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Abstract

Collective behaviours are known to be the result of diverse dynamics and are sometimes lik-

ened to living systems. Although many studies have revealed the dynamics of various col-

lective behaviours, their main focus has been on the information processing performed by

the collective, not on interactions within the collective. For example, the qualitative differ-

ence between three and four elements in a system has rarely been investigated. Tononi

et al. proposed integrated information theory (IIT) to measure the degree of consciousness

Φ. IIT postulates that the amount of information loss caused by the minimum information

partition is equivalent to the degree of information integration in the system. This measure is

not only useful for estimating the degree of consciousness but can also be applied to more

general network systems. Here, we obtained two main results from the application of IIT (in

particular, IIT 3.0) to the analysis of real fish schools (Plecoglossus altivelis). First, we

observed that the discontinuity on hΦ(N)i distributions emerges for a school of four or more

fish. This transition was not observed by measuring the mutual information or the sum of the

transfer entropy. We also analysed the IIT on Boids simulations with respect to different cou-

pling strengths; however, the results of the Boids model were found to be quite different

from those of real fish. Second, we found a correlation between this discontinuity and the

emergence of leadership. We discriminate leadership in this paper from its traditional mean-

ing (e.g. defined by transfer entropy) because IIT-induced leadership refers not to group

behaviour, as in other methods, but the degree of autonomy (i.e. group integrity). These

results suggest that integrated information Φ can reveal the emergence of a new type of

leadership which cannot be observed using other measures.

Introduction

Collective behaviours in nature are emergent properties produced through the local interac-

tions of self-organising individuals. Such behaviours include swarming [1–6], fish schooling
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[7–11], bird flocking [12–17], or high-level cognitive functions arising from ‘bottom-up’ neu-

ral networks [18–21]. These systems of many interacting elements can achieve optimal infor-

mation processing capabilities when poised at the critical boundary separating chaos from

order [22–24]. Several analyses have demonstrated individuals responding swiftly as a collec-

tive to changing environments [14–16] and that a group can achieve relatively good decision-

making [25–27]. Conflicts among individuals do not necessarily lead to group disruption and

can instead provide valuable insight into what collective responses are effective [28, 29]. The

unity of collective behaviours remains an unsolved question of nature [30–32], because the

interactions are hidden, whereas the resultant actions are observable.

Self-organised criticality (SOC) is a valuable metaphor for interpreting complex collective

behaviours. Flexibility and robustness can be achieved collectively when a group is in the inter-

mediate state between order and disorder [33–38]. For instance, the external perturbations of

collective systems in SOC models optimise the effective correlation range of each individual to

efficiently transfer information [13–16]. However, the SOC models are unreliable for small

groups, because individual interactions are less likely to be homogeneous [39, 40]. In fish, for

example, groups of two and three appear to exhibit differential between-individual interactions

[41, 42]. Therefore, many researchers have examined information transfer (or causal relation-

ships) among individuals in small groups [43–45], often employing local transfer entropy (TE)

[46–51]. For example, the transfer of misinformation can happen in schools with five fish

when the whole group changes direction [45]. Animals could potentially use active informa-

tion storage to predict the timing of nontrivial information transfer [52, 53]. However, despite

capturing some ‘what the system does’ aspects of collective behaviour systems (that is,‘happen-

ing’: the actual behaviour), SOC models provide little insight on ‘what the system is’ (or

‘being’: the potential dynamical complexity). A detailed discussion on the difference between

‘being’ and ‘happening’ can be found in [54] and [55].

In contrast, integrated information theory (IIT) may be a good metric for ‘what the system

is’. Proposed by Tononi and Sporns [56, 57] in 2001, IIT was originally developed to quantify

consciousness from brain activity [58, 59]. In principle, the core concept of IIT is to define

integrated information as the degree of information loss (or increase in uncertainty [60])

caused by a given partition of the system [59]. Integrated information is designed to quantify

the holistic amount of cause–effect power possessed by a system that goes beyond and above

the sum of its parts. The latest version of IIT (IIT 3.0 [61]) postulates that an arbitrary subset of

elements of the system is a ‘mechanism’ if its intrinsic cause–effect power, i.e. the ability to

determine the future and constrain the past states of other arbitrary parts (‘purviews’), is irre-

ducible to the separate and independent actions of parts of the mechanism over parts of the

purview. This irreducibility is measured in terms of integrated information φ. Iterated at the

system level, the bipartitions are applied to the set of all irreducible mechanisms and their pur-

views, which together form the systems’s ‘conceptual structure’. The minimal distance between

intact conceptual structure and the conceptual structure under the partition is defined as the

integrated information (denoted by F) of the system. A system is integrated, even if the least

disrupting bipartition of the system, which is called the ‘minimum information partition’

(MIP) and partitions the system into two disconnected halves, would imply a loss of informa-

tion in the causal power of the system (the partition is unidirectional and thus only cuts the

connections from one half to the other but not the other way around). Instead of assessing

whether a system is unified into a coherent whole by analysing its behaviour under regular

conditions, IIT proposes that the forces integrating the behaviour of the system are better cap-

tured by observing its behaviour under perturbations. Integrated information formalises the

interventionist notion of characterising the causal influences among the components of the
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system [62, 63]. This formalism is believed to better capture the intrinsic causal structure of

the system.

Recent studies have suggested that measures based on the general ideas of IIT can capture

various states of lost consciousness, such as dreamless sleep [64], general anaesthesia [65], or

vegetative states [66]. Some studies have suggested that integrated information could act as an

order parameter of complex systems, similar to the generalised Ising model [67], coupled oscil-

lators [68], and coupled mapping [69]. The magnitude of IIT 2.0 integrated information and

the susceptibility of IIT 3.0 integrated information σ(F) peaks at critical points.

IIT has several versions [58–61, 70–72, 73] (Computational comparison of these versions of

IIT was made by Mediano [74]). For example, there is a fundamental difference between IIT

2.0 [58, 59] and 3.0 [61]: one uses Riemann geometry and the other uses Wasserstein geome-

try. While both IIT 2.0 and 3.0 can capture phase transitions of the system, the differences

occur in the behaviour at the criticality: F in IIT 3.0 does not necessarily peak at the critical

point (the susceptibility of F peaks at the critical point) whereas φ in IIT 2.0 works as an order

parameter. Note that Ito [75, 76] has pointed out that there are some intimate relations

between the second law of information thermodynamics and IIT in terms of a projection onto

a local reversible manifold. These structural resemblances suggest the possibility of unifying

the concept of non-equilibrium thermodynamics and IIT 2.0. The extension of this idea to IIT

3.0 is still unknown.

Integrated information theory 3.0 is also resonant with complex systems because it posits

that the whole cannot be reduced into its parts; the components produce synergetic informa-

tion that would be lost upon separation [77, 78]. Complex biological systems are also irreduc-

ible owing to their intrinsic causal structures [79]. When applying IIT to these systems, F can

be a measure of an autonomous system’s wholeness [77], capturing intrinsic causal structures

[80] while also acting as its order parameter. As an initial step to modelling collective animal

behaviour, some researchers have used IIT to interpret classifications of cellular automatons

[54], animats [81], neuron-astrocyte ensembles [82], and Boolean networks [83]. For instance,

the averaged max F values of major complexes for five to six automata cells correlated well

with their complexity (e.g. class III and IV rules), despite the small cell-set number [54]. The

behaviours of five and six automata cells are hard to discriminate on the basis of the behaviours

of their constituent cells and, in general, the behaviours of small numbers of cellular automata

are very similar with each other in terms of an external observer. They also showed that all

rules of class IV have all orders of concepts (i.e. irreducible subsets in the system), unlike other

classes. In addition to this study, many recent studies have found the connexion among IIT,

group interaction, autonomy, criticality, edge of chaos, and a dynamical system (see [69, 84–

87]). Linking IIT to collective behaviour seems very natural in this respect. Assuming that bio-

logical systems such as schools of fish evolved to reside in a critical state because of its advan-

tages such as fast information transfer, the concept of network controllability using values of F

may also provide meaningful insight into collective animal behaviour.

The example of cellular automata illuminates the meaning of intrinsic properties in IIT. IIT

reveals the differences among systems arising from different intrinsic causal structures, rather

than considering differences based on external behaviour. That is why we stated that previous

approaches (e.g. TE) capture not ‘what the system is’ but ‘what the system does’. This enables

us to investigate the difference in collective behaviour in terms of the intrinsic causal structure.

In this paper, we investigate the following: whether the number of agents in a system affects its

intrinsic properties. In other words, if the group size changes, we would like to know what

remains the same (continuous) and what changes (discontinuous) in the group. In addition,

we consider whether there are any new factors introduced that were not present before. These

kinds of questions are rarely asked in animal collective behaviour, but one study suggests that
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schools of three fish and schools of two fish have different kinds of interactions [41, 42].

Another suggests that the search strategies of fish in groups of different sizes are essentially dif-

ferent when they are in an unfamiliar environment [11]. However, all these studies constrain

the number of individuals in the group to three or less and their methods are difficult to gener-

alise to larger groups. Furthermore, these methods never indicate any differences in terms of a

group’s intrinsic causal structure.

In this paper, we apply IIT (in particular, IIT 3.0 using PyPhi [61, 72]) to schools of two to

five fish (Plecoglossus altivelis) and show the intrinsic differences between these groups. We

found that there is a kind of continuity and discontinuity with respect to school size. The main

finding is that there is a discontinuity between three- and four-fish schools, which is a differ-

ence that has not received much attention previously. Interestingly, the difference between

these two systems corresponds to the existence of leadership (more precisely, reducing the

visual field for a fish’s recognition introduces the existence of the leadership). Furthermore,

our results are never replicated by this discontinuity between three and four fish in a Boids-

type model for the same conditions.

Results

Application of IIT 3.0 to fish school analysis

We tracked the trajectories of ayu fish schools of N = 2, N = 4, and N = 5 with three samples

each, and N = 3 with four samples (10–15 minutes recording length; see Materials and meth-

ods: Experimental settings for details). We then used these trajectories for analysis. To apply

IIT 3.0, we define the ON and OFF states of an individual in a fish school. In this paper, an ON

state means some interaction will occur in a given context. Note that in the Boids model [8, 88,

89], at least three kinds of interactions are needed: (i) interaction radius (distance), (ii) visual

field, and (iii) turning rate (see Fig 1). (i) For interaction radius, if two individuals are within a

Fig 1. ON and OFF states for local parameter settings. Three parameters determine a school’s state (yellow: effective distance, blue: effective visual field, and

purple: turning rate). Colour indicates the ON state.

https://doi.org/10.1371/journal.pone.0229573.g001
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certain radius, the states of both individuals are ON (some information transfer will occur

between them). This is a symmetric distance interaction. (ii) A visual field interaction means

the individual is in the ON state when some other agents are within its visual field. This allows

us to consider asymmetrical relations (in contrast to the symmetric distance condition). (iii)

The turning rate interaction is one in which a direction change above a certain angle puts the

individual in the ON state. This ON state transfers information to other agents in the next

time step, so the interaction between individuals is a delayed one. The rate of direction change

is a very important measure for collective behaviour, empirically and theoretically [8, 88, 89].

The first two parameters (’effect distance’ and ‘effective visual field’ interactions) represent

the interaction radius with the agent’s blind spot (in later sections, we often refer to the envi-

ronment outside of the visual field as the blind spot). The third parameter ‘turning rate’ repre-

sents the result of that interaction. Therefore, the final state is the conjunction of the states of

all three parameters: distance, visual field, and turning rate (as detailed below). This represen-

tation reflects the commonly used interactions in a flocking model.

Note that the central interest of this paper is not the fixed individual’s perceptual abilities

(e.g. the fixed visual field) but the individual’s effective perceptions under the dynamical inter-

actions [13]. To state this more precisely, the interaction radius and the visual field should be

interpreted as the ‘effective’ interaction radius and the ‘effective’ visual field.

To determine each fish state, the continuous trajectories of fish schools are quantised into

‘Ising-like’ binary time series. Biologically, such discretisation makes sense in terms of individ-

ual’s contact, corresponding to the ON/OFF state, which is a good measure for a fish’s commu-

nication in the school. Murakami et al. suggest that each fish’s Levy walk behaviour in a

Plecoglossus altivelis school enhances the efficient group communication through mutual con-

tacts [10]. Therefore, it is reasonable to assume mutual contacts in the group reflect biological

meaning to the group.

In this paper, we assume a fish always evaluates these three parameters simultaneously.

Hence, we take their conjunction (i.e. AND:{0, 1}3! {0, 1}. For the triple (1, 1, 1), AND(1, 1,

1) is 1; otherwise, it is 0) to produce the overall state for a fish. For instance, IF (Distance =

ON, Visual field = ON, Turning rate = OFF), THEN state = OFF. Note that the use of the

AND operations reflects a Boid-like interaction (interaction radius with blind spot and direc-

tion changing). If any AND is replaced with an OR, the Boids-like interaction settings become

meaningless. Applying the same process to each fish at time t, we obtain the time series of the

states of the n fish. Then, we can compute F and other values (the sum of φ) from the obtained

time series. One time step, in this paper, is defined as 0.05 to 0.10 s. This value roughly corre-

sponds to a fish’s reaction timescale [45].

To compute F, we also define the network structure in the school. In this paper, we postu-

late a completely connected network including self-loops (i.e. including self history). This

assumption comes from the experimental fact that each fish has some contact with (or falls

within the visual field of) all individuals in the group during a long series of recorded events

(10–15 min). Therefore, it is natural to assume that some interactions have happened among

all members. (In Table 3, we give the minimal distance that occurs during the events. The data

show that all fish have a contact that is within 5 mm).

Before elaborating on our analysis, it is necessary to understand what the states ON and

OFF mean for the fish. Biological information systems, such as the brain, have an explicit ON

state, that is, when neurons are firing. In contrast, the ON state for each fish occurs when it

interacts with its environment. Because there are various kinds of information to take into

account, there is no explicit ON state for a fish school. Therefore, we computed all F values for

all combinations of our parameter settings. Note that these combinations also contain only

one or two of the three parameters. For instance, 2π rad given as the visual field and 0 rad/s
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given as the turning rate change any individual state to ON. The distance parameter alone

determines individual ON/OFF states in this condition (mathematically, this is AND(x, 1, 1) =

x, where x is ON or OFF according to the distance parameter).

F values for real fish school data

MI, TE, and IIT 3.0. Mutual information (MI) and TE are often used to analyse dynam-

ical systems. In this section, we explain how the F values of IIT 3.0 make it a unique measure

compared with other well-known measures.

We compare three measures, that is, MI, TE, and F (IIT 3.0) under the same conditions.

This comparison is possible because they share the same time series of an individual’s states

(Fig 1). From these generated state sequences, we can compute the unique MI, TE, and F. In

this paper, all analysis is restricted to the pair of parameters distance and visual field because

the peak values always exist under a fixed turning rate condition of 0 rad/s. The importance of

turning rate can be found over a longer time scale (see [90]). Instead, to verify that the follow-

ing results are robust, we listed other time scale settings andF values as the main complex con-

dition, adding to the results of other parameter settings, in the supporting figures.

Let the present and past states of the system at time t be given by X(t) = {x1(t), x2(t), . . .,

xn(t)} and X(t − 1) = {x1(t − 1), x2(t − 1), . . ., xn(t − 1)}. Elements xi(t) and xi(t − 1) respectively

represent fish i’s present and past states (and are 0 or 1), and n is the size of the fish school.

Then, we have probability distribution p(xi) = Pr{X = xi} and Shannon entropy

HðXÞ ¼ �
PN

i¼1
pðxiÞlogðpðxiÞÞ. MI is expressed as follows:

MI ¼ IðXðtÞ;Xðt � 1ÞÞ ¼ HðXðtÞÞ � HðXðtÞjXðt � 1ÞÞ ð1Þ

This equation measures the shared information with the past (the states of the previous iter-

ation, in this paper, Δ = 0.05 s) and the present collective states. The collective state is the total

ON and OFF sequence for the given parameter settings. For example, in the two fish schools,

the collective state consists of four states, that is, X = {0, 0}, {0, 1}, {1, 0}, or {1, 1}.

In contrast, the TE measures the information transfer between two agents under the condi-

tion of knowing the other agent’s history (one step before the agent’s state is Δ = 0.05 s). We

define the TE as the sum of all pairwise transfer entropies.

TE ¼
X

ði; jÞ 2 N � N
i 6¼ j

TxiðtÞ!xjðtÞ
¼

X

ði; jÞ 2 N � N
i 6¼ j

ðHðxjðtÞjxjðt � 1ÞÞ � HðxjðtÞjxiðt � 1Þ; xjðt � 1ÞÞÞ
ð2Þ

The computation of IIT 3.0 is more complicated. For a given system in a particular state, all

possible mechanisms (or subsets of system nodes in a state) that irreducibly constrain the past

and future states of the system are identified. For each mechanism, all possible purviews or

subsets of nodes that the mechanisms constrain are considered. For a given mechanism–pur-

view combination, its cause–effect repertoire (CER; a probability distribution specifying how

the mechanism causally constrains the past and future states of the purview). To find the irre-

ducibility of the CER, the connexions between all permissible bipartitions of elements in the

purview and the mechanism are cut; the bipartition producing the least difference is called the

MIP. The irreducibility, or integrated information, φ, is quantified by the earth mover’s dis-

tance between the CER of the uncut mechanism and the CER of the mechanism partitioned by

the MIP. A mechanism, together with the purview over which its CER is maximally irreducible

and the associated φ value, specifies a concept, which expresses the causal role played by the

mechanism within the system. The set of all concepts is called the cause–effect structure of the

system. Once all irreducible mechanisms of a candidate system have been found, a similar set
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of operations is performed at ‘system level’ to understand at what level the set of mechanisms

specified by the system are reducible to the mechanisms specified by its parts. The irreducibil-

ity of the candidate system is quantified by its conceptual integrated information F. This

process is repeated for all candidate systems, and the candidate system that is maximally irre-

ducible among all candidate systems is called the major complex.

We present a summary of IIT 3.0 in the Methods section. For readers unfamiliar with IIT

3.0, it is sufficient to interpret F as representing the degree of group integration. However, we

have two remarks. (i) Each collective state has its ownF. Hence, n-fish schools have a 2n collec-

tive state. For example, in the case of a two-fish school in which all collective states are (0, 0),

(1, 0), (0, 1), and (1, 1), we have four Fs, that is, F00,F10, F01, and F11. (ii) The average hF(N)i

is that of all F values on all collective states, given by certain parameter settings. The values of

the heat map in Fig 2 refer to the average of the mean hFi from all data samples. In this paper,

Fig 2. Heat maps showing the hF(N)i values for distance (horizontal axis) and visual field (vertical axis) parameter values. Each cell value corresponds

to the average hF(N)i on all samples (three samples for N = 2, 4, 5 and four samples for N = 4). The value of hF(N)i for two- and three-fish schools depends

only on distance, whereas it depends on both parameters in four- and five-fish schools. The time step is Δt = 0.05 s.

https://doi.org/10.1371/journal.pone.0229573.g002
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although we computed n-size subsystem for n-fish schools, the distribution of F of the main

complex also yields the same results S4 Fig.

Figs 2, 3 and 4 show the computed values for two parameter settings (distance and visual

field: turning rate is fixed at 0 rad/s); Fig 2 shows hF(N)i, Fig 3 shows MI, and Fig 4 shows the

sum of the TE. We can confirm the sharp contrast between hF(N)i and the other two mea-

sures. The peaks of MI and TE are mainly concentrated in the low visual field area; whereas

the peaks of hF(N)i seem to have completely opposite trends (for the distribution including

the turning rate, see S1 Fig. In this study, we mainly discuss the relation between these two

parameter settings and hF(N)i because the hF(N)i values are not very high when the turning

rate is non-zero). Interestingly, the distribution of hSφi resembles that of MI and TE but not F

(S2 Fig). The distribution of hF(N)i remains the same when Δt is 0.1 s (S3 Fig).

A further outstanding fact is the existence of a discontinuity between three- and four-fish

schools in the hFi distributions. Note that the term ‘discontinuity’ (resp. ‘continuity’) that we

use here is the inter-relation between two distributions for the group size and is not the intra-

Fig 3. Heat map showing mutual information (MI) for distance (horizontal axis) and visual field (vertical axis) parameter values. Each cell value

corresponds to the average MI on all samples. The time step is Δt = 0.05 s.

https://doi.org/10.1371/journal.pone.0229573.g003
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relation for the parameter settings in the same heat map. We can confirm that a qualitative

shift happens between three- and four-fish schools (see Table 1). This trend was not observed

in MI and TE (and hSφi). All these facts imply that the hF(N)i in IIT 3.0 captures something

unique that is not observed when the traditional MI and TE metrics are used.

Fig 4. Heat maps showing the sum of transfer entropy (TE) for distance (horizontal axis) and visual field (vertical axis) parameter values. Each

cell value corresponds to the average TE on all samples. Note that each TE value is multiplied by 100 for contrast). The distribution of TE resembles

that of MI. In contrast, TE does not become larger than the observed MI. This is because each pairwise information transfer in large groups is less than

those of small groups. The time step is Δt = 0.05 s.

https://doi.org/10.1371/journal.pone.0229573.g004

Table 1. Statistical test for the discontinuity on Fig 2. hF(N)ix: means hF(N)i from D = 100 mm to D = 1000 mm at

fixed VF = x rad, where D is distance parameter and VF is visual field parameter. The p-values for hF(N)i1.8π and hF

(N)i2.0π were computed using the Weltch t-test. Values in bold correspond to the large meanF values. The opposite

trend of hF(N)i emerge between three- and four-fish school.

hF(N)i1.8π hF(N)i2.0π p-value

N = 2 0.002 0.176 < 10−10

N = 3 0.030 0.112 < 10−7

N = 4 0.517 0.124 < 10−8

N = 5 1.470 0.391 < 10−8

https://doi.org/10.1371/journal.pone.0229573.t001
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Fig 5 provides a whole picture on the difference between the inter-relation of each heat map

(PHI (real), MI, TE, PHI (boid)): The data of PHI (boid) are in Fig 9). The vertical axis is the

mean matrix distance (MD) between the inter-distributions of different group sizes. Note that

in this study, we subtracted the MD from the baseline MD. This baseline MD corresponds to

the average of all intra-distribution (N = 2, N = 3, N = 4, and N = 5) matrix distances for each

measure.

The mean MD of PHI (real) between N = 3 and N = 4 distribution is much higher than the

other two measures (Weltch t-test: MI(p< 10−10), TE(p< 10−13) and PHI(boid)(p< 10−35).

Furthermore, the mean MD of PHI (real) between N = 3 and N = 4 distributions is also higher

than that between N = 2 and N = 3 (Table 1). In contrast, the other three show opposite trends,

as illustrated in Fig 5. They have relatively large values for N = 2 and N = 3 than those of N = 3

and N = 4. Therefore, the graph suggests a discontinuity between three- and four-school distri-

butions that were only confirmed in the hF(N)i value distributions of real fish.

Emergence of leadership: Discontinuity between real three- and four-fish schools. We

consider Fig 2 in detail. The concept of IIT 3.0 implies that F represents the group integration.

If the group integration assigns some merit for group behaviour, to verify the meaning of high

integration, it would be helpful to understand the collective behaviour. As we have already

noted, there is a discontinuity between three- and four-fish schools. The striking contrast

seems to exist when high visual field area ranges from 1.6π to 2.0π rad. Here, 2.0π rad means

there is no blind spot for each fish; whereas the values less than 2.0π rad mean that each fish

has some blind spot. Taking into account this contrast, fish schools of less than four show a

high group integration (high hF(N)i) when their effective visual field is intact; in contrast, fish

schools of four or more fish exhibit high group integration (high average hF(N)i) when their

effective visual field has a blind spot.

Fig 5. The mean matrix distance (MD) between inter-distributions subtracted by the baseline (the mean matrix

distance among intra-distribution). The mean MD of PHI (real) between three- and four-fish schools is significantly

larger than the other two measures and PHI (boid). PHI (boid) data is the same as the data shown in Fig 9.

https://doi.org/10.1371/journal.pone.0229573.g005
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In this section, we explore this issue more deeply in terms of IIT. Focusing on whether the

visual field parameter is 2π or not, we see the discontinuity on hF(N)i distribution as the

‘emergence of leadership’. In this paper, we assume that the leader of the group should satisfy

the following properties: (i) the leader is the head position of the group (i.e. the positional

leader) and (ii) there is asymmetrical information flow among the leader and the rest of mem-

bers. These kinds of properties seem ubiquitous in animal collective behaviour [91–94]. We

aim to show a single OFF state in the group that highly correlates with these two properties,

that is, (i) a single OFF state individual that shows high correlation with the positional leader

and (ii) an MIP cut between the OFF-state fish and the rest of the ON-state fish corresponds to

asymmetrical information flow in the group.

Fig 6 is a representative example that summarises our descriptions. Fig 6 is a time series of

F when the visual field is 1.6π and the distance is 700 mm. Intermittent dropping F values are

observed. These minima correspond to instances when there is a single OFF state in the collec-

tive state, that is, 01111, 10111, and so on. In contrast, the highest F value corresponds to the

all-ON collective state, that is, 11111. Although there are some exceptions for different param-

eter settings or data samples, all MIP cuts are locate between the OFF-state fish and the rest of

the ON-state fish.

First, we show that a single OFF-state fish highly correlates with positional leadership

(property (i)). In this study, the positional leader is defined as the individual in the first posi-

tion with respect to the average group direction (see Fig 6). We can compute the rate at which

single OFF-state individuals actually correspond with the positional leader. Let N and T be sets

{1, 2, . . ., N} and {1, 2, . . ., Tmax}, respectively, where Tmax is the maximum time for a given

Fig 6. Example of a time series of F obtained from real fish data (N = 5). The reduction of F at various points indicates where leadership emerges in the group.

The local parameter settings are distance = 700 mm, visual field = 1.6π rad, and turning rate = 0 rad/s, respectively. The illustrations on the right represent the

example state of the fish (white: ON, black: OFF) and their minimum information partition (MIP). The blue circles on the left plot correspond to formation I on

the right. The red circles on the left figure correspond to formation II on the right. This figure represents the cases where the positional leader (index 2) matches a

single OFF state individual. The thick blue arrow is the average direction of the group. The dashed square indicates an exception, where a single OFF state

individual is not the positional leader (this situation is rare: see Table 3). To enable interested readers to computeF using PyPhi, we list the transition probability

matrix (TPM) in S1 Table.

https://doi.org/10.1371/journal.pone.0229573.g006
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time step. Then, the single OFF state function is OFFsingle(t): T! N
S

{0}. This function

returns the index of the OFF-state individual when the collective state has only one OFF state;

otherwise, it returns 0. The positional leadership function is PLeader(t): T! N. This function

selects the index of the positional leader.

MatchingRateð%Þ ¼
jftjOFFsingleðtÞ ¼ PLeaderðtÞ; t 2 Tgj
jftjOFFsingleðtÞ 2 N; t 2 Tgj

� 100 ð3Þ

The above equation (Eq (3)) indicates the frequency of occurrence of the OFF state individ-

ual as the positional leader. Table 2 shows that the matching rate increases substantially when

the fish has a blind spot. If the fish has a maximum visual field, a single OFF-state individual

does not correspond to the positional leader. In this context, it is appropriate to state that a

positional leader emerges to raise the group integration on average when the group size is four

or higher (an example of the actual positions for which single-OFF collective states occur are

shown in S5 Fig).

Next, we examine the information flow between a single OFF-state individual and the rest

of ON-state group members in terms of MIP (property (ii)). According to the depictions in

Figs 6 and 7 shows the matching rate for the MIP cut and a single OFF-state individual under

almost all parameter settings (in particular, high-distance regions in Fig 7 show perfect

matches). The MIP cut in the groups in Fig 7 can be expressed in PyPhi as {1} ⇏ {2, 3, 4, 5} or

{2, 3, 4, 5} ⇏ {1}, where 1 is the index of a single OFF-state individual. The high correspon-

dence of a single OFF-state individual and MIP cut locations suggests that the weakest link

exists between the single OFF-state individual and the rest of the members (recall that the MIP

cut lies where it causes the minimum information loss).

To summarise our analysis, the single-OFF state individual satisfies two properties that we

have listed: (i) the leader in the head position of the group as the positional leader (Table 2),

(ii) there is MIP induced asymmetrical information flow among the leader and the rest of the

members. The single-OFF state in high hFiS condition for four- and five-fish schools becomes

the leader in terms of IIT (hereafter, we call this single OFF-state individual as IIT leadership).

Note that this asymmetrical information flow represents a ‘feedforward’ information flow to

Table 2.F values and match rates. The turning rate is fixed at 0 rad/s. All right-side values are average distance parameter values for all samples and range from 300 mm

to 1000 mm. VF: visual field parameter; hF(N)iS: meanF for a given set S, which is the set of single-OFF collective states such as {0111, 1011, 1101, 1110};F11. . .1: F values

for the all-ON collective state. The p-values for hF(N)iS andF11. . .1 were computed using the Wilcoxon signed-rank test. MR: match rate, computed by Eq (3) for a corre-

sponding parameter set; MR2π: match rate computed by Eq (3) for fixed VF = 2π. The p-values for MR and MR2π were computed using the Mann—Whitney U test. Values

in bold correspond to the parameter settings for which the positional leader highly correlates with a single OFF-state fish in the group and where this fish also yields lower

F values than those of F11. . .1.

VF (rad) hF(N)iS F(N)11. . .1 p-value MR (%) MR2π (%) p-value

N = 4 1.2π 0.169 0.200 < 0.001 95 13 < 0.001

1.4π 0.421 0.470 > 0.1 96 13 < 0.001

1.6π 0.676 0.592 < 0.001 96 13 < 0.001

1.8 π 0.979 1.656 <0.001 94 13 <0.001

1.9 π 0.805 1.630 <0.001 83 13 <0.001

N = 5 1.2π 1.539 1.607 > 0.1 94 21 < 0.001

1.4 π 2.884 3.831 <0.001 96 21 <0.001

1.6 π 2.918 4.586 <0.001 96 21 <0.001

1.8 π 2.199 4.617 <0.001 94 21 <0.001

1.9 π 1.614 3.446 <0.001 82 21 <0.001

https://doi.org/10.1371/journal.pone.0229573.t002
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Fig 7. Match rates for a single OFF-state individual and the corresponding MIP cut between a single OFF state and all other ON states. We

have {1}⇏ {2, 3, 4, 5} or {2, 3, 4, 5}⇏ {1} for the MIP cut when the collective state is 01111. The graph shows that the long-distance parameter

discriminates the single OFF-state individual well according to the MIP cut for each visual field condition. Although a consistently low match

rate exists for N = 4, these low visual field parameters are excluded by the leadership condition in Table 3. Note both graphs show an MIP cut

without any self-loops because omitting them more clearly divides a single OFF-state individual and the rest of the members by an MIP cut (we

have the same distribution as Fig 2 in S4 Fig). The version with self-loops is also listed in S6 Fig.

https://doi.org/10.1371/journal.pone.0229573.g007

Table 3. Data summary.

N Data index Average distance (mm) Average velocity (mm/s) Error (S.D.) Minimum distance (mm) Total Time Steps

2 1 166.3 268.8 0.18 1.90 106,961

2 90.67 271.68 0.23 0.10 99,431

3 122.0 256.08 0.18 1.60 107,206

3 1 170.8 301.2 0.23 1.80 90,051

2 159.1 343.2 0.14 1.83 83,654

3 173.1 300.0 0.13 2.82 97,446

4 132.0 240.0 0.19 1.67 93,931

4 1 164.3 270.72 0.14 1.18 106,327

2 141.5 190.8 0.12 1.38 103,226

3 114.9 148.56 0.38 1.83 98,126

5 1 143.8 259.92 0.28 0.79 102,895

2 146.0 213.12 0.12 1.16 97,346

3 143.7 259.2 0.28 1.44 92,116

S.D. = standard deviation.

https://doi.org/10.1371/journal.pone.0229573.t003
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or from the IIT leadership [61] because we have an MIP cut in both directions ({1} ⇏ {2, 3, 4,

5} or {2, 3, 4, 5} ⇏ {1}).

The different MIP cuts can be interpreted as follows. In the case of {1} ⇏ {2, 3, 4, 5}, the F

value indicates that information flows from the rest of the members to a single OFF-state indi-

vidual, but not so much from a single OFF-state individual to the others. In contrast, the

reverse relation applies for {2, 3, 4, 5} ⇏ {1}. Taking into account the low F at a single OFF-

state condition compared with all-ON state conditions (see Table 2), the information flow

from or to a single OFF-state individual is weak compared with its inverse flow.

These facts lead us to consider that classification would be possible according to the two

kinds of IIT leaderships using these asymmetrical information flows, i.e., one is passive leader-

ship (the former instance, because most of the information flows from the other members)

and the other is active leadership (the latter instance, because most of the information flows

from the IIT leader). In the Discussion section, we provide a response to some anticipated

objections to our interpretation.

Representative F values for all data samples. Finally, we examine the average hF(N)i val-

ues shown in Fig 2 in detail. In Fig 8, the peak cells in Fig 2 and S5 Fig (i.e. high average and

high variance conditions) from each group size are as follows: (N = 2: D = 600 mm and

VF = 2.0π rad, N = 3: D = 400 mm and VF = 2.0π rad, N = 4: D = 600 mm and VF = 1.8π rad,

N = 5: D = 700 mm and VF = 1.6π rad. Here, D is the interaction radius and VF is the visual

field. The turning rate is fixed at 0 rad/s). When increasing hF(N)i, the maximum F also

increases (recall that an n-fish school has 2n Fs with respect to its collective states). This maxi-

mumF corresponds to the all-ON collective states for N = 4 or 5 (one example for N = 5 is

used in Fig 6). The susceptibility is a measure of fluctuation or the response of an extensive

property (such as the order parameter) to a small external perturbation that introduces some

variations in the intensive property. Some researchers suspect that the susceptibility of inte-

grated information defined by the standard deviation (or variance) ofF relates to the given sys-

tem’s autonomous properties [67, 85]. Intuitively, a high standard deviation (or variance)

indicates that the system contains both low group integration states and high group integration

states. We show the variance distribution in S7 Fig for the parameter settings in Fig 2. Here, we

only point out that the peak of hF(N)i and variance ofF do not always agree with each other.

IIT 3.0 on the Boids model

For comparison, simulated trajectories based on the Boids model [88] were analysed in the

same manner as the trajectories of the real fish school. The Boids model was developed by Rey-

nolds [95] and its complex and realistic-looking behaviour of a group of agents as a whole is

determined entirely by the local interactions of individual agent choices based on a set of sim-

ple rules: repulsion, alignment, and attraction. In this study, N agents with position vectors xi
and unit direction vectors vi were simulated in continuous two-dimensional space (3, 000 × 2,

500) (the size of the experimental fish tank). Time was discretised into t computational time

steps with a regular spacing Δt = 0.05. When there are nr agents in the neighbourhood of agent

i, the following rules for repulsion, alignment, and attraction were applied to update the vari-

ables of the agents at each t:

drðt þ DtÞ ¼ � C
Xnr

j6¼i

rijðtÞ
jrijðtÞj

ð4Þ

doðt þ DtÞ ¼ C
Xnj

j¼1

vjðtÞ
jvjðtÞj

ð5Þ
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daðt þ DtÞ ¼ C
Xna

i6¼j

rijðtÞ
jrijðtÞj

ð6Þ

where nr = {j j rij(t)� R}, no = {j j rij(t)� O}, na = {j j O� rij(t)� A}, and rij ¼
ðxj � xiÞ
jðxj � xiÞj

is the

unit vector in the direction of neighbour j. The above rules were summed and averaged with

additive Gaussian noise to determine the trajectories of the agents. The variables were updated

synchronously. The parameters used in this simulation are shown in Table 4.

The trajectories of the Boids model and real fish showed the same complexity (S8 Fig); how-

ever, the hFi heat maps for the Boids model exhibited very different patterns (Fig 9). The

Fig 8. Mean values hF(N)i, standard deviations σ(F(N)), max values max{F(N)}, and min values min{F(N)} for various fish group sizes. Groups N = 2, N = 4,

and N = 5 have three samples and group N = 3 has four samples. Parameters were set using the peak values of Fig 2. The mean values and standard deviations of

integrated informationF increase as the size of the fish school (N) increases.

https://doi.org/10.1371/journal.pone.0229573.g008
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Table 4. Summary of model parameters.

N R O A v Error (S.D.)

2 10 120 1 11.1 0.20

3 10 120 1 12.4 0.17

4 10 120 1 8.47 0.21

5 10 120 1 10.2 0.23

S.D. = standard deviation.

https://doi.org/10.1371/journal.pone.0229573.t004

Fig 9. Values of mean hFi for the Boids model for 10 samples each. Distance vs. visual field heat map.

https://doi.org/10.1371/journal.pone.0229573.g009
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values of F for the Boids model were generally larger across the different parameter settings

and did not seem to be as sensitive to the distance parameters.

The dynamics of the Boids model and real fish appeared to be very similar; however, the F

values of the Boids model have large variances and lacked the discontinuity in their patterns

between N = 3 and N = 4 (the distribution of MI and TE are resemble to real ones S9 Fig). In

addition, there were substantial differences, especially when comparing the case of N = 2.

When N = 2, the Boids model yielded wide distributions of F; in contrast, the real N = 2 had

very narrow and susceptible peaks.

The hFi values were also calculated in the same manner and averaged for 10 simulations

each. We were interested in any difference in the patterns of hFi in the parameter space. We

picked up the hFi values for each of the following parameter configurations of the Boids

model that maximise the hFi values for the real fish school: Distance = 400 mm, Visual

field = 2.0π rad for N = 2; Distance = 400 mm, Visual field = 2.0π rad for N = 3; Distance = 800

mm, Visual field = 1.8π rad for N = 4; and Distance = 700 mm, Visual field = 1.6π rad for

N = 5. One parameter setting could maximise one hFi value but not the other (Fig 10). The

hFi distributions of the Boids model were completely different from those of real fish.

To assess whether the maximisation of the integrated information is essentially dependent

on the size of the system or fish behaviour, we investigated Boids models with reduced cou-

pling strength (C = 1.0, 0.1, 0.01, 0) (see S10 and S11 Figs). We expected a coupling strength

value of C = 0 to lead to a hFi of 0 for all values of N; however, hFi is non-zero and increases

as N grows. We suspect this is possibly due to size effects as well as boundary effects, both of

which increase as N grows. Regarding the size effects, the F values of time-homogeneous

Markov chains, which are probabilistic systems with random connexions, increase with size

Fig 10. Comparison of theF values for certain parameter settings. The values of FBoids were calculated at the parameter configurations that maximise the real

fish hFiReal and averaged for 10 simulations. Error bars indicate the standard deviations.

https://doi.org/10.1371/journal.pone.0229573.g010
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(Fig 11). Comparing the real fish schools and the Markov models, it is remarkable that the real

fish schools have larger standard deviations for F(N) (Fig 8) than those of the Markov chains

(σ(F(2)) = 0.03 ± 0.04, σ(F(3)) = 0.09 ± 0.03, σ(F(4)) = 0.19 ± 0.06, and σ(F(5)) = 0.36 ± 0.07).

The larger variances of F in the real fish schools imply that the real fish have more variety and

diversity in their states.

Another factor that raised the F(N) values for C = 0 systems was the use of the binary

parameter format, even though the fish move continuously. The F(N) values would be 0 if the

fish were placed randomly at all time steps so that there were no interactions (no boundaries).

For example, for a visual field of 2π, if one fish is in the visual field of another, the reverse is

also true; i.e., the state 1000 is impossible, only 1100 and similar patterns can exist. In such

conditions, asymmetric interactions in which one fish is in the ON state and the other remains

in the OFF state can never occur. This heterogeneity in TPM results in the non-zero F. We

call this the boundary effect. Interestingly, the weak interactions C = 0.01 that have different

distributions compared with C = 0 might suppress the boundary effects, resulting in a relatively

lower hFi. In fact, the model with weaker interactions C = 0.01 actually has a distribution that

is very similar to that of a real fish school S10 Fig). While the averaged hFi depends on

Fig 11. hFi, maxF(N), and minF(N) values of time-homogeneous Markov chains with different values of N. TheF values were calculated for randomly

generated 100 transition probability matrices (TPMs). The shadows indicate the standard deviations.

https://doi.org/10.1371/journal.pone.0229573.g011
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coupling strength, we emphasise that we must compare the distributions to properly discuss

the effect of behaviour on integrated information S11 Fig). A clear change in the distributions

of hFi occurs when coupling strength is reduced.

Discussion

Although IIT was first proposed to quantify the degree of consciousness from brain activity,

interest in IIT seems to have gradually shifted to using it to determine a system’s causal struc-

ture itself [54, 80, 83]. More precisely, the researchers’ concern for the causal structure of the

autonomous system was hidden under their ambitious project to quantify human conscious-

ness. This move is commendable because, by doing so, IIT researchers have paved the way for

a new measure for any general living system. The concept of causal structure is not used to

determine information flow among agents, as in TE. Instead of measuring ‘what the system

does’, IIT can measure ‘what the system is’. By imposing an intervention on the system, we can

estimate how the system reacts to such external perturbations. Pearl, known as the founder of

causal inference, and other researchers have also applied almost the same perturbation method

to causal networks [62]. The MIP cut makes integrated information stand apart from other

information measures like MI or TE [96].

In this study, we applied IIT 3.0 to real fish schools and compared the results with those for

other measures (MI and TE) and another model (Boids) under the same conditions. The

simple phenomenon that IIT suggests is an increase in hF(N)i values with group size in real

and Boids-model fish schools. Furthermore, the coupling strength of the Boids model also

changes the hF(N)i values. This result agrees well with our intuition for the group integration

using IIT 3.0. Our experiment indicates that a relatively weak interaction happens in real fish

schools.

From the F distributions for all possible combinations of parameters, we found a disconti-

nuity between three- and four-fish schools: the leadership raises the degree of integration

above four but not below three. This discontinuity between three and four fish not only exists

in the IIT of real fish but also in the IIT of the Boids model. Furthermore, we found that MI

and the sum of TE also fail to capture these differences. Note that IIT discriminates between

three- and four-fish groups, which is a comparison that is rarely considered in the context of

collective animal behaviour, although there are some studies that suggest a difference between

two- and three-fish groups in terms of each fish’s interactions with others (i.e. a difference in

‘what the system does’ from an extrinsic perspective) [11, 41, 42].

Finally, we comment on the IIT leadership in the group. The definition of IIT leadership is

a single OFF-state in the collective state (e.g. 11110 or 01111) which satisfies the following: (i)

matching well with positional leadership (the leader of the group is the head of its group) and

(ii) the MIP cut is located between a single OFF-state individual and the rest of the group

members.

Prior to providing details of leadership discussion, two objections might still be anticipated.

One is that if the MIP cut indicates the weakest connection (interaction) among the leader and

the rest of its members, does it mean that the low hFi suggests a relatively independent relation

between the leaders and the rest of the members? As discussed earlier, MIP cut is unidirec-

tional and not bi-directional. The low hFi values induced MIP provide no information about

opposite causal flows are also weak. Adding to this point, the hFi values of single OFF-state

collective states (01111) in five-fish schools show higher values compared with all one states

(1111) in four-fish school as in Table 2. Although the group integrity is low when the five-fish

schools are at a single OFF-state collective states, their integrity is still sufficiently higher than

the highest integrity in four-fish school. Therefore, the first objection can be rejected.
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The next objection is (ii) If the opposite information flows are as weak as the MIP cut ones

(i.e. both flows have the same weakness), it is hard to suggests the feed-forward relation as we

discussed. This objection is difficult to answer because PyPhi provides no information about

opposite direction information flows. However, if this assumption is correct, we consider that

it is not so critical that our interpretation is incorrect. This assumption is possible when we

suppose that the weak interactions never contribute to the group dynamics. This assumption

is not always true, especially in a dynamical system. For example, some researchers suggest

that the weak interaction provides the stabilisation/destabilisation to the ecosystem [97–99].

Even if small perturbations are added to the system, the degree of perturbations can work as

the system’s parameters and make the system qualitatively different through bifurcation.

Therefore, the weak interaction itself never suffices to spoil our interpretation of the leadership

induced MIP.

The group leader detection result using IIT 3.0 suggests two remarkable propositions for

understanding group behaviour. One is that our natural intuition of leadership (i.e. positional

leadership) is basically correct under the given causal structure. As in [61], low F values repre-

sent that the system is a feed-forward system (more precisely, it has a weak recurrent interac-

tion structure). In this sense, the information flow is uni-directional because it is in a low Fs

system. Therefore, the low Fs of single-OFF collective states have much lower recurrent inter-

actions than the all-ON collective states.

The lack of recurrent interactions also gives a new insight into the discontinuity between

three- and four-fish schools. If the visual field is not 2π for two- and three-fish schools, their

interactions are almost completely feed-forward in all collective states. The visual field asym-

metry never contributes to recurrent interactions. As a result, the leadership is not explicitly

discriminated by IIT 3.0; however, if the visual field is not 2π for fish schools with four or

more fish, their interaction structure becomes more differentiated. Although F values are

low under the single-OFF condition, the high F values of the all-ON condition suggest that a

profoundly organised recurrent interaction emerges. Therefore, the discontinuity between

three- and four-fish schools can be interpreted in terms of their different information

structures.

The other proposition is that the MIP may detect the division of roles in collective behav-

iour (i.e. the weakest link divides the group into related aggregations). If we can extend this

method to larger fish schools, IIT 3.0 would be able to determine the hidden division of the

roles of a given collective behaviour. Furthermore, this role may not be revealed by other infor-

mation measures.

In this study, we avoided going deeper into the problem of timescale (we only used a rela-

tively small timescale, which is roughly equal to a general fish’s reaction time). Over longer

timescales, other patterns of continuity and discontinuity may be found. Increasing the num-

ber of individuals may also give other results. However, the present practical computational

limit of IIT 3.0 is around seven or eight individuals or neurons [72]. Hence, some approxima-

tions will be needed to implement further analysis. Another area we did not address is the net-

work structure. We assumed an all-connected network including self-loops in this study

because all fish come into contact with each other throughout the event. As we hinted in S6

Fig, the network structures that exclude self-loops might be more suitable for finding the divi-

sion in terms of MIP. Furthermore, some studies suggest that the network structure of real

schools of fish is radically different from the Boids model and that they instead create a stable

network called the α-lattice [100, 101]. This type of network may prevent the increases inF

observed in the Boids model.
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Materials and methods

Ethics statement

This study was carried out in strict accordance with the recommendations in the Guide for the

Care and Use of Laboratory Animals of the National Institutes of Health. The protocol was

approved by the Committee on the Ethics of Animal Experiments of the University of Tsukuba

(Permit Number: 14-386). All efforts were made to minimize suffering.

Computation of F

All computations, in this paper, were performed using the PyPhi software package with the

CUT_ONE_APPROXIMATION option forF.

Experimental settings

We studied ayus (Plecoglossus altivelis), also known as sweetfish, which live throughout and

are widely farmed in Japan. Juvenile ayus (approximately 7-14 cm in body length) display typi-

cal schooling behaviour, though adult ayus tend to show territorial behaviour in environments

where fish density is low. We purchased juveniles from Tarumiyoushoku (Kasumigaura, Ibar-

aki, Japan) and housed them in a controlled laboratory. Approximately 150 fish lived in a 0.8

m3 tank of continuously filtered and recycled fresh water with a temperature maintained at

16.4˚C, and were fed commercial food pellets. Immediately before each experiment was con-

ducted, randomly chosen fish were separated to form a school of each size and were moved to

an experimental arena without pre-training. The experimental arena consisted of a 3×3m2

shallow white tank. The water depth was approximately 15 cm so that schools would be

approximately two-dimensional. The fish were recorded with an overhead grey-scale video

camera (Library GE 60; Library Co. Ltd., Tokyo, Japan) at a spatial resolution of 640 ×480 pix-

els and a temporal resolution of 120 frames per second.

Data summary

The data are summarised in Table 3.

Parameters are the key to determining the dynamics of the model. In the present study, the

model parameters were set to simulate the real experimental data shown in Table 3. The aver-

age distances were approximately 80 to 140 mm, so we set O = 120 mm, R = 10 mm (the body

length), and A =1. Thus, the fish schools should not part less than 140 mm. This setting was

necessary for the school to become separated by the boundary conditions, which mimic and

reflect the real data. The amplitudes of the noise was set to be proportional to the average angle

change so each agent would have a different level of noise. The parameter settings are shown

in Table 4.

Definition of ON and OFF states for each parameter

We define a function for each parameter that returns either 0 (OFF) or 1 (ON) for a given

input value. Generally, we denote a function as Ft
i ð�Þ, where F is the name of the function, i is

the index of the individual and t is the time. The arguments of the function can be either in the

position vectors xi(t) or the velocity vectors vi(t) of each individual at time t. In general, the

dimensions of these vectors are d� 3; the experimental setup used here gives d = 2. The num-

ber of individuals is n.
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Parameter settings.

• Distance function Dt
iðx1ðtÞ; x2ðtÞ; � � � ; xnðtÞÞ: R

d
� Rd

� � � � � Rd
!f0; 1g

For each individual i we obtain a set Sti ¼ fjjdðxiðtÞ; xjðtÞÞ < z; j 6¼ ig of all other individuals

within a specified distance z. Here d(x, y) gives the Euclidean distance between x and y.

Then, Dt
iðx1ðtÞ; x2ðtÞ; . . . ; xnðtÞÞ ¼ 1 when jSt

i j > 0 and is 0 otherwise, where |S| denotes the

number of elements of a set S.

• Visual field function Bt
iðx1ðtÞ; x2ðtÞ; . . . ; xnðtÞ; v1ðtÞ; v2ðtÞ; � � � ; vnðtÞÞ : Rd

� Rd
� � � � �

Rd
!f0; 1g

For each individual we form the set Ot
i ¼ fjjargðviðtÞ; xiðtÞ � xjðtÞÞ < Z; j 6¼ i} of all other

individuals whose velocity vectors point in a direction within an angle η of that of the focal

individual. The function arg(x1(t), x2(t)) gives the angle between two vectors. Then,

Bt
iðx1ðtÞ; x2ðtÞ; . . . ; xnðtÞ; v1ðtÞ; v2ðtÞ; � � � ; vnðtÞÞ ¼ 1 when jOt

i j > 0 and is 0 otherwise.

• Turning rate function Tt
i ðviðtÞ; viðt � DtÞÞ : Rd � Rd!f0; 1g

The turning rate function returns 1 when an individual’s turning rate exceeds a specified

thresholdδ. That is, Tt
i ðviðtÞ; viðt � DtÞÞ ¼ 1 when arg(vi(t), vi(t − Δt))� δ and is 0 other-

wise. The time step used in this paper is Δt = 0.05, Δt = 0.1 or Δt = 0.2 s.

To obtain the states of the fish school, we take a conjunction of this result, that is,

Dt
iðx1ðtÞ; x2ðtÞ; � � � ; xnðtÞÞ ^ Bt

iðv1ðtÞ; v2ðtÞ; � � � ; vnðtÞÞ ^ Tt
i ðviðtÞ; viðt � DtÞÞ for each indi-

vidual i. The conjunction is given as ^: {0, 1}2! {0, 1} where 1 ^ 1 = 1 and is 0 otherwise.

Thus the state of each individual i at time t is si(t; z, η, δ) 2 {0, 1} which depends on the triplet

of parameter values (z, η, δ). The state of the school at time t is then a vector s(t) = (s1(t),
s2(t), . . ., sn(t)) 2 {0, 1}n, where the parameter dependence has been omitted for simplicity.

Short summary of integrated information F

Integrated information theory models a system S by the discrete time multivariate stochastic

process

pðX0;XDt; . . . ;Xt;XtþDt; . . . ;XTÞ ð7Þ

which fulfils the Markov property

pðX0;XDt; . . . ;Xt;XtþDt; . . . ;XTÞ ¼ pðX0Þ
YT

t¼Dt

pðXt j Xt� DtÞ ð8Þ

Such a discrete dynamical system S is defined by a directed graph of interconnected nodes (in

this study, we assumed a complete graph.) and its TPM. The TPM specifies the conditional

probability distribution p(Xt j Xt−Δt). Each state vector Xt comprises binary variables xti
, i = 1,

2, . . ., n(n 2 N).

A joint distribution pcause−effect is defined as

pcause� effectðXt� Dt;XtÞ≔ puðXt� DtÞpeffectðXt j Xt� DtÞ ð9Þ

The marginal distribution pu(Xt−Δt) is a uniform distribution to give the maximum entropy

distribution.

From the joint probability above, the backward transitional probability distribution

peffectðXt� Dt j XtÞ≔
pcause� effectðXt� Dt;XtÞP
Xt� Dt

pcause� effectðXt� Dt;XtÞ
ð10Þ
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and the forward transitional probability distribution

pcauseðXt j Xt� DtÞ≔ pððXt j Xt� DtÞÞ ð11Þ

are constructed and referred to as the cause repertoire and the effect repertoire of state Xt,

respectively. The cause repertoire and the effect repertoire are calculated for a set of nodes

within the subsystem, or a mechanismM� S, over another set of nodes within the subsystem,

or a purview of the mechanism.

After assessing the information of a mechanism over a purview, we next consider its inte-
grated information φcause−effect of a set of system elements in a state X. The integrated informa-

tion is defined as

�cause� effect≔minf�effect; �causeg ð12Þ

�effect≔min
i2I
fDðpeffectkp

ðiÞ
effectÞg ð13Þ

�cause≔min
i2I
fDðpcausekp

ðiÞ
causeÞg ð14Þ

where the system is decomposed in all possible ways into I.
The integrated information φ is assessed by quantifying the extent to which the cause and

effect repertoires of the mechanism–purview pair can be reduced to the repertoires of its parts.

The amount of irreducibility of a mechanism over a purview with respect to a partition is

quantified as the divergence between the unpartitioned repertoire p and the partitioned reper-

toire p(i). The partition that yields the minimum irreducibility is called the minimum-informa-
tion partition (MIP). The integrated information φ of a mechanism-purview pair is defined as

the divergence between the unpartitioned repertoire and the repertoires partitioned by the

MIP. The maximum φ value is then searched for over all possible purviews to determine the

maximally-irreducible cause and maximally-irreducible effect specified by a mechanism.

φmax
cause≔max

j2C
fφj

causeg;φ
max
effect≔max

j2C
fφj

effectg ð15Þ

where C = 2N − 1. (In this paper, we adopted a ‘cut one’ approximation that only evaluates 2N
bipartitions severing the edges from a single node to the rest of the network).

The φ value of the concept as a whole or the maximally integrated cause–effect information

is the minimum of the maximally integrated cause information φcause and maximally inte-

grated effect information φeffect.

φmax
cause� effect≔minfφmax

cause; φmax
effectg ð16Þ

If the mechanism’s maximally-irreducible cause has φcause > 0 and its maximally-irreduc-

ible effect has φeffect > 0, (equivalently �
max
cause� effect > 0), then the mechanism is said to specify a

concept.
We then compute the cause–effect structure, which is the set of all concepts specified by the

subsystem characterising all of the causal constraints intrinsic to the physical system, by simply

iterating the computation of the concepts over all mechanisms M 2 PðSÞ, where PðSÞ is the

power set of subsystem nodes.

Integrated conceptual information F (also known as big phi), which is a measure of the sys-

tem’s strong/integration irreducibility, is assessed by partitioning the set of elements into sub-

sets with unidirectional cuts. The unidirectional bipartitions P! = {S(1);S(2)} of physical system

S are performed by partitioning the subsystem into two parts S(1) and S(2) and cutting the
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edges from one part S(1) to another S(2) (the connections are substituted with noise). We then

calculate the cause–effect structure of the partitioned system CðSP!Þ and compare it to C(S) to

evaluate the difference made by the partition. MIP, which is a search over all possible directed

partitions, is then performed to identify the one that makes the least difference to the cause–

effect structure. Integrated conceptual information F measures the irreducibility of a cause–

effect structure by quantifying the difference the MIP makes to the concepts and their φ values

of the system.

F ¼ min
P!

DðCðSÞ;CðSP!ÞÞ ð17Þ

The difference D between two cause–effect structures is evaluated by an extended version

of the earth mover’s distance, which is the cost of transforming one cause–effect structure C(S)

into another CðSP!Þ in concept space.

Supporting information

S1 Fig. Heat map of hFi for the rest of the parameter settings in Fig 2, where Δt = 0.05 s.

(PDF)

S2 Fig. Heat map of hSφi in Fig 2 for the other parameter settings.

(PDF)

S3 Fig. Heat map of the mean hFi for several parameter settings in Fig 2, where Δt = 0.10 s.

(PDF)

S4 Fig. Heat map of the mean hFi of main complex and no self-loop condition for several

parameter settings in Fig 2, where Δt = 0.05 s.

(PDF)

S5 Fig. Snapshot of the trajectory at t = 100, t = 225, and t = 763 when the IIT leadership

emerges in Fig 6. The head of the group corresponds to the IIT leader.

(PDF)

S6 Fig. Match rate of the IIT leader and the MIP cut with self-loops.

(JPG)

S7 Fig. Mean σ2(F) in Fig 2.

(PDF)

S8 Fig. Comparison of trajectories of real fish and results of the Boids model for T = 20,

000 time steps.

(PDF)

S9 Fig. Heatmaps of the mean MI and mean TE for Boids model results with C = 1.0.

(PDF)

S10 Fig. Heatmaps of hFi for Boids model results with different coupling strengths.

(PDF)

S11 Fig. Comparison of the averaged hFi. The values of F were averaged over the distance–

visual field parameter space and again averaged for 10 simulations and all real data. Error bars

indicate the standard deviations.

(PDF)
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S1 Table. Transition probability matrix (TPM) used in Fig 6.
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92. Ozogány K, Vicsek T. Modeling the Emergence of Modular Leadership Hierarchy During the Collective

Motion of Herds Made of Harems. Journal of Statistical Physics. 2015; 158:628–646.

93. Jia Y VT. Modelling Hierarchical Flocking. arXiv:1810.09545 [Preprint]. 2018.

94. Ishiwata R., Kinukawa R., and Sugiyama Y. Analysis of dynamically stable patterns in a maze-like cor-

ridor using the Wasserstein metric Scientific Reports. 2018; 8:6367

95. CW R. Flocks, herds, and schools: a distributed behavioral model. SIGGRAPH Comput Graph. 1987;

21(4):25–34. https://doi.org/10.1145/37402.37406

96. Amari S., Tsuchiya N., Oizumi M. Geometry of Information Integration. In: Ay N., Gibilisco P., Matúš F.
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