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Abstract
In this article, we consider clustering based on principal
component analysis (PCA) for high-dimensional mix-
ture models. We present theoretical reasons why PCA
is effective for clustering high-dimensional data. First,
we derive a geometric representation of high-dimension,
low-sample-size (HDLSS) data taken from a two-class
mixture model. With the help of the geometric repre-
sentation, we give geometric consistency properties of
sample principal component scores in the HDLSS con-
text. We develop ideas of the geometric representation
and provide geometric consistency properties for mul-
ticlass mixture models. We show that PCA can cluster
HDLSS data under certain conditions in a surprisingly
explicit way. Finally, we demonstrate the performance of
the clustering using gene expression datasets.
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1 INTRODUCTION

High-dimension, low-sample-size (HDLSS) data situations occur in many areas of modern sci-
ence such as genetic microarrays, medical imaging, text recognition, finance, chemometrics, and

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and
reproduction in any medium, provided the original work is properly cited.
© 2019 The Authors. Scandinavian Journal of Statistics published by John Wiley & Sons Ltd on behalf of The Board of the Foundation of
the Scandinavian Journal of Statistics.

Scand J Statist. 2020;47:899–921. wileyonlinelibrary.com/journal/sjos 899

https://orcid.org/0000-0002-3791-7977
http://creativecommons.org/licenses/by/4.0/


900 YATA and AOSHIMA

so on. In recent years, substantial work has been done on HDLSS asymptotic theory, where the
sample size n is fixed or n∕d → 0 as the data dimension d → ∞. Hall, Marron, and Neeman (2005),
Ahn, Marron, Muller, and Chi (2007), Yata and Aoshima (2012), and Lv (2013) explored several
types of geometric representations of HDLSS data. Jung and Marron (2009) showed inconsistency
properties of the sample eigenvalues and eigenvectors in the HDLSS context. Yata and Aoshima
(2012, 2013) developed the noise-reduction methodology to provide consistent estimators of both
the eigenvalues and eigenvectors together with principal component (PC) scores in the HDLSS
context. Shen, Shen, Zhu, and Marron (2016) and Hellton and Thoresen (2017) also provided
several asymptotic properties of the sample PC scores in the HDLSS context.

The HDLSS asymptotic theory was created under the assumption of either the population
distribution is Gaussian or the random variables in a sphered data matrix have a 𝜌-mixing depen-
dency. However, Yata and Aoshima (2010) developed an HDLSS asymptotic theory without
such assumptions. Moreover, they created a new principal component analysis (PCA) called the
cross-data-matrix methodology that is applicable to construct an unbiased estimator in HDLSS
nonparametric settings. Based on the cross-data-matrix methodology, Aoshima and Yata (2011)
developed a variety of inference for HDLSS data such as given-bandwidth confidence region,
two-sample test, classification, variable selection, regression, pathway analysis, and so on (see
Aoshima et al., 2018 for the review).

PCA is an important visualization and dimension reduction technique for high-dimensional
data. Furthermore, PCA is quite popular for clustering high-dimensional data (see section 9.2 in
Jolliffe, 2002 for details). For clustering HDLSS gene expression data, see Armstrong et al. (2002)
and Pomeroy et al. (2002). Liu, Hayes, Nobel, and Marron (2008) and Ahn, Lee, and Yoon (2012)
gave binary split-type clustering methods for HDLSS data. Borysov, Hannig, and Marron (2014)
considered hierarchical clustering for high-dimensional data. Li and Yao (2018) considered a
model-based clustering for a high-dimensional mixture. Given this background, we decided to
focus on high-dimensional structures of multiclass mixture models via PCA. In this article, we
consider asymptotic properties of PC scores for high-dimensional mixture models to apply for
cluster analysis in HDLSS settings. The main contribution of this article is that we give theoretical
reasons why PCA is effective for clustering HDLSS data.

Suppose there are independent and d-variate populations,Πi, i = 1,… , k, having an unknown
mean vector 𝝁i and unknown (positive-semidefinite) covariance matrix 𝚺i for each i. We
consider a mixture model to classify a dataset into k (≥2) groups. We assume that any
sample is taken with mixing proportions 𝜀is from Πis, where 𝜀i ∈ (0, 1) and

∑k
i=1 𝜀i = 1 but

the label of the population is missing. We assume that k and 𝜀is are independent of d.
We consider a mixture model whose probability density function (or probability function) is
given by

f (x) =
k∑

i=1
𝜀i𝜋i(x;𝝁i,𝚺i), (1)

where x ∈ Rd and 𝜋i(x;𝝁i,𝚺i) is a d-dimensional probability density function (or probability func-
tion) of Πi having a mean vector 𝝁i and covariance matrix 𝚺i. Suppose we have a d × n data matrix
X = [x1,… , xn], where xj, j = 1,… ,n, are independently taken from Equation (1). We assume
n ≥ k. Let

ni = #{j|xj ∈ Πi for j = 1,… ,n} and 𝜂i = ni∕n for i = 1,… , k,
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where #A denotes the number of elements in a set A. We assume that n and nis are independent of
d. Let 𝝁 and 𝚺 be the mean vector and the covariance matrix of Equation (1), respectively. Then,
we have that

𝝁 =
k∑

i=1
𝜀i𝝁i and 𝚺 =

k−1∑
i=1

k∑
j=i+1

𝜀i𝜀j(𝝁i − 𝝁j)(𝝁i − 𝝁j)T +
k∑

i=1
𝜀i𝚺i.

We note that E(x|x ∈ Πi) = 𝝁i and Var(x|x ∈ Πi) = 𝚺i for i = 1,… , k. We denote the eigende-
composition of𝚺 by𝚺 = H𝚲HT, where𝚲 = diag(𝜆1,… , 𝜆d) having eigenvalues 𝜆1 ≥ … ≥ 𝜆d ≥ 0
and H = [h1,… ,hd] is an orthogonal matrix of the corresponding eigenvectors. Let xj − 𝝁 =
H𝚲1∕2(z1j,… , zdj)T for j = 1,… ,n. Then, (z1j,… , zdj)T is a sphered data vector from a distribution
with the identity covariance matrix; E{(z1j,… , zdj)T} = 0 and Var{(z1j,… , zdj)T} = Id, where Id
denotes the d-square identity matrix. The ith true PC score of xj is given by

hT
i (xj − 𝝁) = 𝜆

1∕2
i zij (hereafter called sij).

We note that Var(sij) = 𝜆i for all i, j. Let Δi = ||𝝁i||2 for i = 1,… , k, where || ⋅ || denotes the
Euclidean norm. Here, we assume that

Δ1 ≥ Δ2 ≥ ⋅ ⋅ ⋅ ≥ Δk,

without loss of generality. We also assume that

Δk = 0 (i.e., 𝝁k = 0),

for the sake of simplicity.

Remark 1. When 𝝁k ≠ 0, let 𝝁
′
i = 𝝁i − 𝝁k for i = 1,… , k. Then, it holds that

∑k−1
i=1

∑k
j=i+1 𝜀i𝜀j

(𝝁i − 𝝁j)(𝝁i − 𝝁j)T =
∑k−1

i=1
∑k

j=i+1 𝜀i𝜀j(𝝁′
i − 𝝁

′
j)(𝝁

′
i − 𝝁

′
j)

T. Hence, for any inference of 𝚺 by the
sample covariance matrix, one can assume 𝝁k = 0 without loss of generality.

As the sign of an eigenvector is arbitrary, we assume that hT
i 𝝁i ≥ 0 for i = 1,… , k − 1, without

loss of generality. In addition, we assume the cluster means are more spread than the within class
variation in the sense that:

Condition 1. maxi=1,…,k 𝜆max(𝚺i)
Δk−1

→ 0 as d → ∞.

Here, 𝜆max(M) denotes the largest eigenvalue of any positive-semidefinite matrix, M. We con-
sider clustering x1,… , xn into one of Πis in HDLSS situations. When k = 2, Yata and Aoshima
(2010) gave the following result: we denote the angle between two nonzero vectors x and y by
Angle(x, y) = cos−1{xTy∕(||x|| ⋅ ||y||)}. By noting that 𝝁2 = 0, under Condition 1, it holds that as
d → ∞

𝜆1

𝜀1𝜀2Δ1
→ 1 and Angle(h1,𝝁1) → 0, (2)

from the fact that 𝜆1∕Δ = hT
1𝚺h1∕Δ = 𝜀1𝜀2(hT

1𝝁1)2 + o(1) as d → ∞ under Condition 1. Further-
more, for the normalized first PC score s1j∕𝜆1∕2

1 (= z1j), it follows that

plim
d→∞

s1j

𝜆
1∕2
1

=
{

(𝜀2∕𝜀1)1∕2 when xj ∈ Π1,
−(𝜀1∕𝜀2)1∕2 when xj ∈ Π2,

(3)
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for j = 1,… ,n. Here, “plim” denotes the convergence in probability. This result is a special case
of Theorem 2 in Section 3. See Remark 8. One would be able to cluster xjs into two groups if s1j is
accurately estimated in HDLSS situations.

In this article, we consider asymptotic properties of sample PC scores for Equation (1) in the
HDLSS context that d → ∞while n is fixed. In Section 2, we first derive a geometric representation
of HDLSS data taken from the two-class mixture model. With the help of the geometric represen-
tation, we give geometric consistency properties of sample PC scores in the HDLSS context. We
show that PCA can cluster HDLSS data under certain conditions in a surprisingly explicit way.
In Section 3, we investigate asymptotic behaviors of true PC scores for the k(≥3)-class mixture
model and provide geometric consistency properties of sample PC scores when k ≥ 3. In Section 4,
we demonstrate the performance of clustering based on sample PC scores using gene expression
datasets. We show that the real-HDLSS datasets hold the geometric consistency properties.

2 PC SCORES FOR TWO- CLASS MIXTURE MODEL

In this section, we consider PC scores for the two-class (k = 2) mixture model.

2.1 Preliminary

The sample covariance matrix is given by S = (n − 1)−1(X − X)(X − X)T = (n − 1)−1 ∑n
j=1

(xj − xn)(xj − xn)T, where xn = n−1 ∑n
j=1 xj and X = xn1T

n with 1n = (1,… , 1)T ∈ Rn. Then, we
define the n × n dual sample covariance matrix by SD = (n − 1)−1(X − X)T(X − X). We note
that rank(SD) ≤ n − 1. Let �̂�1 ≥ ⋅ ⋅ ⋅ ≥ �̂�n−1 ≥ 0 be the eigenvalues of SD. Then, we define the
eigendecomposition of SD by

SD =
n−1∑
i=1

�̂�iûiûT
i ,

where ûi = (ûi1,… , ûin)T denotes a unit eigenvector corresponding to �̂�i. As the sign of ûis
is arbitrary, we assume ûT

i zi ≥ 0 for all i without loss of generality, where zi is defined by
zi = (zi1,… , zin)T. Note that S and SD share the nonzero eigenvalues. Let

ẑij = ûijn1∕2 for i = 1,… ,n − 1; j = 1,… ,n.

We note that ẑij is an estimate of sij∕𝜆1∕2
i (=zij) for i = 1,… ,n − 1; j = 1,… ,n from the facts that

ẑij = {n∕(n − 1)}1∕2ĥ
T
i (xj − xn)∕�̂�1∕2

i and
n∑

j=1
ẑ2

ij∕n = 1 if �̂�i > 0,

where ĥi denotes a unit eigenvector of S corresponding to �̂�i. Let X0 = X − 𝝁1T
n and

Pn = In − n−11n1T
n . We note that SD = PnXT

0 X0Pn∕(n − 1). We consider the sphericity condition:
tr(𝚺2)∕tr(𝚺)2 → 0 as d → ∞. Note that the sphericity condition is equivalent to “𝜆1∕tr(𝚺) → 0 as
d → ∞.” When one can assume that X is Gaussian or Z = (zij) is 𝜌-mixing and the fourth moments
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of each variable in Z are uniformly bounded, under the sphericity condition, Jung and Marron
(2009) suggested a geometric representation as follows:

plim
d→∞

XT
0 X0

tr(𝚺)
= In, so that plim

d→∞

(n − 1)SD

tr(𝚺)
= Pn. (4)

Remark 2. Yata and Aoshima (2012) showed that Equation (4) holds under the sphericity
condition and Var(||xj − 𝝁||2)∕tr(𝚺)2 → 0 as d → ∞.

From Equation (4), we observe that the eigenvalue becomes deterministic as the dimen-
sion increases, whereas the eigenvector of SD does not uniquely determine the direction. In
addition, Hellton and Thoresen (2017) present asymptotic properties of the sample PC scores
when Z is 𝜌-mixing. We note that Equation (1) does not presuppose the assumption that X
is Gaussian or Z is 𝜌-mixing. See section 4.1.1 in Qiao, Zhang, Liu, Todd, and Marron (2010)
for details. In the present article, we present new asymptotic properties of the sample PC for
Equation (1).

2.2 Geometric representation and consistency property of PC scores
when k = 2

We will find a geometric representation for Equation (1) and the finding is completely different
from Equation (4). We assume the following conditions:

Condition 2. maxi=1,…,ktr(𝚺2
i )

Δ2
k−1

→ 0 as d → ∞.

Condition 3. maxi=1,…,kVar(||x−𝝁i||2|x∈Πi)
Δ2

k−1
→ 0 as d → ∞.

Condition 4. tr(𝚺i)−tr(𝚺j)
Δk−1

→ 0 as d → ∞ for all i, j = 1,… , k(i < j).

Remark 3. Condition 2 is stronger than Condition 1 as it holds that {𝜆max(𝚺i)}2 ≤ tr(𝚺2
i ) for

i = 1,… , k. Let 𝛽(> 0) be a constant such that lim infd→∞ (Δk−1∕d𝛽) > 0. Let 𝜆i1 ≥ ⋅⋅⋅ ≥ 𝜆id ≥ 0 be
eigenvalues of 𝚺i for i = 1,… , k. For a spiked model such as

𝜆ij = aijd𝛼ij (j = 1,… , ti) and 𝜆ij = cij (j = ti + 1,… , d),

with positive constants, aij, cij, and 𝛼ij (not depending on d), and a positive integer ti (not depend-
ing on d), Condition 1 holds when 𝛼i1 < 𝛽 for i = 1,… , k. Also, Condition 2 holds when 𝛽 > 1∕2
and 𝛼i1 < 𝛽 for i = 1,… , k. See Yata and Aoshima (2012) for the details of the spiked model.

Remark 4. If Πis are Gaussian, it holds that Var(||x − 𝝁i||2|x ∈ Πi) = O{tr(𝚺2
i )} for i = 1,… , k, so

that Condition 3 naturally holds under Condition 2.

Remark 5. When k = 2, Condition 4 holds if tr(𝚺1)∕tr(𝚺2) → 1 as d → ∞ and
lim infd→∞{Δ1∕tr(𝚺)} > 0.

We define that

rj = (−1)i+1(1 − 𝜂i) according to xj ∈ Πi for j = 1,… ,n.

The following result gives a geometric representation for Equation (1) when k = 2.
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Theorem 1. Assume Δ1∕tr(𝚺) → c(> 0) as d → ∞. Under Conditions 2–4, it holds

plim
d→∞

(n − 1)SD

tr(𝚺)
= crrT + (1 − 𝜀1𝜀2c)Pn, (5)

where r = (r1,… , rn)T.

When SD ≠ O, we note that ûT
1 1n = 0, so that ûT

1 Pn = ûT
1 . Thus from Equation (5), the first

eigenvector of SD uniquely determines the direction. In fact, by noting rT1n = 0 and ||r||2 = n𝜂1𝜂2,
we have the following results for the first eigenvector and PC scores when k = 2. Using Corollary 1,
one can cluster xjs into two groups by the sign of ẑ1js:

Corollary 1. Under Conditions 2–4, it holds that for ni > 0, i = 1, 2

plim
d→∞

û1 = r
(n𝜂1𝜂2)1∕2 and

plim
d→∞

ẑ1j =
{

(𝜂2∕𝜂1)1∕2 when xj ∈ Π1,
−(𝜂1∕𝜂2)1∕2 when xj ∈ Π2,

for j = 1,… ,n.

We considered an easy example such as Πi ∶ Nd(𝝁i,𝚺i), i = 1, 2, with 𝝁1 = 1d, 𝝁2 = 0,
𝚺1 = (0.3|i−j|1∕3), and 𝚺2 = B(0.3|i−j|1∕3)B, where B = diag[−{0.5 + 1∕(d + 1)}1/2, {0.5 + 2∕
(d + 1)}1/2,… , (−1)d{0.5 + d∕(d + 1)}1/2]. We note that Δ1 = d and 𝚺1 ≠ 𝚺2 but tr(𝚺1) = tr(𝚺2) =
d. Then, Conditions 2–4 hold. We set n1 = 1 and n2 = 2. We took n = 3 samples as x1 ∈ Π1 and
x2, x3 ∈ Π2. In Figure 1, we displayed scatter plots of 20 independent pairs of ±û1 when (a) d = 5,
(b) d = 50, (c) d = 500, and (d) d = 5,000. We denoted r = (2∕3,−1∕3,−1∕3)T by the solid line and
1n = (1, 1, 1)T by the dotted line. We note that Angle(û1, 1n) = 𝜋∕2 when SD ≠ O. We observed
that all the plots of ±û1 gather on the surface of the orthogonal complement of 1n. Also, the plots
appeared close to r as d increases. Thus, one can cluster xjs into two groups by the sign of ẑ1js.

Next, we investigated robustness of Corollary 1 against Condition 4 by some sim-
ulation studies. Let ΔΣ = |tr(𝚺1) − tr(𝚺2)|. We considered an easy example such as Πi ∶
Nd(𝝁i,𝚺i), i = 1, 2, with 𝝁1 = (1,… , 1, 0,… , 0)T whose first ⌈d3/4⌉ elements are 1, 𝝁2 = 0,
𝚺1 = 𝛾(0.3|i−j|1∕3), and 𝚺2 = B(0.3|i−j|1∕3)B, where 𝛾 ≥ 1. Here, ⌈⋅⌉ denotes the ceiling func-
tion. Note that ΔΣ = (𝛾 − 1)d. We set d = 5,000, n = 10, n1 = 4, and n2 = 6. We took n = 10
samples as x1,… , x4 ∈ Π1 and x5,… , x10 ∈ Π2. In Figure 2, we displayed scatter plots of
(ẑ1j, ẑ2j), j = 1,… ,n, when (a) 𝛾 = 1 + 2d−1/2, (b) 𝛾 = 1 + 2d−1/4, and (c) 𝛾 = 3. From Corollary 1

(a) d = 5 (b) d = 50 (c) d = 500 (d) d = 5000

F I G U R E 1 Toy example to illustrate the geometric representation of ±û1 on the unit sphere when k = 2
and n = 3. We plotted 20 independent pairs of ±û1 when x1 ∈ Π1 and x2, x3 ∈ Π2. The solid line denotes
r = (2∕3,−1∕3,−1∕3)T and the dotted line denotes 1n = (1, 1, 1)T [Colour figure can be viewed at
wileyonlinelibrary.com]

http://wileyonlinelibrary.com
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(a) Δ1/ΔΣ ≈ d1/4/2 (b) Δ1/ΔΣ ≈ 1/2 (c) Δ1/ΔΣ ≈ d−1/4/2

F I G U R E 2 Toy example to illustrate asymptotic behaviors of the estimated principal component scores
when k = 2. We plotted (ẑ1j, ẑ2j) which is denoted by small circles when xj ∈ Π1 and by small triangles when
xj ∈ Π2. The theoretical convergent points, (3∕2)1/2 and −(3∕2)1/2, are denoted by dotted lines [Colour figure can
be viewed at wileyonlinelibrary.com]

we denoted (3∕2)1/2 and −(2∕3)1/2 by dotted lines. Note that ΔΣ∕Δ1 ≈ 2d−1/4 for (a), ΔΣ∕Δ1 ≈ 2
for (b), and ΔΣ∕Δ1 ≈ 2d1/4 for (c). Thus, Condition 4 holds for (a), while it does not hold for (b)
and (c). For (a) and (b), we observed that the estimated PC scores give good performances. On
the other hand, the first PC score did not gather around (3∕2)1/2 or −(2∕3)1/2 for (c). However,
(ẑ1j, ẑ2j)s were concentrated on the origin (0, 0) for xj ∈ Π2.

When Δ1∕ΔΣ → 0 as d → ∞, we give the following result to explain the reason of the phe-
nomenon in Figure 2c. Under the assumptions of Proposition 1, one can cluster xjs into two
groups by the size of ẑijs even when Condition 4 is not met:

Proposition 1. Assume k = 2, nl∗ ≥ 2 and nl′∗ ≥ 1, where l∗(≠ l′∗) is an integer such that tr(𝚺l∗ ) >
tr(𝚺l′∗ ). Assume also that maxl=1,2tr(𝚺2

l )∕Δ
2
Σ → 0, maxl=1,2Var(||x − 𝝁l||2|x ∈ Πl)∕Δ2

Σ → 0 and
Δ1∕ΔΣ → 0 as d → ∞. Then, it holds that

plim
d→∞

|ẑij| > 0 when xj ∈ Πl∗ for some i ∈ [1,nl∗ − 1] and

plim
d→∞

ẑij = 0 when xj ∈ Πl′∗ for i = 1,… ,nl∗ − 1.

Remark 6. For k ≥ 3, we do not give any consistency property when Condition 4 is not met
because the sufficient conditions of Proposition 1 become quite complicated for k ≥ 3. Detailed
study for the case when k ≥ 3 is left for a future work.

The assumptions of Proposition 1 hold for (c) of Figure 2. Thus, (ẑ1j, ẑ2j)s were concentrated
on the origin (0, 0) for xj ∈ Π2 in (c).

3 PC SCORES FOR MULTICLASS MIXTURE MODEL

In this section, we consider PC scores for the k(≥ 3)-class mixture model.

3.1 Asymptotic behaviors of true PC scores when k ≥ 3

Let

𝜀(0) = 0 and 𝜀(i) =
i∑

j=1
𝜀j for i = 1,… , k.

http://wileyonlinelibrary.com
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We assume the following condition:

Condition 5. Angle(𝝁i,𝝁j) →
𝜋

2
and Δj

Δi
→ 0 as d → ∞ for i, j = 1,… , k − 1(i < j).

Remark 7. We consider the case when all elements of 𝝁is are constants (not depending on d) such
as 𝝁i = (𝜇i1,… , 𝜇ip, 0,… , 0) with 𝜇is ≠ 0 (not depending on d) for s = 1,… , p. If all elements of
𝝁is are constants, the condition “Angle(𝝁i, 𝝁j)→ 𝜋∕2 as d → ∞” holds for i < j under Δj∕Δi → 0
as d → ∞, so that Condition 5 holds under Δi+1∕Δi → 0 as d → ∞ for i = 1,… , k − 2. See the
settings of Figures 3 and 4. Note that Δ1 ≫ ⋅⋅⋅ ≫ Δk−1 under Condition 5. We emphasize that
Conditions 1–4 become strict as k increases under Condition 5.

We have the following results.

Theorem 2. Under Conditions 1 and 5, it holds that for i = 1,… , k − 1; j = 1,… ,n

plim
d→∞

sij

𝜆
1∕2
i

=

⎧⎪⎪⎨⎪⎪⎩
0 when i ≥ 2 and xj ∈ ∪i−1

m=1Πm,(
1−𝜀(i)

𝜀i(1−𝜀(i−1))

)1∕2
when xj ∈ Πi,

−
(

𝜀i
(1−𝜀(i))(1−𝜀(i−1))

)1∕2
when xj ∈ ∪k

m=i+1Πm.

(6)

(a) d = 100 (b) d = 1000 (c) d = 10000

F I G U R E 3 Toy example to illustrate the asymptotic behaviors of true principal component scores when
k = 3. We plotted (z1j, z2j) which is denoted by small circles when xj ∈ Π1, by small triangles when xj ∈ Π2, and
by small squares when xj ∈ Π3. The dashed triangle consists of three vertices, namely, (1, 0), (−1, 21/2), and
(−1,−21/2), which are theoretical convergent points [Colour figure can be viewed at wileyonlinelibrary.com]

(a) d = 100 (b) d = 1000 (c) d = 10000

F I G U R E 4 Toy example to illustrate the asymptotic behaviors of true principal component scores when
k = 4. We plotted (z1j, z2j, z3j). The dashed triangular pyramid was given by Equation (6) with k = 4 [Colour figure
can be viewed at wileyonlinelibrary.com]

http://wileyonlinelibrary.com
http://wileyonlinelibrary.com
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Remark 8. The consistency in Equation (3) is equivalent to Equation (6) with k = 2 and
i = 1.

Corollary 2. Under Conditions 1 and 5, it holds that for i = 1,… , k − 1

𝜆i

𝜀i(1 − 𝜀(i))Δi∕(1 − 𝜀(i−1))
→ 1 and Angle(hi,𝝁i) → 0 as d → ∞.

For example, when k = 3, from Equation (6), we have that for j = 1,… ,n

plim
d→∞

s1j

𝜆
1∕2
1

=
{

{(1 − 𝜀1)∕𝜀1}1∕2 when xj ∈ Π1,
−{𝜀1∕(1 − 𝜀1)}1∕2 when xj ∉ Π1

and

plim
d→∞

s2j

𝜆
1∕2
2

=

{ 0 when xj ∈ Π1,
[𝜀3∕{𝜀2(1 − 𝜀1)}]1∕2 when xj ∈ Π2,
−[𝜀2∕{𝜀3(1 − 𝜀1)}]1∕2 when xj ∈ Π3.

One can check whether xj ∈ Π1 or not by the first PC score. If xj ∉ Π1, one can check whether
xj ∈ Π2 or xj ∈ Π3 by the second PC score. In general, one can cluster xjs using at most the first
k − 1 PC scores.

We considered a toy example such as Πi ∶ Nd(𝝁i,𝚺i), i = 1,… , 4, where 𝝁1 = 1d, 𝝁2 =
(1,… , 1, 0,… , 0)T whose first ⌈d3/4⌉ elements are 1, 𝝁3 = (1,… , 1, 0,… , 0)T whose first ⌈d1/2⌉
elements are 1, and 𝝁4 = 0. We set 𝚺1 = (0.3|i−j|1∕3), 𝚺2 = B(0.3|i−j|1∕3)B, 𝚺3 = 0.8𝚺1, and 𝚺4 =
1.2𝚺2, where B is defined in Section 2.2. Then, Conditions 1 and 5 hold. We first consid-
ered the case when k = 3 ∶ Πi, i = 1, 2, 3, having (𝜀1, 𝜀2, 𝜀3) = (1∕2, 1∕4, 1∕4). We set n = 20
and (n1,n2,n3) = (10, 5, 5). From Theorem 2, one can expect that (z1j, z2j) (= (s1j∕𝜆1∕2

1 , s2j∕𝜆1∕2
2 ))

becomes close to (1, 0) when xj ∈ Π1, (−1, 21/2) when xj ∈ Π2, and (−1,−21/2) when xj ∈ Π3.
In Figure 3, we displayed scatter plots of (z1j, z2j), j = 1,… ,n, when (a) d = 100, (b) d = 1,000,
and (c) d = 10,000. We observed that the scatter plots appear close to those three vertices as d
increases.

Next, we considered the case when k = 4 ∶ Πi, i = 1,… , 4, having 𝜀1 = ⋅⋅⋅ = 𝜀4 = 1∕4. We set
n = 20 and n1 = ⋅⋅⋅ = n4 = 5. In Figure 4, we displayed scatter plots of (z1j, z2j, z3j), j = 1,… ,n,
when (a) d = 100, (b) d = 1,000 and (c) d = 10,000. From Theorem 2, we displayed the triangular
pyramid given by Equation (6) with k = 4. As expected theoretically, we observed that the scatter
plots appear close to four vertices of the triangular pyramid as d increases. They seemed to con-
verge slower in Figure 4 than in Figure 3. This is because the conditions of Theorem 2 become
strict as k increases. See Remark 7.

3.2 Consistency property of PC scores when k ≥ 3

Let

𝜂(0) = 0 and 𝜂(i) =
i∑

j=1
𝜂j for i = 1,… , k.

We assume the following condition:

Condition 6. maxi=1,…,k−2(𝝁T
i 𝚺j𝝁i)

Δ2
k−1

→ 0 as d → ∞ for j = 1,… , k.
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(a) Angle (µ1, µ2) = 0.352π (b) Angle (µ1, µ2) = 0.282π (c) Angle (µ1, µ2) = 0.148π

F I G U R E 5 Toy example to illustrate asymptotic behaviors of the estimated principal component scores
when k = 3. We plotted (ẑ1j, ẑ2j) which is denoted by small circles when xj ∈ Π1, by small triangles when xj ∈ Π2,
and by small squares when xj ∈ Π3. The dashed triangle consists of three vertices, namely, (1, 0), (−1, 21/2), and
(−1,−21/2), which are the theoretical convergent points [Colour figure can be viewed at wileyonlinelibrary.com]

Remark 9. From the fact that𝝁T
i 𝚺j𝝁i ≤ Δi𝜆max(𝚺j), Condition 6 holds underΔ1𝜆max(𝚺j)∕Δ2

k−1 → 0
as d → ∞ for j = 1,… , k.

As for the estimated PC scores, we have the following result. From Theorem 3, one can cluster
xjs into k groups by the elements of ûi, i = 1,… , k − 1:

Theorem 3. Under Conditions 2–6, it holds that for nl > 0, l = 1,… , k

plim
d→∞

ẑij =

⎧⎪⎪⎨⎪⎪⎩
0 when i ≥ 2 and xj ∈

i−1
∪

m=1
Πm,(

1−𝜂(i)
𝜂i(1−𝜂(i−1))

)1∕2
when xj ∈ Πi,

−
(

𝜂i
(1−𝜂(i))(1−𝜂(i−1))

)1∕2
when xj ∈

k
∪

m=i+1
Πm,

(7)

for i = 1,… , k − 1; j = 1,… ,n.

Condition 5 is essential for the consistency properties given in Theorems 2 and 3. We investi-
gated the robustness of Theorem 3 against Condition 5 by some simulation studies. We considered
a toy example such as Πi ∶ Nd(𝝁i,𝚺i), i = 1, 2, 3, where 𝝁1 = 1d, 𝝁2 = (1,… , 1, 0,… , 0)T whose
first ⌈d∕𝜁⌉ elements are 1,𝝁3 = 0,𝚺1 = (0.3|i−j|1∕3),𝚺2 = B(0.3|i−j|1∕3)B, and𝚺3 = (0.4|i−j|1∕3). We set
d = 5,000, n = 20, and (n1,n2,n3) = (10, 5, 5). In Figure 5, we displayed scatter plots of (ẑ1j, ẑ2j),
j = 1,… ,n, when (a) 𝜁 = 1∕5, (b) 𝜁 = 2∕5, and (c) 𝜁 = 4∕5. Also, we displayed the triangle
given by Equation (7) with k = 3. Note that Angle(𝝁1,𝝁2) = 0.352𝜋 and Δ2∕Δ1 = 1∕5 for (a),
Angle(𝝁1,𝝁2) = 0.282𝜋 and Δ2∕Δ1 = 2∕5 for (b), and Angle(𝝁1,𝝁2) = 0.148𝜋 and Δ2∕Δ1 = 4∕5
for (c). For (a) and (b), we observed that the estimated PC scores give good performances. On the
other hand, the estimated PC scores seemed not to converge to the theoretical points for (c). This
is because Condition 5 is not met. However, we could find three separate clusters for Πi, i = 1, 2, 3.
See Appendix B for the reason.

4 REAL-DATA EXAMPLES

We demonstrate the performance of clustering, based on sample PC scores, using gene expression
datasets.

http://wileyonlinelibrary.com
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4.1 Clustering when k = 2

We analyzed microarray data by Chiaretti et al. (2004) in which the dataset consists of 12,625 (=d)
genes and 128 samples. The dataset has two tumor cellular subtypes, Π1 ∶ B cell (95 samples) and
Π2 ∶ T cell (33 samples). Refer to Jeffery, Higgins, and Culhane (2006) as well. We checked behav-
iors of the PC scores using several samples from the two tumor cellular subtypes. We considered
three cases: (a) n = 10 samples consist of the first five samples from both Π1 and Π2 (i.e., n1 = 5
and n2 = 5), (b) n = 40 samples consist of the first 20 samples from both Π1 and Π2 (i.e., n1 = 20
and n2 = 20), and (c) n = 128 samples consist of n1 = 95 samples from Π1 and n2 = 33 samples
fromΠ2. In the top panels of Figure 6, we displayed scatter plots of the first two PC scores, (ẑ1j, ẑ2j)s,
for (a), (b), and (c). From Corollary 1, we denoted (𝜂2∕𝜂1)1/2 and −(𝜂1∕𝜂2)1/2 by dotted lines. For
(a), we observed that the estimated PC scores give good performances. The first PC scores gath-
ered around (𝜂2∕𝜂1)1/2 or−(𝜂1∕𝜂2)1/2. For (b), the estimated PC scores gave adequate performances
except for the two points from Π2. Those two samples, which are the ninth and twentieth samples
of Π2, are probably outliers. In fact, the two points are far from the cluster of Π2. The other 38
samples were perfectly classified into the two groups by the sign of the first PC scores. As for
(c), although there seemed to be two clusters except for the two samples, we could not classify
the dataset by the sign of the first PC scores. This is probably because 𝜂1 and 𝜂2 are unbalanced.
From Equation (2), when the mixing proportions are unbalanced, 𝜆1 becomes small. The first
eigenspace was possibly affected by the other eigenspaces, so that the first PC scores appear in
the wrong direction. We tested the clustering except for the outlying two samples. We used the
remaining 31 samples forΠ2. We considered the following three cases for samples fromΠ1: (d) the
first 16 samples from Π1, so that n1 = 16,n2 = 31,n = 47, and 𝜂1∕𝜂2 ≈ 0.5; (e) the first 31 samples
from Π1, so that n1 = 31,n2 = 31,n = 62, and 𝜂1∕𝜂2 = 1; and (f) the first 62 samples from Π1, so
that n1 = 62,n2 = 31,n = 93, and 𝜂1∕𝜂2 = 2. In the bottom panels of Figure 6, we displayed scatter

(a) (n1, n2) = (5,5) (b) (n1, n2) = (20, 20) (c) (n1, n2) = (95, 33)

(d) (n1, n2) = (16, 31) (e) (n1, n2) = (31, 31) (f) (n1, n2) = (62, 31)

F I G U R E 6 Scatter plots of the first two principal component scores, supposing k = 2 in the dataset of
Chiaretti et al. (2004). We denoted them by small circles when xj ∈ Π1 and by small triangles when xj ∈ Π2. The
theoretical convergent points, namely, (𝜂2∕𝜂1)1/2 and −(𝜂1∕𝜂2)1/2, are denoted by dotted lines. The two samples,
encircled by dots in (b) and (c), are probably outliers [Colour figure can be viewed at wileyonlinelibrary.com]
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plots of (ẑ1j, ẑ2j)s for (d), (e), and (f). For (d) and (e), we observed that the estimated PC scores give
good performances. As for (f), although there seemed to be two clusters, we could not classify the
dataset by the sign of the first PC scores. Note that 𝜂1 and 𝜂2 are unbalanced in (d) and (f). Even
though (d) is an unbalanced case, the estimated PC scores worked well for the case. We had an
estimate for the ratio of the largest eigenvalues, 𝜆max(𝚺1)∕𝜆max(𝚺2), as 1.598 by the noise-reduction
methodology given by Yata and Aoshima (2012). The first eigenspace of 𝚺 in (d) is less affected
by the first eigenspace of 𝚺is than in (f) as 𝚺 = 𝜀1𝜀2(𝝁1 − 𝝁2)(𝝁1 − 𝝁2)T + 𝜀1𝚺1 + 𝜀2𝚺2. This is
probably the reason why the estimated PC scores gave good performances even in (d).

4.2 Clustering when k ≥ 3

We analyzed microarray data by Bhattacharjee et al. (2001) in which the dataset consisted of five
lung carcinomas types with d = 3,312. We only used four classes asΠ1 ∶ pulmonary carcinoids (20
samples), Π2 ∶ normal lung (17 samples), Π3 ∶ squamous cell lung carcinomas (21 samples), and
Π4 ∶ adenocarcinomas (20 samples), so that n1 = 20,n2 = 17,n3 = 21, and n4 = 20. Note that Π4
originally had 139 samples. We used only the first 20 samples from Π4 in order to keep balance in
sample sizes with the other classes. We first considered clustering when k = 3 under the following
setups: (a) the dataset consists of Π1,Π2, andΠ3 (n = 58); (b) the dataset consists of Π1,Π2, andΠ4
(n = 57); and (c) the dataset consists of Π1, Π3, and Π4 (n = 61). In Figure 7, we displayed scatter
plots of the first two PC scores, (ẑ1j, ẑ2j)s, for each of (a), (b), and (c). Also, we displayed the triangle
given by Equation (7) with k = 3 using Theorem 3. We observed that the estimated PC scores give
good performances. The three clusters gathered around each vertex for (a), (b), and (c).

Next, we considered clustering when k = 4 ∶ Πi, i = 1,… , 4, so that n = 78. In Figure 8, we
displayed scatter plots of the first three PC scores. The dataset seemed not to converge to the
theoretical convergent points given by Equation (7) in Theorem 3. This is probably because the
conditions of Theorem 3 become strict as k increases. See Remark 7. Thus, the convergence is
slower than in the case when k = 3 as in Figure 7. However, there seemed to be four separate
clusters of each Πi.

Finally, we introduce an example using next generation sequencing datasets. Shen, Shen, Zhu,
and Marron (2012, 2016) gave a scatter plot of first two PC scores for the next generation sequenc-
ing cancer data by Wilhelm and Landry (2009) in which the dataset consists of three curves with
d = 1,709 and n = 180. See Figure 9 which was given in figure 1 of Shen et al. (2012). The three
clusters seem to compose of a triangle such as Figure 7.

(a) Π1, Π2 and Π3 (b) Π1, Π2 and Π4 (c) Π1, Π3 and Π4

F I G U R E 7 Scatter plots of the first two principal component scores, supposing k = 3 in the dataset of
Bhattacharjee et al. (2001). We denoted them by small circles when xj ∈ Π1, by small triangles when xj ∈ Π2, by
small squares when xj ∈ Π3, and by small inverted triangles when xj ∈ Π4. The theoretical convergent points
are denoted by the vertices of the triangle [Colour figure can be viewed at wileyonlinelibrary.com]
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(i) (z1j, z2j)ˆ ˆ (ii) (z1j, z3j)ˆ ˆ (iii) (z1j, z2j, z3j)ˆ ˆ ˆ

F I G U R E 8 Scatter plots of the first three principal component scores, supposing k = 4 in the dataset of
Bhattacharjee et al. (2001). The dashed triangles and triangular pyramid were given by Equation (7) with k = 4
[Colour figure can be viewed at wileyonlinelibrary.com]

F I G U R E 9 Shen et al. (2012) gave
a scatter plot of first two principal
component scores for the next
generation sequencing cancer data.
[Colour figure can be viewed at
wileyonlinelibrary.com]

4.3 Clustering: Special case

We analyzed microarray data by Armstrong et al. (2002) in which the dataset consists of three
leukemia subtypes having 12,582 (=d) genes. We used two classes such asΠ1: acute lymphoblastic
leukemia (24 samples) and Π2: mixed-lineage leukemia (20 samples), so that n1 = 24,n2 = 20,
and n = 44. In Figure 10, we displayed scatter plots of the first three PC scores.

We observed that the dataset is perfectly separated by the sign of the second PC scores. This
figure looks completely different from Figure 6. This is probably because the largest eigenvalue,
𝜆max(𝚺1) or 𝜆max(𝚺2), is too large. When k = 2, we give the following result to explain the reason
of the phenomenon in Figure 10. Under the assumptions of Proposition 2, one can cluster xjs into
two groups by some ith PC score even when Condition 1 is not met:

Proposition 2. Assume that maxi=1,2(𝝁T
1𝚺i𝝁1)∕Δ2

1 → 0 as d → ∞. Then, there exists some positive
integer i⋆ such that

𝜆i⋆

𝜀1𝜀2Δ1
→ 1 as d → ∞.

http://wileyonlinelibrary.com
http://wileyonlinelibrary.com


912 YATA and AOSHIMA

(i) (z1j, z2j)ˆ ˆ (ii) (z2j, z3j)ˆ ˆ (iii) (z1j, z3j)ˆ ˆ

F I G U R E 10 Scatter plots of the first three principal component scores, supposing k = 2 in the dataset of
Armstrong et al. (2002) [Colour figure can be viewed at wileyonlinelibrary.com]

Furthermore, assume that 𝜆i⋆ is distinct in the sense that

lim inf
d→∞

||||| 𝜆i′

𝜆i⋆
− 1

||||| > 0 for i′ = 1,… , d (i′ ≠ i⋆).

Then, if hT
i⋆
𝝁1 ≥ 0, it holds that Angle(hi⋆ ,𝝁1) → 0 as d → ∞ and for j = 1,… ,n

plim
d→∞

si⋆j

𝜆
1∕2
i⋆

=
{

(𝜀2∕𝜀1)1∕2 when xj ∈ Π1,
−(𝜀1∕𝜀2)1∕2 when xj ∈ Π2.

We estimated the largest eigenvalue using the noise-reduction methodology given by Yata and
Aoshima (2012). By noting Remark 1, we considered Δ1 as Δ1 = ||𝝁′

1||2 = ||𝝁1 − 𝝁2||2. We esti-
mated Δ1 using an unbiased estimator given by Aoshima and Yata (2014). Then, we obtained the
estimates of (𝜆max(𝚺1)∕Δ1, 𝜆max(𝚺2)∕Δ1) as (0.465, 0.787), so that Condition 1 is not met obviously.
In addition, by estimating 𝜀is by 𝜂is, we had 𝜀2𝜆max(𝚺2) > 𝜀1𝜀2Δ1. Thus, the first eigenspace of 𝚺
is probably the first eigenspace of 𝚺2 as 𝚺 = 𝜀1𝜀2(𝝁1 − 𝝁2)(𝝁1 − 𝝁2)T + 𝜀1𝚺1 + 𝜀2𝚺2. Thus, i⋆ in
Proposition 2 must be 2. This is the reason why the dataset can be separated by the sign of the
second PC scores in Figure 10.

5 CONCLUDING REMARKS

In this article, we considered the mixture model by Equation (1) in high-dimensional settings.
We studied asymptotic properties of both the true PC scores and the sample PC scores for the
high-dimensional mixture model. We gave conditions under which PCA is very effective for clus-
tering HDLSS data. We showed that HDLSS data can be classified by the sign of the first several PC
scores theoretically. However, we have to say, in actual HDLSS data analyses, one may encounter
cases such as in Figures 6c and 10, where the dataset is not always classified by the sign of the first
several PC scores. Several reasons should be considered: (i) actual HDLSS datasets often include
several outliers, (ii) the regularity conditions are not met, and (iii) the mixing proportions 𝜀is are
quite unbalanced. Thus, we recommend the following three steps: (i) apply PCA to HDLSS data;
(ii) using PC scores, map the dataset onto a feature space such as the first three eigenspaces, and
(iii) apply general clustering methods such as the k-means method to the feature space. However,
the number of clusters k is unknown in general. We emphasize that the first k − 1 eigenvalues are
quite spiked for the model (1). Recently, Jung, Lee, and Ahn (2018) proposed a test of the number
of spiked components for high-dimensional data. Thus, one may apply the test to the choice of k
for clustering.
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APPENDIX A. LEMMAS AND THEIR PROOFS

Throughout, let 𝝁i,j = 𝝁i − 𝝁j and Δi,j = ||𝝁i,j||2 for i, j = 1,… , k(i < j). Let ui = (ui1,… ,uin)T,
where

uij =

⎧⎪⎪⎨⎪⎪⎩
0 when i ≥ 2 and xj ∈

i−1
∪

m=1
Πm,

[(1 − 𝜂(i))∕{n𝜂i(1 − 𝜂(i−1))}]1∕2 when xj ∈ Πi,

−[𝜂i∕{n(1 − 𝜂(i))(1 − 𝜂(i−1))}]1∕2 when xj ∈
k
∪

m=i+1
Πm,

for i = 1,… , k − 1; j = 1,… ,n. Let 𝝂i =
∑k

m=1 𝜂m(𝝁i − 𝝁m) for i = 1,… , k. Let V = [𝝂(1),… , 𝝂(n)],
where 𝝂(j) = 𝝂i according to xj ∈ Πi for j = 1,… ,n. Note that V1n =

∑n
j=1 𝝂(j) = 0. We define

the eigendecomposition of V TV∕n by V TV∕n =
∑k−1

i=1 �̃�iũiũT
i from the fact that rank(V ) ≤ k − 1,

where �̃�1 ≥ ⋅ ⋅ ⋅ ≥ �̃�k−1 ≥ 0 are eigenvalues of V TV∕n and ũi = (ũi1,… , ũin)T is a unit eigenvector
corresponding to �̃�i for each i. We assume ũT

i ui ≥ 0 for i = 1,… , k − 1, without loss of generality.

Lemma 1. When k = 2, it holds that under Conditions 2–4

plim
d→∞

(n − 1)SD − tr(𝚺1)Pn

Δ1
= rrT.

Proof. As 𝝁2 = 0, we can write that xj − 𝜂1𝝁1 = (xj − 𝝁i) + (−1)i+1(1 − 𝜂i)𝝁1 for i = 1, 2;
j = 1,… ,n. From the fact that 𝜆max(𝚺i) ≤ tr(𝚺2

i )1∕2, we have that Var{(xj − 𝝁i)T
𝝁1|xj ∈ Πi} =

𝝁
T
1𝚺i𝝁1 ≤ Δ1𝜆max(𝚺i) = o(Δ2

1) as d → ∞ for j = 1,… ,n; i = 1, 2 under Condition 2. Also, we
have that Var{(xj − 𝝁i)T(xj′ − 𝝁i′ )|xj ∈ Πi, xj′ ∈ Πi′ } = tr(𝚺i𝚺i′) ≤ tr(𝚺2

i )1∕2tr(𝚺2
i′ )1∕2 = o(Δ2

1) for all
j ≠ j′ and i, i′ = 1, 2 under Condition 2. Then, using Chebyshev's inequality, for any 𝜏 > 0, under
Condition 2, it holds that for all j ≠ j′ and i, i′ = 1, 2

P{|(xj − 𝝁i)T(xj′ − 𝝁i′ )∕Δ1| > 𝜏|xj ∈ Πi, xj′ ∈ Πi′ } = o(1) and
P{|(xj − 𝝁i)T

𝝁1∕Δ1| > 𝜏|xj ∈ Πi} = o(1), (A1)
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so that (xj − 𝝁i)T(xj′ − 𝝁i′ )∕Δ1 = oP(1) and (xj − 𝝁i)T
𝝁1∕Δ1 = oP(1) when xj ∈ Πi and xj′ ∈ Πi′

(j ≠ j′). We note that E(||xj − 𝝁i||2|xj ∈ Πi) = tr(𝚺i). Similar to (A1), under Condition 3, it holds
that {||xj − 𝝁i||2 − tr(𝚺i)}∕Δ1 = oP(1) when xj ∈ Πi for i = 1, 2; j = 1,… ,n. By noting that
{tr(𝚺1) − tr(𝚺2)}∕Δ1 = o(1) under Condition 4, we have that

plim
d→∞

(X − 𝜂1𝝁11T
n)T(X − 𝜂1𝝁11T

n) − tr(𝚺1)In

Δ1
= rrT,

under Conditions 2–4. By noting that Pn(X − 𝜂1𝝁11T
n)T(X − 𝜂1𝝁11T

n)Pn∕(n − 1) = SD and
rTPn = rT from rT1n = 0, we conclude the result. ▪

Lemma 2. Let �́�i,i+1 = 𝝁i,i+1∕Δ
1∕2
i,i+1 for i = 1,… , k − 1 and let Δ(i,j) = Δj,j+1∕Δi,i+1 for i, j =

1,… , k − 1(i < j). Under Conditions 1 and 5, it holds that as d → ∞

𝜆i

Δi,i+1
=

𝜀i(1 − 𝜀(i))
1 − 𝜀(i−1)

+ o(1) and hT
i �́�i,i+1 = 1 + o(1) for i = 1,… , k − 1;

hT
i �́�i−1,i = −

1 − 𝜀(i)

1 − 𝜀(i−1)
Δ1∕2

(i−1,i){1 + o(1)} for i = 2,… , k − 1 when k ≥ 3; and

hT
j �́�i,i+1 = o(Δ1∕2

(i,j)) for i, j = 1,… , k − 1(i + 1 < j) when k ≥ 3.

Proof. From the fact that |𝝁T
i 𝝁j| ≤ (ΔiΔj)1∕2, under Condition 5 it holds that as d → ∞

Δi,i+1

Δi
= Δi + Δi+1 + O{(ΔiΔi+1)1∕2}

Δi
→ 1 for i = 1,… , k − 2.

Then, under Condition 5, it holds that

𝝁
T
i,i+1𝝁j,j+1

(Δi,i+1Δj,j+1)1∕2 =
𝝁

T
i 𝝁j + O{(ΔiΔj+1)1∕2 + (Δi+1Δj)1∕2}

(ΔiΔj)1∕2{1 + o(1)}
= o(1),

for i, j = 1,… , k − 1(i < j). Hence, under Condition 5, we claim that

�́�
T
i,i+1�́�j,j+1 → 0 and

Δj,j+1

Δi,i+1
→ 0 as d → ∞ for i, j = 1,… , k − 1 (i < j). (A2)

Let ed (∈ Rd) be an arbitrary unit vector. From eT
d

(∑k
i=1 𝜀i𝚺i

)
ed ≤

∑k
i=1 𝜆max(𝚺i), it holds that

eT
d𝚺ed

Δk−1
=

eT
d

(∑k−1
i=1

∑k
j=i+1 𝜀i𝜀j𝝁i,j𝝁

T
i,j

)
ed

Δk−1
+ o(1), (A3)

under Condition 1. Note that 𝝁i,j =
∑j−1

m=i 𝝁m,m+1 for i, j = 1,… , k(i < j). Thus, it holds that

k−1∑
i=1

k∑
j=i+1

𝜀i𝜀j𝝁i,j𝝁
T
i,j =

k−1∑
i=1

𝜀(i)(1 − 𝜀(i))𝝁i,i+1𝝁
T
i,i+1 +

k−2∑
i=1

k−1∑
j=i+1

𝜀(i)(1 − 𝜀(j))(𝝁i,i+1𝝁
T
j,j+1 + 𝝁j,j+1𝝁

T
i,i+1).

(A4)
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From the facts that 𝜆1 = hT
1𝚺h1 = maxed (e

T
d𝚺ed) and Δk−1 = Δk−1,k, by combining

Equation (A3) with Equations (A2) and (A4), we have that

𝜆1

Δ1,2
= max

ed
{𝜀(1)(1 − 𝜀(1))(eT

d�́�1,2)2 + o(1)} = 𝜀(1)(1 − 𝜀(1)) + o(1),

under Conditions 1 and 5. Hence, by noting that Δ1,2∕Δ1 = 1 + o(1) and hT
1𝝁1 ≥ 0, it holds that

hT
1 �́�1,2 = hT

1𝝁1∕Δ
1∕2
1 + o(1) = 1 + o(1).

Next, we consider 𝜆2 and h2. From (A2), we note that �́�T
i,i+1�́�j,j+1 = o(1) and Δ(i,j) = o(1) for

i, j = 1,… , k − 1(i < j) under Condition 5. Then, under Conditions 1 and 5, it holds that for j ≥ 2

0 =
hT

1𝚺hj

Δ1,2
= 𝜀(1)(1 − 𝜀(1)){1 + o(1)}�́�T

1,2hj + 𝜀(1)(1 − 𝜀(2))�́�T
2,3hjΔ1∕2

(1,2) + o(Δ1∕2
(1,2)),

from Equations (A3) and (A4) and hT
1 �́�2,3 = o(1), so that for j ≥ 2

hT
j �́�1,2 = −{(1 − 𝜀(2))∕(1 − 𝜀(1))}�́�T

2,3hjΔ1∕2
(1,2) + o(Δ1∕2

(1,2)). (A5)

By combining Equation (A3) with Equations (A4) and (A5), we have that

𝜆2

Δ2,3
=

hT
2𝚺h2

Δ2,3
=

hT
2

{∑2
i=1 𝜀(i)(1 − 𝜀(i))𝝁i,i+1𝝁

T
i,i+1 + 2𝜀(1)(1 − 𝜀(2))𝝁1,2𝝁

T
2,3

}
h2

Δ2,3
+ o(1)

= 𝜀(2)(1 − 𝜀(2))(�́�T
2,3h2)2 + 𝜀(1)(1 − 𝜀(1))

(�́�T
1,2h2)2

Δ(1,2)
+ 2𝜀(1)(1 − 𝜀(2))

(�́�T
1,2h2)(�́�T

2,3h2)

Δ1∕2
(1,2)

+ o(1)

= 𝜀(2)(1 − 𝜀(2)) −
𝜀(1)(1 − 𝜀(2))2

1 − 𝜀(1)
+ o(1) =

𝜀2(1 − 𝜀(2))
1 − 𝜀(1)

+ o(1), (A6)

under Conditions 1 and 5. Hence, from the assumption that hT
2𝝁2 ≥ 0, it holds that hT

2 �́�2,3 =
hT

2𝝁2∕Δ
1∕2
2 + o(1) = 1 + o(1).

Next, we consider 𝜆3 and h3. Note that hT
j �́�2,3 = o(1) for j ≥ 3 from hT

2 �́�2,3 = 1 + o(1). Then,
under Conditions 1 and 5, we have that for j ≥ 3

0 =
hT

1𝚺hj

Δ1,2
= 𝜀(1)(1 − 𝜀(1)){1 + o(1)}�́�T

1,2hj + 𝜀(1)(1 − 𝜀(2)){1 + o(1)}�́�T
2,3hjΔ1∕2

(1,2)

+ 𝜀(1)(1 − 𝜀(3))�́�T
3,4hjΔ1∕2

(1,3) + o(Δ1∕2
(1,3)) and (A7)

0 =
hT

2𝚺hj

Δ2,3
= 𝜀(1)(1 − 𝜀(1))

hT
2 �́�1,2�́�

T
1,2hj

Δ(1,2)
+ 𝜀(1)(1 − 𝜀(2))

hT
2 (�́�1,2�́�

T
2,3 + �́�2,3�́�

T
1,2)hj

Δ1∕2
(1,2)

+ 𝜀(1)(1 − 𝜀(3))
hT

2 �́�1,2�́�
T
3,4hj

Δ1∕2
(1,2)

Δ1∕2
(2,3) + 𝜀(2)(1 − 𝜀(2)){1 + o(1)}�́�T

2,3hj

+ 𝜀(2)(1 − 𝜀(3))�́�T
3,4hjΔ1∕2

(2,3) + o(Δ1∕2
(2,3))

=
𝜀2(1 − 𝜀(2))

1 − 𝜀(1)
{1 + o(1)}�́�T

2,3hj +
𝜀2(1 − 𝜀(3))

1 − 𝜀(1)
�́�

T
3,4hjΔ1∕2

(2,3) + o(Δ1∕2
(2,3)) + �́�

T
1,2hj × o(Δ−1∕2

(1,2) ),

(A8)
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from Equations (A2) to (A5), hT
1 �́�2,3 = o(1), hT

1 �́�3,4 = o(1), and hT
2 �́�3,4 = o(1). Then, by combining

Equations (A7) and (A8), under Conditions 1 and 5, it holds that for j ≥ 3

hT
j �́�1,2 = o(Δ1∕2

(1,3)) and hT
j �́�2,3 = −

1 − 𝜀(3)

1 − 𝜀(2)
�́�

T
3,4hjΔ1∕2

(2,3) + o(Δ1∕2
(2,3)). (A9)

Similar to Equation (A6), by combining Equation (A3) with Equations (A4) and (A9), under
Conditions 1 and 5, we have that

𝜆3

Δ3,4
= 𝜀(3)(1 − 𝜀(3))(�́�T

3,4h3)2 + 𝜀(2)(1 − 𝜀(2))
(�́�T

2,3h3)2

Δ(2,3)
+ 2𝜀(2)(1 − 𝜀(3))

(�́�T
2,3h3)(�́�T

3,4h3)

Δ1∕2
(2,3)

+ o(1)

= 𝜀(3)(1 − 𝜀(3)) −
𝜀(2)(1 − 𝜀(3))2

1 − 𝜀(2)
+ o(1) =

𝜀3(1 − 𝜀(3))
(1 − 𝜀(2))

+ o(1),

so that hT
3 �́�3,4 = 1 + o(1) from the assumption that hT

3𝝁3 ≥ 0.
In a way similar to 𝜆3 and h3, as for 𝜆i and hi (4 ≤ i ≤ k − 1), we have that 𝜆i∕Δi,i+1 = 𝜀i

(1 − 𝜀(i))∕(1 − 𝜀(i−1)) + o(1), hT
i �́�i,i+1 = 1 + o(1) and hT

i �́�i−1,i = −{(1 − 𝜀(i))∕(1 − 𝜀(i−1))}Δ1∕2
(i−1,i){1 +

o(1)} together with hT
j �́�i,i+1 = o(Δ1∕2

(i,j)) for i, j = 1,… , k − 1 (i + 1 < j) under Conditions 1 and 5. It
concludes the results. ▪

Lemma 3. Under Conditions 1 and 5, it holds that for i = 1,… , k − 1

lim
d→∞

hT
i

k∑
m=1

𝜀m(𝝁i′ − 𝝁m)

𝜆
1∕2
i

=

{ 0 when i ≥ 2 and i′ < i,
[(1 − 𝜀(i))∕{𝜀i(1 − 𝜀(i−1))}]1∕2 when i′ = i,
−[𝜀i∕{(1 − 𝜀(i))(1 − 𝜀(i−1))}]1∕2 when i′ > i.

Proof. We write that

k∑
m=1

𝜀m(𝝁1 − 𝝁m) =
k−1∑
m=1

(1 − 𝜀(m))𝝁m,m+1,

k∑
m=1

𝜀m(𝝁k − 𝝁m) = −
k−1∑
m=1

𝜀(m)𝝁m,m+1 and

k∑
m=1

𝜀m(𝝁i − 𝝁m) =
k−1∑
m=i

(1 − 𝜀(m))𝝁m,m+1 −
i−1∑

m=1
𝜀(m)𝝁m,m+1, (A10)

for i = 2,… , k − 1. Using Lemma 2, under Conditions 1 and 5, we have that as d → ∞

hT
1

k∑
m=1

𝜀m(𝝁1 − 𝝁m)

Δ1∕2
1,2

= hT
1
(1 − 𝜀(1))𝝁1,2

Δ1∕2
1,2

+ o(1) = 1 − 𝜀(1) + o(1) and

hT
1

k∑
m=1

𝜀m(𝝁i′ − 𝝁m)

Δ1∕2
i,i+1

= −hT
1
𝜀(1)𝝁1,2

Δ1∕2
1,2

+ o(1) = −𝜀(1) + o(1) for i′ = 2,… , k,

from Equation (A10). Also, using Lemma 2, under Conditions 1 and 5, we have that for i =
2,… , k − 1; i′ = i + 1,… , k; i′′ = 1,… , i − 1

hT
i

k∑
m=1

𝜀m(𝝁i − 𝝁m)

Δ1∕2
i,i+1

= hT
i
(1 − 𝜀(i))𝝁i,i+1 − 𝜀(i−1)𝝁i−1,i

Δ1∕2
i,i+1

+ o(1)
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= (1 − 𝜀(i)) +
𝜀(i−1)(1 − 𝜀(i))

1 − 𝜀(i−1)
+ o(1)

=
1 − 𝜀(i)

1 − 𝜀(i−1)
+ o(1),

hT
i

k∑
m=1

𝜀m(𝝁i′ − 𝝁m)

Δ1∕2
i,i+1

= −𝜀(i) +
𝜀(i−1)(1 − 𝜀(i))

1 − 𝜀(i−1)
+ o(1)

= − 𝜀i

1 − 𝜀(i−1)
+ o(1), and

hT
i

k∑
m=1

𝜀m(𝝁i′′ − 𝝁m)

Δ1∕2
i,i+1

= o(1).

Thus, from Lemma 2, we can conclude the results. ▪

Lemma 4. Assume Conditions 2–6. Then, under the condition:

0 < plim
d→∞

�̃�i

Δi,i+1
< ∞ for i = 1,… , k − 1, (A11)

it holds that

plim
d→∞

ûT
i ũi = 1 for ûT

i ũi ≥ 0, i = 1,… , k − 1.

Proof. From the fact that 𝜆max(𝚺i) ≤ tr(𝚺2
i )1∕2, we have that Var{𝝁T

k−1(xj − 𝝁i)|xj ∈ Πi} =
𝝁

T
k−1𝚺i𝝁k−1 ≤ 𝜆max(𝚺i)Δk−1 = o(Δ2

k−1) as d → ∞ for i = 1,… , k; j = 1,… ,n under Condition 2.
Then, we have that for i = 1,… , k − 1; i′= 1,… , k; j = 1,… ,n

Var{𝝁T
i,i+1(xj − 𝝁i′ )|xj ∈ Πi′ } = 𝝁

T
i,i+1𝚺i′𝝁i,i+1 = O(𝝁T

i 𝚺i′𝝁i + 𝝁
T
i+1𝚺i′𝝁i+1) = o(Δ2

k−1),

under Conditions 2 and 6. Then, similar to Equation (A1), under Conditions 2 and 6, it holds
that 𝝁

T
i,i+1(xj − 𝝁i′ )∕Δk−1 = oP(1) when xj ∈ Πi′ for i = 1,… , k − 1; i′ = 1,… , k; j = 1,… ,n. In

addition, under Conditions 2 and 3, we can claim that (xj − 𝝁i)T(xj′ − 𝝁i′ )∕Δk−1 = oP(1) and||xj − 𝝁i||2∕Δk−1 = tr(𝚺i)∕Δk−1 + oP(1) when xj ∈ Πi and xj′ ∈ Πi′ for all j ≠ j′ and i, i′ = 1,… , k.
Here, we write that xj − 𝝁𝜂 = (xj − 𝝁i) + 𝝂i for i = 1,… , k; j = 1,… ,n, where 𝝁𝜂 =

∑k
i=1 𝜂i𝝁i.

Then, by noting Equation (A10) with 𝜀i = 𝜂i and 𝜀(i) = 𝜂(i), i = 1,… , k, under Conditions 2, 3, and
6, we have that

||xj − 𝝁𝜂||2
Δk−1

= ||𝝂i||2 + tr(𝚺i)
Δk−1

+ oP(1) and
(xj − 𝝁𝜂)T(xj′ − 𝝁𝜂)

Δk−1
=
𝝂

T
i 𝝂i′

Δk−1
+ oP(1),

when xj ∈ Πi and xj′ ∈ Πi′ for all j ≠ j′ and i, i′ = 1,… , k. Thus, under Conditions 2, 3, 4, and 6,
it holds that

plim
d→∞

(X − 𝝁𝜂1T
n)T(X − 𝝁𝜂1T

n) − tr(𝚺1)In − V TV
Δk−1

= O. (A12)
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Let en∗ (∈ Rn) be an arbitrary random unit vector such that eT
n∗1n = 0. We note that

Pn(X − 𝝁𝜂1T
n)T(X − 𝝁𝜂1T

n)Pn∕(n − 1) = SD. Then, by noting eT
n∗Pn = eT

n∗, under Equation (A11),
Conditions 2, 3, 4, and 6, we have that

eT
n∗
(n − 1)SD − tr(𝚺1)Pn

Δk−1
en∗ =

∑n−1
i=1 (n − 1)�̂�ieT

n∗ûiûT
i en∗ − tr(𝚺1)

Δk−1

= eT
n∗
(X − 𝝁𝜂1T

n)T(X − 𝝁𝜂1T
n) − tr(𝚺1)In

Δk−1
en∗

= eT
n∗

V TV
Δk−1

en∗ + oP(1)

=
∑k−1

i=1 n�̃�ieT
n∗ũiũT

i en∗

Δk−1
+ oP(1), (A13)

from Equation (A12). We note that ũT
i 1n = 0 for i = 1,… , k − 1 in case of rank(V ) = k − 1.

Also, from Equation (A2), we note that �̃�i, i = 1,… , k − 1, are distinct under Condition 5
and Equation (A11) for a sufficiently large d. Thus, from Equation (A13), if ûT

i ũi ≥ 0
for i = 1,… , k − 1, we have that ûT

i ũi = 1 + oP(1) for i = 1,… , k − 1. It concludes the result. ▪

Lemma 5. Assume Condition 5. For ni > 0, i = 1,… , k, it holds that

plim
d→∞

�̃�i

Δi,i+1
=

𝜂i(1 − 𝜂(i))
1 − 𝜂(i−1)

and plim
d→∞

ũT
i ui = 1 for i = 1,… , k − 1.

Proof. By noting Equation (A10) with 𝜀i = 𝜂i and 𝜀(i) = 𝜂(i), i = 1,… , k, we can write that

VV T

n
=

k−1∑
i=1

𝜂(i)(1 − 𝜂(i))𝝁i,i+1𝝁
T
i,i+1 +

k−2∑
i=1

k−1∑
j=i+1

𝜂(i)(1 − 𝜂(j))(𝝁i,i+1𝝁
T
j,j+1 + 𝝁j,j+1𝝁

T
i,i+1). (A14)

We have the eigendecomposition of VV T∕n by VV T∕n =
∑k−1

i=1 �̃�ih̃ih̃
T
i , where h̃i is a

unit eigenvector corresponding to �̃�i for each i. We note that 𝜂i > 0, i = 1,… , k for ni > 0,
i = 1,… , k. Then, by noting Lemmas 2 and 3 and the fact that Equation (A14) is same as
Equation (A4) with 𝜀(i) = 𝜂(i), i = 1,… , k − 1, under Condition 5, we have that for i = 1,… , k − 1

plim
d→∞

�̃�i

Δi,i+1
=

𝜂i(1 − 𝜂(i))
1 − 𝜂(i−1)

and plim
d→∞

h̃T
i 𝝂(j)

�̃�
1∕2
i

= uijn1∕2,

if h̃T
i 𝝁i ≥ 0. We note that ũij = h̃T

i 𝝂(j)∕(n�̃�i)1∕2 from the fact that ũi = V Th̃i∕(n�̃�i)1∕2 for i =
1,… , k − 1. Hence, we can conclude the result. ▪

APPENDIX B. ADDITIONAL PROPOSITION

When Condition 5 is not met, Theorem 3 does not hold. However, in Figure 5c, we could find
three separate clusters of Πi, i = 1, 2, 3, even though Condition 5 is not met. To explain the reason
of this phenomenon, we give the following result.
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Proposition 3. Assume Conditions 2–4 and 6. Then, under the condition:

0 < plim
d→∞

�̃�k−1

Δk−1
< ∞,

it holds that for i = 1,… , k − 1, as d → ∞

ûT
i
(n − 1)SD

Δk−1
ûi =

tr(𝚺1)
Δk−1

+ ûT
i

V TV
Δk−1

ûi + oP(1).

Proof. By noting that ûT
i 1n = 0 for i = 1,… , k − 1 when rank(SD) ≥ k − 1, from Equation (A13),

we can conclude the result. ▪

By noting that ûi = (ẑi1,… , ẑin)T∕n1∕2, from Proposition 3, for sufficiently large d, the esti-
mated PC scores depend only on the structure of V TV even when Condition 5 is not met. Then,
as rank(V TV ) = k − 1, there must be k separate clusters for Πi, i = 1,… , k, in the first k − 1 PC
spaces as seen in Figure 5c.

APPENDIX C. PROOFS OF THEOREMS, COROLLARIES, AND
PROPOSITIONS

Proofs of Theorem 1 and Corollary 1. We note that tr(𝚺1)∕tr(𝚺) → (1 − 𝜀1𝜀2c) as d → ∞ under
Condition 4 and Δ1∕tr(𝚺) → c(> 0) as d → ∞. Then, using Lemma 1, we can conclude the result
of Theorem 1.

Next, we consider the proof of Corollary 1. From the fact that 1T
nSD1n = 0, it holds that

ûT
1 1n = 0 when SD ≠ O, so that Pnû1 = û1. Also, note that ||r||2 = n𝜂1𝜂2 and rT1n = 0. Then, using

Lemma 1, under Conditions 2–4, it holds that ûT
1{(n − 1)SD − tr(𝚺1)Pn}û1∕Δ1 = n𝜂1𝜂2 + oP(1).

Hence, from Equation (3) and the assumption that ûT
1 z1 ≥ 0, we have that ûT

1{(n𝜂1𝜂2)−1∕2r} =
1 + oP(1) for ni > 0, i = 1, 2. In view of the elements of r, we can conclude the result of
Corollary 1. ▪

Proof of Proposition 1. We assume xj ∈ Π1 for j = 1,… ,n1, xj ∈ Π2 for j = n1 + 1,… ,n, and
tr(𝚺1) ≥ tr(𝚺2) without loss of generality. Similar to the proof of Lemma 1, under the assumptions
of Proposition 1, we have that

plim
d→∞

(n − 1)SD − tr(𝚺2)Pn

ΔΣ
= PnDnPn,

where Dn = diag(1,… , 1, 0,… , 0)whose first n1 diagonal elements are 1. Note that the first n1 − 1
eigenvalues of PnDnPn are multiple. Also, note that the eigenspace for the multiple eigenvalue
consists of the n1 − 1 vectors,

(1,−1, 0,… , 0)T, (1, 0,−1, 0,… , 0)T,… , (1, 0,… , 0,−1, 0,… , 0)T.

Thus, by noting that ûT
i 1n = 0 for i = 1,… ,n1 − 1, we can conclude the result. ▪

Proofs of Theorem 2 and Corollary 2. We write that xj − 𝝁 = (xj − 𝝁i) +
∑k

m=1 𝜀m(𝝁i − 𝝁m)
for j = 1,… ,n; i = 1,… , k. We note that Var{eT

d(xj − 𝝁i)∕Δ
1∕2
k−1|xj ∈ Πi} = eT

d𝚺ied∕Δk−1 ≤
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𝜆max(𝚺i)∕Δk−1 = o(1) as d → ∞ under Condition 1 for j = 1,… ,n; i = 1,… , k, where ed (∈ Rd) is
an arbitrary unit vector. Then, under Condition 1, when xj ∈ Πi, it holds that

eT
d(xj − 𝝁)

Δ1∕2
k−1

=
eT

d

{∑k
m=1 𝜀m(𝝁i − 𝝁m)

}
Δ1∕2

k−1

+ oP(1).

Then, using Lemmas 2 and 3, we can conclude the result of Theorem 2.
For the proof of Corollary 2, by noting that Δi,i+1∕Δi = 1 + o(1) and hT

i 𝝁i,i+1∕Δ
1∕2
i,i+1 =

hT
i 𝝁i∕Δ

1∕2
i + o(1) for i = 1,… , k − 1, under Condition 5, from Lemma 2, the results are obtained

straightforwardly. ▪

Proof of Theorem 3. By combining Lemmas 4 and 5, from Theorem 2 and the assumption that
ûT

i zi ≥ 0 for all i, the result is obtained straightforwardly. ▪

Proof of Proposition 2. Let 𝚺(∗) = 𝜀1𝚺1 + 𝜀2𝚺2. Then, we define the eigendecomposition of 𝚺(∗)
by 𝚺(∗) =

∑d
i=1 𝜆i(∗)hi(∗)hT

i(∗), where 𝜆1(∗) ≥ ⋅⋅⋅ ≥ 𝜆d(∗) ≥ 0 are eigenvalues of 𝚺(∗) and hi(∗) is a unit
eigenvector corresponding to 𝜆i(∗) for each i. Let 𝜆 = 𝜀1𝜀2Δ1 and �́�1 = 𝝁1∕Δ

1∕2
1 . Then, from 𝚺 =

𝜆�́�1�́�
T
1 + 𝚺(∗), under maxi=1,2(�́�T

1𝚺i�́�1)∕Δ1 → 0 as d → ∞, it holds that �́�T
1𝚺�́�1∕𝜆 → 1, so that

d∑
i=1

𝜆i(∗)(hT
i(∗)�́�1)2

𝜆
= o(1). (C1)

Let 𝜅(i) = 𝜆i(⋆⋆) − 𝜆 for i = 1,… , d. For a sufficiently large d, when 𝜅(1) > 0, there exists some
positive integer i⋆⋆ such that

i⋆⋆ = max{i|𝜅(i) > 0 for i = 1,… , d}.

Then, from Equation (C1), we have that
∑i⋆⋆

i=1 (h
T
i(∗)�́�1)2 = o(1), so that 𝜆i⋆∕𝜆 = 1 + o(1) with i⋆ =

i⋆⋆ + 1. When 𝜅(1) ≤ 0 for a sufficiently large d, it holds that 𝜆i⋆∕𝜆 = 1 + o(1) with i⋆ = 1. In
addition, under lim infd→∞|𝜆i′∕𝜆i⋆ − 1| > 0 for i′ = 1,… , d(i′ ≠ i⋆), it holds that hT

i⋆
�́�1 = 1 + o(1)

from hT
i⋆
𝝁1 ≥ 0. Then, from the fact that hT

i⋆
𝚺ihi⋆∕𝜆 → 0 as d → ∞ for i = 1, 2, in a way similar to

Equation (A1), we have that si⋆j∕𝜆1∕2
i⋆

= hT
i⋆
(xj − 𝝁)∕𝜆1∕2

i⋆
= hT

i⋆
(𝝁i − 𝝁)∕𝜆1∕2

i⋆
+ oP(1) when xj ∈ Πi

for j = 1,… ,n; i = 1, 2. We can conclude the results. ▪


