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Abstract: Satellite-derived land surface temperature (LST) reveals the variations and impacts on the
terrestrial thermal environment on a broad spatial scale. The drastic growth of urbanization-induced
impervious surfaces and the urban population has generated a remarkably increasing influence on the
urban thermal environment in China. This research was aimed to investigate land surface temperature
(LST) intensity response to urban land cover/use by examining the thermal impact on urban settings in
ten Chinese megacities (i.e., Beijing, Dongguan, Guangzhou, Hangzhou, Harbin, Nanjing, Shenyang,
Suzhou, Tianjin, and Wuhan). Surface urban heat island (SUHI) footprints were scrutinized and
compared by magnitude and extent. The causal mechanism among land cover composition (LCC),
population, and SUHI was also identified. Spatial patterns of the thermal environments were identical
to those of land cover/use. In addition, most impervious surface materials (greater than 81%) were
labeled as heat sources, on the other hand, water and vegetation were functioned as heat sinks.
More than 85% of heat budgets in Beijing and Guangzhou were generated from impervious surfaces.
SUHI for all megacities showed spatially gradient decays between urban and surrounding rural
areas; further, temperature peaks are not always dominant in the urban core, despite extremely
dense impervious surfaces. The composition ratio of land cover (LCC%) negatively correlates with
SUHI intensity (SUHII), whereas the population positively associates with SUHII. For all targeted
megacities, land cover composition and population account for more than 63.9% of SUHI formation
using geographically weighted regression. The findings can help optimize land cover/use to relieve
pressure from rapid urbanization, maintain urban ecological balance, and meet the demands of
sustainable urban growth.

Keywords: Chinese megacity; land surface temperature (LST); land cover composition (LCC);
population distribution; surface urban heat island (SUHI)

1. Introduction

The United Nations (UN) portrays the 21st century as an urban age because of a substantial
increase in the urban population across the globe, in which more than 55% of humans came to live
in urban settings [1]. The growth and densification of the urban population have given rise to a
drastic urban expansion, as well as a range of negative impacts, including the urban heat island
(UHI) phenomenon. UHI, which initiates higher ambient temperature in the urban core than in
neighboring rural areas due to speedy urbanization [2], engenders high ecological pressure and risk
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on the local terrestrial ecosystem [3]. In this connection, science programs have been devoted to
studying the relationship between the human system and the thermal environment at local and global
levels [4]. Achieving urban sustainability and easing urban climate problems have been given priority
under Goals 11 and 13 of the 17 Sustainable Development Goals (SDGs) issued by the UN in 2015 [5].
Therefore, as an indispensable actor in global urbanization, China places a high premium on these
issues, which can help “make cities inclusive, safe, resilient, and sustainable” [5–7].

Notably, China has undergone swift, massive urbanization since the 1990s, its urbanization rate
increased from 25.84% to 49.68% between 1990 and 2010 [8]. The results of satellite monitoring show that
China witnessed an expansion of its built-up area from 12,252.9 km2 in 1990 to 40,533.8 km2 in 2010 [8,9].
Urban zones in China have seen explosive growth in the early 21st century, mainly in the eastern
plains [9–12]. This implies that East China is especially sensitive to urban environmental vulnerability
and ecological sustainability issues given its context of rapid urbanization. East China faces very high
urban ecosystem risks and is in urgent need of mitigation solutions, especially regarding UHI.

Partly as a result of this urgency, numerous investigations of China’s thermal environment have
been carried out [13–18]. Satellite data have been used to detect thermal differences between urban
and rural surfaces across the country [13,19–24]. As addressed in existing thermal environment
studies, the stronger thermal effects of urbanization are often found in the cities or densely populated
regions [11,12], e.g., Beijing [25,26], Guangzhou [11], Nanjing [27], and Wuhan [28]. These cities have
been frequently examined and have experienced substantial UHI over several decades [16,20]. In major
Chinese cities, the UHI footprint has shown a significantly decaying gradient from the urban center
toward neighboring rural areas [18]. Surface UHI (SUHI) is associated with the relative “temperature
cliff” between metropolitan and rural regions. The driving forces behind the “temperature cliff” in
China’s urban-rural zones are also very significant [17]. A considerable degree of urban population
accommodation and migration, as well as drastic urban land transitions—which have led to the
dominance of impervious surfaces (ISs) and degraded cultivated land—have given rise to various
climate ramifications, exacerbating UHI [12,15,29,30]. Therefore, it is pivotal to provide comprehensive,
scientific insight into the status and mechanism of the urban thermal environment in China.

Geographers have long utilized several kinds of spatial or statistical methods to testify to the
causality between land cover types and SUHI [4]. Most SUHI studies have employed Pearson’s
correlation, along with different indexes, quantifying the causal relationship using data from a single
location or a continuous area [4,20]. Although these findings are critical for understanding the UHI
effect and influencing factors, the application of these methods would be obstructed when spatial
datasets are used, or spatial relationships are investigated. In contrast, we used the geographically
weighted regression (GWR) model, which can illustrate spatial non-stationarity, permitting us to
observe significant total and local variation and thus determine the statistical significance of an
explanatory variable [21,31–34]. Several studies have already clarified the quantitative relationships
between the UHI effect and its potential influencing factors based on GWR [4]. Zhao et al. [32]
investigated the spatial heterogeneity of the relationships between underlying surface characteristics
and SUHI. Li et al. [35] suggested that both the population and land cover/use fraction (e.g., greenspace)
significantly affect the status of SUHI. In this study, we hypothesized statistically significant causality
among UHI (effect), land cover types (cause I), and population (cause II) in multiple Chinese megacities.

Stretching across a vast territory, China has witnessed a significant imbalance in the development of
different regions, and the urban environmental issues are complicated and manifolded. The region in
the east of Heihe-Tengchong Line covers 43% of the national land extending from tropical, subtropical,
to temperate climate zones, where 94% of Chinese citizens reside [36]. Widespread from tropical
cities [37], mountain cities [38], humid cities [11], to coastal cities [39], the evaluations of the urban
thermal environment in the Chinese megacities are usually considering multiple aspects [40,41].
Thus, in recent decades, UHI-related research has often analyzed only a single city. It is a great
challenge to comprehensively assess and compare the impact of the UHI effect on multiple Chinese
megacities. However, there is an increasing trend shifting toward researching multiple cities, or even urban
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agglomerations, accompanying the enhancement of urban environmental conservation measures and the
rising environmental awareness [12,42]. Nevertheless, the urban thermal field is significantly affected by
multiple factors, especially atmospheric conditions [4]; thus, it is challenging to examine and compare
thermal variation on the land surface across multiple dates and locations [43]. Previously, large-scale or
multi-location UHI studies have utilized weather station data and images from the Moderate Resolution
Imaging Spectroradiometer (MODIS) satellite, but have rarely employed Landsat images [4,20].

In this context, we investigate whether the appearance of a relative “temperature cliff” from urban
to rural areas is primarily caused by anthropogenic heat variation, which is associated with differences
due to human-dominated land cover/use composition and population distribution. The assessments of
thermal environmental quality call for an in-depth land-population-oriented investigation based on
land cover/use layout and configuration [3,4]. Unlike previous SUHI investigations, we carried out a
multi-city comparative analysis using diverse spatial data (temperature, land cover, and population),
targeting ten densely populated cities in China. These cities are not only the most advanced, populated,
and vibrant megalopolises in China urbanization, but also the most urgent and critical regions for
China’s ecological security. Their SUHI footprints would be scrutinized on the basis of both extent
and magnitude, using diverse techniques. The spatial causal mechanisms among SUHI, land cover,
and population in these diverse Chinese megalopolises are also studied using the GWR model.

The objectives of this study were to (1) investigate the spatial characteristics of the land surface
temperature (LST) response to urban land cover based on Landsat monitoring, (2) estimate the
SUHI footprint (SUHI intensity, abbreviated as SUHII), (3) identify the impacts of urban land cover
configuration and population distribution on the thermal environment, and (4) create a sustainable
strategy for UHI mitigation and the future development of Chinese cities.

2. Materials and Methods

2.1. Study Area Selection

In the wake of intensive urbanization-induced human activities, land surface transitions and
urban expansion have exerted an enormous impact on the thermal environment of densely populated
cities. Thus, there are strong incentives to synthetically and scientifically examine the linkages between
UHI and the geographical process.

Several essential characteristics were used to decide this study’s area based on official Chinese
census data from 2016, including (a) large population (over 5 million permanent residents), (b)
regional terrain and climate, (c) frequent heatwaves over the decade, and (d) Landsat 8 data availability.
Thus, the target includes Beijing (BJ), Dongguan (DG), Guangzhou (GZ), Hangzhou (HZ), Harbin (HRB),
Nanjing (NJ), Shenyang (SY), Suzhou (SZ), Tianjin (TJ), and Wuhan (WH), as shown in Figure 1.

Beijing, located in the Jing-Jin-Ji urban agglomeration, is home to 21.705 million residents and
is one of the most populous capital cities in the world. Dongguan and Guangzhou are neighbors,
located in the Pearl River Delta, and their population densities are 3355 and 1816 people per km2,
respectively. Hangzhou lies in the Zhejiang Greater Bay Area, with 9.02 million residents. Situated in
the metropolitan area of Ha-Chang in Northeast China, Harbin has 9.61 million people and serves as
a regional hub for politics, economics, culture, and industry. Nanjing plays a vital role in the urban
agglomeration of the Yangtze River Delta, with 8.24 million inhabitants. Shenyang, with 6.3 million
urban people, is located in the Mid-Southern Liaoning Metropolitan Area. Including its surroundings,
Shenyang has a total population of 8.3 million. Suzhou, a prominent city in the Yangtze River Delta,
is located on the lower reach of the Yangtze River, with 6.67 million inhabitants. Tianjin, one of the
most famous coastal metropolises in Northern China, has 15.47 million inhabitants and serves as an
important seaport and gateway to Beijing. Wuhan, situated in the Hubei Yangtze River Mid-Reaches
Metropolitan Region, is the largest city in Central China, with 10.61 million people [8].

For the sake of comparative analysis, it is necessary to define an urban extent for each city.
Each city consists of an 80 × 80 km landscape with a 40 km radius from the nearest city center, allowing
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us to distinguish temperature variation between urban and surrounding areas easily. The city center is
located at the municipal government offices.
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2.2. Data Description and Methodology

A general process for multi-city analysis of the SUHI footprint in Chinese megacities is implemented
as shown in Figure 2. Three stages—(a) data acquisition, (b) data processing, and (c) analyzing and
modeling—are designed. The specific technical methods and processes are illustrated as follows:
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2.2.1. Spatial Distribution of Population

Dense human activities are one of the underlying causes of thermal field variations.
Rapid urbanization has led to remarkable differences in underlying city surfaces, such as a substantial
expansion of settlements and dwellings, both horizontally and vertically [44]. Thus, the information
of accurate human population distribution is crucial to identify the impacts of human–thermal
environment interactions. In this study, we utilized spatial demographic data from the 2015 Grid
Population Dataset of China, with a spatial resolution of 8.33× 10−4 decimal degrees (approximately
100 m at the equator), found at WorldPop (www.worldpop.org), an open-access, country-level
population database. Recently, data from WorldPop have been widely employed to support
population-related investigations [45–47]. WorldPop mapped and visualized information from
the national census using the random forests model with multi-source data, and adjusted it to match
UN population division estimates [47]. Based on the result, we used 10 population distribution maps
(Appendix A Figure A1) extracted from the 2015 Grid Population Dataset of China, to conduct a spatial
investigation of the respective population’s impacts on the thermal environment in each study region.

2.2.2. Land Cover/Use Mapping

A total of 10 land use and land cover (LULC) thematic maps were yielded for each city using
an interactively supervised, maximum likelihood classifier through the software application ENVI
5.3. The maximum likelihood method is the most representative and useful pixel-based parametric
classifier that delineates the LULC distribution using remote sensing imageries [48]. This method
would perform well with sufficient training samples, and provide a valuable LULC thematic map based
on a normality assumption and probability theories [48,49]. Distinct from unsupervised classification,
the implementation of the maximum likelihood supervised classification method is not merely based
on clustering algorithms and spectral information of the land cover surfaces. Prior knowledge and
visual interpretation of land cover types could also be conducive to judge and identify the land cover
situation [48,49]. We utilized the multi-spectral band images of the Level-1 GeoTIFF Data Product
derived from the Landsat 8 Operational Land Imager (OLI) (https://earthexplorer.usgs.gov/) to produce
the LULC thematic maps. Cloud-free images are available for all study regions. The acquired image
times for each city must be within the same season to avoid the negative impacts of the seasonal
discrepancy [50]. Thus, we captured 10 Landsat imageries for all megacities from September and
October between 2013 and 2015 (Table 1).

Table 1. The Landsat data used in this study.

City Acquisition
Time GMT Time Path Row Scene Center

Longitude
Scene Center

Latitude

Beijing 10/6/2014 2:53 123 32 40◦20′N 116◦41′E
Dongguan 10/15/2014 2:52 122 44 23◦07′N 113◦33′E

Guangzhou 10/15/2014 2:52 122 44 23◦07′N 113◦33′E
Hangzhou 10/13/2015 2:31 119 39 30◦18′N 119◦59′E

Harbin 10/3/2014 2:21 118 29 46◦2′N 126◦22′E
Nanjing 10/14/2013 2:39 120 38 31◦45′N 118◦49′E

Shenyang 9/8/2014 2:28 119 31 41◦46′N 123◦19′E
Suzhou 10/26/2014 2:31 119 38 31◦45′N 120◦22′E
Tianjin 10/2/2015 2:47 122 33 38◦54′N 117◦47′E
Wuhan 9/17/2013 2:58 123 39 30◦18′N 113◦48′E

Note: The longitude and latitude are from the coordinates of the location of the nearest scene center (converted
via USGS https://landsat.usgs.gov/wrs-2-pathrow-latitudelongitude-converter). (1) GMT: Greenwich Mean Time;
(2) USGS: United States Geological Survey.

The multi-spectral imageries (with 30 m spatial resolution) were classified into four LULC
categories: (1) IS, (2) vegetation, (3) water, and (4) vacant land. IS refers to high or low albedo IS
(such as residential and commercial buildings, reinforced concrete, and asphalt). Vegetation involves

www.worldpop.org
https://earthexplorer.usgs.gov/
https://landsat.usgs.gov/wrs-2-pathrow-latitudelongitude-converter
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forests, greenbelts, grasslands, and cultivated land. Water represents surfaces with water pixels. Vacant
land includes primarily bare soil, barren land, and remaining land cover. We assigned 100 points for
each LULC category, a total of 400 points for each LULC map, which we randomly generated and
utilized in the final classified outputs to assess accuracy. Subsequently, spatial enhanced Landsat
images with a spatial resolution of 15 × 15 m were yielded by fusing Landsat 8 OLI 30 m multispectral
and 15 m panchromatic band images using the ENVI Gram–Schmidt pan-sharpening method [51].
These enhanced data could strengthen not only the spatial resolution of multispectral bands for the
visual interpretation of land cover surfaces but also retain the original spectral signature information of
Landsat data [52]. Therefore, we employed the historical image function in Google Earth Pro and 15 m
spatial enhanced Landsat images to validate classification accuracy. The overall accuracy and Kappa
coefficients of all LULC classification outputs were higher than 85% [53,54] (Appendix A Table A1).
This implies that 10 LULC thematic maps could be used for further analysis.

2.2.3. Land Surface Temperature (LST) Retrieval

We employed the radiative transfer equation (RTE) to retrieve the LST based on Landsat 8
OLI/thermal infrared sensor (TIRS) thermal band images through parameter calculation (including
spectral radiance, atmospheric transmittance, at-satellite brightness temperature, and land surface
emissivity). The radiance value derived from the thermal infrared channel of the Landsat sensor
is composed of three parts: (1) upwelling atmospheric radiance, (2) downwelling atmospheric
radiance, and (3) atmospheric transmissivity between the actual land surface and the Landsat sensor.
The apparent radiance value measured by Landsat (Lat−sensor, λ), namely the RTE, can be described in
Equation (1) [55–59]:

Lat−sensor,λ =
[
ελBλ(TS) + (1− ελ)Latm↓,λ

]
τλ + Latm↑,λ, (1)

where τλ represents the total atmospheric transmissivity between the land surface and Landsat sensor,
ελ is land surface emissivity, Bλ(TS) indicates the blackbody radiance defined by Planck’s law, TS
is emissivity-corrected LST, Latm↑,λ signals the effective bandpass upwelling atmospheric radiance,
and Latm↓,λ is the effective bandpass downwelling atmospheric radiance. More details on LST retrieval
can be found in the work of Liu and Murayama [43].

For the RTE-based method, we extracted the atmospheric profile using the Atmospheric Correction
Parameter Calculator [57,58,60,61] (https://atmcorr.gsfc.nasa.gov/), which harnesses datasets from the
National Centers for Environmental Prediction (NCEP). We employed them to simulate atmospheric
transmissivity, upwelling atmospheric radiance, and downwelling atmospheric radiance based on
the MODerate resolution atmospheric TRANsmission (MODTRAN) model [60,61]. The derived
atmospheric correction parameters from NASA are shown in Appendix A Table A2.

2.2.4. Thermal Environment Mapping

Because of the variability and uncertainty of local climate/surface conditions, it is not appropriate
to directly compare the characteristics of different thermal environments using LST values [62–64].
Hence, we first normalized and standardized the retrieved LST values of each city using a range
between 0 and 1 (Equation (2)) and then removed the extreme LST values.

NDLSTi =
LSTi − LSTmin

LSTmax − LSTmin
(2)

where NDLSTi indicates the normalized LSTi value, LSTi denotes the LST value of pixel i in the satellite
imagery, LSTmax is the maximum LST value, and LSTmin represents the maximum LST value in the
entire city [43].

These normalized LST (NDLST) values can provide ideal conditions and neutralize the local
climate background, allowing us to study diverse urban thermal environments [43,62,63]. To do so,

https://atmcorr.gsfc.nasa.gov/
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we partitioned off the NDLST values into five temperature levels (TL) based on the mean–standard
deviation method (Table 2) [65,66]. Accordingly, it was easy to analyze the relationship and differences
between diverse urban surface thermal environments and land cover in different Chinese megacities
using the derived multiple thermal maps and LULC thematic maps.

Table 2. Thermal effect grades obtained using the mean–standard deviation method.

Thermal Effect Category
(LST Grade) Criterion/Division

Temperature Level Five (TL5) NDLSTi > NDLSTmean + NDLSTstd

Temperature Level Four (TL4) NDLSTmean + 0.5NDLSTstd < NDLSTi ≤

NDLSTmean + NDLSTstd

Temperature Level Three (TL3) NDLSTmean − 0.5NDLSTstd ≤ NDLSTi ≤

NDLSTmean + NDLSTstd

Temperature Level Two (TL2) NDLSTmean −NDLSTstd ≤ NDLSTi <
NDLSTmean − 0.5NDLSTstd

Temperature Level One (TL1) NDLSTi < NDLSTmean −NDLSTstd

2.2.5. SUHII and MURI

Although the SUHI footprint is the most important component of SUHI analysis, the definition
of SUHII is rough and vague, described as the temperature differential in an urban-rural area [2].
Because of the ambiguity of SUHII, its measurements vary depending on the estimation method used,
which causes a significant degree of bias; consequently, obstacles arise when attempting to compare
the SUHI footprint across the megacities [18].

Taking this into account, we conducted urban-rural gradient analysis and determined the modified
urban heat island ration index (MURI) to compare the SUHI footprint across the megacities, as well
as to examine SUHII in terms of magnitude and extent. In the urban climate system, the urban
thermal environment exhibits a striking difference between peak temperatures downtown and valley
temperatures on the outskirts. The magnitude varies with a concentric structure [18,67–69]. The results
show that the urban-rural gradient theory can be employed to effectively measure SUHII.

Simultaneously, the magnitudes of SUHII were assessed by comparing the mean NDLST value
between IS and non-IS categories (vegetation, water, and vacant land). The mean NDLST value of
the IS category represents the mean temperature of the urban area. In contrast, the corresponding
mean NDLST value of non-IS categories indicates the mean temperature of the rural area [70].
Thus, the magnitudes of SUHII (SUHIImagnitude) can be described as Equation (3), and the NDLST
differences of land cover surfaces manifest the role of each land cover type in the thermal environment:

SUHIImagnitude = NDLSTurban − NDLSTrural (3)

where NDLSTurban is the average temperature of the urban area, and the temperature of the IS category
is assumed as the urban pixels with the highest NDLST value. NDLSTrural is the average temperature
of rural areas substituted by the mean NDLST values of non-IS categories.

We also harnessed MURI to portray variations in SUHII from different Landsat imageries,
taking into consideration the proportion of higher temperatures in urban areas and their
temperature-weighted values (Equation (4)). MURI is a modified index from a study conducted by Xu
and Chen [71]. The value of MURI ranges between 0 and 1. The maximum value of MURI (1) can be
achieved when all the patches composing the study area are located at the highest temperature level,
whereas the minimum value of MURI (0) implies no obvious UHI in the study area [11,71]. Therefore,
the higher the MURI, the stronger the thermal effect in the study region. Furthermore, MURI reflects
SUHII in terms of its extent.

MURI =
1
m

n∑
i=1

WiPi × 100% (4)
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where m is the number of standardized temperature levels (m = 5 in the present study), n is the number
of higher-temperature levels between urban and rural areas (n = 2), i denotes the ith temperature level
that NDLST values reveal in urban zones more than in rural regions, Wi is the weighted value of ith
temperature level (w = 4 or 5), and Pi is the rate of ith temperature level throughout the entire study
region [11,71].

2.2.6. The Thermal Effect Contribution of Land Cover

It is critical to compare the responses of various types of land cover to different regional thermal
environments [72,73]. After delineating the spatial layouts of the thermal environments, to examine the
thermal contributions of each kind of land cover in different regions, we introduced the thermal effect
contribution index (TECI), the weighted thermal unit index (T1), and the regional weighted thermal
unit index (T2) [74–76]. TECI is defined in Equations (5) and (6) as follows:

TECIi =
TECI′i∑n

i=1 TECI′
× 100% (5)

TECI′i =

∑(
NDLSTi j −NDLSTaverage

)
× ni

NDLSTaverageN
× 100% (6)

where TECI′i is the accumulated heat index of above-average NDLST values for a specific land cover
category (i = IS, vegetation, water, and vacant land), TECIi indicates the percentage of land area that is
above the average NDLST value for the ith land cover category (namely the thermal effect contribution
of the ith land cover category), NDLSTi j signals an above-average NDLST value in the jth pixel of the
ith land cover category, NDLSTaverage is the average NDLST value in each study area, ni is the number
of pixels that are above the NDLSTaverage in the ith land cover category, and N is the pixel number of
each study area.

Moreover, T1 indicates the proportion of pixels greater than the NDLSTaverage values for the ith
land cover category, whereas T2 reveals the rate of above-average NDLST values of the ith land cover
category in the entire study region, calculated as Equations (7) and (8):

T1 =
ni
Ni
× 100% (7)

T2 =
ni
N
× 100% (8)

where Ni is the number of pixels for the ith land cover category in each study area.

2.2.7. Spatial Determinants and GWR Analysis

Although a wide range of potential explanatory variables (such as underlying surface
characteristics, terrain, and anthropogenic activities) may cause UHI to initiate, we examine the
geographic processes and linkages among UHI, land cover, and population in each study region.
Taking into account the synthetic circumstances of land cover composition (LCC) and population
density (PD), we conducted the global-based (OLS) and local-based (GWR) analysis to explore the
relationship between LST-LCC-PD in each megacity. Ample research on the UHI phenomenon has
verified that the GWR model is superior for explaining the formation of SUHI than are other regression
models from a local perspective [4,31,32]. Referring to the optimal observation scale selection of spatial
regression analysis, we created a 1 × 1 km fishnet grid cell to provide sampling units because of
the minimization of spatial dependence and autocorrelations, as well as the reservation of sufficient
pattern information [32–34]. Here, the average SUHII values of each grid were extracted as the
dependent variables, by subtracting the average NDLST value of non-IS pixels from the NDLST
value of each pixel within each study region [31,77]. Initially, we performed the correlation analysis
and OLS regression modeling with a range of explanatory variables, including population density,
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total population, and the fraction of land covers required for testing the significances and identifying
the proper model. Multicollinearity existed in some study regions when the fraction accounted
for by each land cover type (IS, vegetation, water), total population, and population density were
all belonging to explanatory variables. Hence, for the sake of multi-city comparative analysis and
interpretation, population density and composition ratio of land cover (abbreviated LCC%), these two
explanatory variables were selected for the final OLS analysis as a prerequisite of the GWR diagnosis,
which shows a statistically significant relationship between SUHII and explanatory variables without
multicollinearity influence in all study regions. The LCC% of each grid, that is, the ratio of non-IS area
(except waterbody) to IS area, was calculated as the SUHII explanatory variables regarding LCC. The
normalized mean population density (NMPD) of each grid was used as an explanatory variable to
represent population aggregation and distribution. Finally, we conducted the GWR using ArcGIS 10.4,
exploring the spatial relationships and processes among SUHI, LCC, and population. Herein, a GWR
model was established to interpret the linkages between SUHI and spatially different driving forces
(LCC, population) based on Equation (9) [31–34]:

yi = βi0(ui, vi) +
∑

k

βik(ui, vi)xik + εi (9)

where i indicates the ith grid spatial analytical unit, (ui, vi) stands for the spatial position of grid unit i,
yi signals the value of the dependent variable (average SUHII in this study) at grid unit i, βi0(ui, vi)

represents the intercept at grid unit i, k denotes the explanatory variables (LCC% and NMPD, k = 1, 2),
βik(ui, vi) indicates the estimate of the local regression coefficient for the kth explanatory variable at
grid unit i, xik represents the value of the kth explanatory variable at grid unit i, and εi denotes the
random error distribution at grid unit i.

3. Results

3.1. Spatial Distributions and Characteristics of LST and Land Cover

In terms of temperature distribution (Figure 3), TL3 zone areas occupy the largest ratio in each
city (31.68–50.98%). The area ratios of the TL4 and TL5 zones for each city are similar (TL4 zones:
10.83–19.53%; TL5 zones: 10.09–20.02%), TL1 zones cover 8.47–23.75% of each city area, and the
proportion of TL2 zones for each study region ranges between 6.97% and 22.05%.

As shown in Figure 4a, we simultaneously compared all cities’ NDLST values for five temperature
levels with box-and-whisker plots. The extreme values, median markers, and interquartile range of
NDLST values are statistics that we collected and graphically manifested, that convey the temperature
distribution information for each class. The majority of mean NDLST values come near the median
value, which implies that the distribution of NDLST values is basically not affected by extreme values.
As a whole, the boxes for the TL2, TL3, and TL4 zones occupy a narrow range of NDLST values and
are symmetrically distributed, indicating that the temperature data from TL2, TL3, and TL4 zones are
concentrated and very close to their mean values. However, the TL5 and TL1 zones contain information
about the highest and lowest temperatures for each city, respectively. Their box shapes and whiskers
represent broader temperature ranges and more significant variability.

The well-characterized spatial composition and distribution of land cover help enormously to
interpret the properties and patterns of the thermal environment. The LULC and LST thematic maps
(Figure 3) indicate that the ten megacities have considerable high-urbanized magnitudes, with different
spatial arrangements and thermal layouts. However, as shown in Figure 3, the spatial distribution
of the thermal environment in the ten megacities is deeply aligned with their particular land cover
configurations. These Chinese metropolises exhibit a typical urban-rural gradient pattern at a spatial
scale, with urban expansion or IS sprawling outward from the downtown to dispersed suburban cores
and peripheries, connected by a network of crisscrossing traffic infrastructure.
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The spatial pattern of the most prominent concentric zone in each city is shaped in part by the
powerful magnetism attached to the central business district (CBD) and the expansion of ring roads.
Beijing famously possesses a highly urbanized ring layout between Tiananmen Square (the CBD) and
its neighborhood. Guangzhou and Dongguan stand out with apparent sector configurations in the
urban agglomeration of the Pearl River Delta. The Yangtze River runs through the metropolises of
Wuhan and Nanjing, which have a complex, decentralized, multi-nuclear pattern. Shenyang and
Harbin have a constellation-type pattern due to the strong magnetism of the inner city and multiple
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scattered suburban cores. Tianjin, Hangzhou, and Suzhou contain intricate clusters and radial patterns
owing to their terrain.
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The composition and arrangement of land surface cover profoundly affect the attributes and
patterns of the thermal environment, as shown in Figure 3. The overall response of thermal layout
in each city is in line with the spatial composition of land cover. Generally, the higher temperature
zones are concentrated in the center, rapidly diffusing to outskirts with lower temperatures, in a pie
shape. The TL5–TL4 zones in Beijing and Tianjin are distinctly located in the inner city. Guangzhou
and Dongguan’s TL5–TL4 zones are clustered along the coastline of the delta because of terrain
constraints. The primary TL5–TL4 zones of Wuhan and Nanjing are separated by the Yangtze River.
The higher-temperature zones in Hangzhou, Shenyang, and Harbin are complicatedly distributed and
separated by rivers as well, with scattered high-temperature cores in the suburbs. Suzhou’s thermal
layout is significantly influenced by water.

Next, we observed temperature distributions in relation to land cover using boxplots (Figure 4b).
On the whole, surface temperature distribution and patterns of land cover in the ten megacities are
similar. As shown in Figure 4, the highest temperature always falls under the category of IS, whereas
vegetation and/or water are also manifest, consistent with the comparative analysis based on the
mean NDLST values of each type of land cover. The temperatures of non-IS surfaces are more intense
and closer to the mean NDLST values than those of ISs. However, Suzhou’s temperature pattern is
more distinctive than those of the other cities because of the large proportion of water and internal
heterogeneity of the land surface.

Based on the conceptual model of SUHI, we identified SUHI magnitude across the megacities
using the urban-rural gradient model and compared its extent in each city using MURI. Forty concentric
zones emerged in each study region, with the urban center as the origin and 1 km intervals between
zones. We computed and profiled the composition proportions of land surface cover and the mean
NDLST values based on each concentric zone. The results from the SUHI assessments show that the
patterns of the mean NDLST values are generally identical to the tendency of ISs and are significantly
impacted by non-ISs (Figure 5). The mean NDLST values increase because of the accumulation of
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ISs and bare soil, whereas the substantial growths of green space and water mitigates the heat effect.
Although the overall thermal pattern diffuses from the city core to the surrounding rural areas, the peak
values of surface temperature are not always distributed in the urban center.Remote Sens. 2019, 12, x FOR PEER REVIEW  13 of 32 
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In the Beijing Metropolitan Area, the temperature peak value is distributed within 3 km from the
urban core and the NDLST values contain several minor fluctuations and overall, decline outside the
3 km zone. The surface temperature of Dongguan generally slips from downtown to the suburban
periphery, accompanied by small waves. Analogously, Guangzhou witnesses some small temperature
fluctuations. In Hangzhou, the temperature decreases as we move outward, with a temperature valley
ranging between zones of 7 and 9 km. Harbin’s temperature pattern is complicated, with high/low
temperature alternation. For the surface temperature in Nanjing, we found that the mean NDLST
values first arise in the 7 km zone due to large amounts of water and vegetation downtown. The peak
temperature is seen in the 9 km zone, and the lowest temperature in the 13 km zone. The surface
temperature gradually declines from the 2 km zone to the rural part of Shenyang. Because of the nearby
body of water, a large temperature trough emerges between 23 and 33 km in Suzhou. Concerning
Tianjin’s surface temperature, a distance of 2 km from the center showed the highest value, and zones
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of 19 to 25 km existed in the cool valley. In Wuhan, we examined higher temperature values in the
range of 3 to 19 km. Therefore, a close relationship between LCC and LST is apparent, as shown in
Figure 5. We found that higher temperatures or hot spot zones tend to be considerably concentrated in
intense-IS areas involving a densely populated region as well as a location for large-scale anthropogenic
activities. Conversely, greenbelts and water corridors help to ease the adverse effects of SUHI.

Previous studies on UHI analysis have generally used UHI intensity to detect temperature
difference using the mean value of urban pixels minus that of rural pixels, as derived from satellite
infrared thermal imageries [2,67]. Accordingly, in this study, an analysis comparing SUHI footprint
across the megacities was carried out by aggregating the UHI conceptual theory and MURI. Urban pixels
are generally dominated by IS pixels, whereas non-IS ones are mainly rural pixels. Hence, we also
characterized SUHII using the difference between the mean NDLST values of IS and those of non-IS
pixels. In Tables 3 and 4, and Figure 6, we have summarized the statistics of MURI and the differences
in mean NDLST values between IS and non-IS, which can help us examine the role of land cover
in the thermal environment and compare the magnitude of the thermal effect across the megacities.
We discovered that the TL4 zones covered between 10.83% and 19.53% of each study region, and
Shenyang had the minimum value, while Suzhou obtained the maximum. The TL5 zones occupy
between 10.09% and 20.02% of each study area, and the minimum and maximum value are from Beijing
and Dongguan, respectively. Subsequently, we calculated the MURI of ten megacities, which we present
here by magnitude of SUHI in ascending order: Beijing (21.26%), Nanjing (21.48%), Harbin (22.80%),
Hangzhou (23.12%), Tianjin (23.87%), Shenyang (24.04%), Wuhan (25.17%), Guangzhou (25.43%),
Dongguan (29.71%), and Suzhou (31.14%).

Table 3. Statistics for TL5 and TL4 zones and MURI.

City TL4 Zone TL5 Zone
MURI

Area (km2) Percentage (%) Area (km2) Percentage (%)

Beijing 906.14 13.97 654.38 10.09 21.26
Dongguan 792.03 12.11 1,309.60 20.02 29.71

Guangzhou 894.25 13.7 944.48 14.47 25.43
Hangzhou 740.91 11.33 918.95 14.05 23.12

Harbin 734.42 11.29 895.1 13.76 22.8
Nanjing 858.61 13.18 712.08 10.93 21.48

Shenyang 702.29 10.84 996.43 15.37 24.04
Suzhou 1,273.36 19.53 1,010.86 15.51 31.14
Tianjin 961.53 15.27 733.51 11.65 23.87
Wuhan 754.79 11.66 1,025.79 15.85 25.17

Table 4. Statistics on temperature differences between IS and non-IS land cover types.

City NDLSTIS−nonIS NDLSTIS−veg NDLSTIS−water NDLSTIS−vacant

Beijing 0.0711 0.0727 0.1181 0.0438
Dongguan 0.1003 0.1117 0.1171 0.0537

Guangzhou 0.0937 0.1008 0.1149 0.0530
Hangzhou 0.0765 0.0891 0.0842 0.0272

Harbin 0.0453 0.0485 0.0937 0.0186
Nanjing 0.0681 0.0812 0.1395 0.0299

Shenyang 0.0741 0.0895 0.0905 0.0354
Suzhou 0.1620 0.1088 0.2783 0.0249
Tianjin 0.0523 0.0437 0.1217 0.0215
Wuhan 0.0921 0.0922 0.1535 0.0480

Note: NDLSTIS−nonIS is the mean temperature difference between IS and Non-IS; NDLSTIS−veg is the mean
temperature difference between IS and Vegetation; NDLSTIS−water is the mean temperature difference between IS
and Water; NDLSTIS−vacant is the mean temperature difference between IS and Vacant Land.
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We also ranked the temperature difference between IS and non-IS (NDLSTIS−nonIS) in each city:
Harbin (0.0453), Tianjin (0.0523), Nanjing (0.0681), Beijing (0.0711), Shenyang (0.0741), Hangzhou (0.0765),
Wuhan (0.0921), Guangzhou (0.0937), Dongguan (0.1003), and Suzhou (0.1620). However, the maximum
differences between IS and vegetation or vacant land are both from Dongguan (NDLSTIS−veg : 0.1171;
NDLSTIS−vacant : 0.0537, respectively), and the maximum value of NDLSTIS−water is in Suzhou (0.2783).
In contrast, we obtained the minimum values of NDLSTIS−veg, NDLSTIS−water , NDLSTIS−vacant from
Tianjin (0.0437), Hangzhou (0.0842), and Harbin (0.0186), respectively. This implies that various kinds
of LCC play diverse roles in different thermal environments.

Noteworthily, these differences of mean NDLST values for all megacities were verified using the
non-parametric Wilcoxon–Mann–Whitney (WMW) rank-sum test. The utilization of the WMW test is
to examine the possible differences in the locations of two group means, for which the null-hypothesis
is that the two groups of mean NDLST differences come from the same distribution (to test for
ρ < 0.05) [78]. Besides, the parametric two-sample t-test method [78] was also applied to check the
differences of mean NDLST values between IS and non-IS categories. The t-test statistical analysis
was performed based on one-tailed unequal variances. These means can be confirmed whether they
are statistically significantly different across megacities. On the ground of these two statistical tests,
it can be able to identify three hypotheses about Table 4: (1) the mean NDLST values of the IS category
were higher than these of non-IS categories, which reflect the higher temperature in the urban areas
and the existence of UHI phenomenon in all megacities. (2) Vegetation plays an outsize role in the
non-IS categories, for which the means calculated from the NDLSTIS−nonIS and NDLSTIS−veg are not
statistically different across megacities. (3) The pixels of water and vacant land have different influences
on different megacities, and their means from NDLSTIS−water and NDLSTIS−vacant compared to those of
NDLSTIS−nonIS are statistically significantly different.
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The SUHI footprint varies substantially under different methods. The mean NDLST values of
land cover and MURI for all megacities are plotted in Figure 6. We categorized all megacities into
five groups using the Jenks Natural Breaks Optimization method [79], representing each SUHI index
from lowest to highest. Among varying SUHI footprints, Dongguan, Guangzhou, and Suzhou always
presented an intense UHI, whereas the UHI effects in Harbin and Shenyang were relatively lower than
those of other megacities. We graphed the different SUHII estimates with box-and-whisker plots to
avoid bias regarding SUHII (Figure 7). According to the interquartile range, as well as the median and
mean values of the boxplots, Suzhou has the strongest SUHI, while Harbin’s SUHI is weaker than in
other cities. Figure 8 presents the SUHI footprint for all megacities, summarized and visualized on the
basis of the mean and median values.
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3.2. Diagnostics of OLS and GWR

As shown in Table 5, the two explanatory variables—NMPD and LCC%—explained 6.7–28.1%
of SUHI formation in the ten megacities according to the estimated R-squared of the OLS regression
model. Referring to the estimated coefficients of determination in OLS regression models, we found
that the LCC% in the ten megacities is negatively correlated with the average SUHII. As expected,
the NMPD varies positively with the average SUHII. Additionally, the t statistics of NDMP and LCC%
coefficients for all megacities indicated the statistically significant (ρ < 0.01) relationships between the
SUHII and all explanatory variables. The SUHII of all targeted megacities present the same patterns in
terms of LCC and population impacts. However, these lower R2s signify that the conventional OLS
global regression model cannot satisfy our needs; by contrast, the outputs of the GWR local-based
spatial model may be more trustworthy and reliable in terms of capturing the association among SUHII,
population, and LCC. Although the performances of LCC% and NMPD are not so good (R2 < 0.4) in
the global regression analysis of SUHI formation, these two explanatory variables are outperformed
(R2 > 0.6) in identifying the driving force of SUHI formation at a local scale. As shown in Table 5,
the NMPD and LCC% in all study megacities indicate a good fit with R2 > 68.2%, which means these
two explanatory variables explain more than 60% of SUHI formation in each megacity, based on the
GWR model. Especially in Dongguan, Shenyang, and Suzhou, 80% of SUHII can be illustrated by
LCC and population using local regression analysis. The highest estimates of the NMPD coefficient in
Suzhou based on global analysis implied that the impact of population on the thermal environment
was stronger for Suzhou than for the other targeted megacities, while population affected Tianjin’s
thermal environment the least among the ten megacities. Similarly, the layouts of land cover types in
Guangzhou had a significant influence on its UHI, according to the local absolute coefficients of LCC%.

However, it is noteworthy that the local impact (local factor) of LCC% and NMPD might vary
spatially in different ways by location. Thus, the population positively influenced SUHI formation,
where human settlements were also crucial to the urban thermal field, and thereby, anthropogenic heat
has a significant effect on the thermal environment and raises the occurrence of UHI. In addition, for
all study regions, the presence of spatial non-stationarity was detected on the standardized residuals
from both OLS and GWR models using the spatial autocorrelation (i.e., Global Moran’s I Index) tool.
Also, these standardized residuals spatially exhibited a clustering distribution. However, the effects
of spatial clusters generated by the OLS global model were in more apparent contrast with these
generated by GWR. These findings state that it is possible to interpret most of the spatial patterns of
SUHI magnitude, as well as the statistically significant relationships in these ten megacities, using
the explanatory variables of LCC and population based on the GWR model. In brief, for all targeted
megacities, the GWR models seem suitable for exploring and modeling the linkages among SUHII,
LCC, and PD that exhibit spatial non-stationarity.
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Table 5. Diagnostics of OLS and GWR models for ten megacities.

City Global Regression (OLS Model) Local Regression (GWR Model)

NMPD
Coefficient

LCC%
Coefficient R-Squared Adjusted

R-Squared
Global

Moran’s I

NMPD
Mean

Coefficient

LCC%
Mean

Coefficient
R-Squared Adjusted

R-Squared
Global

Moran’s I

Beijing 0.163108 −0.000045 0.281929 0.28171 0.682344 1.963894 −0.003884 0.76019 0.740372 0.283504
Dongguan 0.347355 −0.000038 0.370344 0.370154 0.725134 1.948306 −0.00918 0.842507 0.815936 0.221621
Guangzhou 0.17548 −0.000087 0.170419 0.170216 0.69623 2.694511 −0.006249 0.794933 0.760049 0.182487
Hangzhou 0.191984 −0.000087 0.197194 0.196949 0.72605 3.336713 −0.000641 0.818523 0.791784 0.250749

Harbin 0.105278 −0.000009 0.105295 0.105022 0.76075 1.588056 −0.00023 0.772503 0.729364 0.230551
Nanjing 0.125807 −0.000031 0.067459 0.067174 0.703049 3.002098 −0.000193 0.682146 0.63855 0.340123

Shenyang 0.217129 −0.00004 0.275091 0.274869 0.778626 3.382181 −0.000627 0.861593 0.829901 0.203363
Suzhou 0.68758 −0.000076 0.093879 0.093603 0.895756 8.588178 −0.001004 0.862382 0.855237 0.430036
Tianjin 0.095847 −0.000006 0.074371 0.07408 0.790775 1.898453 −0.000502 0.756358 0.730738 0.342001
Wuhan 0.236261 −0.000007 0.203187 0.202944 0.722517 4.561839 −0.000204 0.708955 0.678869 0.397796

Note: The coefficients of NMPD and LCC% are both significant at the 1% level.
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4. Discussion

4.1. Responses of Land Cover to UHI: The Similarities and Differences Among Cities

As mentioned previously, we profiled the proportion of land cover and temperature variations by
contrasting urban and rural circumstances. Using Landsat data, we spatially identified SUHII associated
with the land cover layout to assess the extent and magnitude of intense SUHI. Herein, we examined
the linkages between surface temperature distribution and each land cover type. IS and vacant land
(such as bare soil and land) dominate the TL5 and TL4 zones, whereas vegetation and bodies of water
serve as essential components for the TL1 and TL2 zones. Notably, massive, dried vegetation and
croplands have played a crucial role in higher-temperature areas, which always act as heat sources to
promote SUHI. The heat contribution graphics for Harbin, Shenyang, Nanjing, and Dongguan provide
the evidence (Figure 9), and other previous studies on UHI have also mentioned this [75,80].

Remote Sens. 2019, 12, x FOR PEER REVIEW  19 of 32 

 

10 ranks the thermal contribution index (TECI, T1, and T2) of ISs for all megacities The TECIs of ISs 
for each megacity are listed with a descending order: Guangzhou (87.56%), Beijing (85.64%), 
Dongguan (78.86%), Suzhou (62.61%), Tianjin (57.24%), Hangzhou (56.02%), Shenyang (46.57%), 
Wuhan (43.21%), Nanjing (43.19%), and Harbin (34.21%). The T1 values of IS for each study region 
are close and intense: Wuhan (97.63%), Dongguan (96.64%), Suzhou (95.05%), Hangzhou (93.15%), 
Harbin (90.76%), Guangzhou (89.90%), Nanjing (89.50%), Shenyang (88.77%), Tianjin (86.69%), and 
Beijing (81.01%). The T2 values of IS for each megacity are also shown in descending order: 
Guangzhou (35.07%), Beijing (33.30%), Dongguan (28.05%), Suzhou (27.91%), Tianjin (20.99%), 
Hangzhou (17.81%), Nanjing (14.30%), Shenyang (13.71%), Wuhan (10.61%), and Harbin (10.26%). 
These indexes may significantly reflect the magnitude of SUHI based on the land cover models for 
different megacities. Furthermore, the rate of IS is strongly related to the corresponding TECI index 
for cities, with a high coefficient (R2 = 0.9219). In addition, the IS share of each study region is 
substantially associated with its T2 index, with a high determination coefficient (R2 = 0.9768). However, 
the proportion of IS for cities is negatively correlated to the relevant T1 index value, with a very low 
determination coefficient (R2 = 0.1713) (Figure 11). This outcome likely results from the interior 
interaction effect of impervious materials or from neighboring environmental influences. Last but not 
least, the rates of IS, IS thermal contribution, and SUHII across diverse Chinese cities are plotted in 
Figure 12. The chart symbol is scaled to equal 0.49, which is half the size of the most significant value. 
A SUHI footprint can be identified across the cities. 

The multi-city comparative analysis of SUHI footprint might be a dynamic, flexible, and 
improvable process. Apparently, in this study, there are both differentiations and convergences in 
the assessment of multiple thermal environments. Despite the fact that SUHI patterns of different 
cities were highly localized and the magnitude of SUHI varied based on measurement methods, the 
inherent physics behind SUHI formation are similar and influenced by multiple drivers. Herein, ten 
Chinese megacities were merely investigated in this study. However, the more specific 
interpretations and explorations are ongoing for eliciting the valuable information about the 
association between SUHI and land cover/use. We expect to extend our study covering more 
comparable megacities, not only in China but also in other countries, such as Tokyo, London, Paris, 
Berlin, etc. The impact of SUHI on more megacities could be gauged and compared using remote 
sensing data, under serious consideration of the local climate context and land surface features. 

 
Figure 9. The bar chart of TECI, T1, and T2 for all types of land covers by each megacity: (a) the TECI 
of each land cover, (b) the T1 of each land cover, and (c) the T2 of each land cover. 

Figure 9. The bar chart of TECI, T1, and T2 for all types of land covers by each megacity: (a) the TECI
of each land cover, (b) the T1 of each land cover, and (c) the T2 of each land cover.

Because of local atmospheric properties, it is meaningless and inaccurate to directly compare the
estimated LST values of different cities. In this study, we instead used three urban thermal environment
indices (TECI, T1, and T2) to compare the effects of land surface cover on the thermal environment in
multiple cities. From the angle of TECI, on the whole, we observed that IS and vacant land (such as
bare land) accounted for the prevailing thermal source (39.1% < IS’s TECI < 87.6%; 2.5% < vacant
land’s TECI < 43.2%). Vegetation (mainly cropland) also contributed considerably to the heat effect
(3.6% < vegetation’s TECI < 26.6%). Nevertheless, water generates less heat budget for the thermal
environment (water’s TECI < 1.5%), and different types of land cover possess unique thermal properties.
On this basis, we can infer that IS occupies a dominant share of pixels, with above-average NDLST values
for all the megacities. Analogously, pixels of bare land also account for a higher percentage; however,
green space (except for cropland and dried vegetation) and water have relatively lower shares, in which
the NDLST values of fewer pixels are higher than the mean NDLST values. In Beijing and Guangzhou,
over 85% of the above-average NDLST pixels belong to IS, while 39.1% of above-average NDLST pixels in
Harbin are also IS pixels and most contributed to heat. The TECI values of water in all the megacities are
less than 1%, which means that water should be incapable of being a major heat source.

T1 reveals the proportion of above-average NDLST values for a specific kind of land cover,
whereas T2 indicates the corresponding specific land cover percentage of above-average NDLST
values, accounting for the entire study region. IS exhibits extremely high T1 values for each megacity.
This suggests that almost all—or the majority of—IS materials are thermal source materials because of
their high heat flux and capacity. Vacant lands also show high T1 values, which implies that bare land
also makes a significant thermal contribution across study regions. For vegetation, there are various
influences on different thermal regions based on multiple T1 values due to the contribution of cropland
heat flux; however, water presents lower T1 values than the other land cover types in the different
regions, which means that water has a negative influence on the initiation of the thermal effect.
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Different types of land cover exhibit unique functions and behaviors in each megacity. T2 reflects
the extent of SUHI resulting from different land cover behaviors across the entire regional scale.
Because of the consideration of all land cover proportions, the IS does not present a very high T2 value
compared to the TECI and T1 values. In some study regions, entire land surfaces were accounted for by
vast expanses of bare land and cropland, resulting in higher T2 values in terms of vegetation and vacant
land that are associated with higher heat flux through bare or semi-bare surfaces. Examples include,
Hangzhou, Harbin, Shenyang, Nanjing, Tianjin, and Wuhan. Water still makes a minor contribution to
the entire regional thermal effect.

By combining the urban-rural gradient analysis and the outcomes of thermal contributions, we can
confirm that it is IS that primarily drives the phenological effects of the urban thermal environment.
Hence, we further investigated the relationship between LULC and SUHI based on the proportion of
IS and the corresponding thermal environment index for different study regions. Figure 10 ranks the
thermal contribution index (TECI, T1, and T2) of ISs for all megacities The TECIs of ISs for each megacity
are listed with a descending order: Guangzhou (87.56%), Beijing (85.64%), Dongguan (78.86%), Suzhou
(62.61%), Tianjin (57.24%), Hangzhou (56.02%), Shenyang (46.57%), Wuhan (43.21%), Nanjing (43.19%),
and Harbin (34.21%). The T1 values of IS for each study region are close and intense: Wuhan (97.63%),
Dongguan (96.64%), Suzhou (95.05%), Hangzhou (93.15%), Harbin (90.76%), Guangzhou (89.90%),
Nanjing (89.50%), Shenyang (88.77%), Tianjin (86.69%), and Beijing (81.01%). The T2 values of IS for
each megacity are also shown in descending order: Guangzhou (35.07%), Beijing (33.30%), Dongguan
(28.05%), Suzhou (27.91%), Tianjin (20.99%), Hangzhou (17.81%), Nanjing (14.30%), Shenyang (13.71%),
Wuhan (10.61%), and Harbin (10.26%). These indexes may significantly reflect the magnitude of SUHI
based on the land cover models for different megacities. Furthermore, the rate of IS is strongly related
to the corresponding TECI index for cities, with a high coefficient (R2 = 0.9219). In addition, the IS
share of each study region is substantially associated with its T2 index, with a high determination
coefficient (R2 = 0.9768). However, the proportion of IS for cities is negatively correlated to the relevant
T1 index value, with a very low determination coefficient (R2 = 0.1713) (Figure 11). This outcome likely
results from the interior interaction effect of impervious materials or from neighboring environmental
influences. Last but not least, the rates of IS, IS thermal contribution, and SUHII across diverse Chinese
cities are plotted in Figure 12. The chart symbol is scaled to equal 0.49, which is half the size of the
most significant value. A SUHI footprint can be identified across the cities.Remote Sens. 2019, 12, x FOR PEER REVIEW  20 of 32 
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The multi-city comparative analysis of SUHI footprint might be a dynamic, flexible, and improvable
process. Apparently, in this study, there are both differentiations and convergences in the assessment
of multiple thermal environments. Despite the fact that SUHI patterns of different cities were highly
localized and the magnitude of SUHI varied based on measurement methods, the inherent physics
behind SUHI formation are similar and influenced by multiple drivers. Herein, ten Chinese megacities
were merely investigated in this study. However, the more specific interpretations and explorations are
ongoing for eliciting the valuable information about the association between SUHI and land cover/use.
We expect to extend our study covering more comparable megacities, not only in China but also in
other countries, such as Tokyo, London, Paris, Berlin, etc. The impact of SUHI on more megacities
could be gauged and compared using remote sensing data, under serious consideration of the local
climate context and land surface features.

4.2. Linkages among LCC, Population, and UHI: Thermal Effects in Densely Populated Chinese Megacities

As urbanization accelerates in Chinese cities, urban land demands have a been increasing owing
to population gathering and migration. The amount of urban IS has been directly affected, as well as
indirectly influenced, by this population. As demonstrated in previous research, the urban environment
will be under a certain pressure when the proportion of urban IS in the entire region is 0–10%, will be
affected to some extent when the proportion of urban IS in the overall region reaches 10–25%, and will
be in severe degradation if the share of urban IS rises above 25% [81]. In brief, severe and diverse
consequences could emerge for urban sustainability because of the over-concentration of ISs and
population, especially in terms of the urban climate (i.e., the adverse effects of the thermal environment).
In this study, we estimated the average proportion of IS for ten cities to be 80.1% of the inner city
(within 1 km of the urban center). As indicated earlier, in an ideal situation (standard circumstance),
Beijing and Guangzhou possess the largest proportion of ISs and highest heat contribution from ISs in
all study regions, with the same size and extent, followed by Dongguan, Suzhou, Tianjin, Hangzhou,
Shenyang, Nanjing, Wuhan, and Harbin. SUHII in Harbin is weaker than in other cities. The spatial
patterns of the thermal effect in Harbin, Nanjing, Shenyang, and Wuhan are significantly influenced by
non-ISs. All megacities are densely populated. To disclose how IS and population influence thermal
environment, we divided each megacity into ten levels according to the fraction of PD (0% to 100%,
with 10% increments for every level), as shown in Figure 13. We found a non-linear (logarithmic)
pattern in each study region between the share of IS and mean NDLST values based on population
fraction levels, excluding Nanjing. The IS densities and mean NDLST values gradually expand as PD
increases, with small waves providing crests, valleys, plateaus, and basins. However, the mean NDLST
values in Nanjing fall slightly from sparsely populated regions to densely populated zones because of
a large number of semi-bare and bare areas of land with high temperatures. Such findings might better
replenish our interpretation of the associations among SUHI, LCC, and PD.

In tandem with our preliminary analysis and outcomes, we can fulfill the examination of the
SUHI–LCC–PD causal mechanism in ten Chinese megacities. To interpret the spatial patterns and
the SUHI–LCC–PD relationship in the different study regions, we conducted OLS and GWR analyses
to scrutinize the connection between average SUHII values and the explanatory variables (LCC%
and NMPD) from both global and local angles. The outputs of the regression analysis showed that
both LCC% and NMPD are significant predictors of SUHII. We confirm that these two explanatory
variables have an overall consistent influence on thermal environments in the ten megacities. A small
increase in LCC% can bring about a decrease in SUHII, while population gathering results in the
worsening of SUHI. However, the underlying mechanism of SUHI is also context-sensitive and should
be identified over space. The LCC% and NMPD similarly presented locally individual differences
based on spatially varying coefficients. These imply that adjusting the ratio of IS to non-IS may help
relieve the UHI effect. Furthermore, in the study areas of Suzhou, Shenyang, Dongguan, Hangzhou,
and Guangzhou, the impact of LCC% and NMPD variables was more potent for explaining SUHI
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formation, while the influence of these two variables in Nanjing, Wuhan, and Harbin may not be as
substantial as other megacities.Remote Sens. 2019, 12, x FOR PEER REVIEW  23 of 32 
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Overall, the preliminary analysis showed that the composition of land cover and the aggregation
of the population have significant causal linkages with SUHI formation, irrespective of the local
climate context. In other words, it is crucial for an efficient UHI mitigation strategy to decentralize
anthropogenic heat by optimizing land use and the allocation of human activities.
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4.3. Implications for UHI Mitigation and Further Suggestions for Urban Sustainability

The idea behind this study was to conduct a dynamic multi-city analysis of SUHI in China in
spatial context using Landsat archives and then think about how to minimize the UHI effect from
the perspective of land cover and population. Chinese megacities share specific characteristics: an
excessive rate of IS, an over-dispersed urban green space, and an increasing population, all of which
significantly impact their thermal regulation. Before this study, we inferred that there is a causal
mechanism among land cover, population, and SUHI in multiple Chinese megacities. The findings
proved that our hypothesis was acceptable and reasonable. Thus, by targeting urban sustainability
in Chinese megacities, this study suggested that improving the ratio of non-IS area to the IS area
(LCC%) and enacting reasonable land settlement and population redistribution policies will contribute
to creating SUHI mitigating plan.

First of all, policy makers should focus on the LCC level of the urban environment, which balances
and configures urban land use, especially the proportions of IS and greenspace. Based on the
thermal contribution of land cover, IS serves as a huge thermal source in each megacity. For the sake of
sustainable solutions to relieve UHI, it is unrealistic to remove or demolish large buildings or skyscrapers
directly, instead, IS development and urban sprawl in megacities should be scientifically and effectively
regulated. Urban surfaces primarily comprise high- and low-albedo IS (including pavement, cement,
and concrete). In our study, we derived all surface temperatures from satellite thermal imageries
taken in September and October (autumn). In summer and autumn, the urban surface can absorb
plenty of solar radiation and store abundant amounts of heat due to the high heat capacity and thermal
conductivity of IS. This results in a sharp rise in the surface temperature that subsequently initiates
an obvious UHI. However, there are also apparent NDLST valleys in the downtown areas of some
megacities, according to our SUHI monitoring outcomes. Except for the influences from adjacent pixels
of non-ISs, the IS materials and environment configuration also make substantial contributions. As
shown in other studies [3,4,11,82,83], an increasing amount of high-albedo IS materials are currently
utilized in building urban infrastructure. For instance, in Adelaide [84], Athens [85], Boston [86]
and Guangzhou [11], these megacities have been recommended to optimally cool down the urban
temperature and mitigate the UHI effect by adopting the high-albedo building materials. This is a
critical step toward alleviating the release of urban heat and facilitating infrastructure construction in
low-temperature corridors, because the heat behavior of high-albedo IS causes solar radiation to be
reflected rather than absorbed. In the last decade, the inner city—whether redeveloped or rebuilt—has
served as the primary agent of urbanization in megacities. Therefore, the construction policy of
cooling megacities through high-albedo replacement of low-albedo IS materials in all kinds of facilities
(including building roofs, pavement, and transportation networks) could substantially diminish the
volume of urban heat emission. However, studies on materials’ thermal properties are usually based on
in-situ measurements and are not suitable for retrieving information through thermal remote sensing
data. We can further identify it when data become available in the future.

In the context of reasonably regulated IS construction, the arrangement and composition of land
cover should not be ignored. Adding green space and bodies of water could neutralize and moderate
the thermal effect generated by IS. In the present study, as identified in the results of the GWR model,
we found that the increase in LCC% helped decrease surface temperature and alleviate the adverse
effects of UHI in megacities. It shows that non-IS land (mainly vegetation) has a significant impact on
cooling urban temperature. In the urban-rural gradient analysis of the thermal environment, we also
observed that green space and water easily facilitate low-LST corridors, reducing the thermal effect.
Therefore, fostering sustainable green cities is a significant part of urban policy in numerous Chinese
megacities [13,87]. Previous studies have shown that forests, greenbelts, and water play a decisive
role in the thermal regulation of the urban ecological environment [3,88]. The surface temperature
drops sharply when green space and water increase on a large scale. The construction of urban
green belts or infrastructure, as effective, sustainable solutions for cooling UHI, involve adding green
facades, green roofs, vertical gardens, street trees, urban forests, and urban parks [4,26]. Urban heat
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radiation declines by 2°C for every 10% increase in urban green space [89]. Furthermore, the ecological
environments of cities, such as Suzhou and Wuhan—which are primarily affected by water rather
than vegetation—are sensitive to variations in water layout and the construction of blue infrastructure.
SUHI mitigating in such megacities with higher proportions of water pixels might vary considerably
based on the type, geometry, and proportion of the waterbody. Therefore, blueprints of sustainable
urban management should place particular emphasis on the effective arrangement of water (e.g., an
increase in urban fountains and pools [90]).

However, the most challenging UHI mitigation strategy is how to accommodate the increase in
population in the context of wishing to optimize the spatial layout of urban land use. Urban planning
in Chinese cities has placed a great emphasis on human-oriented, sustainable urban development
and ecological civilization construction. Site-specific urban policies and regional land use planning
are vital to arrange a dense population without deteriorating the rate of IS against non-IS (LCC%).
The outputs of the GWR analysis indicated a highly spatial heterogeneity for SUHI in Chinese
megacities. Nevertheless, we did not carry out an in-depth analysis of the details of the SUHI formation
mechanism in this study. In the future investigation, we expect to carry out several studies such as
Li et al. [34], Zhao et al. [32], and Deilami et al. [31], which deeply analyzed a single or a couple of
megacities’ SUHI mechanism and variations based on the locally detailed spatial modeling. Such
studies might provide specific policies to balance other regional land use imperatives and alleviate
local UHI pressure. Moreover, more precise urban metrics information can be expected to be exploited
in our future investigation. The characterization of urban typologies and urban forms can benefit the
urban design [91,92] for ameliorating the UHI situation. Hence, the answer lies in finding a strategy
that suitably regulates IS expansion and layout by considering the urban population and carrying
capacity, coordinating the enrichment of green and blue infrastructures.

5. Conclusions

This study addressed the linkages between the UHI effect and geographical process in ten Chinese
megacities by examining the spatial configurations of land cover and the influence of population,
then translated the key findings into urban management policies. The outcomes provide valuable hints
for diminishing UHI and/or enhancing the urban greenspace cooling island (UGCI) effect, and finally
suggest a possible path to solve urban climate issues sustainably.

The spatial mapping of land cover and thermal environments indicates that, overall, the thermal
gradients of the ten Chinese megacities we examined were radiating outwards from downtown to the
periphery. Remarkably, the SUHI footprint fades spatially with distance from the center, which is in
line with the urban-rural gradient theory. The trends of NDLST variation closely reflect the spatial
composition of land cover: positively correlated with the tendency of IS to change, and negatively
influenced by vegetation and water. Although the average proportion of IS for all megacities occupies
80.1% in inner cities, the peak NDLST values are not always located in the urban core. Adding green
space and water and using new, high-albedo IS materials all potentially affect the thermal environment.
The ecological environment of dense IS distributed throughout the city proper has been improving
and developing sustainably.

In our comparative study, we identified the SUHI footprint based on the urban-rural gradient model
and MURI, which represent the magnitude and extent of the UHI effect, respectively. According to the
degree of SUHI (MURI), Suzhou and Dongguan have a stronger UHI effect than the other megacities.
In terms of the magnitude of SUHI (the temperature difference between IS and non-IS), Suzhou ranks
the highest, followed by Dongguan, Guangzhou, and Wuhan. In addition, the SUHII estimate in
Harbin is always weaker than in the other cities. Based on the mean values of varying SUHII estimates,
it can be concluded that SUHII is the most intense in Suzhou. SUHII in Dongguan, Guangzhou, and
Wuhan is relatively high. Beijing, Hangzhou, Nanjing, and Shenyang have average SUHII conditions,
while it is somewhat low in Tianjin and lowest in Harbin. In addition, SUHII in Suzhou is the most
varied because of nearby large bodies of water and vegetation.
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High-resolution data from WorldPop greatly help us identify the cities’ thermal environment
characteristics. From a holistic angle, the spatial interpretations revealed by the SUHI–LCC–PD
causality show that the population is also an essential factor in thermal behavior across diverse cities.
Further, the effect of UHI is spatially sensitive to the variations in LCC and population in the local
regression modeling, and the GWR model is superior to the conventional global regression model
for explaining the causal mechanism of the UHI effect, which can detect locally detailed differences
and thus provide valuable insight into the regulation and implementation of regional policy on
UHI mitigation.

We examined the spatial configurations of the thermal environment and land cover, identified
“temperature cliffs” in urban-rural or different-land-cover surfaces, quantified the urban thermal
contributions of land cover, and investigated the impact of population and land cover layout on the
thermal effect. Our findings provide significant evidence for addressing the thermal effect and local
climate issues, as well as abundant, valuable information to guide urban ecological development policy.
In the process of contemporary urban growth, there are urgent needs regarding how to regulate the
urban building red line (the proportion of IS), the ecological green line (the scope of green space), and
the blue line (the extent of water). Achieving an optimized layout of land cover/use will enable us to
take advantage of limited urban space to improve the living environment, slow down the urban thermal
effect, adjust to the local climate, and promote the most excellent ecological environment possible.
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Appendix A

Table A1. The accuracy assessment of LULC classification.

City
Overall

Accuracy
(%)

Kappa
Coefficient

Producer’s Accuracy (%) Producer’s Accuracy (%)

IS Vegetation Water Vacant
Land IS Vegetation Water Vacant

Land

Beijing 96 0.9467 97.94 96 97.96 92.38 94.06 96 96 97.98
Dongguan 93.25 0.91 85.98 97.06 98.02 92.22 92 99 99 83
Guangzhou 94.5 0.9267 90.74 98 95.15 94.38 96.08 98.99 98.99 84
Hangzhou 90 0.8666 80.53 95.15 96.91 88.51 91.92 94.23 94 79.38

Harbin 94.75 0.93 94.12 98.96 98.87 87.62 95.05 95 96 92.93
Nanjing 90.75 0.8766 88.89 96.59 95.15 83.64 89.8 85 98 90.2

Shenyang 91.25 0.8833 90 93.75 94.12 87.25 90.91 90 96 88.12
Suzhou 91.5 0.8867 87.27 95.79 87.72 97.53 96 91.92 100 78.22
Tianjin 89.5 0.86 83.65 95.92 92.33 86.32 87.88 94 95 81.19
Wuhan 90.75 0.8767 84.55 92.93 91.74 95.12 93 92 100 78
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Table A2. The summary of atmospheric profiles parameter.

City
Band Average
Atmospheric
Transmission

Effective Bandpass
Upwelling Radiance

(W/m2
· sr · µm)

Effective Bandpass
Downwelling Radiance

(W/m2
· sr · µm)

Beijing 0.93 0.43 0.77
Dongguan 0.74 2.02 3.27

Guangzhou 0.74 2.02 3.27
Hangzhou 0.91 0.68 1.18

Harbin 0.94 0.35 0.63
Nanjing 0.78 1.88 3.03

Shenyang 0.88 0.9 1.53
Suzhou 0.78 1.81 2.96
Tianjin 0.91 0.67 1.17
Wuhan 0.68 2.84 4.5

Note: The effective bandpass upwelling/ downwelling radiance and band average atmospheric transmission are
generated by Atmospheric Correction Parameter Calculator, NASA (https://atmcorr.gsfc.nasa.gov/index.html).
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