

distortions due to dynamic effects in the contact-line region[59]. Figure 8 describes the 

typical effective contact angles 𝜃a that forms at the depinned and pinned contact lines 

on the biphilic surface (with 𝜃s,pho=130o and 𝜃s,phi=10o), respectively. One should note 

that 𝜃a in the present study differs from the conventionally defined dynamic contact 

angle[64]. In both hydrodynamic[68] and molecular kinetic interpretations[55], the 

dynamic contact angle is defined through a constitutive relation dominated by the 

speed of contact-line motion, which in turn relies on a variety of factors including 

surface roughness and chemical inhomogeneities. In the present simulation, as is shown 

below, the resulting apparent contact angles exhibit no clear dependence on the 

velocity of the contact line (or the bubble growth rate at different g’s). 

Figure 8(a) shows that, in the DCL case (g=0.0002), subsequent to it 

overcoming the energy barrier due to the wettability contrast, the contact line goes on 

to freely spread on the hydrophilic surface, closely following the rest of the bubble (see 

Fig. 3). The local equilibrium in the contact-line region under the imposed wetting 
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condition of 𝜃s,phi=10o results in sharp bending of the interfacial profile very close to 

the surface. Consequently, the effective contact angle 𝜃a turns out to be mostly 

confined to a thin layer between the solid surface and the rapidly expanding bubble. 

Many details about the contact-line structure are hence hidden beneath the smooth 

interface of the macroscopic bubble.  

By contrast, in the PCL case (g=0.0007), the contact line remains firmly 

anchored upon reaching the edge of the hydrophilic surface (around r=60.0). Too weak 

to dislodge the contact line, the bubble growth thereafter proceeds along the stretched 

bubble interface at an inclined (contact) angle to the solid surface, 𝜃a, as shown by 

Fig. 8(a). Note that thanks to the strong pinning of the contact line, 𝜃a prevails beyond 

the immediate vicinity of the surface and over the entire lower half of the bubble (see 

Fig. 4(d)).  

According to the evolution history of 𝜃a, which is shown in Fig. 8(b), the 

apparent contact angle in the PCL mode quickly settles into a constant value once the 

contact line gets pinned on the surface. The continuous bubble expansion appears to 

have little if any effect on 𝜃a. For the DCL modes, on the other hand, the results show 

that 𝜃a declines precipitously as the contact line ventures onto the hydrophilic surface 

after a brief delay. Moreover, compared with the relatively smooth 𝜃a on the 

hydrophobic surface, the apparent contact angle exhibits oscillatory behavior (with a 

variation of about 4o) as soon as the contact line enters the hydrophilic section of the 

surface. Such instabilities could be the result of capillary wave propagation created at 

the receding wetting front on the surface[67].  
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Fig. 8. Comparison of the apparent contact angles at the pinned and depinned contact lines. In 

(a) are shown examples of the contact-line regions close to the biphilic surface (with 𝜃s,pho=130o 

and 𝜃s,phi=10o) under the DCL (g=0.0002) and PCL (g=0.0007) regimes, respectively. The vapor 

phase is represented in blue and the liquid phase in red. At t=10.0, the depinned contact line is 

being pulled by the rapidly growing bubble, which leads to bending of the bubble interface (in 

black, as defined by the density contour line at (ρl+ρv)/2) near the solid hydrophilic surface. The 

resulting apparent contact angle 𝜃a differs considerably from that of the pinned contact line, 

which extends along the stretched bubble interface from the border between the surfaces of 

opposing wettabilities to the outer region. In (b) the evolutions of 𝜃a across the wettability divide 

are plotted for these two cases, respectively. The results show more unstable behavior for the 

mobile contact line on the hydrophilic surface. Note that 𝜃a is calculated using two-point 

approximation near the wall z=0. 

 

In Fig. 9 we present the representative values of 𝜃a (which are averaged over a 

period of at least t=1.0 once 𝜃a reaches steady state, as shown by the examples in Fig. 

8(b)) under various wetting patterns and gravity conditions. Similar to Fig. 6, the 

distributions of 𝜃a over increasing g appear to fall into two distinct groups that 

correspond incidentally to the DCL and PCL regimes.  
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At relatively low g, the moving contact line on the hydrophilic surface seems to 

adopt an apparent contact angle that, albeit not a complete match, strongly correlates 

with the assigned 𝜃s,phi. The deviation of 𝜃a from 𝜃s,phi becomes even less with growing 

𝜃s,phi, which indicates improved local equilibrium as the dynamic effect weakens in the 

contact-line region. It should also be noted that 𝜃a exhibits no clear dependence on the 

gravity level, which corresponds to varying contact line speed (see Fig. 6). In other 

words, as we have argued above, the effective contact angle in question here should 

not be confused with the classic dynamic contact angle. 

 

Fig. 9. Distributions of the steady-state apparent contact angle 𝜃a over different gravities, for 

various combinations of 𝜃s,pho and 𝜃s,phi. Each data point represents averaged value of long-term 

𝜃a over a period of at least t=1.0 and the error bars denote data spread. In accordance with the 

pinning state of contact line, the results can be clearly divided into two distinct groups. When the 

contact line is allowed to travel on the hydrophilic surface, 𝜃a appears to vary closely with 𝜃s,phi. 

On the other hand, when the contact line remains pinned at the interface between the surfaces of 
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opposite wetting conditions, 𝜃a appears to take on a nearly universal value which is notably 

independent of either 𝜃s,pho or 𝜃s,phi. 

 

 When g becomes sufficiently large, the contact line eventually gets pinned on 

the biphilic surface. Other than the considerably reduced mobility, the pinned contact 

line differs from the depinned contact line in another key aspect. That is, the apparent 

contact angles obtained at g=0.0007 seem to all fall around 𝜃a=66.4o±1.9o, irrespective 

of the surface wetting conditions of 𝜃s,phi or 𝜃s,pho (see Fig. 9). The nearly universal 

behavior signifies a delicate balance between the driving force of the (horizontal) 

bubble expansion and the pinning force at the contact line, which gives rise to the 

subsequent asymmetric bubble growth seen in Fig. 4. At the moment we lack a clear 

explanation for the interesting value of 𝜃a=66.4o, which could be subject to change 

under different fluid properties or characteristic sizes of the wetting inhomogeneities. 

More studies are needed to fully grasp the physical meaning of the constant pinned 

contact angle. In the following, we give a short discussion as regards the detailed 

mechanics of contact-line pinning. 

 

V. MECHANISM OF CONTACT-LINE PINNING 

Our next goal is to quantify the critical condition for contact-line pinning based 

on a simple theoretical model. Inspired by Kandlikar’s seminal modeling work on 

boiling CHF[28] that notably included non-hydrodynamic influences such as surface 

wetting, we perform a similar force-balance analysis of bubble spreading on a biphilic 

surface that consists of opposing wettabilities.  

Figure 10 depicts a bubble growing atop the hydrophobic section (in gray) of 

the biphilic surface, whose propagating three-phase contact line has just reached the 

border with the adjacent hydrophilic surface (in green). Under the pinned-contact-line 

assumption, as the present simulation has clearly indicated, the following bubble 

growth will continue at a fixed angle β to the surface. Driving bubble expansion in the 

direction parallel to the surface is an evaporative momentum force Fm, which is given 

as (per unit length normal to the paper) 
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   (22) 

Here, qi represents the average heat flux per unit area across the bubble interface, 

which we presume is devoted entirely to local evaporation. Also, let hlv denote the 

latent heat of vaporization and Hb the height of the bubble.  

 
Fig. 10. A schematic illustration of the horizontal expansion of a bubble (of Rb in width and Rc in 

base radius) on a biphilic surface. Continuous bubble growth is driven by heat inputs Qi at the 

bubble interface and Qw beneath the bubble. When the driving force Fm (due to the momentum 

variation during evaporation) roughly matches those resisting forces due to the surface tension 

effect, Fs1 and Fs2, and the hydrostatic pressure gradient Fg, the bubble tends to grow along a 

fixed angle β to the surface. Moreover, the contact line will remain pinned at the border between 

the hydrophobic (in gray) and hydrophilic (in green) surfaces.  

 

 On the other hand, the forces resisting bubble spreading on the surface are 

comprised mainly of the surface tension forces and the excess pressure force (due to 

the hydrostatic pressure difference between the inside and outside of the bubble). Along 

Fm =
qi
hlv

⎛

⎝⎜
⎞

⎠⎟

2
Hb

ρv
.
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the horizontal direction, the former is represented as (again, per unit length normal to 

the paper)  

   (23) 

whereas the latter reads 

   (24) 

  We consider saturated bubble growth, of which the energy balance leads to  

   (25) 

Note that Qi and Qw represent the total heat inflows per unit time through the bubble 

interface and from below the bubble (which, remarkably, peaks at the contact-line 

region[59]), respectively. Given the dominant contribution of Qw to bubble growth over 

that of Qi, herein we assume without restrictions Qw=ξQQi, where the cofactor is taken 

to be ξQ=4.0 based on various bubble growth models[69]. Equation (25) then becomes 

   (26) 

In deriving the above equation, use has been made of the total surface area of the 

bubble Ab=2πRb2(1+cosβ).  

Displacing the contact line from the current affixed position requires the driving 

evaporative momentum force to exceed those resisting forces, which translates to Fm≥

Fs+Fg. Substituting the definitions of the individual forces by virtue of Eqs. (22-24), 

we finally arrive at 

   (27) 

where Rc denotes the bubble base radius and is related to the bubble height by a simple 

geometric argument Hb=(1+cosβ)Rc/sinβ. The above equation describes the minimal 

bubble growth rate that is needed for the contact line to overcome the energy barrier 

Fs =Fs1+Fs2 cosβ=σ 1+ cosβ( ),

Fg =
1
2
g ρl − ρv( )Hb

2.

Qi +Qw = πRb
2 2− cosβ( ) 1+ cosβ( )2 ρvhlv !Rb.

qi =
1
2ξQ

ρvhlv 2− cosβ( ) 1+ cosβ( ) !Rb.

!Rb ≥ 2ξQ
1

2 2− cosβ( )2 1+ cosβ( )sinβ
⎡

⎣
⎢
⎢

g ρl − ρv( )Rc
ρv

+ sinβ
2− cosβ( )2 1+ cosβ( )2

σ
Rcρv

⎤

⎦
⎥
⎥

1
2

,
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due to the surface wetting inhomogeneities, below which the bubble spreading on the 

surface is expected to be severely hampered or even stalled. Furthermore, it would 

seem that pinning of contact-line is more likely to occur at greater g’s, whereby 

evidently more robust bubble growth is required for free expansion parallel to the 

surface.  

In the case of Rc=60.0 and β≈66.4o for a pinned contact line at g=0.0007, we 

calculate, using Eq. (27), the threshold bubble expansion rate for contact line pinning, 

Ṙbcrit≈2.24. In Fig. 11 we plot the mapping of contact-line dynamics traversing a 

wettability divide, which includes results obtained under different biphilic 

combinations (𝜃s,phi and 𝜃s,pho). The vertical axis denotes the average contact-line speed 

Ṙc, whereas the horizontal axis denotes the corresponding bubble growth rate Ṙb. It 

can be seen that a crossover from the DCL regime to the PCL regime occurs just 

around Ṙbcrit, in agreement with the theoretical prediction. The contact-line motion 

initially follows closely that of the bubble growth (exhibiting greater sensitivity to 𝜃s,phi 

than to 𝜃s,pho, for that matter) until a drastic deceleration is triggered near Ṙbcrit, which 

leads eventually to demobilization of contact line. 

Before concluding this section, a few remarks on the dramatic transition in the 

contact-line behavior are in order. Firstly, it should be mentioned that the data points 

in Fig. 11 are derived for different gravity levels, while only the critical bubble growth 

rate for the highest g(=0.0007) is marked. Since Ṙb tends to increase with decreasing g 

(as Ṙb∝g-1, according to Fig. 6) and the opposite trend holds true for Ṙbcrit (as Ṙbcrit∝g0.5, 

according to Eq. (27)), pinning of contact-line is therefore only feasible at sufficiently 

large g where a dwindling Ṙb could possibly match a rising Ṙbcrit. Secondly, calculation 

of Ṙbcrit (Eq. (27)) turns out to be sensitive to the parameter ξQ. The good agreement 

between the simulations and the model shown in Fig. 11 relies in no small part on the 

tentative value of ξQ=4.0. In fact, a more convincing comparison requires direct 

accurate measurement of ξQ and expanded knowledge of heat flux partitioning in 

boiling on heterogeneous surfaces, which goes beyond the scope of the present study. 

Thirdly, the simulated transition in the contact-line interaction with the biphilic 
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surface qualitatively agrees with our latest experimental observations of 

subatmospheric boiling characteristics[70]. The experiment revealed a strong 

correlation between the depinning of the contact line and the sudden acceleration of 

bubble growth at sufficiently reduced pressures, which matches the contact-line 

behavior depicted in Fig. 11. And lastly, the nature of the energy barrier to contact-

line motion, which is taken mainly as the surface tension force here, could be further 

explored on a molecular level. Recent MD simulations[71] have pointed to a critical 

characteristic size of chemical heterogeneities, below which the effect of contact-line 

pinning appears to vanish.  

 

 

Fig. 11. Traversing contact-line speed Ṙc versus bubble growth rate Ṙb. For all the patterns of 

surface biphilicity considered, the dramatic transition in the contact-line behavior between the 

regimes of contact-line depinning and contact-line pinning occurs around Ṙbcrit=2.24, which is a 

value derived from the force-balance-based bubble spreading model.  
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VI. CONCLUSIONS 

In this study, we have performed numerical simulations of contact-line motion 

on an isothermal biphilic surface by means of the diffuse-interface approach, where the 

liquid-vapor interface is treated as a continuous transition between the two phases and 

surface tension emerges naturally as the energy cost associated with the interfacial 

formation. The governing partial differential equations written for a single-component 

(water) system are discretized on an axisymmetric two-dimensional computational 

domain and solved by FemLego, a symbolic finite-element-based numerical solver.  

The results reveal interesting contact-line behavior that can shed light on the 

puzzling observation of sudden boiling deterioration on biphilic surfaces at very low 

pressures in experiments. Following the fast expansion on the hydrophobic surface, the 

bubble evolution diverges depending on the bubble growth rate once the contact line 

reaches the edge of the adjacent hydrophilic surface. In the case of fast bubble 

expansion (at low gravity), the contact line motion is shown to experience a temporary 

hinderance at the wettability divide, which is due more to the enhanced surface wetting 

ahead, before becoming fully recovered on the hydrophilic surface. In sharp contrast 

to the case of depinned contact line, however, sufficiently weakened bubble growth (at 

high gravity) can result in a significant slowdown and even complete pinning of the 

contact line. Afterwards, the bubble growth seems to continue along a consistent 

apparent contact angle, which is independent of either the hydrophobic or the 

hydrophilic surfaces. The crossover between the regimes of mobile contact line and 

pinned contact line, which is well captured by mapping the contact-line dynamics on 

surfaces with different wetting conditions, can be largely explained on the basis of the 

force-balance model of bubble spreading across wetting inhomogeneities.  

Exhibiting a great potential for manipulating bubble behavior, surface 

wettability engineering provides a genuinely promising solution to the challenging task 

of boiling heat transfer enhancement. Nevertheless, a unified description of contact-

line motion on biphilic surfaces is still lacking. It is our hope that the findings in this 

paper that are based on a simple wetting model can advance the fundamental 
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understanding of how the contact line spreads on a wettability-patterned surface in 

the particularly vigorous events of boiling. Future research following the present work 

should expand on the interpretation of wetting behavior by including more complex 

physics such as contact line friction[72], which could foreseeably lead to new insights 

on controlled bubble generation and growth in boiling applications.    
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