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Stepwise pathnet: a layer-by-
layer knowledge-selection-based 
transfer learning algorithm
Shunsuke imai, Shin Kawai & Hajime nobuhara

Some neural network can be trained by transfer learning, which uses a pre-trained neural network as 
the source task, for a small target task’s dataset. the performance of the transfer learning depends 
on the knowledge (i.e., layers) selected from the pre-trained network. At present, this knowledge is 
usually chosen by humans. the transfer learning method pathnet automatically selects pre-trained 
modules or adjustable modules in a modular neural network. However, pathnet requires modular 
neural networks as the pre-trained networks, therefore non-modular pre-trained neural networks are 
currently unavailable. consequently, pathnet limits the versatility of the network structure. to address 
this limitation, we propose Stepwise pathnet, which regards the layers of a non-modular pre-trained 
neural network as the module in pathnet and selects the layers automatically through training. in an 
experimental validation of transfer learning from InceptionV3 pre-trained on the ImageNet dataset to 
networks trained on three other datasets (CIFAR-100, SVHN and Food-101), Stepwise PathNet was up 
to 8% and 10% more accurate than finely tuned and from-scratch approaches, respectively. Also, some 
of the selected layers were not supported by the layer functions assumed in pathnet.

A neural network is a machine learning method, and it requires a relatively large labeled training dataset. This 
requirement has been met by transfer learning1. For example, a large dataset of labeled photographs both with and 
without cats are needed to train a neural network that recognizes cats in photographs. When the task involves rare 
animals, it may by hard to obtain a sufficiently large training dataset. Transfer learning reduces the required size of 
the training dataset for the target task, which addresses this problem. To this end, it exploits the knowledge gained 
by a pre-trained neural network. Learning by the pre-trained neural network (called the source task) constitutes 
the first learning task of the transfer learning. The training dataset is then reduced in size for the second learning 
task (i.e., the target task).

Some machine learning methods must be appropriately initialized to ensure their high performance. In 
pre-training on deep belief networks2 and self-taught learning3, the initial parameters are obtained by unsu-
pervised learning. Similarly, the performance of a convolutional neural network (CNN) can be improved by 
fine-tuning the initial pre-trained parameters4,5. Transfer learning is efficient when the target task has a scarce 
dataset6, but can actually decrease the performance of a pre-trained CNN. Such a performance decline is called 
“negative transfer”7. After fixing its parameters, the pre-trained layer of a CNN behaves as a feature extractor. 
Reportedly, increasing the number of adjustable layers to be learned (including learning by fine-tuning) associates 
an excessive number of parameters with the dataset, leading to the well-known overfitting problem. Moreover, 
the performance depends on the positions and number of layers to be fixed8. Fixing-based methods are expected 
to avoid the overfitting problem. When the training dataset of the target task is scarce, overfitting caused by an 
excessive number of parameters (i.e. an overly complex model) can be regularized using a joint Bayesian method 
for face verification (rather than a CNN) for transfer learning9.

Interpreting and understanding neural networks is important for transfer learning10. A CNN extracts the 
low-dimensional information (e.g., color and edges) in its bottom layer, and the higher-dimensional (i.e., 
label-specific) information in its top layer11. The parameters learned in the bottom layer are often used for trans-
fer learning. However, a transfer learning approach that learns the first plural convolution layers and the last fully 
connected layer, while fixing all other layers, proved the most effective learning technique for Bengali numeral 
classification (NumtaDB) in the VGG1612 architecture pre-trained on the ImageNet database13,14. Therefore, 
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during transfer learning of a CNN, selection supported by the function of the layer is unlikely to be the most 
effective selection method.

A method that automatically chooses the pre-trained CNNs has been proposed7, but this method does not 
perform layer-by-layer selection. PathNet15 is a transfer learning method that automatically selects small layers 
(modules) in the neural network (top left of Fig. 1). In PathNet, the selections from the fixed pre-trained modules 
and the adjustable modules in the transfer learning on modular neural networks are optimized by a tournament 
selection algorithm (TSA) based on a microbiological genetic algorithm16. A modular neural network contains 
a layer of multiple modules (small layers that may be convolutional, fully connected, or residual). In each layer, 
a subset of the modules in the layer is selected for learning and inference. The TSA optimizes this module selec-
tion by (i) maximizing the accuracy of the training data and (ii) training the adjustable modules using a normal 
neural-network optimizer [e.g., stochastic gradient descent (SGD)]. In this way, PathNet can automatically select 
the pre-trained knowledge as modules during transfer learning. In the modular neural network, which PathNet’s 
TSA deals with, one layer consists of multiple paralleled modules. In other words, the modular neural network 
can be considered the particular case of the general neural networks whose layers are divided into multiple small 
layers (i.e., modules). Therefore, pre-trained neural networks which PathNet uses must be a modular neural 
network, and a non-modular CNN is hard to be used even if the module supports a convolutional layer. The cur-
rent PathNet is available for modular neural networks only, and needs to be extended to general neural network 
structures (such as CNNs).

We proposed Stepwise PathNet17, an extension of PathNet on the purpose of using CNNs and other 
non-modular neural networks. Stepwise PathNet achieves the purpose by regarding layers as modules (bottom 
of Fig. 1). During transfer learning, the original PathNet uses TSA to select multiple modules from each layer 
of the pre-trained modular neural network. This constructs the same number of the layer with the pre-trained 
network, but each layer-shape will differ. Our Stepwise PathNet selects a pre-trained (fixed-parameter) layer or 
an adjustable layer at each layer during transfer learning so that the TSA can construct the same architecture 
of the pre-trained neural networks. In Stepwise PathNet, TSA treats a layer as a module, i.e., every two types 
of layers are the same layer-shape from the pre-trained network. The TSA optimizes selecting them for each 
layer to construct the same architecture of the pre-trained neural networks. Moreover, the modified TSA treats 
this layer as a module; that is, one layer must always be selected from one of two types of layers (pre-trained or 
adjustable). Therefore, Stepwise PathNet exploits PathNet’s selecting the pieces of knowledges in the layer to 
select them on layer-by-layer. The present experiment evaluates transfer learning to CIFAR-10018 from Inception 
V319 pre-trained on ImageNet13. The effects of modifying the TSA (i.e., accelerating and stabilizing the learning 
curve) are assessed, and the accuracy, speed, and stability of the learning are compared between (i) random and 
pre-trained initial values and (ii) fine-tuning and from-scratch without transfer learning. The main contributions 
and novelty of this work are summarized below.

•	 The presented transfer learning algorithm, which based on layer-by-layer selection and an evolutionary com-
putation, is applicable to huge complex models in recent deep learning and the neural network field.

•	 The relations between layer selection and transfer-learning performance on CNNs are determined.

Results
experimental conditions. The transfer-learning performance of Stepwise PathNet using a CNN was eval-
uated on three datasets under InceptionV319 (see Fig. 2) pre-trained to ImageNet.

Model architecture. InceptionV3 is an upgraded version of GoogLeNet20, which won the Imagenet Large Scale 
Visual Recognition Challenge in 2014 (ILSVRC2014). InceptionV3 is a popular pre-training model for transfer 
learning. It contains 154 layers, including 95 weighted (convolutional and fully connected) layers. In the present 

Figure 1. Comparison between PathNet and Stepwise Pathnet.
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experiment, InceptionV3 was pre-trained on ImageNet. This massive, general object-recognition dataset contains 
1,000 classes and over one million images, and is used in the ILSVRCs.

Dataset and augmentation. The datasets used in the evaluation are as follows:

•	 CIFAR-10018: A 100-class general object-recognition dataset with 500 + 100 images (training + test) in each 
class.

•	 SVHN21: A 10-class dataset for digit recognition in real images with 73,257 + 26,032 images (training + test) 
in each class.

•	 Food-10122: A 101-class food-recognition dataset with 750 + 250 images (training + test) in each class.
All images in the CIFAR-100, SVHN, and Food-101 datasets were refitted to the input size of InceptionV3. 
To this end, they were resized to 224 × 224 by the bilinear method. The following augmentations were 
applied in all cases:

•	 random rotation in [ 15, 15] deg−
•	 width and height shifts in −[ 10,10]%
•	 horizontal flipping.

These augmentations were applied in real-time when the images were loaded in the training process (i.e., 
loaded to the batch).

Evaluations in the present experiment. The present experiment performed three evaluations: (i) a comparison 
among the TSAs, (ii) a comparison of Stepwise PathNet and other learning algorithms, and (iii) an evaluation of 
the layer selection. In the first evaluation, we compared

•	 “proposal 1”: Stepwise PathNet with PathNet’s original TSA,
•	 “proposal 2”: Stepwise PathNet with the modified TSA,
•	 “proposal 3”: Stepwise PathNet with the modified TSA + pre-trained initialization.

The adjustable layers were initialized using pre-trained weights in modified TSA + pre-trained initiali-
zation (“proposal 3”), and using random variables in the original and modified TSAs (“proposal 1” and 
“proposal 2” respectively). In the second evaluation, we compared Stepwise PathNet with

•	 “conventional 1”: from scratch,
•	 “conventional 2”: fine-tuning.

We also compared Stepwise PathNet with modified TSA + pre-trained initialization (“proposal 3”). 
Fine-tuning is a transfer learning method that uses the pre-trained weights (except those in the top layers) 
as initial parameters. Therefore, in the present experiment, we replaced the top 94th layer of Inception V3 
(a 1,000-node fully connected layer) by a 100-node fully connected adjustable layer, and initialized it with 
random variables. All other layers were initialized with parameters that were pre-trained on ImageNet. 
From-scratch means that all parameters in InceptionV3 were initialized randomly, with no transfer learn-
ing. Note that in one epoch of fine-tuning and from-scratch, the training dataset was scanned once, where-
as in one generation of Stepwise PathNet, it was scanned twice. For this reason, the x-axis of the learning 
curve was labeled not as “epoch”, but as “number of scanned datasets”. All algorithms were optimized by 
Adam23 with the Keras default parameters24. Each algorithm was iterated up to 60 scans of the dataset (i.e., 
60 epochs in fine-tuning and from-scratch, and 30 generations in Stepwise PathNet). Also, each algorithm 
was executed on a Geforce GTX1080Ti graphics card with a batch size of 16. In all cases, the Stepwise 
PathNet parameters were set as follows:

•	 Number of geopaths: 20 (unchanged from the original PathNet)
•	 Length of geopath: 95 (number of weighted layers)
•	 Probability of mutation: 1

95
.

Figure 2. InceptionV3 model (the numbers in the conv2d and Fully Connected layers refer to the geopath 
indices, and the gray areas indicate the individual inception modules).
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The third evaluation was a heatmap evaluation of the layer selection on 10 learning samples selected from the 
three datasets.

comparison of tSAs. Table 1 presents the results of all algorithms on the three datasets. On average, pro-
posal 2 (with random initialization) was up to 15.8% more accurate than proposal 1 (with random initialization), 
but its accuracy dropped by 0.1% on SVHN. Proposal 3 outperformed proposal 2 in all cases, indicating a positive 
effect of the pre-trained initialization. Also, proposal 3 was 20.8% more accurate (on average) than proposal 1 
on CIFAR-100. The improvements of average test accuracy in proposal 3 over that of proposal 1 were ranked as 
follows: CIFAR-100 (+20.8%) > Food-101 (+13.2%) > SVHN (+1%).

Below we summarize the differences between the training and test accuracies on the CIFAR-100, SVHN, and 
Food-101 datasets, respectively:

•	 proposal 1: 3.1%, 3.8%, 24.8%,
•	 proposal 2: 10.2%, 4.3%, 37.2%,
•	 proposal 3: 12.7%, 3.4%, 29.8%.

These results reveal an overfitting tendency of the TSA modifications.
Figure 3 shows the learning curves and box plots on the CIFAR-100 dataset. Similar results were achieved on 

the other datasets. The solid lines in the learning curves are the averages of the accuracies on 10 learning samples, 
and the filled regions delineate the ranges between the minimum and maximum values. The learning curves 
confirm the positive effect of the TSA modifications; namely, the learning curves of proposal 2 (green) are more 
accurate and stable than those of proposal 1 (blue). Furthermore, proposal 3 (red) is more accurate and stable 
than proposal 2, as evidenced by the smaller and more elevated filled areas on the plots. The stability trends of the 
three TSAs, with proposals 1 and 3 being the least and most stable respectively, are also mirrored in the boxplots.

comparison with other learning algorithms. As shown in Table 1, conventional 2 outperformed con-
ventional 1 (in terms of accuracy) on all datasets. Therefore, transfer learning from ImageNet is compatible with 
the CNN training except for Food-101, on which the improvement was only 0.1%. The boxplots in the bottom 
panels of Figs. 3 and 4 confirm that conventional 2 was more stable than conventional 1. The training accuracy of 
Food-101 was higher in conventional 1 than in conventional 2 (94.0% versus 92.8%), possibly because negative 
transfer degraded the performance of the latter. As indicated in the test-accuracy boxplot at the bottom right of 
Fig. 5, the instability of conventional 2 was exacerbated by proposal 3 (i.e., proposal 3 was the most unstable learn-
ing method on the Food-101 dataset). However, proposal 3 achieved the highest test accuracy among the three 
methods on Food-101, indicating more overfitting in this method than in the other methods.

On the CIFAR-100 and SVHN datasets, proposal 3 was more accurate than from-scratch and fine-tuning. 
Moreover, proposal 3 better avoided the overfitting problem on CIFAR-100 than on SVHN (the most overfitted 
dataset, but obtaining the highest test accuracy by proposal 3). The boxplots in the right bottom panels of Figs. 4 
and 6 confirm similar stabilities of the test accuracies in proposal 3 and conventional 2.

Meanwhile, the learning curves in Figs. 4, 5 and 6 show that proposal 3 converged faster than the other 
algorithms.

Layer selections (geopaths). Figure 7 shows the heatmaps constructed for proposal 3 on the three data-
sets. The numbers in the colored rectangles mean the number of times that the corresponding layer was selected 
as an adjustable layer among the 10 transfer learnings, e.g., the first element “5” on the top heatmap means that 
the 0th layer of InceptionV3 was selected as an adjustable layer in five out of 10 transfer learnings from ImageNet 
to CIFAR-100 by proposal 3. Note that the last layer (layer 94) was always selected as an adjustable layer to ensure 
compatibility with the number of classes in the target task. The selection distributions do not behave like the layer 
function in PathNet, which tends to select the bottom and top layers as the pre-trained and adjustable layers, 
respectively. The heatmaps show this aberrant behavior visually.

Discussion
comparison of tSAs. Proposals 1 and 2 both achieved a 96% test accuracy on the SVHN dataset, suggesting 
that this dataset is unsuitable for the performance comparison. The positive effect of the modification was con-
firmed on CIFAR-100 and Food-101, in which proposal 2 was decidedly more accurate than proposal 1. Relative 
to the original method (proposal 1), the TSA modification decreased the number of changes in the layer selec-
tions among the transfer-learning layers, thereby accelerating the training from the results.

Proposal 3, which initializes the adjustable layers using pre-trained weights, outperformed proposal 2. The 
benefit of this approach might be similar to that of fine-tuning in general CNNs. Proposal 3 adopts the same strat-
egy as related works mentioned in the Introduction8,14. Combining the “fixing” and “fine-tuning” approaches also 
appears to deliver high performance in Stepwise PathNet. The superiority of pre-trained initialization, which is 
the difference between proposals 2 and 3, is attributed to the inter-layer dependence. In proposal 2, this depend-
ence is ignored whenever an adjustable layer is selected, because the adjustable layers are initialized with random 
weights. However, proposal 3 usually maintains the dependence even when an adjustable layer is selected, because 
it is initialized with pre-trained values (at least in the first generation). The inter-layer dependence is lost only 
when a layer selected as a pre-trained layer was selected as an adjustable layer in the previous generation. In future 
work, the inter-layer dependence should be more strictly enforced for situations in which it critically affects the 
performance.

The source task ImageNet and CIFAR-100 are general object-recognition datasets that should be compati-
ble with transfer learning. The Food-101 dataset, which contains images of foods on dishes, is considered as a 
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CIFAR-100 SVHN Food-101

loss
train 
accuracy [%] loss

test accuracy 
[%] loss

train 
accuracy [%] loss

test accuracy 
[%] loss

train accuracy 
[%] loss

test accuracy 
[%]

Stepwise PathNet 
with unmodified 
TSA (proposed 1)

0 1.398 60.3 1.499 62.5 0.028 99.1 0.244 95.6 1.433 61.6 2.359 52.0

1 0.632 80.5 1.197 70.6 0.024 99.2 0.264 95.3 0.287 91.2 2.532 59.1

2 1.624 54.9 1.893 56.6 0.02 99.4 0.262 95.5 0.246 92.3 2.929 57.1

3 1.226 64.8 1.763 61.1 0.019 99.4 0.288 94.6 0.308 90.8 2.953 52.8

4 0.846 74.8 1.116 69.8 0.029 99.0 0.265 95.2 0.143 95.9 2.663 59.3

5 1.166 66.2 1.497 60.5 0.022 99.4 0.318 95.3 2.517 37.4 2.057 46.8

6 2.461 36.5 2.820 34.4 0.023 99.3 0.274 95.4 0.737 78.6 2.438 53.6

7 2.551 50.8 3.055 46.2 0.075 97.7 0.242 94.9 0.236 93.2 2.803 53.6

8 1.285 63.2 1.396 61.7 0.030 99.1 0.238 95.5 0.944 73.9 1.917 57.3

9 0.88 73.9 1.144 69.4 0.019 99.4 0.292 95.1 0.162 95.1 3.082 53.4

Ave. 1.465 61.3 1.804 58.2 0.030 99.1 0.266 95.3 0.762 79.4 2.517 54.6

Stepwise PathNet 
with modified 
TSA (proposed 2)

0 0.658 79.6 1.429 68.9 0.013 99.5 0.328 95.2 0.112 96.5 3.587 52.2

1 0.357 88.6 0.836 79.7 0.013 99.6 0.29 95.7 0.081 97.5 2.620 63.7

2 0.605 81.0 1.276 70.3 0.018 99.5 0.305 94.9 0.08 97.7 3.080 56.8

3 0.266 91.4 1.054 78.3 0.018 99.4 0.283 95.5 0.065 97.9 2.457 66.0

4 0.681 79.0 1.194 71.6 0.018 99.4 0.501 93.9 0.076 97.6 3.065 60.3

5 0.513 83.8 0.989 76.0 0.015 99.6 0.297 95.6 0.078 97.6 2.560 66.7

6 0.375 88.0 1.092 75.6 0.014 99.6 0.295 95.5 0.063 98.0 2.789 65.1

7 0.338 88.9 0.863 78.8 0.013 99.6 0.308 95.6 0.077 97.5 3.123 57.9

8 0.738 77.4 1.335 66.9 0.015 99.6 0.299 95.2 0.149 95.3 3.549 52.1

9 0.96 71.5 1.643 64.9 0.015 99.6 0.302 95.5 0.069 97.9 3.054 61.3

Ave. 0.503 84.2 1.119 74.0 0.015 99.5 0.323 95.2 0.087 97.3 2.981 60.1

Stepwise PathNet 
with modified 
TSA + pre-
trained 
initialization 
(proposed 3)

0 0.186 93.9 0.962 81.1 0.009 99.7 0.251 96.3 0.044 98.6 2.131 71.6

1 0.272 91.0 1.178 76.5 0.011 99.6 0.257 96.3 0.057 98.2 2.048 72.1

2 0.230 92.3 0.986 80.9 0.014 99.6 0.269 96.2 0.083 97.4 2.178 67.6

3 0.326 89.3 1.051 76.8 0.009 99.7 0.295 96.0 0.054 98.4 2.580 66.7

4 0.262 91.4 0.934 80.8 0.011 99.7 0.256 96.4 0.066 97.9 2.374 68.8

5 0.188 93.7 0.907 81.1 0.012 99.6 0.235 96.2 0.075 97.6 2.238 69.2

6 0.235 92.3 1.077 77.9 0.013 99.7 0.304 95.9 0.097 97.0 2.804 62.4

7 0.334 89.1 1.082 76.2 0.012 99.7 0.240 96.6 0.087 97.3 2.510 64.5

8 0.233 92.3 0.994 79.3 0.009 99.7 0.234 96.8 0.059 98.1 2.478 69.5

9 0.286 90.6 0.927 79.5 0.010 99.7 0.258 96.4 0.057 98.3 2.424 66.6

Ave. 0.252 91.7 1.019 79.0 0.011 99.7 0.260 96.3 0.069 97.8 2.371 68.0

From scratch 
(conventional 1)

0 0.092 97.1 2.23 63.9 0.048 98.4 0.193 96.1 0.204 93.5 1.834 66.9

1 0.056 98.2 2.038 70.2 0.061 98.1 0.329 94.3 0.182 94.1 1.553 71.2

2 0.059 98.1 1.949 69.7 0.052 98.3 0.236 95.4 0.194 93.8 2.016 64.6

3 0.074 97.7 1.940 67.6 0.054 98.2 0.240 95.3 0.178 94.3 1.884 67.1

4 0.064 97.9 1.895 70.1 0.054 98.3 0.207 95.4 0.204 93.5 1.782 66.9

5 0.062 98.0 2.114 67.6 0.058 98.2 0.200 95.8 0.179 94.2 1.801 67.3

6 0.056 98.2 1.988 70.3 0.051 98.4 0.301 94.8 0.184 94.1 1.843 67.6

7 0.067 97.8 1.902 69.6 0.063 98.1 0.251 95.1 0.175 94.4 1.697 68.7

8 0.058 98.1 1.970 69.8 0.059 98.1 0.225 95.3 0.181 94.2 1.680 69.3

9 0.059 98.1 1.958 71.1 0.060 98.1 0.196 95.8 0.182 94.1 1.934 66.1

Ave. 0.065 97.9 2.003 68.7 0.056 98.2 0.242 95.3 0.187 94.0 1.788 67.7

Fine-tuning 
(conventional 2)

0 0.062 98.0 1.763 73.4 0.021 99.3 0.254 95.5 0.247 92.1 1.557 70.5

1 0.078 97.5 1.897 71.0 0.020 99.3 0.220 96.1 0.244 92.2 1.891 66.8

2 0.061 98.0 1.778 73.1 0.023 99.2 0.233 95.8 0.205 93.5 1.997 67.2

3 0.077 97.5 2.157 68.5 0.020 99.4 0.215 96.3 0.252 91.8 1.963 65.7

4 0.073 97.6 1.802 72.7 0.021 99.3 0.237 95.9 0.223 92.9 1.784 68.1

5 0.075 97.5 1.847 72.2 0.020 99.3 0.227 96.0 0.209 93.4 1.892 67.6

6 0.069 97.7 1.749 73.3 0.020 99.4 0.211 96.1 0.197 93.7 1.706 69.5

7 0.069 97.8 1.815 72.4 0.023 99.3 0.218 96.0 0.216 93.0 1.890 67.4

8 0.065 97.8 2.132 69.0 0.024 99.3 0.224 96.0 0.235 92.6 1.797 67.2

9 0.084 97.3 2.757 64.2 0.021 99.3 0.213 96.2 0.206 93.5 1.758 69.1

Ave. 0.070 97.7 1.882 71.7 0.021 99.3 0.226 96.0 0.225 92.8 1.831 67.8

Table 1. Results of the compared algorithms and datasets.
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Figure 3. (CIFAR-100) Learning curves and boxplots for the original PathNet TSA (proposal 1), the modified 
TSA (proposal 2) and the modified TSA with pre-trained initialization (proposal 3). The solid lines represent 
the average values and the filled regions represent the minimum-to-maximum ranges.

Figure 4. (SVHN) Comparison of learning curves and box plots for Stepwise PathNet with the modified TSA 
(proposal 3), the from-scratch approach (conventional 1), and fine-tuning (conventional 2).
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Figure 5. (Food-101) Comparison of learning curves and box plots for Stepwise PathNet with the modified 
TSA (“Ours”: blue), fine-tuning (green), and the from-scratch approach (red).

Figure 6. (CIFAR-100) Comparison of learning curves and box plots for Stepwise PathNet with the modified 
TSA (proposal 3), the from-scratch approach (conventional 1), and fine-tuning (conventional 2).
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sub-domain of general object recognition, but accurate classification results on this dataset are difficult to obtain. 
Therefore, we consider two cases: (i) the required information is not available in ImageNet and (ii) some informa-
tion from ImageNet disturbs the training on Food-101 (negative transfer).

The overfitting on Food-101 is caused by the low compatibility between ImageNet and Food-101, as men-
tioned above. To untangle this problem, more evaluation of many datasets that are compatible or not compatible 
with ImageNet are required. Another problem is how to measure the distance (or equivalent quantity) between 
datasets (domains). Proposal 1 on Food-101 appears to avoid the overfitting problem, but this observation is an 
artefact caused by insufficient training (as evidenced by the wider variation in the training loss and accuracy than 
in the other algorithms). Overfitting in proposal 1 might be discussed by iterating the proposal through more 
generations, but the present evaluation environment lacks sufficient memory for this task.

Proposal 3 outperformed proposal 2, despite abandoning the global optimization and collapsing into a local 
optimum for fast convergence on the geopath searching. The superior performance of proposal 3 might be attrib-
utable to the weight parameters on the adjustable layers, which can be tuned more deeply in proposal 3 than 
in proposal 2. Specifically, slight differences in the selection of layers are recoverable by tuning the parameters. 
Therefore, the performance at convergence might not strictly depend on the layer selection. Initialization with 
random weights for global searching might also explain the positive effect of the TSA modification. In future 
work, this idea could be evaluated by tuning the TSA hyperparameters (such as the number of geopaths and 
number of generations).

comparison with other learning algorithms. The poor compatibility between ImageNet and Food-101 
(as mentioned above) is also confirmed by the lower training accuracy in conventional 2 than in conventional 1. 
On the other hand, on CIFAR-100 and SVHN, which are considered to be compatible with ImageNet, conven-
tional 2 achieved stable and accurate learning. When the model and augmentations are unsuitable, Food-101 is 
difficult to train from ImageNet data. The consequent negative transfer destabilizes the test accuracy. Proposal 2, 
with its randomly initialized adjustable layers, can select all layers as adjustable. In this way, it can behave similarly 
to the from-scratch approach, and is expected to avoid negative transfer. Unfortunately, the results confirmed 
that proposal 2 cannot avoid negative transfer. On the Food-101 dataset, proposal 3 outperformed proposal 2 
even when negative transfer occurred. The pre-trained initialization in Stepwise PathNet is considered to benefit 
the learning regardless of whether the transfer is negative or positive, and is more effective for initialization (e.g., 
maintaining the inter-layer dependence) than pre-trained information.

A complex model with a huge number of adjustable parameters tends to be overfitted, as mentioned in the 
Introduction8,9. Proposal 3 exhibited the best overfitting avoidance on CIFAR-100, probably because selecting the 
pre-trained layers reduced the number of adjustable parameters. Proposal 3 adjusted total of 7.5 M parameters on 
average through 30 generations, while conventionals 1 and 2 adjusted total 1.3 G parameters through 60 epochs. 
As confirmed in the learning curves of the SVHN dataset (top panels of Fig. 4), conventional 2 and proposal 3 
both achieved over 80% test accuracy, meaning that the learning better resembled re-training than transfer learn-
ing. Interestingly, despite having fewer adjustable parameters than conventional 2, proposal 3 overfitted more 
extensively than the conventional method. Stepwise PathNet (proposals 1-3) aims to minimize the cross-entropy 
and maximize the training accuracy. This probably explains why proposal 3 overfits despite the reduced number 
of weight parameters in re-training (or excessive epochs). More specifically, TSA can fit more even if the loss 

Figure 7. Number of times that each layer was selected as an adjustable layer among 10 transfer learnings in 
proposal 3. The numbers are displayed in the centers of the colored rectangles (top: CIFAR-100, middle: SVHN, 
and bottom: Food-101).
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function (cross-entropy) is converged by changing the optimized geopath based on the training accuracy. It was 
confirmed that the variable geopath endures longest in SVHN.

As shown in the learning curves in Figs. 4–6, proposal 3 is supposed to converge to a sufficient accuracy earlier 
(after 30 scans) than conventional 1 and 2; however, stopping too early may destabilize the training. The filled 
areas in the learning curves of Stepwise PathNet were wide in the early scans (<10 scans) and narrowed as the 
number of scans increased. This trend, which was observed for all datasets, suggests that learning in Stepwise 
PathNet proceeds in two phases: (i) Optimization of the layer selection in the early scans, and (ii) fine-tuning of 
the weight parameters once the selection is determined to a sufficient extent. Note that these phases are not well 
delineated in Stepwise PathNet because they are not strictly separated in the implementation, and can change 
continuously. At least, if the number of generations is insufficient, the optimization is insufficient and the param-
eter tuning becomes confused, eventually destabilizing the training as observed in proposal 1.

Layer selections (geopaths). According to the theory of layer functions, the top layers are tuned while the 
bottom layers remain unchanged. However, this phenomenon was not observed in the present result. As men-
tioned above, the test accuracy did not strictly depend on the layer selection process. Of course, identifying the 
functions of the layers and correctly selecting the layers are maximally effective for transfer learning. However, 
in the case of a huge model with many layers and complicated connections, the functions of the layers are dif-
ficult to identify, and the selection becomes intractable. Although it offers only an approximate solution, the 
proposed Stepwise PathNet is a promising approach for handling massive networks with evolutionary behavior. 
Stepwise PathNet is applicable not only to CNNs but also to other neural network models (such as GANs and 
AutoEncoder). The potential of Stepwise PathNet needs investigating in further evaluations.

Methods
Related work: pathnet. Neural network. Here, we consider an image classification task in a neural net-
work. The neural network maps input images ∈ ×x M N  to output C-class logits ∈y [0, 1]C. The lth layer of the 
neural network (e.g., a convolutional or fully connected layer) can be expressed as the mapping

φ=y x( ), (1)l l l

where ∈ ×xl
M Nl l and ∈ ×+ +yl

M Nl l1 1. Iterating Eq. (1) through layers 1 to l (i.e., all layers of the neural network), 
a neural network with L layers can be expressed as (see Fig. 8)

φ φ φ φ φ= −  y x( ( ( ( ( ( )))))) (2)L L l1 2 1

φ φ φ= = Φ .��� � x x( ) ( ) (3)L 2 1

The training dataset  is expressed as the following set of pairs:

  ∑⊂
















∈ ∈ =






×

=
x y x y y, , [0, 1] , 1 ,

(4)
t M N t C

i

C

i
t( ) ( )

1

( )

where x is an input image and y(t) is a teacher signal (label), required for calculating the cross-entropy loss 
function

∑Φ = = − .
=

y x y yH H y y( , ( )) ( , ) log
(5)

t t

i

C

i i
t( ) ( )

1

( )

This function measures the distance H() between = Φy x( ) and y t( ). The learning process of the neural net-
work corresponds to solving an optimization problem that tunes the mappings φ = …l L{ : 1, 2, , }l  to minimize 
the sum of the loss functions in dataset :

∑ Φ .
∈

y xH( , ( ))
(6)x y

t

( , )

( )

t) ) 

Modular neural network. PathNet is based on a modular neural network composed of modules (Fig. 1). The set 
of modules l in the l th layer of PathNet is defined as

 ⊂ →× ×+ +m m{ : }, (7)l
M N M Nl l l l1 1 

where l  (i.e., the cardinality of l) is the number of modules. Each module m is configurable by the user. Note 
that only some of the modules in ′l are used. The set of used modules (called active modules) is a subset of l
:

′ ⊂ . (8)l l 

Note that the number of active modules ′l  is limited to  µ′ <l l, where µl is a configurable hyperparam-
eter. In the example given in the lower left panel of Fig. 8, ml2 is a non-active module, whereas ml1 and ml3 are 
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active modules. Therefore, we have = m m m{ , , }l l l l1 2 3 , and ′ = m m{ , }l l l1 3 . The mapping of the l th layer in 
the modular neural network

 φ →× ×+ +: (9)l
M N M Nl l l l1 1

can be expressed as

 
∑φ= =

′
.

∈ ′
y x xm( ) 1 ( )

(10)
l l l

l m
l

l

A module m( )⋅  is a tiny layer such as a simple perceptron fsp, skip layer fskip, or residual layer fres, respectively 
expressed as:

= = ⋅ +x W x bf f act{ ( ) ( )} (11)sp l ml l ml

= = ⋅ +x W x bf f{ ( ) } (12)skip l ml l ml

= = ⋅ + +x W x b xf f act{ ( ) ( ) } (13)res l ml l ml l

 Therefore, l can also be expressed as

  ∪ ∪⊂ ∈ ⊂ → .× ×+ +{ }} {m m f f f m m: } (14)l sp rnn skip
M N M Nl l l l1 1

As the activation function act(), we adopt the rectified linear unit (ReLU)25, expressed as

{act x x
x x

( ) 0 if 0
if 0 (15)

= <
≥ .

Figure 8. Mapping of a neural network (top), and comparison of the l th layer in a simple neural network and a 
modular neural network (bottom).
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Tournament selection algorithm. A modular neural network is learned using the TSA15, which is based on the 
microbial genetic algorithm16. The dual objectives are to minimize the loss function and maximize the accuracy 
by optimizing the active modules. An L-layer modular neural network is expressed by sets of active modules 
referring to ′l, namely

l L{ : 1, 2, , } (16)l= ′ = … . 

A geopath G is a set of gene expressions such as

gG l L{ : 1, 2, }, (17)l= = …

where ∈g {0, 1}l
l  expresses the inactive (0) and active (1) modules in the l th layer. In the example given in the 

bottom left panel in Fig. 8, module ml2 is inactive, whereas ml1 and ml3 are active, giving =g {1, 0, 1}l .
In the initialization step, the P geopaths expressed in Eq. (17) are generated randomly. Then

G G G G{ , , , } (18)t
P

( )
1 2= …

is defined as a set of geopaths at epoch (generation) =t 0.
Additionally, the set of all modules in the tth generation is taken as the set of selectable modules in the lth layer 

= …M l L( 1, 2, , )l , namely

= … .M M M{ , , , } (19)t
L

( )
1 2M

The ith module in the lth layer is defined as

∈ ⊂ .Mm M (20)li l
t( )

For simplicity, this module is sometimes written as ∈ Mmli
t( ). The weight of mli, which is a small layer in the 

neural network, is initialized by Eq. (11). The initialization is performed with a truncated normal and a constant, 
as in non-modular neural networks.

In the learning process, two geopaths are randomly selected from G t( ) as follows:

′ ′ ∈ .GG G, (21)t
1 2

( )

Referring to Eqs. (4) and (6), the cross entropies are summed as



y xF G H( ) ( , ( )),
(22)x y

t
1

( , )

( )

t( )
∑= Φ

∈

where Φ is the neural network corresponding to G. This sum is employed as the loss function for learning ′ ′G G,1 2. 
During the learning process, Eq. (22) is minimized by the SGD method. The accuracy of determining 
G and Gwin

t
lost

t( ) ( )  is then measured as




=
∈ = Φ

.
x y y x

F G( )
{( , ) argmax argmax ( )}

(23)

t t

2

( ) ( )

If ′ > ′F G F G( ) ( )2 1 2 2 , then G and Gwin
t

lost
t( ) ( )  are set as

= ′ = ′G G G G, , (24)win
t

lost
t( )

1
( )

2

and Glost
t( )  is overwritten and mutated. The set of geopaths

G G∪= ′ ′+ G G G G{ , }, ( \{ , }) (25)t
win

t
lost

t t( 1) ( ) ( ) ( )
1 2

is then updated at epoch +t 1.
The weight updates preferentially update the weights of the winning modules.
Defining the modular neural networks corresponding to Gwin

t( )  and Gloss
t( )  as win

t( )  and loss
t( )  respectively,  +t( 1) 

is updated as

∪∈ .m ( \ ) (26)li win
t

loss
t

win
t( ) ( ) ( )  

The modular neural network is learned by repeating the above learning process for = …t T1, 2, , .

Transfer learning using PathNet. Transfer learning reduces the size of a training dataset by utilizing the knowl-
edge in a pre-trained neural network. Transfer learning accomplishes two tasks: (i) the source task, which is 
learned by the pre-trained neural network, and (ii) the target task, which is performed on the training dataset. 
Here, we refer to the datasets of the source and target tasks as S( )  and T( ) , respectively, and define transfer 
learning as a learning method for the target task using a pre-trained neural network learned for the source task.

The modular neural networks of the source and target tasks in Eq. (16) are denoted as  S( ) and  T( ), respec-
tively. Transfer learning using PathNet constructs a modular neural network  T( ) for the target task using the 
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modular neural network S( )  pre-trained on the dataset  S( ) of the source task using the TSA. Here,  S( ) and 
T( )  have the same structure, i.e., the same number of layers and the same modules in each layer l. Therefore, the 

active modules of the source task  S( ) and target task  T( ) are subsets of l , expressed as

′ ′ ⊂ ., (27)l
S

l
T

l
( ) ( )  

In the learning process of the target task, when a module of the source task

 ∩∈ ′ ′m (28)l
S

l
T( ) ( )

is selected as an active module, its parameters are fixed during the SGD method.
In some transfer learning cases, the pre-trained neural network for the source task has been trained by a large 

computer. The pre-trained neural networks on the Internet are non-modular neural networks. Therefore, PathNet 
requires a mapping ψ between Eqs. (1) and (10); for instance,

   m m: { : } { { : }}M N M N M N M Nl l l l l l l l1 1 1 1ψ φ φ → → ⊂ → .× × × ×+ + + +

This expression shows that PathNet can extend the versatility of network structures.

proposed method: Stepwise pathnet. As mentioned in the previous subsection, the versatility of 
PathNet can be improved by relaxing the restrictions on the transfer learning processes, namely, that  S( ) and 
 T( ) have the same structure. This paper proposes Stepwise PathNet as an extension of PathNet. The proposed 
Stepwise PathNet regards each layer as a module.

Following Eq. (3), a pre-trained neural network is given as

φ φ φ φ= = Φ .��� ��� �y x x( ) ( )L
S

l
S S S S( ) ( )

2
( )

1
( ) ( )

In Stepwise PathNet, a layer is specified as the following module:

x xm( ) ( ) (29)l
S

l l
S

l
( ) ( )φ = .

The lth layer of the neural network T( )  of the target task is defined as

= ⊂ →× ×+ +m m m m{ , } { : }, (30)l
T

l
S

l
M N M N( ) ( ) l l l l1 1 

where ml
S( ) is the pre-trained (with a fixed parameter) layer, and ml is a layer with an adjustable parameter (see 

Fig. 1).
The set of active modules  ′ ⊂l

T
l
T( ) ( ) includes either ml

S( ) or ml:

 φ′ = = .m{ } { } (31)l
T

l
T

l
T( ) ( ) ( )

As ′ = 1l
T( ) , we have

φ= = .y x xm( ) ( ) (32)l l
T

l l
T

l
( ) ( )

Therefore, the non-modular neural network

φ φ φ φ φ= = Φ−� ��� ��� �y x x( ), ( ), (33)L
T

L
T

l
T T T T( )

1
( ) ( )

2
( )

1
( ) ( )

can be constructed by the proposed Stepwise PathNet. The proposed method removes the need for mapping ψ in 
Eq. (29). This relaxation is the contribution of Stepwise PathNet to the existing arsenal of neural network 
methods.

We now introduce an improved version of TSA () for use in Stepwise PathNet.
The proposed TSA differs from PathNet’s original algorithm in two aspects: (i) the initialization of the geopath 

and (ii) use of a selection method in the learning process in each epoch. When initializing the geopaths 
= …p P1, 2, , , the conventional method randomly selects ml

S( ) or ml, whereas the proposed method randomly 
selects ml

S( ) or ml after assigning the following weights:

•	 wp: weight of selecting the pre-trained layer ml
S( )

•	 ′w p: weight of selecting the adjustable layer ml,

where + ′ =w w 1p p . In addition, the weight wp of the pth geopath is given as

=
−
−

.w p
P

1
1 (34)p

These weights control the tendency of the layer selection at each geopath initialization. If > ′w wp p, the pth 
geopath initialization tends to select a pre-trained layer. This initialization varies the geopaths, enabling a more 
global search process. In other words, the proposed initialization method can seek an optimal solution more 
effectively than the original initialization. During the learning process in each epoch, the original method 
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randomly selects two geopaths, whereas the proposed method uses the winning geopath in the previous epoch 
and one randomly selected geopath:

′ = ∈ ′ ∈ .− −G GG G G, (35)win
t t t

1
( 1) 1

2

This selection method stabilizes and accelerates the learning process. The previous winning geopath can be 
overwritten only by a higher-scoring geopath, yielding a nearly monotonic increase in the learning curve and a 
speedy geopath convergence. At the =t 0 th epoch, the previous winning geopath is given as =− −G Gwin

t
win

( 1) ( 1); for 
example,

G G {(0), (0), , (0)} (36)win
( 1)

0= = … .−

Here, −Gwin
( 1) has only an adjustable layer, implying from- scratch training without transfer learning. Therefore, 

the learned geopath is expected to be more accurate than one learned from scratch.

conclusion
We proposed a new transfer learning algorithm (Stepwise PathNet) that addresses the problem of layer selection 
in CNN transfer learning. We also modified the TSA learning algorithm for Stepwise PathNet. The modified 
TSA and initialization of the adjustable layers with pre-trained values were experimentally evaluated in transfer 
learning from ImageNet learned by the InceptionV3 image classifier to three datasets (CIFAR-100, SVHN and 
Food-101) learned by Stepwise PathNet. By modifying the TSA and using pre-trained values in the adjustable 
layer, we achieved more stable and faster transfer learning than was possible with the original TSA and random 
initialization. Moreover, Stepwise PathNet with the modified TSA and pre-trained values outperformed both the 
fine-tuning and from-scratch approaches (improving the average test accuracies by up to 8% and 10%, respec-
tively), and its performance was largely independent of the layer selection. In future work, we will aim to (i) ana-
lyze and improve the stability of genetic-algorithm-based methods, (ii) analyze the layer-selection process, and 
(iii) investigate other domain settings, including difficult transfer-learning scenarios.
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