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Ecdysteroids are the principal steroid hormones essential for
insect development and physiology. In the last 18 years, several
enzymes responsible for ecdysteroid biosynthesis encoded by
Halloween genes were identified and genetically and biochemi-
cally characterized. However, the tertiary structures of these
proteins have not yet been characterized. Here, we report the
results of an integrated series of in silico, in vitro, and in vivo
analyses of theHalloweenGST proteinNoppera-bo (Nobo).We
determined crystal structures ofDrosophila melanogasterNobo
(DmNobo) complexed with GSH and 17�-estradiol, a DmNobo
inhibitor. 17�-Estradiol almost fully occupied the putative

ligand-binding pocket and a prominent hydrogen bond formed
between 17�-estradiol andAsp-113 of DmNobo.We found that
Asp-113 is essential for 17�-estradiol–mediated inhibition of
DmNobo enzymatic activity, as 17�-estradiol did not inhibit
and physically interacted less with the D113ADmNobo variant.
Asp-113 is highly conserved among Nobo proteins, but not
among other GSTs, implying that this residue is important for
endogenous Nobo function. Indeed, a homozygous nobo allele
with the D113A substitution exhibited embryonic lethality and
an undifferentiated cuticle structure, a phenocopy of complete
loss-of-function nobo homozygotes. These results suggest that
the nobo family of GST proteins has acquired a unique amino
acid residue that appears to be essential for binding an endoge-
nous sterol substrate to regulate ecdysteroid biosynthesis. To
the best of our knowledge, ours is the first study describing the
structural characteristics of insect steroidogenic Halloween
proteins. Our findings provide insights relevant for applied
entomology to develop insecticides that specifically inhibit
ecdysteroid biosynthesis.

Ecdysteroids play pivotal roles in regulating many aspects of
development and physiology in arthropods, including insects
(1, 2). Because ecdysteroids do not exist naturally in animals
other than arthropods, it has been long thought that molecules
involved in ecdysteroid biosynthesis, secretion, circulation, and
reception could be good targets for developing third-genera-
tion pesticides that specifically inhibit insect life cycles, with no
adverse effects on other animals (3). Thus, the study of ecdys-
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teroids has been important, not only in the basic biological sci-
ences, but also in the field of applied agrobiology.
Ecdysteroids are biosynthesized from dietary sterols that are

primarily obtained from food sources (1, 2). The formation of
each biosynthetic intermediate going from dietary sterols such
as cholesterol to the biologically active form of ecdysteroids,
20-hydroxyecdysone (20E),5 is catalyzed by a specific ecdys-
teroidogenic enzyme (2, 4). Since 2000, a series of these
enzymes has been identified. These enzymes includeNeverland
(5, 6), Non-molting glossy/Shroud (7), Spook/CYP307A1 (8, 9),
Spookier/CYP307A2 (9), CYP6T3 (10), Phantom/CYP306A1
(11, 12), Disembodied/CYP302A1 (13), Shadow/CYP315A1
(13), and Shade/CYP314A1 (14). A deficiency of genes encod-
ing these enzymes results in developmental lethality. Particu-
larly in the fruit flyDrosophila melanogaster, complete loss-of-
function mutants of shroud, spook, phantom, disembodied,
shade, and shadow, which are often classified as Halloween
mutants, commonly result in embryonic lethality with the loss
of differentiated cuticle structures (15). To date, the functions
of these enzymes have been characterized genetically, and
some of them have also been analyzed biochemically (2, 16).
However, none of these enzymes has yet been characterized at
the tertiary structure level.
Here, we report the first crystal structure of an ecdysteroido-

genic regulator encoded by the Halloween gene, noppera-bo
(nobo) (17–19). nobo encodes a member of the epsilon class
of cytosolic GSH S-transferases (GST, EC 2.5.1.18; hereafter
GSTEs) (20). In general, GSTs catalyze various reactions with
an activated glutathione (GSH) molecule in the following three
ways: GSH conjugation to a substrate, reduction of a substrate
using GSH, and isomerization (21). Data from previous studies

have demonstrated that nobo is specifically expressed in ecdys-
teroidogenic tissues, including the prothoracic gland and
the adult ovary (17–19). Loss-of–nobo function mutations in
D. melanogaster and Bombyx mori result in developmental
lethality, which are well-rescued by administering 20E (17–19).
In addition, theD.melanogastermutants are also rescued by cho-
lesterol, which is the most upstream compound in the ecdys-
teroid biosynthesis pathway (18). Consistent with the require-
ment of GSH for GST function, a defect in GSH biosynthesis in
D. melanogaster also leads to larval lethality, which is partly
rescued by the administration of 20E or cholesterol (22). These
data indicate that the nobo family of GSTs is essential for ecdys-
teroid biosynthesis by regulating cholesterol trafficking and/or
metabolism. However, besides GSH, an endogenous ligand and
a catalytic reaction driven by Nobo have not been elucidated.
In this study, we utilized the vertebrate female sex hormone

17�-estradiol (EST) (Fig. 1A) as a molecular probe to gain
insight into Nobo ligand recognition, based on our previous
finding that EST inhibits the GSH conjugation activity of
D. melanogaster Nobo (DmNobo; also known as DmGSTE14)
(23). We therefore considered the complex of DmNobo and
EST to be an ideal target for elucidating a three-dimensional
structure of an ecdysteroidogenic Halloween protein and
characterizing the interaction betweenDmNobo and its potent
inhibitor. Moreover, we used an integrated, combined ap-
proach based on quantum chemical calculations, molecular
dynamics (MD) simulations, biochemical and biophysical anal-
yses, and molecular genetics. Consequently, we identified one
DmNobo amino acid residue that is strongly conserved only in
the Nobo family of GSTs, which is crucial for DmNobo inhibi-
tion by EST and for the normal in vivo function of DmNobo
during D. melanogaster embryogenesis.

Results

Crystal structure of DmNobo

The crystal structure of the apo form of DmNobo (DmNobo_
Apo) was determined at 1.50-Å resolution by the molecular

5 The abbreviations used are: 20E, 20-hydroxyecdysone; GSTE, GST, EC 2.5.1.18;
EST, 17�-estradiol; MD, molecular dynamics; G-site, GSH-binding site; H-site,
hydrophobic substrate-binding pocket; RMSD, root mean square deviation;
FMO, fragment molecular orbital; IFIE, interfragment interaction energy; ES,
electrostaticenergy;EX,exchange-repulsionenergy;CT�mix,charge-transfer
energy andhigher-ordermixed term;DI, dispersion energy; ns, nanoseconds;
ER�, estrogen receptor alpha; CDS, coding sequence.
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Figure 1. Crystal structures of the Drosophila melanogaster Noppera-bo protein. A, chemical structure of EST. The atoms of the steroid nucleus are
indicated. Rings A, B, C, and D are also shown. B, simulated annealing omit map for GSH and EST in the DmNobo_EST-GSH complex. AnmFo�DFcmap (blue)
(4.0�) is shown.CarbonatomsofDmNobo,GSH, andESTare coloredgreen,wheat, and red, respectively.Oxygenandnitrogenatomsare coloredgreenandblue,
respectively. C, an enlarged view of (B) around the EST and GSH ligands.
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replacementmethod (Fig. S1A and Table S1). DmNobo forms a
polypeptide homodimerwith a canonical GST fold, which has a
well-conserved GSH-binding site (G-site) and a hydrophobic
substrate-binding pocket (H-site) adjacent to the G-site (21,
24). The crystal structures of the DmNobo_GSH, DmNobo_
EST, andDmNobo_EST-GSHcomplexeswere also determined
at resolutions of 1.75 Å, 1.70 Å, and 1.55 Å, respectively (Fig. 1,
B and C, Fig. S1B, and Table S1). The crystal structures of the
DmNobo_EST and DmNobo_EST-GSH complexes reproduc-
ibly showed clear electron densities for EST. GSH and EST
binding did not affect the overall structure of DmNobo (Fig.
S1C); the root mean square deviation (RMSD) values for each
pair among the four crystal structures were comparable with
respect to the estimated coordinate errors (Table S2).
GSH, a common substrate of GSTs (21, 24), was found in the

G-site of DmNobo. Crystallographic analysis revealed that the
position and conformation of GSH inDmNobo and interaction
between GSH and DmNobo were essentially identical to those
in other GSTEs (25–27). GSH is recognized by an intensive
hydrogen bond network with Gln-43, His-55, Val-57, Pro-58,
Asp-69, Ser-70, His-71, and Ser-107 in the G-site (Fig. S2).
Moreover, these residues are well-conserved among not only
GSTEs but also the delta and theta classes of GSTs (hereafter
GSTD proteins and GSTT proteins, respectively), which are
closely related to GSTEs (Fig. S3, A and B) (20). Therefore, we
conclude that the interaction between the G-site andGSH can-
not account for the unique functional property of DmNobo, as
compared with other GSTD/E/T proteins.

Molecular mechanism of EST recognition by DmNobo

EST was bound in the H-site, which has a hydrophobic char-
acter. The electron-density map clearly showed that the com-
pound in theH-sitewas the intact ESTmolecule (Fig. S1D). The
ESTmolecule had no chemical modifications, including reduc-
tion and S-glutathionylation. The H-site, of which volume is
�365 Å3, was mostly filled with the EST molecule, which has a
volume of �350 Å3, and no space was available to accommo-
date another compound in the H-site (Fig. S4).
Of the 16 amino acid residues lining the H-site, Arg-13, Ser-

14, Gln-43, Arg-122, and Met-212 do not have direct contacts
with EST (Table S3). The D-ring of EST is situated near the
entrance of the H-site and exposed to the solvent. Only a few
interactions are observed between the D-ring of EST and
DmNobo (Fig. 2A and Table S3). In contrast, the A-ring of EST
is located deep inside of the H-site and makes intensive hydro-
phobic interactions with H-site residues (Pro-15, Leu-38, Phe-
39, Phe-110, Ser-114,Met-117, andLeu-208) (Fig. 2A andTable
S3). Other amino acid residues interact with other portions of
EST, such as Ser-118 at the side of C-ring, Val-121 near C-18,
and Thr-172 near O3. These amino acid residues interacting
with EST are well-conserved among the Nobo proteins but not
among DmGSTD/E/T proteins (Fig. 3, A–F, and Table S3).
These results suggest that the three-dimensional structure of
the H-site, particularly near the A-ring of EST, is conserved
in Nobo proteins and has different characteristics from
DmGSTD/E/T proteins.
Although the H-site has an overall hydrophobic character,

there is one charged residue, Asp-113, in the H-site. Asp-113,

which is nearly completely conserved in the Nobo proteins (see
below), is located at the innermost region of the H-site. EST
binding induces a rotation of the �1 angle of Asp-113 by 25.4°,
andO� of Asp-113 forms a hydrogen bondwithO3 of EST (Fig.
2B). This is the only hydrogen bond found between EST and
DmNobo and seems to be critical for EST binding.
To evaluate the contribution of the hydrogen bond to the

interaction with EST, total interaction energies between EST
fragments and DmNobo amino acid residues were calculated
using the fragment molecular orbital (FMO) method, which
can evaluate the interfragment interaction energy (IFIE) based
on the quantum chemistry (28, 29). The FMO calculation clas-
sifies the IFIE into four energy categories, namely the electro-
static energy (ES), exchange-repulsion energy (EX), charge-
transfer energy and higher-order mixed term (CT�mix), and
dispersion energy (DI). The FMOcalculation estimated that the
ES represented approximately half of the total IFIE (�41.4 kcal/
mol versus�82.4 kcal/mol) (Fig. 2C and Table S4). The crystal
structure suggested that the ES arises from the hydrogen bond
betweenO� ofAsp-113 andO3of EST (Table S4). These results
suggested that Asp-113 plays a critical role in interacting with
EST.

Asp-113 in DmNobo is essential for EST binding

The importance of theAsp-113–ESThydrogen bond for EST
binding was biochemically examined with a recombinant
mutated DmNobo protein carrying D113A amino acid substi-
tution (DmNobo D113A). DmNobo D113A lacks the sidechain
carboxyl group at position 113 and therefore cannot form a
hydrogen bondwith EST. The crystal structure of the DmNobo
D113A did not show significant structural differences com-
paredwith theWTDmNobo (DmNoboWT) protein (Fig. S5,A
and B).
We first examined the enzymatic activities of DmNobo WT

and DmNobo D113A using an in vitro enzymatic assay system
with the fluorogenic substrate 3,4-DNADCF (23). In this assay
system, GSTs catalyze GSH conjugation to the nonfluorescent
molecule, 3,4-DNADCF, giving rise to highly fluorescent prod-
uct, 4-GS-3-NADCF. In the absence of EST, bothDmNoboWT
and DmNobo D113A showed GSH conjugation activity (Fig.
4C) although the activity of DmNobo D113A decreased by
approximately half of DmNoboWT. In the presence of EST, as
expected from the EST-binding to the H-site, the enzymatic
activity of DmNobo WT was inhibited with an IC50 value of
�2.3 �M (Fig. 4,A and C). In contrast, the enzymatic activity of
DmNobo D113A was not inhibited by EST, even at a concen-
tration of 25 �M (Fig. 4, A and C).
We next measured the dissociation constant (Kd) values

between DmNobo and EST by performing surface plasmon-
resonance (SPR) analysis. TheKd values betweenDmNoboWT
andEST in the presence or absence ofGSHwere 0.38� 0.02�M

and 0.48 � 0.10 �M, respectively (Fig. 4, B and C). In contrast,
it was barely possible to determine the Kd value between
DmNoboD113A and EST because of a weak interaction (Fig. 4,
B and C), which was consistent with crystal structure analysis
(Fig. S5C). These results suggest that Asp-113 is critical for
interaction with EST.
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We also employedMD simulations to confirm the contribu-
tion ofAsp-113 to the interactionwith ESTusingDmNoboWT
and DmNobo D113A as models. In these MD simulations,
the initial structures of EST and the DmNobo proteins were
defined based on data acquired from our crystallographic anal-
yses (Fig. 4D). Although simulatingDmNoboWT for 100 nano-
seconds (ns), we found that the distance between O� of Asp-
113 and the hydroxyl group of EST was relatively constant (Fig.
4, E and F, and Movies S1 and S2). However, when simulating
DmNobo D113A, the distance between Ala-113 and the

hydroxyl group of EST increased over time, and EST moved
from the initial position (Fig. 4, E and F, and Movies 1 and 2).
Among three independent MD simulations, the maximum
RMSD value of EST in DmNobo WT was less than �6.60 Å
(Fig. S6, A and B). In contrast, with the MD simulation of
DmNobo D113A, the maximum RMSD value was less than
�9.54 Å (Fig. S6, A and B). These simulation results also
support the possibility that hydrogen bonding between Asp-
113 and EST is required for stable binding of EST to the
H-site.
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Evolutionary conservation of Asp-113 in Noppera-bo

The nobo family of GSTs is well-conserved in Diptera and
Lepidoptera (18, 30, 31). Amino acid sequence analysis revealed
that all Nobo proteins from 6 dipteran and 13 lepidopteran
species have Asp at the position corresponding to Asp-113 of
DmNobo (Fig. 3,A,B, andD). An exception is found inNobo of
the yellow fever mosquito Aedes aegypti, as the corresponding
amino acid residue of A. aegypti Nobo is Glu, which also has a
carboxyl group in the side chain similar to Asp. In contrast, no
Asp/Glu residuewas found at the corresponding position of the
DmGSTD/E/T proteins, other than Nobo (Fig. 3, C, E, and F).
Consistent with the amino acid composition, EST inhibited the
enzymatic activity of the African malaria mosquito Anopheles
gambiae Nobo (AgNobo), but not that of the DmGSTE6 or
DmGSTE9 recombinant protein (Fig. 3G). Furthermore, aswell
as DmNoboD113A, a point mutation of AgNobo at Asp-111 to
Ala attenuated inhibitory activity of EST against its enzymatic
activity (Fig. S7). These results suggest that Nobo proteins uti-
lize Asp-113 to recognize their target compounds as a common
feature and that Asp-113 serves a biological role.

Asp-113 is essential for Drosophila melanogaster
embryogenesis

Finally, we examined whether Asp-113 is essential for any in
vivo biological function of DmNobo. We utilized a CRISPR-
Cas9–based knock-in strategy to generate a nobo allele
encoding a D113A point mutation (nobo3�FLAG-HA-D113A). We
found that no trans-heterozygousmutantD. melanogasterwith
nobo3�FLAG-HA-D113A and the complete loss-of–nobo function
allele (noboKO) (18) survived to the adult stage (Table 1). By
performing a detailed developmental stage analysis, we identi-
fied no first-instar larvae or later-staged insects with the
nobo3�FLAG-HA-D113A/noboKO genotype. These results indi-
cate that the nobo3�FLAG-HA-D113A/noboKO genotype is embry-
onic lethal. We also found that nobo3�FLAG-HA-D113A/noboKO

embryos exhibit an undifferentiated cuticle phenotype (Fig. 5,
A andB) and a failure of head involution (Fig. 5,C andD). These
phenotypic characteristics were very similar to the feature of
Halloweenmutants, such as noboKO/noboKO homozygotes (18).
We confirmed that the protein level of Nobo3�FLAG-HA-D113A

was comparable to that of Nobo3�FLAG-HA-WT (Fig. 5, E and F),
suggesting that the phenotypes were because of loss of protein
function, but not impaired gene expression. Taken together,
these results show that Asp-113 of DmNobo serves a biological
function in normal development from the embryonic stage to
the adult stage.

Discussion

In this study, we employed an integrated experimental
approach, involving in silico, in vitro, and in vivo analyses
to unravel the structure-function relationship of the ecdys-
teroidogenic GST protein, Nobo. GSTs are widely expressed in
all eukaryotes and are also massively duplicated and diversified
(24). Among them, the Nobo family of GST proteins is strictly
required for ecdysteroid biosynthesis in insects. Importantly,
the lethality of nobomutation in D. melanogaster is rescued by
overexpressing nobo orthologues, but not by overexpressing
non–nobo-type gst genes involved in detoxification and pig-
ment synthesis (18). This fact strongly indicates that, when
compared with canonical GSTs, Nobo proteins must possess a
unique structural property that makes Nobo specialized for
ecdysteroid biosynthesis. Regarding this point, this study is sig-
nificant in that we found that the unique acidic amino acid,
Asp/Glu-113, is crucial for the in vivo function of Nobo. It
should be noted that, besides Asp/Glu-113, other amino acids
constituting the H-sites are also highly conserved among 21
Nobo proteins (Fig. 3, A, B, and D). These common features
imply that the Nobo proteins might share an identical endoge-
nous ligand for the H-site in the ecdysteroidogenic tissues
among the species.
An endogenous ligand for Nobo remains a mystery. This

study, however, provides some clues for considering candidates
for an endogenous ligand. First, it is very likely that the ligand
forms a hydrogen bond with the O�/O� atom of Asp/Glu-113,
given that the nobo D113A point mutation was embryonic
lethal and the complete loss-of-function nobo phenocopy in
mutant D. melangaster. Second, considering the complemen-
tary shape between the H-site and EST, it seems reasonable to
predict that the endogenous ligand(s) is at least similar in shape
to steroids. This prediction is also supported by the fact that
Nobo acts in ecdysteroidogenic tissues where steroidal mole-
cules are enriched. One steroid that possesses these features is
cholesterol. Evidence from our previous study suggests that
nobomay be involved in cholesterol transport and/or metabo-
lism in ecdysteroidogenic tissues (17–19). Very interestingly,
an MD simulation indeed predicted that cholesterol can stably
bind to theH-site of DmNobo via a hydrogen bond between the
hydroxyl group of cholesterol (C3 position) and Asp-113 of
DmNobo (Fig. S8). However, paradoxically, it seems that cho-
lesterol contains no site for a chemical reaction with GSH by
DmNobo. It is possible that Nobo might serve as a carrier or a
transporter for the ligand in cells, possibly cholesterol, as sev-
eral classes ofGSTs have been shown to exhibit “ligandin” func-
tion (32), which might be an initial step of the ecdysteroid
biosynthesis pathway. Currently, we have failed in multiple

Figure 3. Consensus amino acid residues in the H-sites of Nobo orthologues. A, amino acid-sequence alignment of the H-site residues of 21 Nobo
orthologues. These sequences were aligned using COBALT and manually edited, based on the crystal structure of DmNobo. The accession numbers of
H. armigera_1 and _2 are XP_021192638.1 and A0A2W1BRE1, respectively. B, frequencies of amino acid residues forming the H-sites of 21 Nobo. The frequen-
cieswere calculatedusing LOGO.C, conservation ratios ofH-site residues amongNoboproteins aremapped to the tertiary structure ofDmNobo.D, amino acid
sequence alignment of the H-site residues of DmGSTE. Asp-113 of DmNobo is colored in green. E, frequencies of amino acid residues forming the H-sites of
GSTD/E/T proteins. The frequencies were calculated using LOGO. F, conservation ratios of H-site residues among GSTD/E/T proteins including Nobo proteins
(Fig. S3A and Table S2) are mapped to the tertiary structure of DmNobo. G, EST-dependent inhibition of the GSH conjugation activities of DmNobo, AgNobo,
DmGSTE6, and DmGSTE9. 3,4-DNADCF was used as an artificial fluorescent substrate. Each relative activity is defined as the ratio of activity, when compared
with the respective proteins without EST. All of the data points in triplicate assays are indicated. The values of IC50 were 2.33 (� 0.08) �M for DmNobo, 2.07
(� 0.36) �M for AgNobo,�25 �M for DmGSTE6, and�25 �M for DmGSTE9.
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Figure 4. Asp-113 is essential forDmNobobinding to EST.A, EST-dependent inhibition of theGSH conjugation activity of DmNoboWT (cyan) andDmNobo
D113A (red). 3,4-DNADCFwas used as an artificial fluorescent substrate. In each case, the relative activity is defined as the ratio of activity, when comparedwith
DmNoboWTwithout EST. All of the data points in triplicate assays are shown. B, sensorgrams of surface plasmon resonance analysis of DmNobo proteinswith
EST. DmNoboWT or DmNobo D113Awas immobilized to a sensor chip, and solutions containing a series of EST concentrations were applied in presence of 1
mMGSH. C, kinetic parameters of DmNobo proteins. Catalytic activity (*) and IC50 of EST (†) indicate 3,4-DNADCF-specific GSH conjugation activity and the IC50
of EST against 3,4-DNADCF–specificGSHconjugation activity, respectively. Values inparentheses indicate S.D. from triplicate assays (‡).D–F, in silicoevaluation
of the contributionofAsp-113 to the interactionbetweenDmNoboandEST.MDsimulationsof theDmNoboWTorDmNoboD113Acomplexwith EST andGSH
in a TIP3P-watermodelwere carried out at 300 K for 100 ns. These simulationswere performed in triplicate.D, MDmodels at 0 ns of DmNobowith EST andGSH
(blue), DmNobo D113A with EST and GSH (magenta), and the crystal structure of DmNobo_EST-GSH (EST-GSH_Xtal, gray). The upper models are shown from
above theEST ligand, and the lowermodels are rotated90° from theuppermodels. Hydrogenatomsarenot shown. E,MDmodels ofDmNoboWT_EST-GSHand
DmNoboD113A_EST-GSH from72.6 ns to 90.0 ns. F, distance betweenO� of Asp-113 of DmNoboWTor C� of DmNoboD113A and theO3 atomof EST at each
frame.
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attempts to detect DmNobo-cholesterol complexes via crystal-
lographic analyses, and further experiments are needed for
clarify any interaction between Nobo and cholesterol.
The activities of insect ecdysteroids can be disrupted in vivo

using chemical agonists and antagonists of the ecdysone recep-
tor, some of which are also utilized as insecticides (33). How-
ever, chemical compounds that specifically inhibit ecdysteroid
biosynthesis are not available. This study provides the first
structural information for guiding the development of efficient
Nobo inhibitors, whichmight serve as seed compounds for new
insecticides in the future. However, it should be noted that EST
and estrogenic chemical compounds are often recognized as
dangerous endocrine-disrupting chemicals against wild ani-

mals (34). Therefore, although EST is a prominent inhibitor of
Nobo, a practical compound that can be utilized as an actual
insecticidemust display no estrogenic activity. To consider this
problem, it is important to note a difference in the EST-recog-
nition patterns between DmNobo and the mammalian estro-
gen receptor alpha (ER�) protein (35–38). The details of the
EST-ER� interaction were investigated using the crystal struc-
tures of human ER� in an EST-bound form (35, 39). In ER�,
Glu-353 interacts with the O3 atom of EST, Phe-404 interacts
with the A-ring of EST via a CH/	 interaction, His-524 inter-
actswith theO17 atomof EST, and hydrophobic residues inter-
act with the steroid nucleus. Each of these recognition patterns
were found in DmNobo such as a hydrogen bond betweenAsp-
113 and O3 atom of EST and an SH/	 interaction between Cys
residue of GSH and the A-ring of EST, except for a hydrogen
bond with the O17 atom of EST (Fig. S9). Given this difference,
we expect that a Nobo-specific, nonestrogenic chemical com-
pound can be developed. Currently, we are pursuing large-scale
computational calculations to select chemical compounds that
satisfy those conditions and an in vitro enzymatic assay to
examine DmNobo inhibition.
We emphasize that this report is the first to describe the

physical interactions between aHalloween protein and a potent
inhibitor at the atomic level. Our interdisciplinary approach
will also be applicable for Nobo proteins other thanD. melano-
gaster, such as disease vector mosquitos and the agricultural
pest moths, and might be a viable strategy for developing new
insecticides useful for human societies.

Experimental procedures

Protein expression and purification

The protein-expression plasmid pCold-III (Takara Bio Inc.,
Kusatsu, Japan) was used to express recombinant GST proteins
in Escherichia coli. Coding sequences (CDSs) of D. melano-
gaster nobo (CG4688, Dmnobo), gste6 (CG17530, Dmgste6),
gste9 (CG17534, Dmgste9), and A. gambiae gste8 (AGAP009190,
Agnobo) were amplified by the polymerase chain reaction (PCR)
using complementary DNA derived from D. melanogaster lar-
vae and A. gambiae larvae. The primers used for PCR were
nobo, forward (5�-CAGTCATATGATGTCTCAGCCCAAG-
CCGATTTTG-3�), nobo, reverse (5�-CTCGAGCTACTCCA-
CCTTCTCGGTGACTACCG-3�), GSTe6, forward (5�-CATA-
TGATGGTGAAATTGACTTTATACGG-3�), GSTe6, reverse
(5�-TCTAGATCATGCTTCGAATGTGAAATT-3�), GSTe9,
forward (5�-CATATGATGGGAAAATTAGTACTGTACGG-
3�), GSTe9, reverse (5�-TCTAGATTACACAATCTTTGTGA-
TCTTCG-3�), agnobo, forward (5�-GGTACCATGATTCTG-
TACTACGACGAGGTCAGC-3�), and agnobo, reverse (5�-
AAGCTTCTACAGCTTAATCTTTCCCGCTAAATG-3�). The
nobo CDS was subcloned between the NdeI and XhoI restric-

Table 1
Viability of nobo3�FLAG-HA-D113A/noboKO knock-in animals
Cy� and Cy� indicate animals with straight wings and curly wings, respectively. †N.D. indicates not determined.

Background Knock-in gene
Mating w; noboKO/CyO-GFP

(female)�
Number of adults

Cy� (Cy�)
Number of first instar larvae
without GFP (with GFP)

noboKO nobo3�FLAG-HA-WT w; nobo3�FLAG-HA-WT/CyO-GFP (male) 83 (172) N.D.†
nobo3�FLAG-HA-D113A w; nobo3�FLAG-HA-D113A/CyO-GFP (male) 0 (187) 0 (157)
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C D
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nobo

Merge

Merge

Sro

Sro

HA

HAE

F

hetero. nobo homo.

nobo /+

3xFLAG-HA-D113A 3xFLAG-HA-D113A

3xFLAG-HA-WT

nobo /+3xFLAG-HA-D113A

Figure5. invivoanalysesofD113A.AandB, dark-field imagesof embryonic
cuticles from nobo3�FLAG-HA-D113A (A) heterozygotes (nobo3�FLAG-HA-D113A/
CyO) and (B) homozygotes (nobo3�FLAG-HA-D113A/nobo3�FLAG-HA-D113A). C and
D, anti-FasIII antibody staining to visualize overall embryo morphologies. C,
nobo3�FLAG-HA-D113A heterozygotes. D, nobo3�FLAG-HA-D113A homozygotes.
The bracket indicates defective head involution. E and F, immunohisto-
chemistry for the ring glands from nobo3�FLAG-HA-D113 (E) heterozygous and
nobo3�FLAG-HA-D113A (F) heterozygous third-instar larvae. Green and magenta
represent the immunostaining observed with anti-HA and anti-Shroud (Sro)
antibodies, respectively. Sro was detected as a marker of the prothoracic
gland. Scale bars, 100 �m for A–D and 50 �m for E and F.
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tion enzyme sites in pCold-III to generate the pCold-III_
DmNoboWTvector. The gste6 and gste9CDSswere subcloned
between the NdeI and XbaI sites in pCold-III. It should be
noted that pCold-III added a translation enhancing element
(MNHKV) at the N terminus of each of DmNobo, AgNobo,
DmGSTE6, and DmGSTE9 proteins.
Expression vectors forDmNoboD113A andAgNoboD111A

were constructedby inversePCR–based site-directedmutagenesis.
The entire pCold-III_DmNobo WT and pCold-III_AgNobo
WT plasmids were amplified by inverse PCR using a KOD-
Plus-Mutagenesis Kit (Toyobo Co., Ltd, Osaka, Japan) using
pairs of the oligonucleotides, 5�-CCAGTGATTTTATGTCG-
GCGATTGTCCGCC-3� and 5�-CACGTCGGAACAAAAAG-
GAGCATTCGAAGA-3� for DmNobo D113A, and 5�-CGC-
TGCGGAAGTTATGCGTAAAATC-3� and 5�-CGCTGA-
AACAAACAGCCGTTGTTG-3� for AgNobo D111A, as
amplification primers. The E. coli strain DH5� was trans-
formed with the DpnI-digested PCR products. The plasmids
were purified using a FastGene Plasmid Mini Kit (NIPPON
Genetics Co., Ltd., Tokyo, Japan). Those DNA sequences were
confirmed by Sanger sequencing with one of the following
sequencing primers: 5�-ACGCCATATCGCCGAAAGG-3� or
5�-GGCAGGGATCTTAGATTCTG-3�.
DmNobo, AgNobo, D. melanogaster GSTE6 (DmGSTE6),

andD. melanogasterGSTE9 (DmGSTE9)were expressed in the
E. coli strain BL21(DE3) (Merck) and purified via GSH-affinity
column chromatography, followed by size-exclusion column
chromatography. E. coli BL21(DE3) cells were transformed
with the plasmids, and then the transformed cells were cultured
in LBmedium supplementedwith 50�g/ml ampicillin at 37 °C.
When the A600 of the culture reached�0.6, protein expression
was induced with 0.3 mM isopropyl �-D-1-thiogalactopyrano-
side. The E. coli cells were cultured at 18 °C overnight and then
harvested. The harvested cells were suspended in lysis buffer
(300 mM NaCl, 25 mM Tris-HCl, pH 8.0, 1 mM CHAPS, 1 mM

DTT) and lysed for 2 min by sonication using a VP-305 Ultra 5
Homogenizer (TAITEC), using an output of 7 and a duty of
40%. The lysate was fractionated by centrifugation at 15,000�
g for 30 min at 4 °C, and the supernatant was applied to a GSH-
affinity column containing a 10-ml bed volume of GSH Sephar-
ose 4B (GEHealthcare). After the columnwaswashedwith lysis
buffer, the proteins were eluted with 50 ml of elution buffer
(140 mM NaCl, 25 mM Tris-HCl, pH 8.0, 1 mM CHAPS, 1 mM

DTT, 10 mM GSH). The eluent for DmNobo D113A was con-
centrated to 2ml and fractionatedwith a Superdex 200 increase
10/300 size-exclusion column (GEHealthcare) connected to an
ÄKTA FPLC system (GE Healthcare) or those for DmNobo
WT, DmGSTE6, DmGSTE9, AgNobo WT, and AgNobo
D111A were concentrated to 5 ml and fractionated with
HiLoad Superdex 200 16/600 column (GE Healthcare) (Fig.
S10,A andB). The columnswere equilibratedwith a buffer (150
mM NaCl, 25 mM Tris-HCl, pH 8.0, 1 mM DTT). DmNobo
D113A protein was eludedwith the same buffer at a flow rate of
0.2 ml/min and others were eluted at a flow rate of 1.0 ml/min.
The purity and quality of final products were validated by SDS-
PAGE and Coomassie Brilliant Blue staining (Fig. S10C). The
peak fractions were concentrated to 15 mg/ml and stored at
�80 °C. The protein concentrations of DmNobo, DmGSTE6,

DmGSTE9, and AgNobo were measured with a NanoDrop
ND-1000 spectrophotometer (Thermo Fisher Scientific)
using extinction coefficients (�280) of 0.671�M�1�cm�1,
1.274�M�1�cm�1, 1.128�M�1�cm�1, and 1.100�M�1�cm�1,
respectively.

Crystallization

The Protein Crystallization System (40) was used for the ini-
tial crystallization screening of DmNobo (16). In total, 384 con-
ditions were examined using the Crystal Screen 1 & 2, Index,
PEG/Ion, or PEG/Ion 2 kits from Hampton Research (Aliso
Viejo, CA), or theWizard I & II kit fromMolecular Dimensions
(Suffolk,UK).DmNobowas crystallized at 20 °C in the presence
of 25% (w/v) PEG3350 in 100mMBis-Tris (pH 5.5; index 42), or
45% (v/v) PPG 400 in 100 mM Bis-Tris (pH 6.5; index 58). The
crystallization conditions were optimized by changing the pH
and the concentration of the precipitation agent, resulting in
two types of crystals, DmNobo I and II. DmNobo I crystals were
obtained from a buffered solution containing 27.5% (w/v) PEG
3350 in 100 mM MES-NaOH (pH 5.4), and DmNobo II crystals
were obtained from a buffered solution containing 42.5% (v/v)
PPG400 in 100mMBis-Tris (pH 6.4). Crystals of substrate com-
plexes were prepared by soaking the DmNobo II crystals in an
artificial mother liquor (42.5% (w/v) PPG 400 in 100 mM Bis-
Tris, pH 6.4) containing 10 mM EST, with or without 1 mM

GSH, for 6 h.

Crystal structure determinations

Crystals were picked up with proper size of MicroLoops
(MiTeGen, New York), flash frozen in liquid nitrogen, and
packed in Uni-Pucks (Molecular Dimensions). Diffraction data
were collected at beamline BL-1A in the Photon Factory (Tsu-
kuba, Japan) and at beamline X06SA in the Swiss Light Source.
The diffraction datasets collected at the Photon Factory
were automatically processed and scaled using XDS (41),
POINTLESS (42), andAIMLESS (43) on PReMo (44), and those
collected at the Swiss Light Source were processed and scaled
using XDS and AIMLESS. Crystallographic statistics are sum-
marized in Table S1.
Phases for DmNobo_Apo_1 (PDB ID: 6KEL) data collected

from DmNobo I crystals were determined by the molecular
replacement method with MOLREP (45) using the crystal
structure of DmGSTE7 (PDB ID 	 4PNG) as a search model.
Other crystal structures were determined by the molecular
replacement method using the crystal structure of DmNo-
bo_Apo_1 as a search model. Molecular models were initially
refined with REFMAC5 (46). The models were manually built
using COOT (47) and further refined with PHENIX.REFINE
(48) repeatedly. The C-terminal four residues could not be
modeled because of poor electron density. In this study, the
crystal structure of DmNobo_Apo_2 (PDB ID: 6KEM) deter-
minedwith aDmNobo II crystal was used as theDmNobo_Apo
structure when making comparisons with other crystal struc-
tures. mFo � DFc omit maps for ligands were calculated using
PHENIX.REFINEwith a simulated annealing protocol. Interac-
tions between DmNobo and GSH or EST were analyzed using
PISA (49). The volume of the cavity in DmNobo was calculated
using the Channel Finder program in 3V (50), with 4-Å radius
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for the outer probe and a 1-Å radius for the inner probe. The
volumes of GSH or EST were calculated using the Volume
Assessor program in 3V, with a 2-Å radius for each probe. The
RMSD from a least squares fitting among the DmNobo struc-
tures was calculated with GESAMT (51). Atom pairs within a
4.0-Å distance were defined as making direct contacts. All
molecular graphics were prepared using the PyMOLMolecular
Graphics System, version 1.7.6 (Schrödinger, NY).

In vitro GST assay

In vitro GST assays with 3,4-DNADCF were performed as
described previously (23). The stock solutions of DmNoboWT
and DmNobo D113A were 200 ng/ml each in solution A (2 mM

GSH, 100 mM sodium phosphate buffer, pH 6.5, 0.01% Tween
20). Decreasing concentrations of DmNoboWT and DmNobo
D113A, ranging from 200 ng/ml to 0.19 ng/ml, were prepared
by 2-fold serial dilution with solution A. The DmNobo dilution
series was mixed with an equal volume of solution B (100 mM

sodium phosphate buffer, pH 6.5, with 2 �M 3,4-DNADCF in
0.2% DMSO as a co-solvent) in each well of a 96-well plate to
initiate the catalytic reaction of DmNobo. The GSH-conju-
gated product was excited at 485 nm, and the fluorescence
intensity at 535 nm (Fmeasured) was measured every 30 s for 20
min with an infinite 200 PRO instrument (Tecan, Zurich, Swit-
zerland). The fluorescence intensity (Ft) in the reactionmixture
without DmNobo (Fbg) was subtracted as the background sig-
nal (Ft	 Fmeasured� Fbg). Themaximum fluorescence intensity
(Fmax) was the fluorescence intensity that was reached as a pla-
teau. The amount of product in each well (Pt) at the measured
time (t) was calculated as Pt (�mol) 	 Ft/Fmax � 200 �l � 1
�mol/liter. The rate of product formation (Prate, �mol/min)
was obtained by linear least squares fitting between Pt and t.
The specific activity of DmNobo (�mol/min/mg protein) was
defined as Prate/[protein concentration]. The assay was per-
formed in triplicate.

GST activity-inhibition assay

EST was dissolved in DMSO to a concentration of 2.5 mM.
The 2.5 mM EST solution was diluted to 50 �M EST in solution
C (2 mMGSH, 100mM sodium phosphate buffer, pH 6.5, 0.01%
Tween 20, 2% DMSO, and 50 ng/ml DmNobo WT, 50 ng/ml
DmNobo D113A, 100 ng/ml AgNoboWT, 100 ng/ml AgNobo
D111A, 35 ng/ml DmGSTE6, or 300 ng/ml DmGSTE9). A dilu-
tion series of EST, ranging from 50 to 0.19 �M, was prepared by
2-fold serial dilution with solution C. One hundred microliters
of each EST solution in the dilution series was mixed with an
equivalent amount of solution B in each well of a 96-well plate.
Fmeasured values were measured after 3 min, as described under
“In vitroGST assay.” The fluorescence intensity detected in the
absence of EST and DmNobo (Fbg) was subtracted as the back-
ground in all experiments (F	 Fmeasured� Fbg). F at 0 s (F0) was
subtracted from F at the measured time (s) (Ft	 F� F0).
The relative activity was calculated as F30_[I]/F30_[0], where [I]

and [0] indicate the EST concentrations. The relative activity
was plotted against each EST concentration. A fitting curvewas
calculated based on a plot generated from the following equa-
tion when IC50 andHill constant (n) were approximated as 1.00
and 1.00, respectively, using KaleidaGraph version 4.5.1 (Syn-

ergy Software, Reading, PA): Relative activity (%) 	 1/(1 �
([EST]/IC50)n)) � 100. The IC50 value was estimated based on
the fitting curve. The assay was performed in triplicate.

Phylogenetic analysis

Nineteen amino acid sequences of DmNobo orB. moriNobo
orthologues were found using BLASTP (52) to search theNCBI
nonredundant protein database. In addition, a Nobo ortho-
logue in Helicoverpa armigera was found in the UniProt
Knowledgebase. The accession numberswereXP_021192638.1
for H. armigera GSTE14-like isoform X2, A0A2W1BRE1 for
H. armigera uncharacterized protein, XP_022126447.1 for
Pieris rapae GSTE14-like, XP_022837694.1 for Spodoptera
lituraGSTE14-like isoform X2, PCG75296.1 forHeliothis vire-
scens hypothetical protein B5V51_11931, XP_013196516.1 for
Amyelois transitella GST1, XP_001658748.2 for A. aegypti
GSTE14, XP_319963.1 for A. gambiae GSTE8, KXJ68754.1
for Aedes albopictus hypothetical protein RP20_CCG001852,
ETN60212.1 for Anopheles darlingi GSTE, KFB39334.1 for
Anopheles sinensis AGAP009190-PA-like protein, XP_
001868776.1 for Culex quinquefasciatus, KOB78695.1 for
Operophtera brumata GST, AIL29314.1 for Cnaphalocrocis
medinalis GSTE5 partial region, XP_014368559.1 for Papilio
machaon GSTE14-like, XP_013137131.1 for Papilio polytes
GST1–1-like, NP_001299034.1 for Papilio xuthus GST1–1,
NP_001292431.1 for an uncharacterized protein Plutella xylos-
tella, ABY66602.1 for B. mori GSTE14, and OWR47941.1 for
Danaus plexippus. Two nobo orthologues were found for
H. armigera in the database.
For phylogenetic analysis of insect GSTD/E/T proteins, pre-

viously described amino acid sequences were obtained from
the UniProt Knowledgebase, NCBI protein database, and
MonarchBase (18, 53–55). Amino acid sequences (503) were
aligned with COBALT (56), and the resulting sequence align-
ment was used for cluster analysis with CLANS (57). A major
cluster included 372 amino acid sequences, including those of
GSTD/E/T proteins and other GST proteins (Table S5). A phy-
logenetic tree was drawn with COBALT, using the 372 GSTs
and a neighbor-joining algorithm.We identified 371 sequences
with a Grishin-sequence difference of 0.9, including 151
GSTDs, 178GSTEs, and 42GSTTs.We also identified 21Nobo
proteins among the GSTEs.
To calculate the amino acid frequencies, the obtained align-

ment was manually edited based on the known crystal struc-
tures, using Jalview (58). The amino acid frequencies were cal-
culated and illustrated with WebLOGO version 3.7.4 (59).

SPR assay

Surface plasmon resonance wasmeasured at 25 °C using Bia-
core T200 instrumentwith aCM5 sensor chip (GEHealthcare).
DmNobo WT or the DmNobo D113A protein was used as a
ligand, and EST was used as an analyte in PBS containing 1%
DMSO, in the presence or absence of 1 mM GSH as a running
buffer.
The Biacore T200 system with a CM5 sensor chip was filled

with the running buffer. The ligands were immobilized on the
activated CM5 sensor chip in an acetate buffer (pH 5.0) using a
purchased amine-coupling kit (GEHealthcare) to reach 6500 res-
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onance units. The same process was performed in the absence of
proteins in one lane on the chip as a background lane.
An EST dilution series was prepared by serial dilution. An

EST stock solution (100 mM EST in DMSO) was diluted with
running buffer to a concentration of 20 �M. The 20 �M EST
solution was serially diluted by two thirds with running buffer
17 times, and the running buffer in the absence of ESTwas used
as the 0-�M EST sample. The analyte was flowed onto the sen-
sor chip for 60 s and allowed to dissociate for 180 s.
EST concentrations of 20.000, 13.333, 8.889, 5.926, 3.951,

2.634, 1.756, 1.171, 0.780, 0.520, 0.347, 0.231, 0.154, 0.103,
0.069, 0.046, 0.030, 0.020, and 0.014 �M were used to calculate
itsKd. The backgroundwas subtracted from the sensorgrams of
the protein-immobilized lanes (sensorgrams shown in Fig. 3B).
The Kd values of EST for DmNobo WT and DmNobo D113A
were evaluated with Biacore T200 Evaluation Software, using
data from triplicate assays.

FMO calculations

Ab initio FMO calculations (60–62) were performed on the
crystal structures of the DmNobo_Apo, DmNobo_EST-GSH,
DmNobo_GSH, and DmNobo_EST complexes. Although
DmNobo is a homodimer, only the monomeric structure was
utilized for the FMO calculations. Intersubunit interactions
were therefore neglected in this study. The crystal structures
were modified before performing the FMO calculations. First,
all crystal water molecules, except for one that interacts with
the carbonyl oxygens of Glu in GSH and Pro-58, and the O

atom of Ser-56 of DmNobo (Fig. 2A, water in yellow), were
deleted from the crystal structures. Second, assignment of the
protonation state and the addition of hydrogen atomswere per-
formed using the Protonate 3D function of the Molecular
Operating Environment program package (Chemical Comput-
ing Group, Montreal, Canada). Note that the carboxyl group of
Asp-113was assigned to be ionized. Then, energyminimization
of hydrogen atoms was performed with the Amber10:EHT
force field. The protonated states of His-55 and His-71 were
assumed to be positively charged to form hydrogen bonds with
GSH. Then, FMO calculations for the monomeric DmNobo
structures were performed using ABINIT-MP software (63,
64). The second-orderMøller-Plesset perturbation (MP2) (65, 66)
method was used with the 6–31G* basis function as a theoretical
calculation level; namely, the FMO-MP2/6–31G* level of theory
was used. For the FMO calculations, DmNobo proteins and GSH
were fragmented intoaminoacidunitsatbondsbetweentheCand
C� atoms of the main chain. Each EST and water molecule was
treatedasasingle fragment.The fragmentationtreatmentmakes it
possible to easily calculate the electronic structure of the whole
complex and the IFIEs. The obtained IFIEs were further decom-
posed into four energy components, i.e. the ES, EX, CT�mix, and
DI components, using PIEDA (28, 29).

MD simulations

The structures of DmNobo WT_EST-GSH, DmNobo
D113A_EST-GSH, and DmNobo_cholesterol-GSH were pro-
cessed to assign bond orders and hydrogenation. The ioniza-
tion states of EST, cholesterol, and GSH at pH 7.0 � 2.0 were
predicted using Epik (67), and H-bond optimization was con-

ducted using PROPKA (68). Energy minimization was per-
formed in Maestro using the OPLS3 force field (69).
Preparation for MD simulations was conducted using

the Molecular Dynamics System Setup Module of Maestro
(Schrödinger, NY). DmNobo WT_EST-GSH and DmNobo
D113A_EST-GSH were subjected to energy minimization and
placed in an orthorhombic box with a buffer distance of 10 Å to
create a hydration model, and the TIP3P water model (70) was
used for the hydrationmodel. NaCl (0.15 M) served as the coun-
ter ion to neutralize the system.
The MD simulations were performed using Desmond soft-

ware, version 2.3 (Schrödinger, NY). The cutoff radii for van der
Waals and the time step, initial temperature, and pressure of
the system were set to 9 Å, 2.0 femtoseconds, 300 K, and
1.01325 bar, respectively. The sampling interval during the sim-
ulation was set to 10 picoseconds. Finally, we performed MD
simulations using the NPT ensemble for 100 ns.

Transgenic D. melanogaster insects and genetics

D.melanogaster flies were reared on standard agar-cornmeal
medium at 25 °C under a 12 h/12 h light/dark cycle. The strain
harboring the D113A point mutation (nobo3�FLAG-HA-D113A),
as well as the control WT strain (nobo3�FLAG-HA-WT), was gen-
erated using a CRISPR-Cas9-mediated knock-in strategy (71).
Briefly, in each case, the genome of the starter yw strain was cut
at two sites around the nobo locus, and then homologous
recombination occurredwith appropriate plasmids carrying 5�-
and 3�-homology arms and an N-terminal 3� FLAG-HA
epitope tag. The pDCC6 plasmid was used for simultaneous
expression of both the Cas9 gene and guide RNA (72). The
following primer pairs were annealed and then ligated to Bbs
I-digested pDCC6, which led to the production of three
different guide RNA plasmids: 5�-CTTCGTTGGGCTGAGA-
CATTAAGTT-3� and 5�-AAACAACTTAATGTCTCAGCC-
CAAC-3� for Cutter#1, 5�-CTTCGTTACGACGAGCGCAG-
TCCGC-3� and 5�-AAACGCGGACTGCGCTCGTCGT-
AAC-3� for Cutter#2, and 5�-CTTCGCCGACGTGACAGT-
GATTTTA-3� and 5�-AAACTAAAATCACTGTCACGTC-
GGC-3� for Cutter#3. The pUC19-based plasmids carrying
the homology arms and epitope tags, designated pDonor[KI]-
{CG4688_LA}:{3�FLAG/HA/nobo}:{CG4688_RA} and pDonor
[KI]-{CG4688_LA}:{3�FLAG/HA/nobo*D113A}:{CG4688_RA},re-
spectively, were artificially synthesized by VectorBuilder, Inc
(Chicago). The entire DNA sequence of each plasmid is shown
in Fig. S11 and Fig. S12. To generate the nobo3�FLAG-HA-WT

strain, the Cutter#1, Cutter#2, and pDonor[KI]-{CG4688_LA}:
{3�FLAG/HA/nobo}:{CG4688_RA} plasmids were injected
into yw embryos. To generate the nobo3�FLAG-HA-D113A

strain, the Cutter#1, Cutter#3, and pDonor[KI]-{CG4688_LA}:
{3�FLAG/HA/nobo*D113A}:{CG4688_RA} plasmids were in-
jected to yw embryos. The proper knock-in strains were iden-
tified and characterized, essentially as described previously
(73). DNA sequences surrounding the knock-in regions were
confirmed by Sanger sequencing.
We found that nobo3�FLAG-HA-WT homozygous flies were

fully viable, whereas nobo3�FLAG-HA-D113A homozygous flies
displayed embryonic lethality. We utilized nobo3�FLAG-HA-D113A
heterozygous and homozygous embryos for cuticle preparation
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and immunostaining. To formally rule out the possibility that
the embryonic lethality was because of anonymous deleterious
mutations other than nobo3�FLAG-HA-D113A, we counted the
number of trans-heterozygous flies with a nobo knockout
(noboKO) from a previous report (18), as follows. Heterozygous
nobo3�FLAG-HA-WT, nobo3�FLAG-HA-D113A, and nobo-knockout
(noboKO) alleles were balanced with CyO carrying Actin5C:
gfp cassette (CyO-GFP). Either nobo3�FLAG-HA-WT/CyO-GFP
flies or nobo3�FLAG-HA-D113A/CyO-GFP flies were crossed
with noboKO/CyO-GFP flies. The trans-heterozygous flies
(nobo3�FLAG-HA-WT/noboKO or nobo3�FLAG-HA-D113A/noboKO)
should exhibit no GFP signals. We found that GFP-negative
nobo3�FLAG-HA-WT/noboKO embryos hatched normally and
developed into adults without any abnormalities, whereas
nobo3�FLAG-HA-D113A/noboKO embryos did not.

Cuticle preparation and immunostaining

Embryonic cuticle preparation was performed as described
previously (74). Immunostaining for whole-mount embryos
was conducted as described previously (18). A mouse anti-
FasIII mAb 7G10 (1:20 dilution) (Developmental Studies
Hybridoma Bank, Iowa City, IA) and an anti-mouse IgG anti-
body conjugated with Alexa Fluor 488 (1:200 dilution) (Life
Technologies) were used for immunostaining the embryos. For
immunostaining of the brain-ring gland complex in third-in-
star larvae, we first crossed nobo3�FLAG-HA-WT homozygous
females or nobo3�FLAG-HA-D113A/CyO-GFP females with Ore-
gon-R WT males. Third-instar larvae of the heterozygous
offspring (nobo3�FLAG-HA-WT/� or nobo3�FLAG-HA-D113A/�)
were dissected and then immunostained as described previ-
ously (75). The antibodies used for the brain-ring gland com-
plex included a rat anti-HA high-affinity mAb (3F10, 1:20 dilu-
tion) (Roche), a guinea pig anti-Shroud antibody (76) (1:200
dilution), an anti-rat IgG antibody conjugated with Alexa Fluor
488 (1:200 dilution) (Life Technologies), and an anti-guinea pig
IgG antibody conjugated with Alexa Fluor 555 (1:200 dilution)
(Life Technologies). Fluorescence images were obtained using
an LSM700 microscope (Carl Zeiss).
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The X-ray data and coordinates presented in this paper were
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