
1Scientific RepoRtS | (2020) 10:8132 | https://doi.org/10.1038/s41598-020-64165-3

www.nature.com/scientificreports

Stepwise pathnet: a layer-by-
layer knowledge-selection-based
transfer learning algorithm
Shunsuke imai, Shin Kawai & Hajime nobuhara

Some neural network can be trained by transfer learning, which uses a pre-trained neural network as
the source task, for a small target task’s dataset. the performance of the transfer learning depends
on the knowledge (i.e., layers) selected from the pre-trained network. At present, this knowledge is
usually chosen by humans. the transfer learning method pathnet automatically selects pre-trained
modules or adjustable modules in a modular neural network. However, pathnet requires modular
neural networks as the pre-trained networks, therefore non-modular pre-trained neural networks are
currently unavailable. consequently, pathnet limits the versatility of the network structure. to address
this limitation, we propose Stepwise pathnet, which regards the layers of a non-modular pre-trained
neural network as the module in pathnet and selects the layers automatically through training. in an
experimental validation of transfer learning from InceptionV3 pre-trained on the ImageNet dataset to
networks trained on three other datasets (CIFAR-100, SVHN and Food-101), Stepwise PathNet was up
to 8% and 10% more accurate than finely tuned and from-scratch approaches, respectively. Also, some
of the selected layers were not supported by the layer functions assumed in pathnet.

A neural network is a machine learning method, and it requires a relatively large labeled training dataset. This
requirement has been met by transfer learning1. For example, a large dataset of labeled photographs both with and
without cats are needed to train a neural network that recognizes cats in photographs. When the task involves rare
animals, it may by hard to obtain a sufficiently large training dataset. Transfer learning reduces the required size of
the training dataset for the target task, which addresses this problem. To this end, it exploits the knowledge gained
by a pre-trained neural network. Learning by the pre-trained neural network (called the source task) constitutes
the first learning task of the transfer learning. The training dataset is then reduced in size for the second learning
task (i.e., the target task).

Some machine learning methods must be appropriately initialized to ensure their high performance. In
pre-training on deep belief networks2 and self-taught learning3, the initial parameters are obtained by unsu-
pervised learning. Similarly, the performance of a convolutional neural network (CNN) can be improved by
fine-tuning the initial pre-trained parameters4,5. Transfer learning is efficient when the target task has a scarce
dataset6, but can actually decrease the performance of a pre-trained CNN. Such a performance decline is called
“negative transfer”7. After fixing its parameters, the pre-trained layer of a CNN behaves as a feature extractor.
Reportedly, increasing the number of adjustable layers to be learned (including learning by fine-tuning) associates
an excessive number of parameters with the dataset, leading to the well-known overfitting problem. Moreover,
the performance depends on the positions and number of layers to be fixed8. Fixing-based methods are expected
to avoid the overfitting problem. When the training dataset of the target task is scarce, overfitting caused by an
excessive number of parameters (i.e. an overly complex model) can be regularized using a joint Bayesian method
for face verification (rather than a CNN) for transfer learning9.

Interpreting and understanding neural networks is important for transfer learning10. A CNN extracts the
low-dimensional information (e.g., color and edges) in its bottom layer, and the higher-dimensional (i.e.,
label-specific) information in its top layer11. The parameters learned in the bottom layer are often used for trans-
fer learning. However, a transfer learning approach that learns the first plural convolution layers and the last fully
connected layer, while fixing all other layers, proved the most effective learning technique for Bengali numeral
classification (NumtaDB) in the VGG1612 architecture pre-trained on the ImageNet database13,14. Therefore,

Department of Intelligent Interaction Technologies, Graduate School of Systems and Information Engineering,
University of Tsukuba, 1-1-1 Tennoudai, Tsukuba, Ibaraki, 305-8573, Japan. e-mail: imai@cmu.iit.tsukuba.ac.jp;
kawai@cmu.iit.tsukuba.ac.jp; nobuhara@cmu.iit.tsukuba.ac.jp

open

https://doi.org/10.1038/s41598-020-64165-3
mailto:imai@cmu.iit.tsukuba.ac.jp
mailto:kawai@cmu.iit.tsukuba.ac.jp
mailto:nobuhara@cmu.iit.tsukuba.ac.jp
http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-020-64165-3&domain=pdf

2Scientific RepoRtS | (2020) 10:8132 | https://doi.org/10.1038/s41598-020-64165-3

www.nature.com/scientificreportswww.nature.com/scientificreports/

during transfer learning of a CNN, selection supported by the function of the layer is unlikely to be the most
effective selection method.

A method that automatically chooses the pre-trained CNNs has been proposed7, but this method does not
perform layer-by-layer selection. PathNet15 is a transfer learning method that automatically selects small layers
(modules) in the neural network (top left of Fig. 1). In PathNet, the selections from the fixed pre-trained modules
and the adjustable modules in the transfer learning on modular neural networks are optimized by a tournament
selection algorithm (TSA) based on a microbiological genetic algorithm16. A modular neural network contains
a layer of multiple modules (small layers that may be convolutional, fully connected, or residual). In each layer,
a subset of the modules in the layer is selected for learning and inference. The TSA optimizes this module selec-
tion by (i) maximizing the accuracy of the training data and (ii) training the adjustable modules using a normal
neural-network optimizer [e.g., stochastic gradient descent (SGD)]. In this way, PathNet can automatically select
the pre-trained knowledge as modules during transfer learning. In the modular neural network, which PathNet’s
TSA deals with, one layer consists of multiple paralleled modules. In other words, the modular neural network
can be considered the particular case of the general neural networks whose layers are divided into multiple small
layers (i.e., modules). Therefore, pre-trained neural networks which PathNet uses must be a modular neural
network, and a non-modular CNN is hard to be used even if the module supports a convolutional layer. The cur-
rent PathNet is available for modular neural networks only, and needs to be extended to general neural network
structures (such as CNNs).

We proposed Stepwise PathNet17, an extension of PathNet on the purpose of using CNNs and other
non-modular neural networks. Stepwise PathNet achieves the purpose by regarding layers as modules (bottom
of Fig. 1). During transfer learning, the original PathNet uses TSA to select multiple modules from each layer
of the pre-trained modular neural network. This constructs the same number of the layer with the pre-trained
network, but each layer-shape will differ. Our Stepwise PathNet selects a pre-trained (fixed-parameter) layer or
an adjustable layer at each layer during transfer learning so that the TSA can construct the same architecture
of the pre-trained neural networks. In Stepwise PathNet, TSA treats a layer as a module, i.e., every two types
of layers are the same layer-shape from the pre-trained network. The TSA optimizes selecting them for each
layer to construct the same architecture of the pre-trained neural networks. Moreover, the modified TSA treats
this layer as a module; that is, one layer must always be selected from one of two types of layers (pre-trained or
adjustable). Therefore, Stepwise PathNet exploits PathNet’s selecting the pieces of knowledges in the layer to
select them on layer-by-layer. The present experiment evaluates transfer learning to CIFAR-10018 from Inception
V319 pre-trained on ImageNet13. The effects of modifying the TSA (i.e., accelerating and stabilizing the learning
curve) are assessed, and the accuracy, speed, and stability of the learning are compared between (i) random and
pre-trained initial values and (ii) fine-tuning and from-scratch without transfer learning. The main contributions
and novelty of this work are summarized below.

•	 The presented transfer learning algorithm, which based on layer-by-layer selection and an evolutionary com-
putation, is applicable to huge complex models in recent deep learning and the neural network field.

•	 The relations between layer selection and transfer-learning performance on CNNs are determined.

Results
experimental conditions. The transfer-learning performance of Stepwise PathNet using a CNN was eval-
uated on three datasets under InceptionV319 (see Fig. 2) pre-trained to ImageNet.

Model architecture. InceptionV3 is an upgraded version of GoogLeNet20, which won the Imagenet Large Scale
Visual Recognition Challenge in 2014 (ILSVRC2014). InceptionV3 is a popular pre-training model for transfer
learning. It contains 154 layers, including 95 weighted (convolutional and fully connected) layers. In the present

Figure 1. Comparison between PathNet and Stepwise Pathnet.

https://doi.org/10.1038/s41598-020-64165-3

3Scientific RepoRtS | (2020) 10:8132 | https://doi.org/10.1038/s41598-020-64165-3

www.nature.com/scientificreportswww.nature.com/scientificreports/

experiment, InceptionV3 was pre-trained on ImageNet. This massive, general object-recognition dataset contains
1,000 classes and over one million images, and is used in the ILSVRCs.

Dataset and augmentation. The datasets used in the evaluation are as follows:

•	 CIFAR-10018: A 100-class general object-recognition dataset with 500 + 100 images (training + test) in each
class.

•	 SVHN21: A 10-class dataset for digit recognition in real images with 73,257 + 26,032 images (training + test)
in each class.

•	 Food-10122: A 101-class food-recognition dataset with 750 + 250 images (training + test) in each class.
All images in the CIFAR-100, SVHN, and Food-101 datasets were refitted to the input size of InceptionV3.
To this end, they were resized to 224 × 224 by the bilinear method. The following augmentations were
applied in all cases:

•	 random rotation in [15, 15] deg−
•	 width and height shifts in −[10,10]%
•	 horizontal flipping.

These augmentations were applied in real-time when the images were loaded in the training process (i.e.,
loaded to the batch).

Evaluations in the present experiment. The present experiment performed three evaluations: (i) a comparison
among the TSAs, (ii) a comparison of Stepwise PathNet and other learning algorithms, and (iii) an evaluation of
the layer selection. In the first evaluation, we compared

•	 “proposal 1”: Stepwise PathNet with PathNet’s original TSA,
•	 “proposal 2”: Stepwise PathNet with the modified TSA,
•	 “proposal 3”: Stepwise PathNet with the modified TSA + pre-trained initialization.

The adjustable layers were initialized using pre-trained weights in modified TSA + pre-trained initiali-
zation (“proposal 3”), and using random variables in the original and modified TSAs (“proposal 1” and
“proposal 2” respectively). In the second evaluation, we compared Stepwise PathNet with

•	 “conventional 1”: from scratch,
•	 “conventional 2”: fine-tuning.

We also compared Stepwise PathNet with modified TSA + pre-trained initialization (“proposal 3”).
Fine-tuning is a transfer learning method that uses the pre-trained weights (except those in the top layers)
as initial parameters. Therefore, in the present experiment, we replaced the top 94th layer of Inception V3
(a 1,000-node fully connected layer) by a 100-node fully connected adjustable layer, and initialized it with
random variables. All other layers were initialized with parameters that were pre-trained on ImageNet.
From-scratch means that all parameters in InceptionV3 were initialized randomly, with no transfer learn-
ing. Note that in one epoch of fine-tuning and from-scratch, the training dataset was scanned once, where-
as in one generation of Stepwise PathNet, it was scanned twice. For this reason, the x-axis of the learning
curve was labeled not as “epoch”, but as “number of scanned datasets”. All algorithms were optimized by
Adam23 with the Keras default parameters24. Each algorithm was iterated up to 60 scans of the dataset (i.e.,
60 epochs in fine-tuning and from-scratch, and 30 generations in Stepwise PathNet). Also, each algorithm
was executed on a Geforce GTX1080Ti graphics card with a batch size of 16. In all cases, the Stepwise
PathNet parameters were set as follows:

•	 Number of geopaths: 20 (unchanged from the original PathNet)
•	 Length of geopath: 95 (number of weighted layers)
•	 Probability of mutation: 1

95
.

Figure 2. InceptionV3 model (the numbers in the conv2d and Fully Connected layers refer to the geopath
indices, and the gray areas indicate the individual inception modules).

https://doi.org/10.1038/s41598-020-64165-3

4Scientific RepoRtS | (2020) 10:8132 | https://doi.org/10.1038/s41598-020-64165-3

www.nature.com/scientificreportswww.nature.com/scientificreports/

The third evaluation was a heatmap evaluation of the layer selection on 10 learning samples selected from the
three datasets.

comparison of tSAs. Table 1 presents the results of all algorithms on the three datasets. On average, pro-
posal 2 (with random initialization) was up to 15.8% more accurate than proposal 1 (with random initialization),
but its accuracy dropped by 0.1% on SVHN. Proposal 3 outperformed proposal 2 in all cases, indicating a positive
effect of the pre-trained initialization. Also, proposal 3 was 20.8% more accurate (on average) than proposal 1
on CIFAR-100. The improvements of average test accuracy in proposal 3 over that of proposal 1 were ranked as
follows: CIFAR-100 (+20.8%) > Food-101 (+13.2%) > SVHN (+1%).

Below we summarize the differences between the training and test accuracies on the CIFAR-100, SVHN, and
Food-101 datasets, respectively:

•	 proposal 1: 3.1%, 3.8%, 24.8%,
•	 proposal 2: 10.2%, 4.3%, 37.2%,
•	 proposal 3: 12.7%, 3.4%, 29.8%.

These results reveal an overfitting tendency of the TSA modifications.
Figure 3 shows the learning curves and box plots on the CIFAR-100 dataset. Similar results were achieved on

the other datasets. The solid lines in the learning curves are the averages of the accuracies on 10 learning samples,
and the filled regions delineate the ranges between the minimum and maximum values. The learning curves
confirm the positive effect of the TSA modifications; namely, the learning curves of proposal 2 (green) are more
accurate and stable than those of proposal 1 (blue). Furthermore, proposal 3 (red) is more accurate and stable
than proposal 2, as evidenced by the smaller and more elevated filled areas on the plots. The stability trends of the
three TSAs, with proposals 1 and 3 being the least and most stable respectively, are also mirrored in the boxplots.

comparison with other learning algorithms. As shown in Table 1, conventional 2 outperformed con-
ventional 1 (in terms of accuracy) on all datasets. Therefore, transfer learning from ImageNet is compatible with
the CNN training except for Food-101, on which the improvement was only 0.1%. The boxplots in the bottom
panels of Figs. 3 and 4 confirm that conventional 2 was more stable than conventional 1. The training accuracy of
Food-101 was higher in conventional 1 than in conventional 2 (94.0% versus 92.8%), possibly because negative
transfer degraded the performance of the latter. As indicated in the test-accuracy boxplot at the bottom right of
Fig. 5, the instability of conventional 2 was exacerbated by proposal 3 (i.e., proposal 3 was the most unstable learn-
ing method on the Food-101 dataset). However, proposal 3 achieved the highest test accuracy among the three
methods on Food-101, indicating more overfitting in this method than in the other methods.

On the CIFAR-100 and SVHN datasets, proposal 3 was more accurate than from-scratch and fine-tuning.
Moreover, proposal 3 better avoided the overfitting problem on CIFAR-100 than on SVHN (the most overfitted
dataset, but obtaining the highest test accuracy by proposal 3). The boxplots in the right bottom panels of Figs. 4
and 6 confirm similar stabilities of the test accuracies in proposal 3 and conventional 2.

Meanwhile, the learning curves in Figs. 4, 5 and 6 show that proposal 3 converged faster than the other
algorithms.

Layer selections (geopaths). Figure 7 shows the heatmaps constructed for proposal 3 on the three data-
sets. The numbers in the colored rectangles mean the number of times that the corresponding layer was selected
as an adjustable layer among the 10 transfer learnings, e.g., the first element “5” on the top heatmap means that
the 0th layer of InceptionV3 was selected as an adjustable layer in five out of 10 transfer learnings from ImageNet
to CIFAR-100 by proposal 3. Note that the last layer (layer 94) was always selected as an adjustable layer to ensure
compatibility with the number of classes in the target task. The selection distributions do not behave like the layer
function in PathNet, which tends to select the bottom and top layers as the pre-trained and adjustable layers,
respectively. The heatmaps show this aberrant behavior visually.

Discussion
comparison of tSAs. Proposals 1 and 2 both achieved a 96% test accuracy on the SVHN dataset, suggesting
that this dataset is unsuitable for the performance comparison. The positive effect of the modification was con-
firmed on CIFAR-100 and Food-101, in which proposal 2 was decidedly more accurate than proposal 1. Relative
to the original method (proposal 1), the TSA modification decreased the number of changes in the layer selec-
tions among the transfer-learning layers, thereby accelerating the training from the results.

Proposal 3, which initializes the adjustable layers using pre-trained weights, outperformed proposal 2. The
benefit of this approach might be similar to that of fine-tuning in general CNNs. Proposal 3 adopts the same strat-
egy as related works mentioned in the Introduction8,14. Combining the “fixing” and “fine-tuning” approaches also
appears to deliver high performance in Stepwise PathNet. The superiority of pre-trained initialization, which is
the difference between proposals 2 and 3, is attributed to the inter-layer dependence. In proposal 2, this depend-
ence is ignored whenever an adjustable layer is selected, because the adjustable layers are initialized with random
weights. However, proposal 3 usually maintains the dependence even when an adjustable layer is selected, because
it is initialized with pre-trained values (at least in the first generation). The inter-layer dependence is lost only
when a layer selected as a pre-trained layer was selected as an adjustable layer in the previous generation. In future
work, the inter-layer dependence should be more strictly enforced for situations in which it critically affects the
performance.

The source task ImageNet and CIFAR-100 are general object-recognition datasets that should be compati-
ble with transfer learning. The Food-101 dataset, which contains images of foods on dishes, is considered as a

https://doi.org/10.1038/s41598-020-64165-3

5Scientific RepoRtS | (2020) 10:8132 | https://doi.org/10.1038/s41598-020-64165-3

www.nature.com/scientificreportswww.nature.com/scientificreports/

CIFAR-100 SVHN Food-101

loss
train
accuracy [%] loss

test accuracy
[%] loss

train
accuracy [%] loss

test accuracy
[%] loss

train accuracy
[%] loss

test accuracy
[%]

Stepwise PathNet
with unmodified
TSA (proposed 1)

0 1.398 60.3 1.499 62.5 0.028 99.1 0.244 95.6 1.433 61.6 2.359 52.0

1 0.632 80.5 1.197 70.6 0.024 99.2 0.264 95.3 0.287 91.2 2.532 59.1

2 1.624 54.9 1.893 56.6 0.02 99.4 0.262 95.5 0.246 92.3 2.929 57.1

3 1.226 64.8 1.763 61.1 0.019 99.4 0.288 94.6 0.308 90.8 2.953 52.8

4 0.846 74.8 1.116 69.8 0.029 99.0 0.265 95.2 0.143 95.9 2.663 59.3

5 1.166 66.2 1.497 60.5 0.022 99.4 0.318 95.3 2.517 37.4 2.057 46.8

6 2.461 36.5 2.820 34.4 0.023 99.3 0.274 95.4 0.737 78.6 2.438 53.6

7 2.551 50.8 3.055 46.2 0.075 97.7 0.242 94.9 0.236 93.2 2.803 53.6

8 1.285 63.2 1.396 61.7 0.030 99.1 0.238 95.5 0.944 73.9 1.917 57.3

9 0.88 73.9 1.144 69.4 0.019 99.4 0.292 95.1 0.162 95.1 3.082 53.4

Ave. 1.465 61.3 1.804 58.2 0.030 99.1 0.266 95.3 0.762 79.4 2.517 54.6

Stepwise PathNet
with modified
TSA (proposed 2)

0 0.658 79.6 1.429 68.9 0.013 99.5 0.328 95.2 0.112 96.5 3.587 52.2

1 0.357 88.6 0.836 79.7 0.013 99.6 0.29 95.7 0.081 97.5 2.620 63.7

2 0.605 81.0 1.276 70.3 0.018 99.5 0.305 94.9 0.08 97.7 3.080 56.8

3 0.266 91.4 1.054 78.3 0.018 99.4 0.283 95.5 0.065 97.9 2.457 66.0

4 0.681 79.0 1.194 71.6 0.018 99.4 0.501 93.9 0.076 97.6 3.065 60.3

5 0.513 83.8 0.989 76.0 0.015 99.6 0.297 95.6 0.078 97.6 2.560 66.7

6 0.375 88.0 1.092 75.6 0.014 99.6 0.295 95.5 0.063 98.0 2.789 65.1

7 0.338 88.9 0.863 78.8 0.013 99.6 0.308 95.6 0.077 97.5 3.123 57.9

8 0.738 77.4 1.335 66.9 0.015 99.6 0.299 95.2 0.149 95.3 3.549 52.1

9 0.96 71.5 1.643 64.9 0.015 99.6 0.302 95.5 0.069 97.9 3.054 61.3

Ave. 0.503 84.2 1.119 74.0 0.015 99.5 0.323 95.2 0.087 97.3 2.981 60.1

Stepwise PathNet
with modified
TSA + pre-
trained
initialization
(proposed 3)

0 0.186 93.9 0.962 81.1 0.009 99.7 0.251 96.3 0.044 98.6 2.131 71.6

1 0.272 91.0 1.178 76.5 0.011 99.6 0.257 96.3 0.057 98.2 2.048 72.1

2 0.230 92.3 0.986 80.9 0.014 99.6 0.269 96.2 0.083 97.4 2.178 67.6

3 0.326 89.3 1.051 76.8 0.009 99.7 0.295 96.0 0.054 98.4 2.580 66.7

4 0.262 91.4 0.934 80.8 0.011 99.7 0.256 96.4 0.066 97.9 2.374 68.8

5 0.188 93.7 0.907 81.1 0.012 99.6 0.235 96.2 0.075 97.6 2.238 69.2

6 0.235 92.3 1.077 77.9 0.013 99.7 0.304 95.9 0.097 97.0 2.804 62.4

7 0.334 89.1 1.082 76.2 0.012 99.7 0.240 96.6 0.087 97.3 2.510 64.5

8 0.233 92.3 0.994 79.3 0.009 99.7 0.234 96.8 0.059 98.1 2.478 69.5

9 0.286 90.6 0.927 79.5 0.010 99.7 0.258 96.4 0.057 98.3 2.424 66.6

Ave. 0.252 91.7 1.019 79.0 0.011 99.7 0.260 96.3 0.069 97.8 2.371 68.0

From scratch
(conventional 1)

0 0.092 97.1 2.23 63.9 0.048 98.4 0.193 96.1 0.204 93.5 1.834 66.9

1 0.056 98.2 2.038 70.2 0.061 98.1 0.329 94.3 0.182 94.1 1.553 71.2

2 0.059 98.1 1.949 69.7 0.052 98.3 0.236 95.4 0.194 93.8 2.016 64.6

3 0.074 97.7 1.940 67.6 0.054 98.2 0.240 95.3 0.178 94.3 1.884 67.1

4 0.064 97.9 1.895 70.1 0.054 98.3 0.207 95.4 0.204 93.5 1.782 66.9

5 0.062 98.0 2.114 67.6 0.058 98.2 0.200 95.8 0.179 94.2 1.801 67.3

6 0.056 98.2 1.988 70.3 0.051 98.4 0.301 94.8 0.184 94.1 1.843 67.6

7 0.067 97.8 1.902 69.6 0.063 98.1 0.251 95.1 0.175 94.4 1.697 68.7

8 0.058 98.1 1.970 69.8 0.059 98.1 0.225 95.3 0.181 94.2 1.680 69.3

9 0.059 98.1 1.958 71.1 0.060 98.1 0.196 95.8 0.182 94.1 1.934 66.1

Ave. 0.065 97.9 2.003 68.7 0.056 98.2 0.242 95.3 0.187 94.0 1.788 67.7

Fine-tuning
(conventional 2)

0 0.062 98.0 1.763 73.4 0.021 99.3 0.254 95.5 0.247 92.1 1.557 70.5

1 0.078 97.5 1.897 71.0 0.020 99.3 0.220 96.1 0.244 92.2 1.891 66.8

2 0.061 98.0 1.778 73.1 0.023 99.2 0.233 95.8 0.205 93.5 1.997 67.2

3 0.077 97.5 2.157 68.5 0.020 99.4 0.215 96.3 0.252 91.8 1.963 65.7

4 0.073 97.6 1.802 72.7 0.021 99.3 0.237 95.9 0.223 92.9 1.784 68.1

5 0.075 97.5 1.847 72.2 0.020 99.3 0.227 96.0 0.209 93.4 1.892 67.6

6 0.069 97.7 1.749 73.3 0.020 99.4 0.211 96.1 0.197 93.7 1.706 69.5

7 0.069 97.8 1.815 72.4 0.023 99.3 0.218 96.0 0.216 93.0 1.890 67.4

8 0.065 97.8 2.132 69.0 0.024 99.3 0.224 96.0 0.235 92.6 1.797 67.2

9 0.084 97.3 2.757 64.2 0.021 99.3 0.213 96.2 0.206 93.5 1.758 69.1

Ave. 0.070 97.7 1.882 71.7 0.021 99.3 0.226 96.0 0.225 92.8 1.831 67.8

Table 1. Results of the compared algorithms and datasets.

https://doi.org/10.1038/s41598-020-64165-3

6Scientific RepoRtS | (2020) 10:8132 | https://doi.org/10.1038/s41598-020-64165-3

www.nature.com/scientificreportswww.nature.com/scientificreports/

Figure 3. (CIFAR-100) Learning curves and boxplots for the original PathNet TSA (proposal 1), the modified
TSA (proposal 2) and the modified TSA with pre-trained initialization (proposal 3). The solid lines represent
the average values and the filled regions represent the minimum-to-maximum ranges.

Figure 4. (SVHN) Comparison of learning curves and box plots for Stepwise PathNet with the modified TSA
(proposal 3), the from-scratch approach (conventional 1), and fine-tuning (conventional 2).

https://doi.org/10.1038/s41598-020-64165-3

7Scientific RepoRtS | (2020) 10:8132 | https://doi.org/10.1038/s41598-020-64165-3

www.nature.com/scientificreportswww.nature.com/scientificreports/

Figure 5. (Food-101) Comparison of learning curves and box plots for Stepwise PathNet with the modified
TSA (“Ours”: blue), fine-tuning (green), and the from-scratch approach (red).

Figure 6. (CIFAR-100) Comparison of learning curves and box plots for Stepwise PathNet with the modified
TSA (proposal 3), the from-scratch approach (conventional 1), and fine-tuning (conventional 2).

https://doi.org/10.1038/s41598-020-64165-3

8Scientific RepoRtS | (2020) 10:8132 | https://doi.org/10.1038/s41598-020-64165-3

www.nature.com/scientificreportswww.nature.com/scientificreports/

sub-domain of general object recognition, but accurate classification results on this dataset are difficult to obtain.
Therefore, we consider two cases: (i) the required information is not available in ImageNet and (ii) some informa-
tion from ImageNet disturbs the training on Food-101 (negative transfer).

The overfitting on Food-101 is caused by the low compatibility between ImageNet and Food-101, as men-
tioned above. To untangle this problem, more evaluation of many datasets that are compatible or not compatible
with ImageNet are required. Another problem is how to measure the distance (or equivalent quantity) between
datasets (domains). Proposal 1 on Food-101 appears to avoid the overfitting problem, but this observation is an
artefact caused by insufficient training (as evidenced by the wider variation in the training loss and accuracy than
in the other algorithms). Overfitting in proposal 1 might be discussed by iterating the proposal through more
generations, but the present evaluation environment lacks sufficient memory for this task.

Proposal 3 outperformed proposal 2, despite abandoning the global optimization and collapsing into a local
optimum for fast convergence on the geopath searching. The superior performance of proposal 3 might be attrib-
utable to the weight parameters on the adjustable layers, which can be tuned more deeply in proposal 3 than
in proposal 2. Specifically, slight differences in the selection of layers are recoverable by tuning the parameters.
Therefore, the performance at convergence might not strictly depend on the layer selection. Initialization with
random weights for global searching might also explain the positive effect of the TSA modification. In future
work, this idea could be evaluated by tuning the TSA hyperparameters (such as the number of geopaths and
number of generations).

comparison with other learning algorithms. The poor compatibility between ImageNet and Food-101
(as mentioned above) is also confirmed by the lower training accuracy in conventional 2 than in conventional 1.
On the other hand, on CIFAR-100 and SVHN, which are considered to be compatible with ImageNet, conven-
tional 2 achieved stable and accurate learning. When the model and augmentations are unsuitable, Food-101 is
difficult to train from ImageNet data. The consequent negative transfer destabilizes the test accuracy. Proposal 2,
with its randomly initialized adjustable layers, can select all layers as adjustable. In this way, it can behave similarly
to the from-scratch approach, and is expected to avoid negative transfer. Unfortunately, the results confirmed
that proposal 2 cannot avoid negative transfer. On the Food-101 dataset, proposal 3 outperformed proposal 2
even when negative transfer occurred. The pre-trained initialization in Stepwise PathNet is considered to benefit
the learning regardless of whether the transfer is negative or positive, and is more effective for initialization (e.g.,
maintaining the inter-layer dependence) than pre-trained information.

A complex model with a huge number of adjustable parameters tends to be overfitted, as mentioned in the
Introduction8,9. Proposal 3 exhibited the best overfitting avoidance on CIFAR-100, probably because selecting the
pre-trained layers reduced the number of adjustable parameters. Proposal 3 adjusted total of 7.5 M parameters on
average through 30 generations, while conventionals 1 and 2 adjusted total 1.3 G parameters through 60 epochs.
As confirmed in the learning curves of the SVHN dataset (top panels of Fig. 4), conventional 2 and proposal 3
both achieved over 80% test accuracy, meaning that the learning better resembled re-training than transfer learn-
ing. Interestingly, despite having fewer adjustable parameters than conventional 2, proposal 3 overfitted more
extensively than the conventional method. Stepwise PathNet (proposals 1-3) aims to minimize the cross-entropy
and maximize the training accuracy. This probably explains why proposal 3 overfits despite the reduced number
of weight parameters in re-training (or excessive epochs). More specifically, TSA can fit more even if the loss

Figure 7. Number of times that each layer was selected as an adjustable layer among 10 transfer learnings in
proposal 3. The numbers are displayed in the centers of the colored rectangles (top: CIFAR-100, middle: SVHN,
and bottom: Food-101).

https://doi.org/10.1038/s41598-020-64165-3

9Scientific RepoRtS | (2020) 10:8132 | https://doi.org/10.1038/s41598-020-64165-3

www.nature.com/scientificreportswww.nature.com/scientificreports/

function (cross-entropy) is converged by changing the optimized geopath based on the training accuracy. It was
confirmed that the variable geopath endures longest in SVHN.

As shown in the learning curves in Figs. 4–6, proposal 3 is supposed to converge to a sufficient accuracy earlier
(after 30 scans) than conventional 1 and 2; however, stopping too early may destabilize the training. The filled
areas in the learning curves of Stepwise PathNet were wide in the early scans (<10 scans) and narrowed as the
number of scans increased. This trend, which was observed for all datasets, suggests that learning in Stepwise
PathNet proceeds in two phases: (i) Optimization of the layer selection in the early scans, and (ii) fine-tuning of
the weight parameters once the selection is determined to a sufficient extent. Note that these phases are not well
delineated in Stepwise PathNet because they are not strictly separated in the implementation, and can change
continuously. At least, if the number of generations is insufficient, the optimization is insufficient and the param-
eter tuning becomes confused, eventually destabilizing the training as observed in proposal 1.

Layer selections (geopaths). According to the theory of layer functions, the top layers are tuned while the
bottom layers remain unchanged. However, this phenomenon was not observed in the present result. As men-
tioned above, the test accuracy did not strictly depend on the layer selection process. Of course, identifying the
functions of the layers and correctly selecting the layers are maximally effective for transfer learning. However,
in the case of a huge model with many layers and complicated connections, the functions of the layers are dif-
ficult to identify, and the selection becomes intractable. Although it offers only an approximate solution, the
proposed Stepwise PathNet is a promising approach for handling massive networks with evolutionary behavior.
Stepwise PathNet is applicable not only to CNNs but also to other neural network models (such as GANs and
AutoEncoder). The potential of Stepwise PathNet needs investigating in further evaluations.

Methods
Related work: pathnet. Neural network. Here, we consider an image classification task in a neural net-
work. The neural network maps input images ∈ ×x M N to output C-class logits ∈y [0, 1]C. The lth layer of the
neural network (e.g., a convolutional or fully connected layer) can be expressed as the mapping

φ=y x(), (1)l l l

where ∈ ×xl
M Nl l and ∈ ×+ +yl

M Nl l1 1. Iterating Eq. (1) through layers 1 to l (i.e., all layers of the neural network),
a neural network with L layers can be expressed as (see Fig. 8)

φ φ φ φ φ= − y x(((((()))))) (2)L L l1 2 1

φ φ φ= = Φ .��� � x x() () (3)L 2 1

The training dataset is expressed as the following set of pairs:

 ∑⊂

∈ ∈ =

×

=
x y x y y, , [0, 1] , 1 ,

(4)
t M N t C

i

C

i
t() ()

1

()

where x is an input image and y(t) is a teacher signal (label), required for calculating the cross-entropy loss
function

∑Φ = = − .
=

y x y yH H y y(, ()) (,) log
(5)

t t

i

C

i i
t() ()

1

()

This function measures the distance H() between = Φy x() and y t(). The learning process of the neural net-
work corresponds to solving an optimization problem that tunes the mappings φ = …l L{ : 1, 2, , }l to minimize
the sum of the loss functions in dataset :

∑ Φ .
∈

y xH(, ())
(6)x y

t

(,)

()

t))

Modular neural network. PathNet is based on a modular neural network composed of modules (Fig. 1). The set
of modules l in the l th layer of PathNet is defined as

 ⊂ →× ×+ +m m{ : }, (7)l
M N M Nl l l l1 1

where l (i.e., the cardinality of l) is the number of modules. Each module m is configurable by the user. Note
that only some of the modules in ′l are used. The set of used modules (called active modules) is a subset of l
:

′ ⊂ . (8)l l

Note that the number of active modules ′l is limited to µ′ <l l, where µl is a configurable hyperparam-
eter. In the example given in the lower left panel of Fig. 8, ml2 is a non-active module, whereas ml1 and ml3 are

https://doi.org/10.1038/s41598-020-64165-3

1 0Scientific RepoRtS | (2020) 10:8132 | https://doi.org/10.1038/s41598-020-64165-3

www.nature.com/scientificreportswww.nature.com/scientificreports/

active modules. Therefore, we have = m m m{ , , }l l l l1 2 3 , and ′ = m m{ , }l l l1 3 . The mapping of the l th layer in
the modular neural network

 φ →× ×+ +: (9)l
M N M Nl l l l1 1

can be expressed as

∑φ= =

′
.

∈ ′
y x xm() 1 ()

(10)
l l l

l m
l

l

A module m()⋅ is a tiny layer such as a simple perceptron fsp, skip layer fskip, or residual layer fres, respectively
expressed as:

= = ⋅ +x W x bf f act{ () ()} (11)sp l ml l ml

= = ⋅ +x W x bf f{ () } (12)skip l ml l ml

= = ⋅ + +x W x b xf f act{ () () } (13)res l ml l ml l

 Therefore, l can also be expressed as

 ∪ ∪⊂ ∈ ⊂ → .× ×+ +{ }} {m m f f f m m: } (14)l sp rnn skip
M N M Nl l l l1 1

As the activation function act(), we adopt the rectified linear unit (ReLU)25, expressed as

{act x x
x x

() 0 if 0
if 0 (15)

= <
≥ .

Figure 8. Mapping of a neural network (top), and comparison of the l th layer in a simple neural network and a
modular neural network (bottom).

https://doi.org/10.1038/s41598-020-64165-3

1 1Scientific RepoRtS | (2020) 10:8132 | https://doi.org/10.1038/s41598-020-64165-3

www.nature.com/scientificreportswww.nature.com/scientificreports/

Tournament selection algorithm. A modular neural network is learned using the TSA15, which is based on the
microbial genetic algorithm16. The dual objectives are to minimize the loss function and maximize the accuracy
by optimizing the active modules. An L-layer modular neural network is expressed by sets of active modules
referring to ′l, namely

l L{ : 1, 2, , } (16)l= ′ = … .

A geopath G is a set of gene expressions such as

gG l L{ : 1, 2, }, (17)l= = …

where ∈g {0, 1}l
l expresses the inactive (0) and active (1) modules in the l th layer. In the example given in the

bottom left panel in Fig. 8, module ml2 is inactive, whereas ml1 and ml3 are active, giving =g {1, 0, 1}l .
In the initialization step, the P geopaths expressed in Eq. (17) are generated randomly. Then

G G G G{ , , , } (18)t
P

()
1 2= …

is defined as a set of geopaths at epoch (generation) =t 0.
Additionally, the set of all modules in the tth generation is taken as the set of selectable modules in the lth layer

= …M l L(1, 2, ,)l , namely

= … .M M M{ , , , } (19)t
L

()
1 2M

The ith module in the lth layer is defined as

∈ ⊂ .Mm M (20)li l
t()

For simplicity, this module is sometimes written as ∈ Mmli
t(). The weight of mli, which is a small layer in the

neural network, is initialized by Eq. (11). The initialization is performed with a truncated normal and a constant,
as in non-modular neural networks.

In the learning process, two geopaths are randomly selected from G t() as follows:

′ ′ ∈ .GG G, (21)t
1 2

()

Referring to Eqs. (4) and (6), the cross entropies are summed as

y xF G H() (, ()),
(22)x y

t
1

(,)

()

t()
∑= Φ

∈

where Φ is the neural network corresponding to G. This sum is employed as the loss function for learning ′ ′G G,1 2.
During the learning process, Eq. (22) is minimized by the SGD method. The accuracy of determining
G and Gwin

t
lost

t() () is then measured as

=
∈ = Φ

.
x y y x

F G()
{(,) argmax argmax ()}

(23)

t t

2

() ()

If ′ > ′F G F G() ()2 1 2 2 , then G and Gwin
t

lost
t() () are set as

= ′ = ′G G G G, , (24)win
t

lost
t()

1
()

2

and Glost
t() is overwritten and mutated. The set of geopaths

G G∪= ′ ′+ G G G G{ , }, (\{ , }) (25)t
win

t
lost

t t(1) () () ()
1 2

is then updated at epoch +t 1.
The weight updates preferentially update the weights of the winning modules.
Defining the modular neural networks corresponding to Gwin

t() and Gloss
t() as win

t() and loss
t() respectively, +t(1)

is updated as

∪∈ .m (\) (26)li win
t

loss
t

win
t() () ()

The modular neural network is learned by repeating the above learning process for = …t T1, 2, , .

Transfer learning using PathNet. Transfer learning reduces the size of a training dataset by utilizing the knowl-
edge in a pre-trained neural network. Transfer learning accomplishes two tasks: (i) the source task, which is
learned by the pre-trained neural network, and (ii) the target task, which is performed on the training dataset.
Here, we refer to the datasets of the source and target tasks as S() and T() , respectively, and define transfer
learning as a learning method for the target task using a pre-trained neural network learned for the source task.

The modular neural networks of the source and target tasks in Eq. (16) are denoted as S() and T(), respec-
tively. Transfer learning using PathNet constructs a modular neural network T() for the target task using the

https://doi.org/10.1038/s41598-020-64165-3

1 2Scientific RepoRtS | (2020) 10:8132 | https://doi.org/10.1038/s41598-020-64165-3

www.nature.com/scientificreportswww.nature.com/scientificreports/

modular neural network S() pre-trained on the dataset S() of the source task using the TSA. Here, S() and
T() have the same structure, i.e., the same number of layers and the same modules in each layer l. Therefore, the

active modules of the source task S() and target task T() are subsets of l , expressed as

′ ′ ⊂ ., (27)l
S

l
T

l
() ()

In the learning process of the target task, when a module of the source task

 ∩∈ ′ ′m (28)l
S

l
T() ()

is selected as an active module, its parameters are fixed during the SGD method.
In some transfer learning cases, the pre-trained neural network for the source task has been trained by a large

computer. The pre-trained neural networks on the Internet are non-modular neural networks. Therefore, PathNet
requires a mapping ψ between Eqs. (1) and (10); for instance,

 m m: { : } { { : }}M N M N M N M Nl l l l l l l l1 1 1 1ψ φ φ → → ⊂ → .× × × ×+ + + +

This expression shows that PathNet can extend the versatility of network structures.

proposed method: Stepwise pathnet. As mentioned in the previous subsection, the versatility of
PathNet can be improved by relaxing the restrictions on the transfer learning processes, namely, that S() and
 T() have the same structure. This paper proposes Stepwise PathNet as an extension of PathNet. The proposed
Stepwise PathNet regards each layer as a module.

Following Eq. (3), a pre-trained neural network is given as

φ φ φ φ= = Φ .��� ��� �y x x() ()L
S

l
S S S S() ()

2
()

1
() ()

In Stepwise PathNet, a layer is specified as the following module:

x xm() () (29)l
S

l l
S

l
() ()φ = .

The lth layer of the neural network T() of the target task is defined as

= ⊂ →× ×+ +m m m m{ , } { : }, (30)l
T

l
S

l
M N M N() () l l l l1 1

where ml
S() is the pre-trained (with a fixed parameter) layer, and ml is a layer with an adjustable parameter (see

Fig. 1).
The set of active modules ′ ⊂l

T
l
T() () includes either ml

S() or ml:

 φ′ = = .m{ } { } (31)l
T

l
T

l
T() () ()

As ′ = 1l
T() , we have

φ= = .y x xm() () (32)l l
T

l l
T

l
() ()

Therefore, the non-modular neural network

φ φ φ φ φ= = Φ−� ��� ��� �y x x(), (), (33)L
T

L
T

l
T T T T()

1
() ()

2
()

1
() ()

can be constructed by the proposed Stepwise PathNet. The proposed method removes the need for mapping ψ in
Eq. (29). This relaxation is the contribution of Stepwise PathNet to the existing arsenal of neural network
methods.

We now introduce an improved version of TSA () for use in Stepwise PathNet.
The proposed TSA differs from PathNet’s original algorithm in two aspects: (i) the initialization of the geopath

and (ii) use of a selection method in the learning process in each epoch. When initializing the geopaths
= …p P1, 2, , , the conventional method randomly selects ml

S() or ml, whereas the proposed method randomly
selects ml

S() or ml after assigning the following weights:

•	 wp: weight of selecting the pre-trained layer ml
S()

•	 ′w p: weight of selecting the adjustable layer ml,

where + ′ =w w 1p p . In addition, the weight wp of the pth geopath is given as

=
−
−

.w p
P

1
1 (34)p

These weights control the tendency of the layer selection at each geopath initialization. If > ′w wp p, the pth
geopath initialization tends to select a pre-trained layer. This initialization varies the geopaths, enabling a more
global search process. In other words, the proposed initialization method can seek an optimal solution more
effectively than the original initialization. During the learning process in each epoch, the original method

https://doi.org/10.1038/s41598-020-64165-3

13Scientific RepoRtS | (2020) 10:8132 | https://doi.org/10.1038/s41598-020-64165-3

www.nature.com/scientificreportswww.nature.com/scientificreports/

randomly selects two geopaths, whereas the proposed method uses the winning geopath in the previous epoch
and one randomly selected geopath:

′ = ∈ ′ ∈ .− −G GG G G, (35)win
t t t

1
(1) 1

2

This selection method stabilizes and accelerates the learning process. The previous winning geopath can be
overwritten only by a higher-scoring geopath, yielding a nearly monotonic increase in the learning curve and a
speedy geopath convergence. At the =t 0 th epoch, the previous winning geopath is given as =− −G Gwin

t
win

(1) (1); for
example,

G G {(0), (0), , (0)} (36)win
(1)

0= = … .−

Here, −Gwin
(1) has only an adjustable layer, implying from- scratch training without transfer learning. Therefore,

the learned geopath is expected to be more accurate than one learned from scratch.

conclusion
We proposed a new transfer learning algorithm (Stepwise PathNet) that addresses the problem of layer selection
in CNN transfer learning. We also modified the TSA learning algorithm for Stepwise PathNet. The modified
TSA and initialization of the adjustable layers with pre-trained values were experimentally evaluated in transfer
learning from ImageNet learned by the InceptionV3 image classifier to three datasets (CIFAR-100, SVHN and
Food-101) learned by Stepwise PathNet. By modifying the TSA and using pre-trained values in the adjustable
layer, we achieved more stable and faster transfer learning than was possible with the original TSA and random
initialization. Moreover, Stepwise PathNet with the modified TSA and pre-trained values outperformed both the
fine-tuning and from-scratch approaches (improving the average test accuracies by up to 8% and 10%, respec-
tively), and its performance was largely independent of the layer selection. In future work, we will aim to (i) ana-
lyze and improve the stability of genetic-algorithm-based methods, (ii) analyze the layer-selection process, and
(iii) investigate other domain settings, including difficult transfer-learning scenarios.

Received: 17 June 2019; Accepted: 9 April 2020;
Published: xx xx xxxx

References
 1. Pan, S. J. & Yang, Q. et al. A survey on transfer learning. IEEE Transactions on knowledge data engineering 22, 1345–1359 (2010).
 2. Hinton, G. E., Osindero, S. & Teh, Y.-W. A fast learning algorithm for deep belief nets. Neural computation 18, 1527–1554 (2006).
 3. Raina, R., Battle, A., Lee, H., Packer, B. & Ng, A. Y. Self-taught learning: transfer learning from unlabeled data. In Proceedings of the

24th international conference on Machine learning, 759–766 (ACM, 2007).
 4. Sawada, Y. & Kozuka, K. Whole layers transfer learning of deep neural networks for a small scale dataset. Int. J. Mach. Learn.

Comput. 6, 27 (2016).
 5. Shan, H. et al. 3-d convolutional encoder-decoder network for low-dose ct via transfer learning from a 2-d trained network. IEEE

transactions on medical imaging 37, 1522–1534 (2018).
 6. Sakhavi, S. & Guan, C. Convolutional neural network-based transfer learning and knowledge distillation using multi-subject data

in motor imagery bci. In Neural Engineering (NER), 2017 8th International IEEE/EMBS Conference on, 588–591 (IEEE, 2017).
 7. Afridi, M. J., Ross, A. & Shapiro, E. M. On automated source selection for transfer learning in convolutional neural networks. Pattern

Recognit. 73, 65–75 (2018).
 8. Ghafoorian, M. et al. Transfer learning for domain adaptation in mri: Application in brain lesion segmentation. In International

Conference on Medical Image Computing and Computer-Assisted Intervention, 516–524 (Springer, 2017).
 9. Cao, X., Wipf, D., Wen, F., Duan, G. & Sun, J. A practical transfer learning algorithm for face verification. In Proceedings of the IEEE

International Conference on Computer Vision, 3208–3215 (2013).
 10. Montavon, G., Samek, W. & Müller, K.-R. Methods for interpreting and understanding deep neural networks. Digit. Signal Process.

73, 1–15 (2018).
 11. Zeiler, M. D. & Fergus, R. Visualizing and understanding convolutional networks. In European conference on computer vision,

818–833 (Springer, 2014).
 12. Simonyan, K. & Zisserman, A. Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556

(2014).
 13. Russakovsky, O. et al. ImageNet Large Scale Visual Recognition Challenge. Int. J. Comput. Vis. (IJCV) 115, 211–252, https://doi.

org/10.1007/s11263-015-0816-y (2015).
 14. Zunair, H., Mohammed, N. & Momen, S. Unconventional wisdom: A new transfer learning approach applied to bengali numeral

classification. In International Conference on Bangla Speech and Language Processing (ICBSLP), vol. 21, 22 (2018).
 15. Fernando, C. et al. Pathnet: Evolution channels gradient descent in super neural networks. arXiv preprint arXiv:1701.08734 (201).
 16. Harvey, I. The microbial genetic algorithm. In European Conference on Artificial Life, 126–133 (Springer, 2009).
 17. Imai, S. & Nobuhara, H. Stepwise pathnet: Transfer learning algorithm to improve network structure versatility. In 2018 IEEE

International Conference on Systems, Man, and Cybernetics (SMC), 918–922 (IEEE, 2018).
 18. Krizhevsky, A. & Hinton, G. Learning multiple layers of features from tiny images. Tech. Rep., Citeseer (2009).
 19. Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J. & Wojna, Z. Rethinking the inception architecture for computer vision. In Proceedings

of the IEEE conference on computer vision and pattern recognition, 2818–2826 (2016).
 20. Szegedy, C. et al. Going deeper with convolutions. In The IEEE Conference on Computer Vision and Pattern Recognition (CVPR)

(2015).
 21. Netzer, Y. et al. Reading digits in natural images with unsupervised feature learning. In NIPS Workshop on Deep Learning and

Unsupervised Feature Learning 2011 (2011).
 22. Bossard, L., Guillaumin, M. & Van Gool, L. Food-101 – mining discriminative components with random forests. In European

Conference on Computer Vision (2014).
 23. Kingma, D. P. & Ba, J. Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014).
 24. Chollet, F. et al. Keras, https://keras.io (2015).
 25. Nair, V. & Hinton, G. E. Rectified linear units improve restricted boltzmann machines. In Proceedings of the 27th International

Conference on International Conference on Machine Learning, ICML’10, 807–814 (Omnipress, USA, 2010).

https://doi.org/10.1038/s41598-020-64165-3
https://doi.org/10.1007/s11263-015-0816-y
https://doi.org/10.1007/s11263-015-0816-y
https://keras.io

1 4Scientific RepoRtS | (2020) 10:8132 | https://doi.org/10.1038/s41598-020-64165-3

www.nature.com/scientificreportswww.nature.com/scientificreports/

Acknowledgements
This work was supported by JST CREST Grant Number JPMJCR1512, Japan.

Author contributions
Shunsuke Imai wrote the main manuscript text and prepared all Figures and Tables. Hajime Nobuhara and Shin
Kawai supervised all contents of the manuscript. All authors reviewed the manuscript.

competing interests
The authors declare no competing interests.

Additional information
Correspondence and requests for materials should be addressed to S.I., S.K. or H.N.
Reprints and permissions information is available at www.nature.com/reprints.
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Cre-
ative Commons license, and indicate if changes were made. The images or other third party material in this
article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Commons license and your intended use is not per-
mitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2020

https://doi.org/10.1038/s41598-020-64165-3
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/

	Stepwise PathNet: a layer-by-layer knowledge-selection-based transfer learning algorithm
	Results
	Experimental Conditions.
	Model architecture.
	Dataset and augmentation.
	Evaluations in the present experiment.

	Comparison of TSAs.
	Comparison with other learning algorithms.
	Layer selections (geopaths).

	Discussion
	Comparison of TSAs.
	Comparison with other learning algorithms.
	Layer selections (geopaths).

	Methods
	Related work: PathNet.
	Neural network.
	Modular neural network.
	Tournament selection algorithm.
	Transfer learning using PathNet.

	Proposed method: Stepwise PathNet.

	Conclusion
	Acknowledgements
	Figure 1 Comparison between PathNet and Stepwise Pathnet.
	Figure 2 InceptionV3 model (the numbers in the conv2d and Fully Connected layers refer to the geopath indices, and the gray areas indicate the individual inception modules).
	Figure 3 (CIFAR-100) Learning curves and boxplots for the original PathNet TSA (proposal 1), the modified TSA (proposal 2) and the modified TSA with pre-trained initialization (proposal 3).
	Figure 4 (SVHN) Comparison of learning curves and box plots for Stepwise PathNet with the modified TSA (proposal 3), the from-scratch approach (conventional 1), and fine-tuning (conventional 2).
	Figure 5 (Food-101) Comparison of learning curves and box plots for Stepwise PathNet with the modified TSA (“Ours”: blue), fine-tuning (green), and the from-scratch approach (red).
	Figure 6 (CIFAR-100) Comparison of learning curves and box plots for Stepwise PathNet with the modified TSA (proposal 3), the from-scratch approach (conventional 1), and fine-tuning (conventional 2).
	Figure 7 Number of times that each layer was selected as an adjustable layer among 10 transfer learnings in proposal 3.
	Figure 8 Mapping of a neural network (top), and comparison of the th layer in a simple neural network and a modular neural network (bottom).
	Table 1 Results of the compared algorithms and datasets.

