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Abstract: The urban heat island (UHI) phenomenon is an important research topic in the scholarly
community. There are only few research studies related to the UHI in the Seoul metropolitan area
(SMA). Therefore, this study examined the impact of urbanization on the formation of UHI in the
SMA as a geospatial study by using Landsat data from 1996, 2006, and 2017. For this purpose, we
analyzed the relative variation of land surface temperature (LST) with changes of land use/land cover
(LULC) rather than absolute values of LST using gradient, intensity, and directional analyses. It was
observed that the impervious surface (IS) has expanded, and the UHI effect was more penetrating
in the study area, with considerable loss of other LULC including green surfaces along with the
rapid urbanization of the study area. In this study, we divided the IS into persistent IS (PIS) and
newly added IS (NAIS). The spatial distribution of the IS, forest surface (FS), PIS, and NAIS was
observed based on gradient zones (GZs). The results show that GZ1 recorded a difference of 6.0 ◦C
when compared with the GZ109 in 2017. The results also show that the city center was warmer than
the surrounding areas during the period of study. Results reveal that the mean LST has a strong
significant positive relationship with a fraction of IS and PIS in 2006 and 2017. On other hand, the
mean LST has a strong negative relationship with a fraction of FS and NAIS in the same time points.
Relatively low temperatures were recorded in FS and NAIS in both time points. Further, it was
proved that the local climate of the SMA and its surroundings had been affected by the UHI effect.
Therefore, urban planners of the SMA should seriously consider the issue and plan to mitigate the
effect by improving the green surfaces of the city. More greening-oriented concepts are recommended
in both horizontal and vertical directions of the SMA, that can be used to control the negative impact
associated with UHI. The overall outputs of the study could be used as a proxy indicator for the
sustainability of the SMA and its surroundings.
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1. Introduction

Currently, 55% of the world’s total population (7.7 billion) is accommodated in urban areas, a
proportion that is expected to increase up to 68% in 2050 [1]. Urbanization is the process of a gradual
residential shift of the human population from rural to urban areas. Projections show that 2.5 billion
more people will be added to cities and surrounding areas by 2050, in parallel with the overall growth
of the world’s population. Interestingly, 90% of this will take place in Asia and Africa [1]. The current
level of urbanization in Asia is now approximated to be 50% [1]. This rapid urban development resulted
in converting different land uses and land covers, like vegetation and open land, into impervious
surfaces (IS) [2].

Land use/land cover (LULC) encompasses a set of human-made and natural components and
their spatial distributions [3]. In the daytime, IS absorbs some amount of solar radiation, the rest is
reflected, and reradiates the absorbed heat in the night-time [3,4]. As a result of these two phenomena,
urban areas are globally warmer in comparison with the surrounding areas. Cities with a population
of one million or more have a 1–3 ◦C recorded temperature difference with the surrounding rural areas
in the daytime, and it can be as high as 12 ◦C, especially in the night-time [5].

On the other hand, green surfaces tend to both absorb and reflect solar radiation and, with
evapotranspiration, add moisture to the atmosphere that tends to decrease land-surface temperature
(LST) [6]. The occurrence of higher air and surface temperatures existing in urban areas than suburban
and rural areas is known as the urban heat island (UHI) phenomenon [7,8]. There are two types of
UHI: (i) surface UHI (SUHI), which is based on LST, and (ii) atmospheric UHI, which is based on air
temperature [8]. The effect of SUHI exists both during the day and night, but its intensity in the daytime
is high because of radiation from the sun [8]. With the advancement of sensor technology, thermal
remote observation for measuring SUHI became more popular with the use of satellite platforms such as
Landsat with larger area of coverage (global coverage) and availability of temporal datasets. Also, with
satellite data it is possible to measure energy consumptions of buildings as well. While, atmospheric
UHI studies are totally based on data collected from weather stations and having limitations such
as unavailability of precious temporal datasets, unavailability of data in some areas, and issues on
generalizing temperature data using interpolation techniques [9]. Therefore, studies on surface UHI is
more a popular and timely task. Hence, in this study we considered the effect of daytime SUHI.

Urbanization brings numerous socioeconomic benefits to urban populations, but it also brings
some adverse effects to the natural environment [10,11]. SUHI is a one of these tremendous adverse
effects of the rapid urbanization process. SUHI has some negative effects such as an increase in energy
consumption, adverse effects on the health and comfort of the urban population, and the depression of
living conditions [8,12,13]. Therefore, it is crucial to examine the magnitude and trend of the SUHI
effect in order to apply proper precautions to minimize it. Due to all these circumstances, studies on
SUHI are becoming a substantial research theme among the scholarly community [14,15]. There are
several past studies that were conducted to understand the spatial and temporal variation of SUHI
magnitude, such as for Baguio City in Philippines [16], Kandy City in Sri Lanka [17,18], Addis Ababa
in Ethiopia [3], Lagos in Nigeria, Lusaka in Zambia, Nairobi in Kenya [19], and Tehran in Iran [20].
Still, related studies are needed to enhance the knowledge related to the magnitude of SUHI. Therefore,
it is essential to conduct research and analysis on SUHI to address the limitations, which is a significant
and timely task.

The spatial and temporal pattern of the magnitude of the SUHI provides valuable information to
understand SUHI behavior in urban and surrounding areas. According to Estoque and Murayama
(2017) in their study, there were two main methods that have been used to calculate the magnitude
of the SUHI: (i) classifying LULC as the local climate zone of the cities and using a crossover
comparison [16,18,20–22], and (ii) calculating the urban–rural area temperature difference. This can be
computed by using urban–rural gradient analysis. Gradient analysis can be employed to recognize the
spatial variation of environmental attributes with distance [23]. There are several previous researches
that have used gradient analysis to quantify the magnitude of the SUHI [3,16,18,19,24]. In most of the
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previous researches, mean LST, a fraction of IS, and green surfaces (GS) have been calculated based on
gradient analysis. However, all of the previous researches have been made to calculate the temperature
difference between IS and GS with two or more time points. But none of the studies were focused
on the SUHI differences in IS regarding urbanization process. Therefore, we hypothesized that it
was needed to investigate the temperature difference between persistent IS (PIS) and newly added IS
(NAIS) to understand the contribution to SUHI formation in urban areas. It is vital to study the impact
of PIS, NAIS, and total IS on the effect of SUHI using gradient, intensity, and directional analyses to
understand the magnitude and trend of the SUHI effect. This is a useful indicator to evaluate the
SUHI effect, as well as the level of environmental friendliness of urban constructions as a different
geospatial approach. Thus, in this paper, we separately study PIS and NAIS to provide new research
knowledge related to the gradient-based SUHI studies. This is the main difference of this research with
the previous researches and it is the originality of the study. In this process, LULC classification plays a
significant role.

The recent development of the Geographic Information Systems (GIS) and Remote Sensing (RS)
techniques with the use of machine-learning methods in effective and efficient R software-enabled
LULC classification allowed us to examine LULC changes in a time-efficient and cost-effective manner
compared to conventional methods like ground-based methods [25–27]. The use of R software for
LULC classification enabled to select the best way from different machine-learning methods with
an initial accuracy assessment [28–32]. Extraction of the LST from thermal infrared RS data is also
time-efficient and cost-effective, and an alternative to the lack of ground-based temperature data [33].
On the other hand, with thermal RS data, it is possible to achieve a high temporal resolution [34]. Thus,
Landsat imagery has been used to classify the LULC and the extraction of LST of the study area.

Megacities located in Southeast Asia have shown considerable urbanization development during
the past few decades. SUHI is having a significant adverse impact through the rapid urbanization,
and it has negatively influenced environmental quality. The landscape-composition pattern and its
relationship with UHI in Bangkok, Jakarta, and Manila were studied by [35] in 2017. They used several
methods to understand the behavior of the UHI in three megacities. However, there are few SUHI
studies that have been conducted in Seoul [34,36–38]. Nearly 80% of the Republic of Korea’s total
population (51 million) live in urban areas. According to predictions, the percentage will increase by
up to 86% by 2050 [39]. Over one-fifth of the nation’s total population lives in Seoul [40]. Seoul is
a highly urbanized megacity, and overpopulation affects LULC changes in Seoul and its immediate
surroundings. Urbanization and overpopulation are human activities that alter the landscape of Seoul,
which then contributes to the formation of the SUHI phenomenon. Therefore, the goal of the research is
to inspect the impact of LULC composition and its relationship with SUHI. Consequently, the specific
objectives of this study are as follows: (i) to calculate the landscape composition and its impact on
SUHI formation, (ii) to assess the contribution of PIS and NAIS on SUHI formation, and (iii) to calculate
multitemporal and multidirectional SUHI profiles. The results of this study are useful for a proxy
indicator for sustainable urban planning.

2. Materials and Methods

2.1. Study Area: Seoul Metropolitan Area, Republic of Korea

The Seoul metropolitan area (SMA) is the capital and the largest metropolitan area in the Republic
of Korea (South Korea) on the Korean Peninsula in the center of Northeast Asia [41]. The geographical
setting of SMA extended by northing from 4,170,478.01 to 4,142,707.68 m, and easting from 302,905.38 to
338,355.11 m according to the WGS1984 UTM (52N) projected coordinate system, as shown in Figure 1.
The SMA features a humid, continental, and subtropical climate with average annual precipitation of
nearly 1450 mm, and more than 60% of precipitation during the summer season (from June to August)
because of the influence of East Asian summer monsoon [42]. The mean temperature of the SMA is
24.2 ◦C in the summer season [42]. The SMA is one of the highly populated cities in the world and
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around 21.5% (nearly 11 million) of the country’s total population lives in [43]. The geographical
mean center of the SMA is defined as the city center with y-coordinate 4,155,930.99 m (northing) and
x-coordinate 322,488.87 m (easting).We selected a 46 by 46 km geographical extent as the study area
with a 23 km radius from the city center covering 2,116 km2 (Figure 1) of the area, which included the
SMA and covered the surrounding characteristics. The geographical setting of the study area extends
northing from 4,179,030.95 to 4,132,830.84 m, and easting from 299,388.93 to 345,588.92 m.
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Figure 1. Location map of the study area. (a) Map of Southeast Asia with the Republic of Korea [44];
(b) location of the Seoul metropolitan area (SMA) [45]; and (c) study area within the SMA (Landsat-8
OLI/TIRS in false-color composite (Bands 5, 4, 3; 26 August 2017) with the city center [46].

2.2. Data Descriptions and Data Preprocessing: Satellite Imagery

Radiometrically calibrated and atmospherically corrected Level 2 on-demand Landsat data were
freely collected through the official website of the Geological Survey of the United States (USGS) [46,47].
Band 10 of Landsat-8 Operational Land Imager (OLI)/Thermal Infrared Sensor (TIRS) and Band
6 of Landsat-5 TM were with atmospheric brightness temperature in kelvin (K). All multispectral
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bands of Landsat-8 OLI/TIRS and Landsat-5 TM were provided as surface-reflectance values [46,47].
For the selection of the satellite images for the study it used the criteria as follows: (i) captured in
summer-season; (ii) captured in daytime; and (iii) cloud-free or less-cloud cover (< 10%). With the use
of multiple Landsat images for a given time point which leads to generate more accurate results of
SUHI effect than just using three images but the limitation due to the cloud cover, it was able to select
only one image for a given time point. With the availability of data, 1996 was selected as the base year
to find out the SUHI pattern in the developing stage of the country; 2007 was selected to represent
the middle stage after the development of the country; and 2017 was selected to represent the present
stage of the country. Table 1 shows the comprehensive description of the data used for the study.

Table 1. Landsat Level 2 data collection.

Sensor Landsat-5 TM Landsat-5 TM Landsat-8 OLI/TIRS

Scene ID LT51160341996245CLT00 LT51160342006256IKR00 LC81160342017238LGN00

Temporal Resolution 01 September 1996 13 September 2006 26 August 2017

Path/Row 116/34

Local Time (GMT+9) * 10:27:59 11:04:48 11:11:08

* GMT is known as Greenwich Mean Time

2.3. Extraction of Land Use and Land Cover

Four types of machine learning (ML) techniques, namely, support vector machine (SVM),
k-nearest neighbor (KNN), random forest (RF), and neural networks (NN), were used for LULC
classification [3,28,31,32] of the study area with the use of R software. Both overall accuracy and
the kappa statistic were higher (over 90%) with the SVM, and the method was selected for LULC
classification of the study area. Three time-point satellite imageries of the research area were classified
into four LULC types, namely, forest surface (FS); IS; water bodies (WB); and other lands (OL) as
grassland, cropland, and bare land for this study. Post classification rectification was also conducted to
enhance the accuracy of the classified LULC maps [48]. The accuracy of each of the classified LULC
maps was evaluated by using 500 reference points. The stratified random-sampling techniques was
used to generate the reference points [49]. Google Earth and pan-sharpened imageries of the Landsat
data generated by applying the Gram–Schmidt spectral-sharpening method [48] were used as a source
of reference information for the LULC maps of 2006 and 2017. For the 1996 LULC map, the authors
trusted on their visual interpretation of Landsat data with different band combinations [16].

2.4. LST Extraction

Radiometrically calibrated and atmospherically corrected Level 2 Landsat data (as described in
Section 2.2.) were used for LST extraction. The thermal bands of Landsat contain at-satellite brightness
temperature values in kelvin. The values were scaled by using land-surface emissivity [24,35].
Land-surface emissivity (ε) was derived according to Equation (1) [50] and previous researches also
used the same method to calculate emissivity and obtained good results [3,16,18,19,24,51]:

ε = m Pv + n (1)

where ε is land-surface emissivity; m is (εv − εs) − (1 − εs) Fεv; n is εs + (1 − εs) Fεv; εs is soil emissivity;
εv is vegetation emissivity; F is mean value of shape factor, assuming different geometrical distributions,
F=0.55 [50]. Here, we used the finding of [50], m = 0.004, and n = 0.986. Pv is the proportion of
vegetation that was computed based on the normalized difference vegetation index (NDVI). Pv was
extracted according to Equation (2):

Pv = ((NDVI−NDVImin)/(NDVImax −NDVImin))
2 (2)
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where Pv is the proportion of vegetation; NDVI is the normalized difference vegetation index; NDVImin

is the minimum value of NDVI; NDVImax is the maximum value of NDVI. The NDVI is calculated
according to Equation (3):

NDVI =
ρNIR − ρRed

ρNIR + ρRed
(3)

where NDVI is the normalized difference vegetation index; ρNIR is surface-reflectance values of Band 4
of Landsat-5 TM, and Band 5 of Landsat-8 OLI/TIRS; ρRed is the surface-reflectance values of Band 3 of
Landsat-5 TM), and Band 4 of Landsat-8 OLI/TIRS.

Finally, Equation (4) was used to extract the emissivity-corrected LST [24,52]:

LST = Tb /{1 +
(
λ ×

Tb

ρ

)
Lnε} (4)

where LST is land surface temperature in kelvin; Tb is at-satellite brightness temperature in kelvin;
λ is the central-band wavelength of emitted radiance (11.5 µm for Band 6 [24] and 10.8 µm for Band
10 [35]); ρ is h × c/σ (1.438 × 10–2 m K) where, σ is the Boltzmann constant (1.38 × 10–23 J/K), h is
Planck’s constant (6.626 × 10–34 J *s), and c is the speed of light (2.998 × 108 m/s), and ε is land-surface
emissivity [50]. The resulting LST values in kelvin were converted to degrees Celsius (◦C) according to
Equation (5).

LST(◦C) = LST − 273.15 (5)

where LST (◦C) is the land surface temperature in degrees Celsius; LST is the land-surface temperature
in kelvin.

2.5. SUHI Profiling

The surface urban heat island profile was investigated based on the multidirectional SUHI profiles
of the study area by following orthogonal and diagonal directions such as east–west, north–south,
northwest–southeast, and northeast–southwest. The method was introduced by Estoque and Murayama
(2017) in their study. Previous other studies have also used the same method to understand the SUHI
profile. The studies were able to generate good results by applying the same method in different
regions of the world including East Asia [3,18,51].

To generate the SUHI profile of the study area, the authors were used the following five steps
method as introduced by Estoque and Murayama (2017) in their study.

Step 1: Located the city center in Seoul called 0 kilometers.
Step 2: A set of polygon grids was created by snapping the original LST map of the study area. In this
study, we used 210 by 210 m (seven by seven grid) based on previous studies [16,18,51,53].
Step 3: The grid where the city center was located was chosen as the center grid (0 grid).
Step 4: All other grids in the orthogonal and diagonal directions were created.
Step 5: Mean LST, fraction PIS, and NAIS were computed to identify multidirectional and multitemporal
SUHI profiles of the study area.

2.6. SUHI Intensity Measurement

SUHI intensity (SUHII) can be calculated based on the LST difference between gradient zones
and the LST difference between different LULC categories [16]. In this study, we used two methods
to calculate SUHII based on the (i) mean LST difference between gradient zones; and (ii) mean LST
difference between different LULC categories such as IS, FS, PIS, and NAIS.

The SUHII along the gradient zones (SUHIIGZ) was calculated based on the 210 m buffer zones
from the center grid where the city center was located. Previous studies have also used 210 m buffer
zones to calculate the mean LST difference between gradient zones [16,18,51]. Gradient zones (GZs)
were generated based on the polygon grid created in Section 2.5. All grids in the same order were
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dissolved by keeping the center grid as 0. The process resulted in 109 GZs, e.g., GZ1, GZ2, and GZ109.
The mean LST, a fraction of IS, FS, PIS, and NAIS, was extracted for each GZ.

SUHII based on the LULC categories (SUHIIIS-FS) was calculated by using the main LULC
categories of each year. The main LULC categories, such as IS and FS, and subcategories of IS, namely,
PIS and NAIS, were used to calculate the SUHII. First, the mean LST of the each LULC was extracted
using zonal statistics available in ArcGIS. Hereafter, mean LST difference was calculated based on the
mean LST of each LULC [16,18,51].

The magnitude of SUHIIGZ was calculated based on ∆ mean LST, ∆ fraction of IS, ∆ fraction of
FS, ∆ fraction of PIS, and ∆ fraction of NAIS were extracted based on the methodology proposed
by Estoque and Murayama [16]. Here, the ∆ mean LST was calculated by subtracting GZs (GZ1 −

GZ2 . . . 109). A similar process was used to calculate the ∆ fraction of IS, FS, PIS, and NAIS. Here, GZ1

can be referred to as the gradient zone with the highest fraction of IS at each time point.

3. Results

3.1. LULC Changes and LST Distribution

LULC classification was performed according to the methodology explained in Section 2.3. The
overall accuracy of the classified LULC maps was 93.2%, 94%, and 94.6% in 1996, 2006, and 2017,
respectively. Further, the kappa coefficient was 0.9 in 1996 and 2006, and 0.91 in 2017 (Table 2). The
complete error matrix is shown in Tables A1–A3 in Appendix A. This method was commonly used
in similar studies, and its details can be found elsewhere [54]. According to the results of LULC
classification, rapid urbanization had taken place over the past two decades, especially toward east
and west directions, as shown in Figure 2a–c. The trend could also be observed in the northwest and
southwest directions after 2006. It can be observed that IS had dramatically increased from 79,379.4
to 107,853.5 ha by occupying 50.5% of total land in 2017 (Table 3). The annual growth rate of IS was
1014 ha/year during 1996–2017. OL declined, and its net loss was 14,724 and 14,249 ha over two
time periods, 1996–2006 and 2006–2017. The results of LULC classification show that FS decreased
by 58.3 ha/year during the period of 1996–2006, but increased 1086.8 ha/year during the period of
2006–2017 (Table 4), which indicates that significant efforts have been made in the past decade to make
the environment greener through urban forests in the region.

Table 2. Accuracies and kappa coefficient of land use/land cover (LULC) classifications in the SMA.
Note: forest surface (FS); impervious surface (IS); water bodies (WB); and other lands (OL).

Accuracy LULC Category 1996 2006 2017

User accuracy (%)

Forest surface (FS) 91.78 96.50 94.71
Impervious surface (IS) 94.79 94.23 94.87

Water bodies (WB) 88.89 93.33 94.12
Other lands (OL) 92.80 89.02 92.50

Producer accuracy (%)

Forest surface (FS) 97.81 93.24 94.71
Impervious surface (IS) 95.69 97.61 96.64

Water bodies (WB) 88.89 82.35 84.21
Other lands (OL) 85.29 86.90 86.05

Overall accuracy (%) 93.20 94.00 94.60

Kappa coefficient 0.90 0.90 0.91
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Figure 2. LULC and land-surface temperature (LST) of the study area. LULC in (a) 1996, (b) 2006, and
(c) 2017; LST in (d) 1996; (e) 2006; and (f) 2017.

Table 3. LULC composition in 1996, 2006, and 2017.

LULC
1996 2006 2017

Area (ha) % Area (ha) % Area (ha) %

FS 70,734.1 33.1 70,150.7 32.9 82,105.9 38.5
IS 79,379.4 37.2 100,335.3 47.0 107,853.5 50.5
WB 6331.5 3.0 5216.0 2.4 5702.2 2.7
OL 56,999.0 26.7 37,742.0 17.7 17,782.4 8.3

Total 213,444.0 100.0 213,444.0 100.0 213,444.0 100.0

Table 4. LULC changes in 1996–2006, 2006–2017, and 1996–2017.

1996–2006 2006–2017 1996–2017

LULC LULC Change
(ha)

Growth Rate
(ha/year)

LULC
Change (ha)

Growth Rate
(ha/year)

LULC Change
(ha)

Growth Rate
(ha/year)

FS −583.4 −58.3 11,955.2 1086.8 11,371.8 541.5
IS 20,955.9 2095.6 7518.2 683.5 28,474.1 1355.9
WB −1115.5 −111.6 486.2 44.2 −629.3 −30.0
OL −19,257.0 −1925.7 −19,959.6 −1814.5 −39,216.6 −1867.5

The spatial-distribution pattern of LST in the study area is shown in Figure 2d–f. In 1996, LST was
in the range of 16.8–39 ◦C, with an average of 23.6 ◦C. LST was in the range of 15.5–40.2 ◦C, and the
average was 24.6 ◦C in 2006. In 2017, LST ranged 18.9–48.2, and the average was 28.5 ◦C. A significant
LST distribution pattern could be observed toward the east and west directions of the study area. The
pattern was also distributed toward the northwest and southwest directions after 2006. The trend of
the SUHI effect can be seen in the study area during the past two decades.
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3.2. Magnitude and Trend of SUHI Effect

3.2.1. SUHIIIS-FS Based on Cross-Cover Comparison

Table 5a shows the descriptive statistics of the mean LST of FS, IS, PIS, and NAIS in 2006 and
2017, calculated based on Section 2.6. The spatial pattern of mean LST of FS has been improved. The
minimum spatial difference can be seen in the NAIS.

Table 5. (a) Mean LST of FS, IS, persistent IS (PIS), and newly added IS (NAIS); (b) magnitude and
trend of surface urban heat island intensity (SUHII).

(a) Mean LST of FS, IS, PIS, and NAIS (◦C)

LULC 2006 2017

FS 21.4 25.6
IS 27.1 31.1

PIS 27.5 31.5
NAIS 26.0 29.0

(b) Magnitude and trend of SUHII (◦C)

LULC (cross-cover comparison) 2006 2017

IS–PIS −0.4 −0.4
IS–NAIS 1.2 2.1

PIS–NAIS 1.5 2.5
IS–FS 5.7 5.5

PIS–FS 6.1 5.9
NAIS–FS 4.5 3.4

Table 5b displays the magnitude of the trend of SUHIIS-FS from 2006 to 2017. Higher ∆ SUHII
can be observed in PIS and FS in both times showing decreasing trend spatial pattern. The minimum
spatial difference of LST can be observed between IS and PIS in both time points.

3.2.2. SUHIIGZ along the Gradient Zones

Figure 3a displays the spatial pattern of mean LST, and the fraction of IS and FS through the GZs
in the three time points of 1996, 2006, and 2017. The spatial pattern of mean LST declined when moving
away from the central zone for all three time points. It could also be observed that the spatial pattern of
mean LST was relatively higher in 2017 than in 1996 and 2006 along the GZs. The mean LST values of
all GZs in 2006 was higher than in 1996, but the difference is very low. However, in 2017, the mean LST
of all GZs considerably increased when compared with the other two time points. The fraction ratio of
IS gradually declined when moving away from the central zone, while the fraction ratio of FS gradually
inclined for the same direction for all three time points. The results reflected the stronger influence
of IS on SUHI along the GZs. Figure 3b shows the results of linear-regression analysis between the
mean LST and the fraction of FS and IS. We observed a significant positive relationship (p < 0.001)
between the fraction ratios of IS and mean LST with a higher coefficient of determination, while a
negative relationship (p < 0.001) between the fraction ratios of FS and mean LST in 1996, 2006, and
2017. The positive relationship between the fraction of IS and mean LST was stronger than the negative
relationship between the fraction ratio of FS and mean LST along the GZs for all three time points.

Most of the previous studies used a fraction of IS with mean LST without considering IS
subdivisions [3,16,18]. In this research, we divided IS into PIS and NAIS to identify their impact to
formulate SUHI. Figure 4a displays the spatial distribution of the mean LST and fraction of PIS and
NAIS through the GZs in 2006 and 2017. The fraction of PIS shows an increasing pattern, while NAIS
shows a decreasing trend. The fractional difference between PIS and NAIS is higher in the first half
of the GZs from the central zone. Figure 4b shows the result of the linear regression between mean
LST with PIS and NAIS. Mean LST had a strong significant positive relationship with a fraction of PIS.
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However, mean LST had a strong negative relationship with a fraction of NAIS in both time points.
The results reflected the stronger influence of PIS on SUHI along the GZs.Climate 2019, 7, x FOR PEER REVIEW 10 of 21 
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Figure 5 shows the magnitude of ∆ mean LST, the ∆ fraction of IS and FS through the GZs in 1996,
2006, and 2017. The highest fraction of IS was recorded in GZ1 as 99.7%, 99.2%, and 99.2%, in 1996, 2006,
and 2017, respectively, and the lowest fraction of IS recorded GZ92 (19.3 km away from the city center).
The highest fraction of FS was recorded in the GZ92, where the lowest IS fraction was recorded. The
lowest FS fraction was recorded in the GZ1. Figure 5b shows the results of linear-regression analysis
based on all GZs in the three time points of 1996, 2006, and 2017, which showed a significant (p < 0.001)
positive relationship between ∆ mean LST with ∆ fraction of IS. The ∆ mean LST had a strong negative
relationship with a fraction of FS from 1996 to 2017. Similar results were obtained by previous studies
as well [16,18].
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Figure 6. shows the spatial distribution of the ∆ mean LST with the ∆ fraction of PIS, and the
∆ fraction of NAIS along the GZs in 2006 and 2017. IS magnitude is a piece of vital information to
understand SUHI formation. The subdivisions of the IS fraction along the GZs provide an essential
indicator to understand the SUHI of the study area. The ∆ fraction of PIS showed an increasing trend,
especially after GZ42 (8.8 km from the city center). The decreasing trend of NAIS along the GZs was
from 2006 to 2017. Figure 6b shows the results of the linear-regression analysis based on GZs in the
two time points of 2006 and 2017. ∆ mean LST had a strong significant relationship with the ∆ fraction
of PIS, while ∆ mean LST had a significantly strong negative relationship between the ∆ fraction of
NAIS in both time points.Climate 2019, 7, x FOR PEER REVIEW 12 of 21 
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3.3. Multidirectional Analysis

Figure 7 shows multidirectional and multitemporal SUHI profiles based on mean LST, and the
fractions of PIS and NAIS. According to the results, it is clearly shown that the directional distribution
of SUHI magnitude was higher in the east–west direction in both 2006 and 2017. The typical SUHI
profile can be seen in the northwest–southeast and northeast–southwest directions. In addition to that,
the spatial distribution of the NAIS and PIS fractions shows that NAIS increased along the GZs outside
the city center zone. The result shows that the spatial pattern of the mean LST of each direction had an
increasing trend in 2017 when compared with 2006.
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4. Discussion

4.1. Urbanization and Its Impact

Seoul is the capital city, and the business and the central financial hub of the Republic of Korea.
The city is referred to as one of the emerging world cities in the Asia-Pacific region [55]. With the city’s
geographical location in the Asia-Pacific region, Seoul has robust socioeconomic growth, with a gross
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domestic product (GDP) of USD 408 billion in 2016 [56]. LULC results in this study show that the city
has experienced rapid urbanization during the last two decades (Figure 2a–c, and Tables 3 and 4) with
socioeconomic growth, especially in the east, west, northwest, southwest, and northeast of the study
area. The IS of the study area reached 50.5% of the extent of total land in 2017. The growth rate of
IS was 1,355.9 ha/year during the 1996–2017 period. Urban expansion during the 1996–2006 period
showed a higher rate than the 2006–2017 period. This was mainly because of the city-development
barriers due to geographical factors like rivers and mountains in the study area [55]. OL consisted of
cropland, grassland, and bare land, which were replaced by IS during the past two decades. The total
land extent of OL was 26.7% in 1996 from the total land extent, and it declined by up to 8.3% in 2017.
Interestingly, the FS of the study area increased during the period of 1996–2017 with a rate of 541.5
ha/year, while it decreased during the period of 1996–2006 with a rate of 58.3 ha/year. The increase
of FS was mainly because of the preservation of the natural environment with apartment parks and
urban forests in the study area after 2006 [55].

Both the total and urban population of the Republic of Korea shows an increasing trend during
the period of 1980–2030 [57]. In 2015, the total and urban population of the Republic of Korea were 51
and 41 million people, respectively. According to predictions, the total and urban population of the
country will be 53 and 43 million, respectively, in 2030. According to statistics, over one-fifth of the
nation’s total population lives in Seoul [55]. The total population of Seoul was saturated during the
last decade [58], mainly because of higher apartment prices [55]. As a result, the concept of satellite
towns was promoted in surrounding areas and people tend to stay in surrounding areas of the city.
This lead to the rapid urbanization of the surrounding areas with the increase of population [55]. This
study focused on Seoul and the surrounding areas, so the increasing trend of urban population can
be used as a proxy indicator for the study area [3]. The population trend validated the urbanization
process in the study area. The increasing trend of the number of vehicles in Seoul [59] also revalidated
rapid urbanization in surrounding areas because residents of the surrounding areas use vehicles for
transport to and from the city. According to statistics, there were around two million cars in 2000 and
around three million cars in 2015 registered in Seoul [59].

With the increase of population, additional space is required for settlements, industrial zones,
and infrastructure to cater to the urban community, and this leads to the expansion of urban areas (IS)
by acquiring space from other LULC. This process was validated with the results of LULC changes
during the period of study. IS reflects high amount of solar radiation when compared with other
LULC, and this leads to generating heat back to the atmosphere, which tends to increase of LST in
urban areas [18]. The results of the study validate that IS had a higher mean LST (Table 5a,b) than FS.
According to Figure 2d–f, the higher distribution pattern of LST mirrored the distribution pattern of IS.
The increasing trend of LST further improved with rapid urbanization in the study area during the
period of study. This is a necessary consequence in the context of the UHI phenomenon.

Increasing urban population and increasing IS provide important information to rethink the present
urban plan of the study area. A number of negative biophysical and socioeconomic consequences
were identified as the result of the urban expansion and overpopulation of the study area [5,12]. Urban
planners and policymakers need to consider controlling the SUHI in the study area.

4.2. Intensifying SUHI Effect

According to the results of the study, the mean LST of the study area relatively increased by 4.9 ◦C
during the 1996–2017 study period. One of the exciting findings from the results is that the mean LST of
NAIS was relatively lower than the mean LST of PIS and IS in 2006 and 2017 (Table 5a), which indicated
that the NAIS was constructed on preserving the natural environment with apartment parks and urban
forests [60]. During the study period, the average fraction of FS exhibited an increasing trend of 26.7%,
26.3%, and 31.3%, respectively, in 1996, 2006, and 2017. Previous studies show a decreasing trend of
FS along the GZs due to the rapid urbanization in Asian cities [16,18]. This increasing FS trend was
recorded due to the forest-conserving policy of the government of Seoul after 2006 [61,62]. Thus, NAIS
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developed with the considerable formation of the FS. According to the results, the relative difference of
mean LST between PIS and NAIS was recorded at 1.5 ◦C in 2006 and 2.5 ◦C in 2017 (Table 5b, Figure 4b).
NAIS shows the negative relationship with mean LST in the time points of 2006 and 2017. A similar
relationship was recorded with a fraction of FS.

The combing effect of IS on LST remains as it is because, for a given time point, the total IS
was constructed with the PIS from the previous time point plus the NAIS for the given time point.
Moreover, the PIS for the next time point depended on the total IS of the previous time point (Equation
(6)). The results of LST temporal variation among different LULC indicated rapid IS expansion, such as
buildings, roads, parking lots, pavements, and other urban constructions by replacing green surfaces,
which lead to intensifying the SUHI effect on the population of the study area.

IS2017 = PIS2006 + NAIS2006–2017 (6)

where, IS2017 is IS in 2017; PIS2006–2017 is PIS during 2006–2017; and NAIS2006–2017 is NAIS during
2006–2017.

According to variations of the LST values, it was observed that there was an intensifying SUHI
effect in the study area, but it did not describe the magnitude and trend of the effect. Therefore, the
effect was studied along the GZs. It was observed that the mean LST declined along the GZs for all
three time points (Figures 3 and 4). It was also confirmed that the highest mean LST values were
reported in GZ1 (near city center) as 27.3, 28.6, and 33.7 ◦C in 1996, 2006, and 2017, respectively. The
results show that the mean temperature of GZ1 relatively increased by 6.4 ◦C in the past 21 years. An
increasing pattern could be seen in a fraction of IS (49.2% in 1996, 57.1% in 2006, and 58.2% in 2017)
and of PIS (47.7%, in 2006 and 52.6% in 2017). However, the fraction of the NAIS showed a decreasing
pattern from 2006 to 2017. The average fraction of GZs decreased from 9.4% in 2006 to 5.9% in 2017.
Urbanization was saturated in Seoul after 2006. There are very few spaces available for future urban
development. Thus, more development happened vertically than horizontally, especially in the city
center and surrounding areas. Vertical development can be used as a proxy indicator to understand
urban-development intensity [63–65]. Results show that PIS had a strong significant relationship with
the mean LST in 2006 and 2017 (Figures 4 and 6). Thus, urban planners must pay considerable attention
to introduce appropriate mitigation procedures, especially in PIS areas.

According to the results of the study, SUHII increased in the study area in 1996, 2006, and 2017
(Figures 5a and 6a) with a high positive correlation (p < 0.001, high R2) with a fraction of IS for all
three-time points. Further, there was a high negative correlation (p < 0.001, high R2) with a fractional
difference of FS on SUHII in all three-time points (Figure 5b) that revalidated the importance of FS to
minimize the SUHI effect. According to Figure 6b, there was a high positive correlation (p < 0.001,
high R2) with a fractional difference of PIS on SUHII, which reconfirmed the stronger influence of PIS
on SUHI than NAIS. The negative correlation (p < 0.001, high R2) with a fractional difference of NAIS
on SUHII reconfirmed environmentally friendly urban constructions of the study area.

By using LST profiles generated through multidirectional analysis, the effect of PIS and NAIS
on SUHI can be further visualized by mapping the cross-sectional features. According to Figure 7,
it can be observed that the urbanization process taking place in the east–west direction was almost
similar in 1996 and 2017, which indicated the limitation of urban development in that direction, which
could also be confirmed with the LULC maps during the period (Figure 2a). The SUHI profile of the
east–west direction shows that the increasing and decreasing pattern of the mean LST was followed by
the fraction of PIS. The north–south direction showed the lowest mean LST profile due to the spatial
distribution of the FS. The urban development of the other directions was limited except for the core of
the city in 1996. However, in 2017, it could be observed that urban development took place in other
directions of the study area. The positive correlation with the fraction of PIS on SUHI and negative
correlation with the fraction of NAIS on SUHI were confirmed by observing the LST profiles of 2006
and 2017. The SUHI profile can be applied as a proxy indicator to understand the spatial distribution
of the mean LST and fraction of PIS, and NAIS in 2006 and 2017.
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4.3. Implications for Urban Sustainability

With the results in this study, we can argue that the observed increasing pattern of the SUHI effect
in the research area was affected by LULC changes due to rapid urbanization, which caused in the
rapid expansion of IS, and considerable loss of grassland and cropland over the past two decades. The
SUHI effect in the study area can be considered as a local climate change [8,16]. The results of the
study show that the spatial pattern of LST was comparatively lower in green surfaces, specifically in
FS, than other LULC categories. Therefore, to mitigate the effect of SUHI, it is essential to improve
the green-land fraction of the study, which provides more shade. Green surfaces can also absorb and
reflect solar radiation, while evapotranspiration and shadowing make a more refreshing environment
while minimizing the SUHI effect [37]. This can be verified with results of lower LST values reported
in forest surfaces. On the other hand, the SUHI effect directly influences the increase of energy usage to
reduce the temperature in living environments using air conditioners or other similar equipment [12].
Heat-related health issues may also arise in the city [13]. The decreasing trend of the green fraction in
the city might influence food security, as well as imbalance ecosystem services in the city. To overcome
these issues, appropriate measures need to be taken.

From the viewpoint of urban sustainability of the study area, government policies related to
urban development need to further be improved to overcome issues that arise due to the SUHI effect.
Past research has shown that urban parks and urban forests can mitigate LST in Seoul [36]. Further,
improvements of green belts along roads can be considered, as well as the composition of as many
green walls and roofs in future urban constructions as possible. Past research has also shown that
green belts, walls, and roofs can mitigate the SUHI effect [13]. Additionally, they can improve LULC
policies that relate to green-belt development [66]. According to our results, the increase of forest
cover in 2017 indicated that the current LULC policies related to the green belt are active. Urban green
network concepts such as urban forests, school forests, street trees, forest parks, and landscape forests
were also included in Korean Urban Forest Policies [61,62]. Further, urban planners can promote the
concept of satellite towns to mitigate urban construction related to housing facilities [55]. City planners
should also further promote vertical urban developments as a space-conserving technique [67]. All
these activities result from reducing LST and producing a cool-island effect that improves the natural
air-circulation process to make a comfortable living atmosphere for the urban community. All these
approaches allow sustainable urban development, which is in line with the goals of the 2030 agenda
for sustainable development [56].

Finally, the authors would like to emphasize some of the light limitations of the study. By
increasing the number of Landsat images in the summer season for a given year, it is possible to retrieve
spatial and temporal information more preciously than by using a single image. But it is not possible to
select multiple Landsat images in the summer season for a given year due to atmospheric distortions in
the images mainly because of cloud cover. The previous studies also emphasized the same limitation
in different Asian cities [16,18,51,68]. The timeframes 1996, 2006, and 2017 were selected based on the
availability of the images as per the requirements stated in Section 2.2 by with the above-mentioned
difficulty. Also, we understand that there are some other factors also affecting for LST other than LULC
such as wind speed, surface moisture, humidity, and intensity of solar radiation. Because, the factors
were not stable or stationary in the selected three time points. Therefore, the results were discussed
with the focus on the spatial pattern of LST and its influence on the SUHI rather than the absolute
values of LST or in other words a temporal pattern. Topographical factors such as surface height also
influence for the difference of LST, but we did not consider in this study. By all means, the results were
interpreted in the above-mentioned light limitations.

5. Conclusions

This study examined the effect of SUHI with its magnitude and trend in the city of Seoul and its
surroundings as a geospatial study by using temporal Landsat data. For this purpose, we analyzed
the relative variation of LST with LULC rather than absolute values along the gradient zones and
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different directions of the study area. It was observed that IS has expanded, and the SUHI effect
was more penetrating in the study area, with a considerable loss of green surfaces along with the
rapid urbanization of the study area. IS showed an increasing pattern, 37.2% to 50.5%, from the total
land extent of the study area during the 21 years with 1355.5 ha/per year. This resulted from the
increased temperature of the GZ1 by 6.4 ◦C. The mean LST difference between GZ1 and GZ109 showed
an increasing pattern, from 4.6 ◦C in 1996 to 6.0 ◦C in 2017. We observed that the fraction of NAIS had
a strong negative relationship with mean LST, and it has resulted in a declining SUHI in the study
area. Crossover comparison results showed that FS recorded the relatively lowest temperature than
the other LULC categories, and the second-lowest mean LST recorded in NAIS in 2006 and 2017.

Results proved that the local climate of Seoul and its surroundings were affected by the SUHI
effect. Therefore, urban planners of the city of Seoul should seriously consider the issue and plan to
mitigate the effect by improving the green surfaces of the city. Authors recommend to improve the
urban greening concept that controls the effect of the SUHI. Considering all these, the authors conclude
that the overall results of the study can be applied as a proxy indicator for the sustainability of Seoul
and its surroundings.
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Appendix A

Table A1. Error matrix for the 1996 LULC classification.

Classified Data
Reference Data

Total User Accuracy (%)
FS IS WB OL

Forest surface (FS) 134 3 0 9 146 91.78
Impervious surface (IS) 0 200 1 10 211 94.79

Water bodies (WB) 1 0 16 1 18 88.89
Other lands (OL) 2 6 1 116 125 92.80

Total 137 209 18 136 500
Producer accuracy (%) 97.81 95.69 88.89 85.29

Overall Accuracy = 93.20%.

Table A2. Error matrix for the 2007 LULC classification.

Classified Data
Reference Data

Total User Accuracy (%)
FS IS WB OL

Forest surface (FS) 138 1 1 3 143 96.50
Impervious surface (IS) 6 245 2 7 260 94.23

Water bodies (WB) 0 0 14 1 15 93.33
Other lands (OL) 4 5 0 73 82 89.02

Total 148 251 17 84 500
Producer accuracy (%) 93.24 97.61 82.35 86.90

Overall Accuracy = 94.00%.
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Table A3. Error matrix for the 2017 LULC classification.

Classified Data
Reference Data

Total User Accuracy (%)
FS IS WB OL

Forest surface (FS) 161 6 1 2 170 94.71
Impervious surface (IS) 8 259 2 4 273 94.87

Water bodies (WB) 0 1 16 0 17 94.12
Other lands (OL) 1 2 0 37 40 92.50

Total 170 268 19 43 500
Producer accuracy (%) 94.71 96.64 84.21 86.05

Overall Accuracy = 94.60%.
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