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Abstract: Most of the lakes in Indonesia are facing environmental problems such as eutrophication,
sedimentation, and depletion of dissolved oxygen. The water quality data for supporting lake
management in Indonesia are very limited due to financial constraints. To address this issue, satellite
data are often used to retrieve water quality data. Here, we developed an empirical model for
estimating the Secchi disk depth (SD) from Landsat TM/ETM+ data by using data collected from nine
Indonesian lakes/reservoirs (SD values 0.5–18.6 m). We made two efforts to improve the robustness of
the developed model. First, we carried out an image preprocessing series of steps (i.e., removing
contaminated water pixels, filtering images, and mitigating atmospheric effects) before the Landsat
data were used. Second, we selected two band ratios (blue/green and red/green) as SD predictors;
these differ from previous studies’ recommendation. The validation results demonstrated that the
developed model can retrieve SD values with an R2 of 0.60 and the root mean square error of 1.01 m
in Lake Maninjau, Indonesia (SD values ranged from 0.5 to 5.8 m, n = 74). We then applied the
developed model to 230 scenes of preprocessed Landsat TM/ETM+ images to generate a long-term
SD database for Lake Maninjau during 1987–2018. The visual comparison of the in situ-measured and
satellite estimated SD values, as well as several events (e.g., algal bloom, water gate open, and fish
culture), showed that the Landsat-based SD estimations well captured the change tendency of water
transparency in Lake Maninjau, and these estimations will thus provide useful data for lake managers
and policy-makers.

Keywords: water transparency; historical Landsat data; empirical model; Indonesian lake;
atmospheric correction

1. Introduction

Indonesia has 48 lakes and nine reservoirs with an area >10 km2 that are used as important water
resources for domestic life, industry, agriculture, transportation, energy, fisheries, and tourism [1].
Most of these waters are facing environmental problems such as eutrophication, sedimentation,
and the depletion of dissolved oxygen, due mainly to untreated domestic/industrial/agricultural waters,
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deforestation in watersheds, and fish cultures in lakes [2]. It is thus crucial to routinely monitor the
water quality in these lakes and reservoirs in order to obtain scientific data for their sustainable use.

The available water quality data for supporting lake management in Indonesia are very limited
due to the financial constraints. In 2011, the Indonesian government started a 5-year joint project to
determine effective management policies for sustainable use of lakes [2]. The 15 lakes with the most
urgent situations were selected by the Ministry for the collections of water quality data from several
sites in each lake 2×/year. Lake Maninjau is one of the 15 priority lakes. With a total of 186 Secchi disk
depth (SD) measurements taken during the years 2001–2018, Lake Maninjau has the greatest amount
of available water quality data in Indonesia. Other than this dataset, only fragmentary water quality
data exist for a few Indonesian lakes and reservoirs (e.g., [3,4]).

Satellite remote sensing has been recognized as a supportive and powerful tool for collecting
spatial and temporal water quality data, especially for lakes without available in situ data (e.g., [5–12]).
The use of remote sensing techniques can thus provide opportunities to generate a water quality
database for Indonesian lakes and reservoirs.

For the creation of a water quality database from remote sensing data, the satellite data must be
available, and one or more models for estimating water quality parameters are needed. For the first
requirement, since no operational ocean color sensors are available before 1997 [13], and since all ocean
color sensors have relative coarse spatial resolutions (>300 m), Landsat TM/ETM+ data (obtained
since 1984 with 30 m spatial resolutions) are often used to determine the long-term changes of inland
waters’ water quality parameters [7,14–17]. In the present study, we used Landsat TM and ETM+

data to generate a long-term SD database for Lake Maninjau, Indonesia. The SD was selected as the
satellite-retrieved water quality parameter in this study because the SD is the most available in situ
data in Indonesia.

For the necessary models to estimate water quality parameters (e.g., SD), there are two general
types of models: Empirical models and semi-analytical models [18,19]. The semi-analytical approach
is based mainly on an underwater visibility theory. For example, Lee et al. in 2015 [20] developed
a semi-analytical algorithm for retrieving SD values from remote sensing data, in which the SD
is inversely proportional to the minimum value of diffuse attenuation coefficient of downwelling
irradiance within the visible domain. Generally, to obtain accurate SD values in various waters,
the semi-analytical approach always requires more narrow bands in the visible and near-infrared
domains [18,21,22]. The semi-analytical approach is thus not suitable when using Landsat TM and
ETM+ data due to their fewer available bands and broader bandwidths (>60 nm). Therefore, Landsat
TM and ETM+ images along with empirical models have been widely used to estimate the SD in inland
waters [5–7,12,23–30]. One shortcoming of the empirical approach is that in situ-measured SD data
are always necessary to recalibrate the SD estimation algorithms [18]. This shortcoming will limit the
applications of satellite data to lakes with sufficient available in situ data, especially in developing
countries such as Indonesia.

By considering the broad bandwidths of Landsat TM and ETM+ sensors, rather than the inherent
optical properties (IOPs) of a waterbody, the different atmospheric effects on each set of historical
satellite data are likely to provide a challenge to the building of a robust SD estimation model under an
empirical scheme. Although not completely successful, Kloiber et al. in 2002 [6] showed the potential to
produce a standard SD estimation model for Landsat TM images acquired on different dates when the
atmospheric effects in each image can be well removed in advance. Lobo et al. in 2015 [17] successfully
applied a single empirical model to atmospherically-corrected time-series Landsat data to estimate the
concentrations of total suspended solids (TSSs) in Amazonian rivers. In addition, since the empirical
approach is generally not suitable for extrapolation, a wide dynamic range of SD values is also required
to develop a robust estimation model.

In addition to the atmospheric correction and SD dynamic range, observable system noise over the
water surface in Landsat TM/ETM+ images due to the low signal-to-noise ratio (SNR) of the sensors
could well pose another difficulty in building a robust SD estimation model. Nichol and Vohora in
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2004 [31] confirmed that the noise can significantly affect estimations of water quality parameters.
They proposed a filtering method to smooth the Landsat TM images to improve the image quality over
water areas before these images were used further.

The above-mentioned studies suggested that a robust SD estimation model could probably be
developed by using well-preprocessed (i.e., atmospherically corrected and filter smoothed) Landsat
TM/ETM+ images and corresponding in situ-measured SD values with a wide dynamic range, even if
an empirical approach was used. Consequently, our objectives in the present study were to: (1) Develop
a robust SD estimation model by using a wide range of in situ-measured SD values (0.5–18.6 m)
collected from nine Indonesian lakes/reservoirs and the corresponding atmospherically-corrected and
filtered Landsat TM and ETM+ images; (2) evaluate the performance of the developed SD estimation
model using another in situ-measured SD dataset collected from Lake Maninjau, Indonesia; (3) generate
a long-term SD database for Lake Maninjau from historical Landsat TM and ETM+ images (1987–2018)
using the developed SD estimation model; and (4) determine the water quality changes of Lake
Maninjau during the study period by using the generated SD database, in order to further confirm the
robustness of the developed SD estimation model.

2. Materials and Methods

2.1. Study Area

Lake Maninjau is located in Agam Regency, West Sumatra Province, Indonesia (between
100◦08′54′′–100◦14′02′′E and 0◦14′52′′–0◦24′12′′S) at 462 m above sea level (Figure 1a,b). The lake’s
origin was a tectono-volcanic process, and it has a water surface area of 97.37 km2, maximum length
of 16.46 km, and maximum width of 7.5 km [32]. Lake Maninjau is also a deep lake with an average
depth of 105 m and a maximum depth of 168 m. The ratio of the lake's watershed area to the water
surface area is only 1.44.

The water sources of Lake Maninjau are from precipitation and discharges of rivers and
groundwater. Most of the inflows of Lake Maninjau are intermittent rivers, while the permanent
rivers provide small discharges. The lake has only a single outlet, i.e., the Batang Antokan River,
which flows into the west side of Sumatra Island. Since 1983, the lake’s water level was kept at 464 m
above sea level to serve a hydroelectric power plant, and accordingly, the water retention time is
25 years [32]. The average reported annual precipitation surrounding Lake Maninjau was approximately
3100 mm. The minimum monthly precipitations were observed in February and June (145 mm and
130 mm, respectively), and the maximum monthly precipitation was observed in November (485 mm)
(Figure 1c) [32].

Fish cage culture was introduced to Lake Maninjau in 1992 to increase the incomes of the local
residents. The number of fish cages started from 64 units, then dramatically increased abruptly in 2006
(8955 units) and 2010 (13,159 units), and finally reached 18,921 units in 2018 (Figure 1d) [33–37].

The land use did not change significantly in the watershed of Lake Maninjau between 1991 and
2018 [38]. In 1991, the watershed was dominated by forest (46.2%), followed by agriculture (21.9%),
plantation (20.0%), bush (11.2%), settlement (0.6%), and bare land (0%). In 2018, the areas of forest and
agriculture were slightly reduced to 45.3% and 16.5%, respectively, while the other types of land use
increased slightly to 23.8% for plantation, 11.9% for bush, 2% for settlement, and 0.4% for bare land.
The population in the watershed was 29,794 in 2000 and increased to 35,049 in 2018 [37].
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R:G:B = 4:5:1; green stars = the measurement sites). (b) Locations of the nine Indonesian lakes 

investigated in 2011–2014 and used for calibrating the Secchi disk depth (SD) estimation model (green 

circles). (c) Monthly averaged precipitation of Lake Maninjau [32]. (d) Number of fish cages and fish 

production in Lake Maninjau from 1992 to 2016 [33–37]. 
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standard 20-cm-diameter Secchi disk painted in white and black quarters was used to measure the 

SD values. The locations (longitude, latitude) of the SD measurements were recorded using a GPS 

(Global Positioning System) receiver. In total, we collected 31 in situ SD values from nine Indonesian 

lakes (Figure 1b, green circles). The SD values ranged from 0.5 to 18.6 m. The names of the lakes, the 

coordinates of the collection locations, the investigation dates, and the SD values are given in Table 

1. Hereafter, this dataset is referred to as the "In Situ SD Dataset I", and we used this dataset for 
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which is part of the Indonesian Institute of Science (LIPI). The RCL started to collect in situ SD data 

from Lake Maninjau in 2001. A total of 186 SD measurements were collected from 41 field surveys 
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Figure 1. (a) Landsat image of Lake Maninjau in Sumatera Island, Indonesia (acquired on 6 July 2011;
R:G:B = 4:5:1; green stars = the measurement sites). (b) Locations of the nine Indonesian lakes
investigated in 2011–2014 and used for calibrating the Secchi disk depth (SD) estimation model
(green circles). (c) Monthly averaged precipitation of Lake Maninjau [32]. (d) Number of fish cages and
fish production in Lake Maninjau from 1992 to 2016 [33–37].

2.2. Data Collection

2.2.1. The In Situ SD Data Collection

We carried out seven field surveys to collect in situ SD data during the years 2011–2014. A standard
20-cm-diameter Secchi disk painted in white and black quarters was used to measure the SD
values. The locations (longitude, latitude) of the SD measurements were recorded using a GPS
(Global Positioning System) receiver. In total, we collected 31 in situ SD values from nine Indonesian
lakes (Figure 1b, green circles). The SD values ranged from 0.5 to 18.6 m. The names of the lakes,
the coordinates of the collection locations, the investigation dates, and the SD values are given in
Table 1. Hereafter, this dataset is referred to as the “In Situ SD Dataset I”, and we used this dataset for
calibrating the SD estimation models.

We also collected other in situ SD measurements from the Research Centre for Limnology (RCL),
which is part of the Indonesian Institute of Science (LIPI). The RCL started to collect in situ SD data from
Lake Maninjau in 2001. A total of 186 SD measurements were collected from 41 field surveys during
the years from 2001 to 2018. In addition, one SD measurement was collected from Lake Maninjau by
Lehmusluoto et al. [4] in March 1992, and 10 SD measurements were collected from our three field
surveys (7 September 2015: Three SD measurements; 11 September 2017: Four SD measurements;
13 November 2018: Three SD measurements). We combined the above in situ SD data with a range of
0.50–5.80 m as the “In Situ SD Dataset II”. From the In Situ SD Dataset II, we selected SD measurements
with available Landsat data obtained during the same month and redefined as these measurements as
“In Situ SD Dataset III”. We used this dataset for validating the developed SD estimation models (n = 74).
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Table 1. The nine Indonesian lakes (In Situ Dataset I).

No. Name and Site
Area
(km2)

Max
Depth (m)

Altitude
(m)

Coordinate Investigation
Date

SD (m)
Longitude Latitude

1 Singkarak st.1

108 268 362

100.5062 −0.5432

20 July 2011

3.70
2 Singkarak st.2 100.5061 −0.5434 4.00
3 Singkarak st.3 100.5446 −0.6228 3.05
4 Singkarak st.4 100.5722 −0.6741 3.00
5 Maninjau st.1

98 165 459
100.2234 −0.2879

21 July 2011
0.90

6 Maninjau st.2 100.2173 −0.2879 0.97
7 Maninjau st.3 100.2234 −0.2879 0.91
8 Saguling st.1

53 99 645

107.4828 −6.9133

18 July 2012

0.94
9 Saguling st.2 107.4948 −6.9177 0.86
10 Saguling st.3 107.5349 −6.9333 0.88
11 Saguling st.4 107.5546 −6.9025 0.79
12 Tondano st.1

50 20 600

124.8862 1.2268

18 March 2013

2.80
13 Tondano st.2 124.8857 1.2165 2.80
14 Tondano st.3 124.8997 1.2461 2.90
15 Tondano st.4 124.9034 1.2560 2.60
16 Limboto st.1

56 3 25
122.9897 0.5877

20 March 2013
0.48

17 Limboto st.2 122.9797 0.5910 0.46
18 Limboto st.3 122.9929 0.5634 0.55
19 Toba st.1

1124 529 905
98.6586 2.7674

19 March 2014
6.54

20 Toba st.2 98.9271 2.4147 6.50
21 Toba st.3 98.9611 2.4410 6.22
22 Jatiluhur st.1

83 105 111

107.3665 −6.5260

15 July 2014

1.37
23 Jatiluhur st.2 107.3236 −6.5393 1.83
24 Jatiluhur st.3 107.3024 −6.5805 1.74
25 Jatiluhur st.4 107.3297 −6.5139 1.71
26 Matano st.1

164 590 382
121.3001 −2.4843

7 October 2014
15.10

27 Matano st.2 121.3690 −2.4943 18.60
28 Matano st.3 121.4154 −2.5179 16.90
29 Towuti st.1

561 203 293
121.5430 −2.6990

8 October 2014
15.30

30 Towuti st.2 121.5104 −2.7989 17.10
31 Towuti st.3 121.4607 −2.8633 12.40

SD: Secchi disk depth.

2.2.2. The Satellite Data Collection

We collected satellite images that were acquired by two Landsat sensors (i.e., TM and ETM+).
We used Landsat TM and ETM+ data in this study due to their high spatial resolution (30 m) and
long-term data availability (since 1984). Except for a panchromatic band included in the ETM+,
both sensors have a similar spectral configuration (three visible bands, three infrared bands, and one
thermal infrared band, [39,40]). The thermal infrared and panchromatic bands were not used in
this study.

A total of 309 Landsat TM/ETM+ images were downloaded from the USGS (United States
Geological Survey) website [41]. These satellite images include (1) seven images corresponding
with In Situ SD Dataset I (hereafter referred to as “Landsat Dataset I”; also see Table 2 for details);
(2) 302 images covering Lake Maninjau during the years from 2001 to 2018 (hereafter referred to as
“Landsat Dataset II”). In Landsat Dataset II, 21 images corresponding to In Situ SD Dataset III are
referred to as “Landsat Dataset III” (see Table 3 for details).

Each Landsat TM/ETM+ image was bundled in a folder including three visible bands, three infrared
bands, one thermal band, one panchromatic band (only for Landsat 7 ETM+), and a quality assessment
band (BQA), which are all in Digital Number (DN) format. The additional files are the metadata file
(_MTL.txt) and the ground control point file (_GCP.txt). For the Landsat 7 ETM+ dataset, scan line
corrector (SLC) failure was also embedded with a folder containing “gap_mask” files.
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Table 2. Seven Landsat TM/ETM+ images corresponding with In Situ SD Dataset I (i.e., Landsat
Dataset I).

No Acquisition Date Path Row Sensor Lake/Reservoir Days between Satellite
and Field Data

1 6 July 2011 127 60 5 TM Singkarak and Maninjau –14 days and –15 days
2 29 July 2012 122 65 7 ETM+ Saguling 11 days
3 13 March 2013 111 59 7 ETM+ Tondano 5 days
4 27 March 2013 113 60 7 ETM+ Limboto 7 days
5 30 March 2014 129 58 7 ETM+ Toba 11 days
6 19 July 2014 122 65 7 ETM+ Jatiluhur 3 days
7 8 October 2014 113 62 7 ETM+ Matano and Towuti 1 day and same day

Table 3. Twenty-one Landsat TM/ETM+ images of Lake Maninjau (Path = 127, Row = 60) corresponding
to In Situ SD Dataset III (i.e., Landsat Dataset III).

No. Acquisition Date Sensor Days between Satellite and Field Data

1 31 May 2001 7 ETM+ Within 30 days
2 18 May 2002 7 ETM+ Within 30 days
3 3 June 2005 5 TM Within 30 days
4 4 December 2005 7 ETM+ Within 30 days
5 29 May 2006 7 ETM+ Within 30 days
6 17 August 2006 7 ETM+ Within 30 days
7 24 May 2007 5 TM Within 30 days
8 3 July 2007 7 ETM+ Within 30 days
9 14 August 2008 5 TM Within 30 days
10 29 May 2009 5 TM Within 30 days
11 25 August 2009 7 ETM+ Within 30 days
12 19 November 2011 7 ETM+ Within 30 days
13 26 March 2012 7 ETM+ Within 30 days
14 13 March 2013 7 ETM+ Within 30 days
15 1 April 2014 7 ETM+ 20 days
16 8 March 2017 7 ETM+ –9 days
17 12 June 2017 7 ETM+ Same day
18 6 January 2018 7 ETM+ –9 days
19 28 April 2018 7 ETM+ Same day
20 17 July 2018 7 ETM+ –2 days
21 19 September 2018 7 ETM+ Same day

Note: The dates of the field surveys were not available for Landsat images Nos. 1–14.

2.3. The Preprocessing of the Landsat TM and ETM+ Images

2.3.1. The Removal of Non-Water Pixels

We first used lake polygons with a 90 m buffer to clip water pixels, and then masked the clipped
water pixels with bad quality (i.e., pixels with a BQA value , 672). The use of 90 m buffer can avoid
or mitigate adjacency effects and possible influences from the bottom reflectance in the water pixels
near the lakeshore. We further removed the water pixels contaminated by clouds or cloud shadows
by using the combination of the Normalized Different Water Index (NDWI, [42]) and the Modified
Normalized Different Water Index (MNDWI, [43]). The NDWI and MNDWI values can be calculated
using the following equations:

NDWI = (dgreen−dNIR)/(dgreen + dNIR), (1)

MNDWI = (dgreen−dSWIR)/(dgreen + dSWIR), (2)
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where dgreen, dNIR and dSWIR are the DN values at the green band, near-infrared band, and
shortwave infrared band, respectively. The contaminated water pixels were the pixels with both NDWI
and MNDWI values <0 within the lake polygons.

2.3.2. The Reduction of Noise Effects on the Remaining Water Pixels

Due to the low signal-to-noise ratios (SNRs) of the Landsat TM and ETM+ sensors, a coherent
pattern of system noise is observable in the images over homogeneous surfaces such as lakes [44].
Nichol and Vohora in 2004 [31] pointed out that the noise is serious enough to affect estimations of water
quality parameters, and they proposed a method for removing the noise that uses an iterative median
filtering technique in the spatial domain. In the present study, we followed Nichol and Vohora’s [31]
method. We first iteratively applied a median filter with a 3 × 3 pixel window to the image until no
further change in pixel values was observed. We also limited the maximum iteration to 1000 times to
avoid a long computational time. We then changed the median filter size to a 5 × 5 pixel window and
repeated the first step.

2.3.3. The Conversion of the DN Values to Radiance and the Minimization of Atmospheric Effects

We then converted the filtered DN values to at-sensor spectral radiance (Lλ) by using
Equation (3) [45]:

Lλ = Grescale * QCAL + Brescale, (3)

where Lλ is the spectral radiance at the sensor's aperture (W/(m2
·sr·µm)), QCAL is the quantized

calibrated pixel value (DN), Brescale is the band-specific rescaling bias factor from Chander et al. in
2009 [45] (W/(m2.sr.µm))/DN), and Grescale is the band-specific rescaling gain factor from Chander et al.
in 2009 [45] (W/(m2.sr.µm)).

Atmospheric correction is a crucial step in the use of satellite data, especially for the application
of a single estimation model to different images across time and space [6]. We used a two-step
atmospheric correction method to avoid the requirement of ancillary data for correcting aerosol
effects (e.g., horizontal visibility, ratios of fine particles, and relative humidity in the atmosphere) [46].
In the first step, we carried out only a Rayleigh scattering correction using the 6S radiative transfer
model without considering aerosol effects [47]. We selected a standard tropical atmospheric model
for this correction. The Rayleigh corrected reflectance (Rrc) for each band can be obtained using the
following equations:

Rrc = y/(1.0 + xc*y), (4)

y = xa * (Lλ) − xb, (5)

where xa, xb, and xc are the coefficients calculated using the 6S code.
In the second step, we further mitigated the aerosol scattering effect pixel-by-pixel by subtracting

the minimum of the Rayleigh corrected reflectance at the near-infrared (Rrc(4)) and middle-infrared
(Rrc(5)) bands from those at the visible bands (Rrc(λ)):

Rc(λ) = Rrc(λ) - min (Rrc(4), Rrc(5)), (6)

where Rc(λ) is the atmospherically-corrected reflectance at Landsat visible bands.
The second step was based on the following assumptions: (1) The water absorption at the

near-infrared and middle-infrared bands is very strong, and thus the water-leaving reflectance at
those bands can be considered to be zero; (2) aerosol is probably heterogeneously distributed over
a lake and varies temporally; and (3) the wavelength dependence of the aerosol effect is negligible.
The effectiveness of the two-step atmospheric correction method has been reported in previous
studies [46,48].
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2.4. SD Estimation Model Development and Accuracy Assessment

2.4.1. The Development of the Empirical SD Estimation Models

We used In Situ SD Dataset I and the preprocessed Landsat Dataset I to develop empirical SD
estimation models. To reduce the possible errors in geometric correction of Landsat images and
the dynamics of water bodies, we used a 3 × 3 pixel sampling window to extract the water-leaving
reflectance (i.e., the preprocessed Landsat data) and averaged these values to pair them with the
corresponding in situ SD measurements (locations recorded by GPS). We obtained a total of 31 pairs
(Table 1). Next, to reduce the measurement errors in the in situ SD values, and by considering our
finding of small variation between the SD measurements in each lake, we averaged the in situ-measured
SD values and the corresponding extracted water-leaving reflectance for each lake. The number of
pairs was thus reduced from 31 pairs to nine pairs. We then used the nine natural log-transformed in
situ SD values as dependent variables and various combinations of the corresponding water-leaving
reflectance at the three Landsat visible bands (e.g., using single bands, band ratios, band ratios and
single bands, and two band ratios) as independent variables in order to develop the SD estimation
models by using the regression/multiple-regression analysis technique. The general equations of the
SD estimation models are as follows:

ln (SD) = a + b (single band), (7)

ln (SD) = a + b (band ratio), (8)

ln (SD) = a + b (band ratio) + c (single band), (9)

ln (SD) = a + b (band ratio 1) + c (band ratio 2), (10)

where a, b, and c are coefficients and can be obtained by fitting the calibration data. The use of natural
log-transformed SD values has been recommended by several research groups [6,7,9,26].

Equations (7) through (10) include three single band-based (1–3), six band-ratio-based (A–F),
18 band ratio and single band-based (A1–F3), and 15 two band ratio-based (AB–EF) SD estimation
models, respectively (also see Table 4).

2.4.2. The Accuracy Assessment

We used three indices for assessing the accuracy of the developed models: The root means square
error (RMSE), the mean normalized bias (MNB), and the normalized mean absolute error (NMAE).
These indices are defined as follows:

RMSE =

√∑N
i=1(Xesti,i −Xmeas,i)

2

n
, (11)

MNB (%) = mean (εi), (12)

NMAE (%) = mean (|εi|), (13)

where Xesti,i and Xmeas,i are the estimated and measured SD values, respectively, n is the number
of samples, and εi=100×(Xesti,i − Xmeas,i)/Xmeas,i is the relative difference between the estimated and
measured SD values. The RMSE denotes the absolute scattering of estimated SD values. The MNB
denotes the average bias in the estimation, and the NMAE denotes the average relative error in the
estimation. The correlation between the measured and estimated values (R2) was also calculated.

We also used R language [49] for several statistical analyses. First, we used an R package named
“hydroGOF” [50] to calculate Willmott Index of Agreement (WIA) and Nash–Sutcliffe model efficiency
(NSME) to enhance the accuracy assessment of the developed model. The WIA value is a measure of
modeled errors and varies between 0 and 1. A WIA value closer to 1 represents better match between
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in situ data and modeled data [51]. The NSME value indicates how well the plot of in situ data versus
modeled data fits the 1:1 line, and a value closer to 1 indicates a better match of the modeled data to
the in situ data [52].

Second, we made a Taylor diagram using the “openair” package in R language to compare
the performance between different SD estimation models [53]. The correlation coefficient (R),
root-mean-square (RMS) difference, and standard deviations of different models can be simultaneously
shown in this diagram [54].

Third, we used an R package named “ggplot2” [55] to obtain long-term trends based on in
situ-measured and satellite estimated SD values by using the Locally wEighted Scatterplot Smoothing
(LOESS) method. LOESS uses Savitzky–Golay filter to obtain a trend line from scattered points by
local polynomial regression and has been widely used in time-series data analyses (e.g., [56–58]).

3. Results

3.1. The Empirical Models for Estimating the SD from Landsat TM/ETM+ Data

Table 4 shows all of the developed SD estimation models and their performances based on In Situ
SD Dataset I and the preprocessed Landsat Dataset I. We excluded the SD estimation models with
worse performance from the further analyses by using thresholds of R2 values <0.9 and RMSE values
>2.5 m. Seventeen SD estimation models remained (models in bold in Table 4): Two band ratio-based
models (A and B), six band ratio and single band-based models (A1–A3 and B1–B3), and nine two
band ratio-based models (AB–AF and BC–BF). Since all 17 remaining SD estimation models contained
the band ratio of TM1 and TM3 (TM1/TM3) or the band ratio of TM1 and TM2 (TM1/TM2), we refer to
the models with TM1/TM3 as “A-type models” and the models with TM1/TM2 as “B-type models”
hereafter for convenience. In addition, all 17 remaining SD estimation models showed WIA and NSME
values larger than 0.96 and 0.87, respectively.

Figure 2 provides the scatterplots of the in situ SD measurements and the corresponding estimated
SD values using the selected 17 models in the model calibration procedures. The A-type models
generally showed better performances than the B-type models. The coefficients of determination of the
A-type models ranged from 0.97 to 0.99, with RMSE values ranging from 0.8 to 1.6 m, and NMAE
values ranging from 24.3 to 34.7%. In contrast, the ranges of the coefficients of determination, RMSE,
and NMAE of the B-type models were 0.91–0.96, 1.9–2.2 m, and 42–51.1%, respectively.
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Table 4. The developed SD estimation models and their performances based on In Situ SD Dataset I and the preprocessed Landsat Dataset I.

Variable Name ln (SD) = R2 WIA * NSME ** RMSE (m) MNB (%) NMAE (%)

Single band
1 –0.04 + 29.35(TM1) 0.02 0.39 –0.17 6.6 89.7 140.5
2 2.77 – 47.99(TM2) 0.32 0.44 0.07 5.9 58.8 111.0
3 2.24 – 53.91(TM3) 0.33 0.45 0.06 5.9 55.2 107.5

Band ratio

A –2.45 + 1.81(TM1/TM3) 0.97 0.98 0.93 1.6 10.1 34.7
B –3.29 + 3.93(TM1/TM2) 0.91 0.96 0.88 2.1 16.6 50.7
C –5.77 + 3.95(TM2/TM3) 0.27 0.53 0.16 5.6 43.2 86.9
D 3.33 – 3.88(TM3/TM1) 0.78 0.69 0.43 4.6 29.3 74.5
E 4.55 – 3.60(TM2/TM1) 0.85 0.80 0.57 4.0 28.2 68.3
F 6.97 – 10.07(TM3/TM2) 0.29 0.49 0.14 5.6 45.7 91.1

Band ratio and
single band

A1 –4.36 + 1.87(TM1/TM3) + 49.01(TM1) 0.99 1.00 0.98 0.8 4.4 25.0
A2 –4.48 + 2.33TM1/TM3) + 28.22(TM2) 0.98 1.00 0.98 0.8 5.4 24.3
A3 –3.85 + 2.24(TM1/TM3) + 25.83(TM3) 0.98 0.99 0.98 0.9 6.6 27.2
B1 –4.43 + 3.94(TM1/TM2) + 30.99(TM1) 0.92 0.97 0.90 1.9 12.5 46.7
B2 –4.47 + 4.52(TM1/TM2) + 14.93(TM2) 0.92 0.97 0.90 1.9 13.9 49.4
B3 –3.71 + 4.18(TM1/TM2) + 7.18(TM3) 0.91 0.97 0.89 2.0 15.8 50.3
C1 –13.60 + 5.85(TM2/TM3) + 124.11(TM1) 0.54 0.81 0.52 4.2 15.8 56.6
C2 –4.17 + 3.28(TM2/TM3) – 12.07(TM2) 0.34 0.53 0.18 5.5 42.9 88.9
C3 –4.80 + 3.49(TM2/TM3) – 8.40(TM3) 0.30 0.52 0.17 5.6 43.3 88.2
D1 0.21 – 4.84(TM3/TM1) + 100.49(TM1) 0.93 0.92 0.79 2.8 8.2 34.5
D2 4.53 – 11.87(TM3/TM1) + 146.26(TM2) 0.94 0.89 0.74 3.1 17.5 50.5
D3 4.27 – 10.20(TM3/TM1) + 125.67(TM3) 0.93 0.92 0.78 2.8 9.8 36.8
E1 2.75 – 3.78(TM2/TM1) + 53.86(TM1) 0.90 0.89 0.72 3.2 17.4 53.4
E2 4.80 – 5.10(TM2/TM1) + 33.83(TM2) 0.89 0.86 0.68 3.4 21.0 57.0
E3 4.90 – 4.47(TM2/TM1) + 22.52(TM3) 0.87 0.84 0.64 3.7 25.4 63.9
F1 5.46 – 16.59(TM3/TM2) + 146.02(TM1) 0.68 0.86 0.64 3.6 10.3 42.9
F2 6.63 – 9.10(TM3/TM2) – 6.16(TM2) 0.33 0.49 0.15 5.6 45.5 92.3
F3 7.11 – 10.37(TM3/TM2) + 2.01(TM3) 0.29 0.49 0.14 5.6 45.7 90.9
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Table 4. Cont.

Variable Name ln (SD) = R2 WIA * NSME ** RMSE (m) MNB (%) NMAE (%)

Two band ratios

AB –2.49 + 1.76(TM1/TM3) + 0.12(TM1/TM2) 0.97 0.98 0.93 1.6 10.2 34.6
AC –1.80 + 1.95(TM1/TM3) – 0.53(TM2/TM3) 0.97 0.98 0.94 1.4 10.2 34.3
AD –4.34 + 2.35(TM1/TM3) + 1.45(TM3/TM1) 0.98 0.99 0.97 1.0 8.1 26.4
AE –4.17 + 2.22(TM1/TM3) + 0.96(TM2/TM1) 0.97 0.99 0.95 1.3 8.6 30.5
AF –3.94 + 2.00(TM1/TM3) + 1.89(TM3/TM2) 0.97 0.99 0.95 1.3 9.9 33.7
BC –4.84 + 3.37(TM1/TM2) + 1.26(TM2/TM3) 0.96 0.96 0.89 2.0 13.0 42.0
BD –3.05 + 3.80(TM1/TM2) – 0.16(TM3/TM1) 0.92 0.96 0.87 2.2 16.7 51.1
BE –6.78 + 5.60(TM1/TM2) + 1.70(TM2/TM1) 0.91 0.97 0.90 1.9 14.2 48.8
BF –1.18 + 3.45(TM1/TM2) – 2.67(TM3/TM2) 0.95 0.96 0.88 2.1 14.4 45.2
CD 2.53 + 0.38(TM2/TM3) – 3.62(TM3/TM1) 0.77 0.69 0.43 4.6 28.6 73.8
CE 1.48 + 1.41(TM2/TM3) – 2.94(TM2/TM1) 0.86 0.81 0.60 3.9 22.3 60.8
CF –10.31 + 5.34(TM2/TM3) + 3.64(TM3/TM2) 0.26 0.53 0.16 5.6 42.6 86.6
DE 4.49 – 0.28(TM3/TM1) – 3.36(TM2/TM1) 0.85 0.80 0.57 4.0 28.0 67.9
DF 2.72 – 4.27(TM3/TM1) + 1.43(TM3/TM2) 0.79 0.69 0.43 4.6 29.9 74.4
EF 5.65 – 3.07(TM2/TM1) – 2.74(TM3/TM2) 0.87 0.80 0.58 3.9 24.7 64.1

Note: Models with coefficients of determination (R2) >0.9 and root means square error (RMSE) <2.5 m are in bold. * Willmott Index of Agreement; ** Nash–Sutcliffe model efficiency.
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Figure 2. Comparison of the in situ SD measurements and the corresponding estimated SD values
using the 17 selected models in the model calibration procedures.

3.2. The Validation of the 17 Selected SD Estimation Models in Lake Maninjau

Figure 3 and Table 5 illustrate the results of our comparisons of the in situ-measured SD values
(In Situ SD Dataset III) and the corresponding estimated SD values from the preprocessed Landsat
images (Landsat Dataset III) using the 17 selected SD estimation models. The figure and table reveal
that the B-type models generally outperformed the A-type models in Lake Maninjau. All of the
A-type models showed larger overestimations with RMSE values ranging from 1.64 to 2.55 m (average
1.94 m) and lower R2 values ranging from 0.25 to 0.44 (Figure 3a–i). In contrast, the B-type models
showed smaller RMSE values (0.92–1.52 m, with an average of 1.07 m) and higher R2 values (0.35–0.60;
Figure 3j–q).
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Figure 4 shows the performances of the 17 selected SD estimation models using Taylor diagram,
which also reveals that the B-type models have better performance than the A-type models in Lake
Maninjau (higher R values and smaller RMS errors). Among the B-type models, since the BF model
showed the highest R2 value (0.60; Table 5), the closest distance to the observed point (Figure 4),
the highest WIA value (0.83; Table 5), a smaller RMSE value (1.01 m; Table 5), and a higher NSME
value (0.43; Table 5), we chose this model for further analysis.
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Table 5. The developed SD estimation models and their performances based on In situ SD Dataset III
and the preprocessed Landsat Dataset III (n = 74).

Name ln (SD) = R2 WIA * NSME ** RMSE
(m)

MNB
(%)

NMAE
(%)

A –2.45 + 1.81(TM1/TM3) 0.42 0.68 –0.88 1.83 83.46 89.83
A1 –4.36 + 1.87(TM1/TM3) + 49.01(TM1) 0.34 0.65 –1.29 2.02 45.98 63.67
A2 –4.48 + 2.33TM1/TM3) + 28.22(TM2) 0.39 0.66 –1.35 2.05 61.35 73.23
A3 –3.85 + 2.24(TM1/TM3) + 25.83(TM3) 0.44 0.72 –0.61 1.70 57.25 69.72
AB –2.49 + 1.76(TM1/TM3) + 0.12(TM1/TM2) 0.32 0.62 –1.24 2.00 98.44 106.40
AC –1.80 + 1.95(TM1/TM3) – 0.53(TM2/TM3) 0.36 0.69 –0.52 1.65 81.22 93.08
AD –4.34 + 2.35(TM1/TM3) + 1.45(TM3/TM1) 0.32 0.63 –1.37 2.06 88.98 99.28
AE –4.17 + 2.22(TM1/TM3) + 0.96(TM2/TM1) 0.25 0.54 –2.63 2.55 115.41 122.65
AF –3.94 + 2.00(TM1/TM3) + 1.89(TM3/TM2) 0.36 0.69 –0.51 1.64 76.59 90.17

B –3.29 + 3.93(TM1/TM2) 0.54 0.83 0.53 0.92 30.67 54.19
B1 –4.43 + 3.94(TM1/TM2) + 30.99(TM1) 0.35 0.76 0.16 1.23 13.44 48.66
B2 –4.47 + 4.52(TM1/TM2) + 14.93(TM2) 0.48 0.82 0.46 0.98 14.80 45.81
B3 –3.71 + 4.18(TM1/TM2) + 7.18(TM3) 0.52 0.83 0.52 0.93 22.72 50.20
BC –4.84 + 3.37(TM1/TM2) + 1.26(TM2/TM3) 0.40 0.71 –0.29 1.52 84.90 92.43
BD –3.05 + 3.80(TM1/TM2) – 0.16(TM3/TM1) 0.54 0.83 0.53 0.92 33.19 55.38
BE –6.78 + 5.60(TM1/TM2) + 1.70(TM2/TM1) 0.38 0.76 0.37 1.07 26.62 55.97
BF –1.18 + 3.45(TM1/TM2) – 2.67(TM3/TM2) 0.60 0.83 0.43 1.01 56.47 67.43

Note: * Willmott Index of Agreement; ** Nash–Sutcliffe model efficiency.
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3.3. Long-Term SD Changes in Lake Maninjau from the Landsat TM/ETM+ Time Series

We applied the BF model to the preprocessed Landsat Dataset II to observe the long-term SD
change in Lake Maninjau (1987–2018). To maintain the representativeness of the SD of the entire lake,
we excluded Landsat images with <50% available water pixels in Lake Maninjau (see Section 2.3.1
above). We also removed two Landsat images (acquired on 2 July 2004 and 5 July 2005) due to a large
area of clouds and cloud shadows that failed to be masked by the BQA, NDWI, and MNDWI values.
Only 230 Landsat images were thus used for the long-term SD change analysis.
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Figure 5 provides the averaged SD values estimated from the 230 preprocessed Landsat images
using the BF model. The averaged in situ SD measurements of each field survey in Lake Maninjau are
also shown in the figure for visual comparison. From the long-term Landsat-based SD estimations,
we can see that low SD values (1–1.5 m) occurred four times during the years from 2001 to 2018
(around 1989, 1999, 2011, and 2018). Around 2004, the water transparency in Lake Maninjau increased
notably, as the SD values changed from 1.5 m (around 1999) to approximately 6 m. The water
transparency in the lake then showed a continuous decrease until 2011, a smaller tendency to increase
in 2011–2015, and a decreasing trend again in 2015–2018. These water transparency variations observed
from the Landsat-based SD estimations can be validated by the In Situ SD Dataset II after 2001 (Figure 5,
blue points and trend line), which showed a similar fluctuation pattern of SD values.
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Figure 5. Long-term changes in the water transparency in Lake Maninjau from 1987 to 2018. Red points:
The averaged SD values estimated from the preprocessed Landsat Dataset II using the BF model.
Blue points: The averaged in situ SD values for each field survey (In Situ SD Dataset II). Red line:
Obtained from the red points via a trend analysis in R language. Blue line: Obtained from the blue
points via a trend analysis in R language. Gray areas: 95% confidence intervals of the trend analysis.

4. Discussion

4.1. The Applicability of the Developed SD Estimation Model

We developed an empirical model for estimating SD values from Landsat data. Although the
number of data pairs is small, the pairs were collected from nine Indonesian lakes with a wide dynamic
range of SD values (0.5–18.6 m). We also conducted a series of preprocessing steps, including the
removal of contaminated water pixels, the filtering of the images, and the mitigation of the atmospheric
effects, before the Landsat data were used. These efforts enable the developed SD estimation model
to be applied to different Landsat images cross time and space [6,28,29]. In contrast, since the fewer
available bands and the broad bandwidths of Landsat TM and ETM+ sensors, the changed IOPs in
different waterbodies are probably not the main cause to affect the robustness and universality of
the developed SD estimation model. Nevertheless, the developed SD estimation model still needs
to be further validated by using more comprehensive data pairs collected from various waters or
simulation experiments.

Many researchers have suggested the use of the band ratio of TM1/TM3 and the single band of
TM1 as an SD predictor (i.e., the A1 model in Table 4; e.g., [6,7,12,26–29]). This suggestion differs from
the recommendation of our present investigation, which used the two band ratios of TM1/TM2 and
TM3/TM2 as independent variables in the SD estimation model (i.e., the BF model in Table 4). The A1
model showed the best performance in the calibration procedure, with the highest R2 value of 0.99
and the smallest RMSE of 0.8 m (Figure 2b). However, the A1 model showed a lower R2 value (0.34)
and larger error (RMSE = 2.0 m) in the validation procedure (Figure 3b). We also observed many
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outliers in the SD estimations when the A1 model was applied to the Landsat Dataset II to estimate
long-term SD changes (data not shown). Similar results were observed in all of the A-type and B-type
models (Figures 2 and 3). These findings indicate that the A-type models present large uncertainty,
whereas the B-type models are more robust in many applications.

Another difference between the current model and previous models is that we used the band
ratio instead of a single band for the second independent variable (i.e., we used TM3/TM2 instead of
TM1). The merit of using the band ratio is that effects due to imperfect atmospheric correction can
be mitigated [59,60]. In addition, since water-leaving reflectance at the green band (TM2) does not
change as much as that at the blue and red bands (TM1 and TM3) in various waters, using this value to
normalize water-leaving reflectance at blue and red bands can avoid a large fluctuation of the ratios.
The BF model thus showed the greatest robustness in Lake Maninjau.

4.2. The Reliability of the Estimated SD Values from Landsat Data

Febrianti in 2000 [61] and Sulastri in 2002 [62] reported that a heavy algal bloom occurred in 2000
in Lake Maninjau. This event was also detected by our Landsat-based SD estimations, which showed
low SD values during that period (Figure 5). To weaken the algal bloom effects on Lake Maninjau,
local residents around the lake asked the power company to open the secondary water gate in
March 2001 to flush the surface waters [31,50]. Since then, the water transparency in Lake Maninjau
has increased significantly. The RCL (LIPI) observed the highest SD values of 4.1 m in May 2002 and
5.8 m in May 2005 [63]. The trend of increased water transparency was also revealed by the time-series
Landsat data (Figure 5). These results indicate that water level management is effective to improve
water quality.

The continuous decrease in the SD values revealed during period from 2004 to 2012 by both the in
situ-measured and Landsat-based SD values can be explained by the dramatically increased number of
fish cages in Lake Maninjau. In 2005, the number of fish cages in the lake was 4920 units, and this
number increased to 8955 units in 2006 and 13,129 units in 2010 (Figure 1d). We observed a strong
correlation between the number of fish cages and the Landsat-based SD values during the period
2004–2012 (R2 = 0.88; Figure 6). This result indicates that the number of fish cages in Lake Maninjau is
probably a major driving factor of water transparency in the lake.

Overall, the Landsat-based SD estimations well captured the changes in water transparency
in Lake Maninjau, and these estimations can therefore provide useful data for lake managers and
policy-makers. It should also be noted that the tendency of long-term change in the SD from historical
Landsat images is more reliable than a single SD estimation.
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5. Conclusions

We developed an empirical model to estimate SD values from Landsat TM/ETM+ data.
The developed model suggests the use of the two band ratios of TM1/TM2 and TM3/TM2 as the SD
predictor to reduce uncertainties in the model. This suggestion differs from the recommendations
in previous studies. The preprocessing procedure for Landsat data is important for improving the
robustness of the developed model. Our determination of the estimated long-term SD time series
in Lake Maninjau indicates that the Landsat data, along with the developed model, can be used to
generate a long-term SD database to monitor water transparency changes in Indonesian inland waters.
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