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Abstract

Longitudinal designs provide a strong inferential basis for uncovering reciprocal effects or

causality between variables. For this analytic purpose, a cross-lagged panel model (CLPM)

has been widely used in medical research, but the use of the CLPM has recently been criti-

cized in methodological literature because parameter estimates in the CLPM conflate

between-person and within-person processes. The aim of this study is to present some

alternative models of the CLPM that can be used to examine reciprocal effects, and to illus-

trate potential consequences of ignoring the issue. A literature search, case studies, and

simulation studies are used for this purpose. We examined more than 300 medical papers

published since 2009 that applied cross-lagged longitudinal models, finding that in all stud-

ies only a single model (typically the CLPM) was performed and potential alternative models

were not considered to test reciprocal effects. In 49% of the studies, only two time points

were used, which makes it impossible to test alternative models. Case studies and simula-

tion studies showed that the CLPM and alternative models often produce different (or even

inconsistent) parameter estimates for reciprocal effects, suggesting that research that relies

only on the CLPM may draw erroneous conclusions about the presence, predominance,

and sign of reciprocal effects. Simulation studies also showed that alternative models are

sometimes susceptible to improper solutions, even when reseachers do not misspecify the

model.

Introduction

Collecting longitudinal data has become widely popular in medical research and other disci-

plines due to its statistical advantages over cross-sectional data. One of the biggest advantages

of using a longitudinal design is that it can provide richer information for statistical inference

aimed at uncovering reciprocal effects or causality between variables to answer questions

such as how change (or growth, development) in one variable affects that of the other. More

than 30 years ago, Nesselroade and Baltes [1] reviewed the benefits and drawbacks of using
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longitudinal data in psychology, noting that revealing causes (determinants) of intra-individ-

ual change is one of the major strengths of longitudinal data. Likewise, in the econometrics lit-

erature, Hsiao [2] argued that panel (i.e., longitudinal) data is effective for inferring dynamic

relations between variables.

One of the most common methods for addressing reciprocal effects in medical research

is use of a cross-lagged panel model (CLPM; Duncan [3]; also known as a dynamic panel

model, autoregressive cross-lagged model, cross-lagged path model, or cross-lagged regression

model), especially after the CLPM was integrated into the framework of structural equation

modeling (e.g., Finkel [4], Marsh and Yeung [5]). In these models, reciprocal effects are exam-

ined by testing the cross-lagged relations, which are the effect of variable X on variable Y after

controlling for the previous effects of X.

The CLPM is a simple and powerful model to test reciprocal effects, and thus it has been

widely used. However, the application of the CLPM has also recently been criticized. Notably,

Hamaker, Kuiper, and Grasman [6] criticized the use of the CLPM because the cross-lagged

estimates in the CLPM conflate between-person and within-person processes, and so the

results do not represent the actual within-person relations over time. Between-person relations

are the covariation of two variables in terms of individual differences (e.g., individuals with

higher X tend to have higher Y relative to individuals with lower X), whereas within-person

relation are the covariation within one person of two variables across time points or situations.

Obviously, these two types of relations are conceptually different. As such, the fact that esti-

mates from traditional CLPM conflate between-person and within-person relations means

that the cross-lagged estimates from the CLPM are conceptually difficult to interpret. Indeed,

the importance of disaggregation to examine within-person processes has been widely

acknowledged in the methodological literature (Curran & Bauer [7]; Hamaker [8]; Hoffman &

Stawski [9]). Relying on the CLPM may draw erroneous conclusions regarding the presence,

predominance, and sign of reciprocal effects as well as about causality. Therefore, the CLPM

can be a possible option when within-person variances are negligible, or when researchers are

not interested in uncovering within-person relations because predicting/forecasting outcomes

is the main analytic purpose.

To address this inherent problem with the CLPM, Hamaker et al [6] proposed a random-

intercepts CLPM (RI-CLPM) as a possible analytic option. As discussed later, in the RI-CLPM,

individual differences are effectively controlled by the inclusion of a latent variable that repre-

sents a time-invariant (but person-variant) trait-like factor; this allows testing the reciprocal

effects within individuals. If this model is extended to include measurement errors, the model

is equivalent to a so-called (bivariate) stable trait autoregressive trait and state (STARTS)

model (Kenny & Zautra [10, 11]). Usami, Murayama, and Hamaker [12] discussed the mathe-

matical and conceptual relations between various cross-lagged models, including these

models.

These recent studies are insightful and informative, providing applied medical researchers a

basis for thinking about how to test within-person reciprocal effects by longitudinal data.

However, the arguments are limited mostly to mathematical and conceptual relations. As a

result, we still know little about whether, when, and how the choice of different cross-lagged

longitudinal models has substantive consequences for parameter estimates of (within-person)

reciprocal effects in practice, leading researchers to draw different conclusions from the same

data in medical sciences. The aim of the current manuscript is to show the importance of

considering these alternative models and the potential problems in current practices to infer

reciprocal effects. This is approached through a literature search, case studies, and statistical

simulations. In the literature search, we first investigate the current common practice of longi-

tudinal research in the medical literature, showing that medical researchers rely heavily and
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almost exclusively on the traditional CLPM, and do not consider potential alternative models.

Such reliance on the traditional CLPM makes it difficult to infer within-person reciprocal

effects. Then, with case studies and statistical simulations, we illustrate the potential danger of

this common practice (i.e., applying only the CLPM), showing it can result in mistaken con-

clusions about reciprocal effects. In the end, we also provide some practical guidelines, hoping

to help applied medical researchers who work on longitudinal data in the future.

Cross-lagged longitudinal models

In this paper, we focus on three cross-lagged longitudinal models: the (traditional) CLPM, the

RI-CLPM, and the STARTS model. Below, following Usami et al, [12] we describe these mod-

els by emphasizing the commonalities and differences among these cross-lagged models.

Throughout the paper, we assume that researchers are interested in the reciprocal effect

between two variables X and Y, although it is easy to expand the models in a way that include

more than two variables (e.g., when examining mediating effects of variables is a main focus of

the research).

CLPM

Let xit and yit be the measurements at time point t (1 . . . t . . . T) for individual i (1 . . . i . . . N).

In the CLPM, xit and yit are first modeled as

xit ¼ mxt þ x�it;

yit ¼ myt þ y�it:
ð1Þ

Here μxt and μyt are the temporal group means at time point t; x�it and y�it are temporal deviation

terms from the temporal group means for individual i. With these equations, the trajectories of

the temporal group mean are implicitly removed from the raw data. By definition, the devia-

tions have a mean of zero. Then, xit and yit for t� 2 are modeled as

x�it ¼ bxtx�iðt� 1Þ
þ gxty�iðt� 1Þ

þ dxit;

y�it ¼ byty�iðt� 1Þ
þ gytx�iðt� 1Þ

þ dyit;
ð2Þ

where βxt and βyt are autoregressive parameters and γxt and γyt are cross-lagged regression

parameters at time point t. For these parameters, time-invariance can also be assumed (by

using βx and βy, and γx and γy) if the cross-lagged relations are assumed to be stable over time.

Note that with t = 1, the initial observations xi1 and yi1 are modeled as exogenous variables

(i.e., their variances and covariance are assumed).

From the view of Granger causality (Granger [13]), estimates of cross-lagged regression

parameters (the longitudinal relation between Yt−1 and Xt after controlling for the baseline

Xt−1) are key for inferring reciprocal effects between the variables. The residuals dxit and dyit
are usually assumed to be normally distributed and correlated:

dxit

dyit

 !

� N
0

0

 !

;
o2

xt

oxyt o2
yt

 ! !

: ð3Þ

Here, o2
xt and o2

yt are time-variant residual variances and ωxyt is a time-variant residual covari-

ance. As with previous parameters, time-invariant residual variances and covariances can also

be assumed (by using o2
x, o

2
y , and ωxy). A path diagram of the CLPM is provided in Fig 1a.

Modeling reciprocal effects in medical research

PLOS ONE | https://doi.org/10.1371/journal.pone.0209133 September 27, 2019 3 / 26

https://doi.org/10.1371/journal.pone.0209133


Fig 1. Path diagrams of cross-lagged models. (a) the CLPM. (b) the RI-CLPM. (c) the STARTS model.

https://doi.org/10.1371/journal.pone.0209133.g001
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Residuals and error covariances and variance and covariances between trait factors are all

omitted for clarity of presentation. Variances and covariance of latent true scores at t = 1 (i.e.,

exogeneous variables) are also omitted for the same purpose. Means of trait factors are set to

zero in the RI-CLPM and the STARTS model. In all three cross-lagged models, means are

modeled through temporal group means (μxt and μyt).

RI-CLPM

In the RI-CLPM (Hamaker et al [6]), xit and yit are modeled as

xit ¼ mxt þ Ixi þ x�it

yit ¼ myt þ Iyi þ y�it:
ð4Þ

Again, μxt and μyt are the temporal group means. Notably, the model also includes Ixi and Iyi,
which are the defining characteristic of the RI-CLPM. These are (time-invariant) trait factors

that represent individual’s trait-like deviations from temporal group means. Trait factors Ixi
and Iyi have means of 0 and variance–covariance matrix V. By accounting for trait factor

scores, for each individual, x�it and y�it represent temporal deviations from the means of that

individual because they are subtracted from the expected scores of individual i (i.e., μxt + Ixi
and μyt + Iyi). Accordingly, in the RI-CLPM, the time series x�it and y�it can be considered as

within-person fluctuation. Due to this statistical property in temporal deviations, at t = 1 the

initial deviation terms (x�i1 and y�i1) are assumed to be uncorrelated with the trait factors. Using

these within-person deviation terms, in the RI-CLPM the cross-lagged relations are modeled

as in the Eq 2 for t� 2. A path diagram of the RI-CLPM is provided in Fig 1b.

Because the RI-CLPM accounts for trait factors and then separates stable between-person

differences (i.e., trait factors) from within-person fluctuations over time, cross-lagged relations

in the RI-CLPM can be considered as the one pertaining to a process that takes place at the

within-person level. Therefore, in the RI-CLPM, γx and γy can be interpreted as the quantity

that express the extent to which the two variables influence each other within individuals.

Because longitudinal data typically include both quantitative information of within-person

changes and its individual differences, the CLPM, which does not account for trait factors (i.e.,

individual differences), fails to disaggregate these two components. As such, the CLPM pro-

vides inaccurate estimates for within-person reciprocal effects.

Note that when substituting the cross-lagged relations of Eq 2 into Eq 4, the trait factors,

which are separated from independent variables (x�iðt� 1Þ
and y�iðt� 1Þ

), can obviously be inter-

preted as random intercepts in the model. The model is named after this statistical fact. Obvi-

ously, the CLPM is a special case of the RI-CLPM, found by letting Ixi = 0 and Iyi = 0 (i.e., trait

factors variances are zero). The RI-CLPM requires two or more variables to have been mea-

sured at three or more time points, while the CLPM requires only two time points.

STARTS model

By extending the RI-CLPM to include measurement error, we obtain the STARTS model

(Kenny & Zautra [10, 11]). In the (bivariate) STARTS model, yit and xit are decomposed into

latent true scores fxit and fyit and measurement errors �xit and �yit. That is,

xit ¼ fxit þ �xit

yit ¼ fyit þ �yit:
ð5Þ

These measurement errors are usually assumed to be normally distributed and possibly

Modeling reciprocal effects in medical research

PLOS ONE | https://doi.org/10.1371/journal.pone.0209133 September 27, 2019 5 / 26

https://doi.org/10.1371/journal.pone.0209133


correlated, that is,

�xit

�yit

 !

� N
0

0

 !

;
c

2

xt

cxyt c
2

yt

 ! !

: ð6Þ

Here, c
2

xt and c
2

yt are measurement error variances, and ψxyt is an error covariance. If needed,

time-invariant measurement error (co)variances can be assumed. As in the RI-CLPM, fxit and

fyit are modeled as

fxit ¼ mxt þ Txi þ f �xit

fyit ¼ myt þ Tyi þ f �yit:
ð7Þ

Here, f �xit and f �yit are the terms expressing temporal deviation from the expected scores of indi-

vidual i, with accounting for measurement error.

Substituting the Eq 7 into the Eq 5 provides the specification of the STARTS model:

xit ¼ mxt þ Txi þ f �xit þ �xit

xit ¼ myt þ Tyi þ f �yit þ �yit:
ð8Þ

As in Eq 2, temporal deviation terms are modeled as

f �xit ¼ bxtfxiðt� 1Þ þ gxtfyiðt� 1Þ þ dxit

f �yit ¼ bytfyiðt� 1Þ þ gytfxiðt� 1Þ þ dyit:
ð9Þ

A path diagram of the STARTS model is provided in Fig 1c. Although measurement errors are

not assumed in the CLPM or RI-CLPM, the STARTS model and the RI-CLPM share a com-

mon critical feature—the inclusion of trait factors. As such, like the RI-CLPM, cross-lagged

parameters (γxt and γyt) in the STARTS model reflect within-person reciprocal effects. The

STARTS model requires two or more variables to have been measured at four or more time

points. This means that we can compare RI-CLPM and the STARTS to determine which of

these models fits better to the data so long as more than three waves are available.

When observations may be influenced by measurement errors occurring for procedural

reasons, accounting for measurement errors is desirable. However, the specification of mea-

surement error when there is only one indicator variable (such as in the STARTS model)

sometimes involves costs in terms of parameter estimation. Indeed, research has reported that

the STARTS model often encounters estimation problems such as improper solutions and

non-convergence. Conceptually, one primary reason is the fact that unlike trait factor vari-

ances (v2) and residual variances (o2
t ), the contribution from measurement error variances

(c
2

t ) is temporal: in the model-implied variance-covariance matrix, c
2

t appears at time point t
only. Because of this, unstable estimates of some parameters (particularly autoregressive

parameters) caused by some aspects of the research design (e.g., small sample size) can easily

inflate the variances of the deviation terms (x�t ; y
�
t ), increasing the risk of obtaining negative

estimates of c
2

t .

Therefore, previous studies have also proposed models that incorporate multiple indicators

(rather than a single indicator) to represent latent variables (see Cole et al [14]; Luhmann,

Schimmack, & Eid [15]). In addition, research has also suggested the utility of a Bayesian

approach to avoid unstable parameter estimation (Lüdtke, Robitzsch, & Wagner [16]).
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Review of the literature

Method

To investigate recent trends in the use of cross-lagged longitudinal models in medical research,

we conducted a literature search through the UTokyo REsource Explorer (TREE; http://tokyo.

summon.serialssolutions.com/) web search engine in June of 2017. TREE aggregates informa-

tion from many major databases (e.g., Web of Science, PubMed, PsycINFO, Engineering Vil-

lage, ERIC, JSTOR) and electronic journals under contract with The University of Tokyo.

TREE summarizes this collection of information in a single search window, allowing us to per-

form more comprehensive and efficient literature search than by using the individual data-

bases separately. We first used the English keywords “cross lagged model” and “cross lagged

relation”, searching English papers published since 2009 in medical journals. In addition, we

limited our search to only peer-reviewed papers. Therefore, news items, book reviews, and

doctoral dissertations were not considered.

We found 323 medical papers by this method. Of these, we excluded 53 papers that did

not apply any cross-lagged longitudinal models to actual data, leaving us with 270 papers.

Most of the excluded papers were review papers, statistical simulations, or methodological

and statistical discussion. Table 1 lists the papers retained for the investigation (authors, pub-

lication year, journal, the number of time points). Full references are available in Table A in

S1 File.

Result

Among 270 papers, 106 (= 39%) papers collected longitudinal data at two time points, 89

(= 33%) papers collected data with three waves, 36 (= 13%) with four waves, 16 (= 6%) papers

with five waves, and 24 (= 9%) at more than five time points. The proportion for two time

points (= 39%) is close to the one reported by Hamaker et al [6] (= 45%) in the field of psychol-

ogy. With regard to the statistical analysis they performed, 257 papers (= 95%) used the CLPM

to analyze longitudinal data, and one paper used a model similar to the RI-CLPM (see Telley

et al, 2015 in Table 1; this model does not assume autoregressive parameters). Other papers

applied different models, such as an autoregressive latent trajectory model (Poirier et al, 2016),

a latent change score model (LCS; Baydar and Akcinar, 2018; Natsukai et al, 2013; Occhipinti

et al, 2015; Usami et al, 2015), a model similar to the latent curve model with structured residu-

als (Baams et al, 2015; Mustillo et al, 2012; Williams et al, 2011), or a fixed-effects regression

model (Baesemer et al, 2016; a model similar to the LCS). For the mathematical and conceptual

relations between these models, see Usami et al. [12] Five papers used a multilevel-model

framework (Arnett et al, 2016; Cooley et al, 2018; Daniel et al, 2018; Fuller-Tyszkiewicz et al,

2015; Kashdan et al, 2014) to account for individual differences in parameters of the cross-

lagged model (see General discussion on this point). Note that no research applied the

STARTS model, and few studies compared analysis results from different cross-lagged models

(one exception is a methodological paper of Usami et al, 2015, which compared analysis results

from the LCS model and the CLPM).

These results indicate the heavy reliance on the traditional CLPM in the literature. It is also

important to note that alternative cross-lagged longitudinal models (e.g., the RI-CLPM and

the STARTS model) require at least three time points (with a stability assumption; the STARTS

model requires at least four time points with an instability assumption) to fit the model (for

the ALT model, we need four time points with a stability assumption). Unfortunately, almost

40% of the papers collected data with only two time points, indicating many applied medical

research implicitly precludes the option of using these alternative models.
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Table 1. The list of 271 papers that applied cross-lagged models.

ID Authors Year Journal the number of time point (T)

1 Adachi & Willoughby 2016 Child development 4

2 Andrade 2014 Journal of Adolescence 2

3 Arnett et al. 2012 Journal of Abnormal Child Psychology 4

4 Arnett et al. 2016 Journal of Child Psychology and Psychiatry 10

5 Ayalon et al. 2016 Psychology and Aging 3

6 Baams et al. 2015 Archives of Sexual Behavior 3

7 Baesemer et al. 2016 Journal of Abnormal Child Psychology 8

8 Banerjee et al. 2011 Child Development 3

9 Baydar & Akcinar 2018 Journal of Abnormal Child Psychology 5

10 Beaujean et al. 2013 Social Psychiatry and Psychiatric Epidemiology 2

11 Bekkhus et al. 2011 Journal of Abnormal Child Psychology 4

12 Bennett et al. 2015 Journal of Child Psychology and Psychiatry 3

13 Bentley et al. 2013 Quality of Life Research 4

14 Best et al. 2015 Journal of the American Geriatrics Society 2

15 Birkeland et al. 2016 International Archives of Occupational and Environmental Health 2

16 Bohlmann et al. 2015 Child Development 3

17 Bolhuis et al. 2014 Psychological Medicine 2

18 Bolhuis et al. 2017 Journal of the American Academy of Child and Adolescent Psychiatry 2

19 Bondü et al. 2016 Journal of Adolescence 2

20 Bonvanie et al. 2016 Pain 2

21 Bourque et al. 2016 Journal of the American Academy of Child & Adolescent Psychiatry 4

22 Boyes et al. 2014 Journal of Abnormal Child Psychology 2

23 Boylan et al. 2010 Journal of the American Academy of Child & Adolescent Psychiatry 3

24 Breeman et al. 2015 Journal of Abnormal Child Psychology 3

25 Brière et al. 2014 Comprehensive Psychiatry 3

26 Brinke et al. 2017 Journal of Abnormal Child Psychology 4

27 Brown et al. 2011 Journal of Aging and Health 2

28 Burns et al. 2016 Annals of Behavioral Medicine 5

29 Calvete et al_1 2015 Journal of Child and Family Studies 2

30 Calvete et al_2 2015 Journal of Adolescence 3

31 Chang & Shaw 2016 Child Psychiatry and Human Development 2

32 Chen et al. 2012 Journal of Child Psychology and Psychiatry 4

33 Chen et al. 2015 PLoS ONE 2

34 Cheng et al. 2016 Child: Care, health and development 2

35 Chi et al. 2014 AIDS and Behavior 3

36 Choi et al. 2012 Tobacco Control 10

37 Christensen & Knardahl 2012 Pain 2

38 Conway et al. 2017 Child Psychiatry and Human Development 2

39 Cooley et al. 2018 Journal of Abnormal Child Psychology 3

40 Cowlishaw et al. 2013 Aging & Society 2

41 Crocetti et al. 2016 PLoS ONE 6

42 Crocetti et al. 2017 Child Development 5

43 Crosnoe et al. 2012 Journal of Health and Social Behavior 2

44 Dakanalis et al. 2015 European Child & Adolescent Psychiatry 2

45 Dakanalis et al. 2016 Journal of Clinical Psychology 2

46 Daniel et al. 2014 Journal of Adolescence 3

47 Daniel et al. 2018 Child Development 3

(Continued)
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Table 1. (Continued)

ID Authors Year Journal the number of time point (T)

48 Danzo et al. 2017 Journal of Adolescence 4

49 Das & Sawin 2016 Archives of Sexual Behavior 2

50 De Laet et al. 2014 Child Development 3

51 de Leeuw et al. 2011 Pediatrics 3

52 de Wilde et al. 2016 Journal of Abnormal Child Psychology 3

53 Dempsy et al. 2016 Journal of Clinical Psychology in Medical Settings 2

54 Deschenes et al. 2016 Journal of Diabetes 4

55 Diamantopoulou et al. 2011 Europian Child & Adolscent Psychiatry 5

56 Ding et al_1 2014 BMC Neuroscience 2

57 Ding et al_2 2014 Behavioral and Brain Functions 2

58 Doane et al. 2016 Journal of Religion and Health 3

59 Eggers et al. 2017 AIDS and Behavior 2

60 Fabbri et al. 2015 Journals of Gerontology: Biological Sciences 3

61 Faller et al. 2017 Psycho-oncology 2

62 Fanti & Munoz Centifanti 2014 Child Psychiatry & Human Development 2

63 Fátima et al. 2014 Journal of Abnormal Child Psychology 4

64 Feldt et al. 2016 Scandinavian Journal of Work, Environment & Health 5

65 Fielder et al. 2014 Journal of Sex Research 4

66 Fletcher & Johnson 2016 Journal of Child and Family Studies 2

67 Flouri et al. 2015 Child: Care, health and development 3

68 Flouri et al. 2016 Journal of Abnormal Child Psychology 3

69 Flournoy et al. 2016 Child Development 2

70 Foti et al. 2010 American Journal of Psychiatry 5

71 Freedman et al. 2015 European Journal of Psychotraumatology 2

72 French et al. 2014 Child Development 3

73 Frijins et al. 2010 Journal of Adolescence 4

74 Fuller-Tyszkiewicz et al. 2015 Journal of Adolescence 34

75 Garbarski 2014 Journal of Health and Social Behavior 9

76 Garon-Carrier et al. 2016 Child Development 3

77 Gershoff et al. 2012 Child Development 2

78 Giard et al. 2016 Journal of Abnormal Child Psychology 2

79 Girard et al. 2017 European Child and Adolescent Psychiatry 4

80 Girard et al. 2014 PLoS ONE 5

81 Good et al. 2017 Psychiatry Research 2

82 Goodman et al. 2014 Infant Mental Health Journal 3

83 Greven et al. 2012 Journal of Child Psychology and Psychiatry 2

84 Greven et al. 2011 Journal of Abnormal Child Psychology 2

85 Gudmundsson et al. 2015 Acta Psychiatrica Scandinavica 3

86 Gutenbrunner et al. 2018 Journal of Abnormal Child Psychology 3

87 Hale et al. 2011 Journal of Child Psychology and Psychiatry 3

88 Hale III et al. 2016 European child and adolescent psychiatry 6

89 Hall et al. 2015 PLoS ONE 3

90 Hallett et al. 2010 American Journal of Psychiatry 2

91 Hamama-Raz et al. 2015 European Journal of Cancer Care 2

92 Hannigan et al. 2017 Journal of Child Psychology and Psychiatry 2

93 Hanson et al. 2016 PLoS ONE 4

94 Hanson et al. 2017 Scandinavian Journal of Work, Environment & Health 4

(Continued)
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Table 1. (Continued)

ID Authors Year Journal the number of time point (T)

95 Harlaar et al. 2011 Child Development 2

96 Harris et al. 2015 Child Development 5

97 Harvey et al. 2016 Journal of Abnormal Psychology 4

98 Henchoz et al. 2014 Quality of Life Research 2

99 Hiemstra et al. 2013 PLoS ONE 5

100 Hietanen et al. 2016 Ageing & Society 4

101 Hill et al. 2013 Journal of Adolescence 2

102 Hinnant et al. 2013 Child Development 3

103 Hipwell et al. 2011 Journal of Child Psychology and Psychiatry 9

104 Holmes et al. 2016 Journal of Abnormal Child Psychology 4

105 Hopwood et al. 2010 Psychological Medicine 6

106 Houkes et al. 2011 BMC Public Health 3

107 Howarth et al. 2016 Child development 4

108 Huizink et al. 2014 Journal of Psychosomatic Obstetrics & Gynecology 3

109 Husby & Wichstrom 2017 Journal of Abnormal Child Psychology 4

110 Huyghebaert et al. 2016 International Journal of Stress Management 2

111 Ibrahim et al. 2009 Social Science & Medicine 3

112 In-Albon et al. 2017 Child Psychiatry and Human Development 3

113 Jackson & Cunningham 2017 Preventive Medicine 5

114 Jäggi et al. 2016 Journal of Adolescence 4

115 Jansen et al. 2013 Pediatrics 4

116 Kashdan et al. 2014 Archives of Sexual Behavior 21

117 Keijsers et al. 2012 Child Development 3

118 Keles et al. 2017 Journal of Abnormal Child Psychology 3

119 Kilian et al. 2012 Social Psychiatry and Psychiatric Epidemiology 3

120 Kim et al. 2018 Child Development 3

121 Kimonis et al. 2015 Journal of Abnormal Child Psychology 3

122 Kiviruusu et al. 2016 PLoS ONE 4

123 Klass et al. 2017 Psychological Medicine 8

124 Klimstra et al. 2014 Social Psychiatry and Psychiatric Epidemiology 4

125 Kochel et al. 2012 Child Development 3

126 Koen et al. 2012 Journal of Adolescent Health 2

127 Koleck et al. 2017 Quality of Life Research 2

128 Konttinen et al. 2014 International Journal of Obesity 3

129 Kuijpers et al. 2015 Journal of Child and Family Studies 2

130 Kuja-Halkola et al. 2015 Journal of Child Psychology and Psychiatry 4

131 Labhart et al. 2017 Behavioral Medicine 2

132 Lange et al. 2017 Child & Adolescent Mental Health 5

133 Lanz & Tagliabue 2014 Journal of Adolescence 2

134 Lavigne et al. 2015 Journal of Abnormal Child Psychology 3

135 Leadbeater & Jacqueline 2015 Journal of Abnormal Child Psychology 7

136 Leadbeater et al. 2009 Child Development 4

137 Lewis et al. 2014 European Child & Adolescent Psychiatry 2

138 Li & Zhang 2015 Social Science & Medicine 3

139 Liat et al. 2009 Child Development 2

140 Lifshitz-Vahav et al. 2017 Aging & Mental Health 2

141 Lindwall et al. 2011 Health Psychology 2

(Continued)
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Table 1. (Continued)

ID Authors Year Journal the number of time point (T)

142 Liu et al. 2016 Journal of Health and Social Behavior 2

143 Loukas 2009 Journal of Abnormal Child Psychology 2

144 Lowe et al. 2014 Journal of Abnormal Psychology 3

145 Lucy et al. 2013 Journal of Adolescence 2

146 Luengo Kanacri et al. 2017 Child Development 2

147 Luo et al. 2012 Social Science & Medicine 3

148 Luyckx et al. 2012 Journal of Adolescent Health 2

149 Luyckx et al. 2010 Diabetes Care 4

150 Magee et al. 2014 Acta Pædiatrica 3

151 Mannering et al. 2011 Child Development 2

152 Marschall-Lévesque et al. 2017 Journal of Adolescent Health 3

153 Marshall et al. 2014 Child Development 2

154 Marsiglio et al. 2014 Journal of Child & Adolescent Trauma 2

155 Martinent & Nicolas 2017 International Journal of Stress Management 2

156 Martz et al. 2016 JAMA Psychiatry 3

157 Masquillier et al. 2015 AIDS and Behavior 2

158 Mauno et al. 2011 International Archives of Occupational and Environmental Health 3

159 McAdams et al. 2014 Journal of Adolescence 3

160 McAdams et al. 2015 Psychological Medicine 3

161 Meier et al. 2015 Family Practice 2

162 Micalizzi et al. 2016 Journal of Abnormal Child Psychology 2

163 Miller et al_1 2017 Journal of Abnormal Child Psychology 3

164 Miller et al_2 2017 Psychoneuroendocrinology 3

165 Mitchison et al. 2015 PLoS ONE 5

166 Moberg et al. 2011 Behavior Genetics 2

167 Mrug et al. 2009 Journal of Abnormal Child Psychology 2

168 Muratori et al. 2016 Comprehensive Psychiatry 3

169 Murphy et al. 2017 Journal of Clinical Psychology 3

170 Mustillo et al. 2012 Journal of Health and Social Behavior 9

171 Natsukai et al. 2013 Child Development 2

172 Neece et al. 2012 American Journal on Intellectual and Developmental Disabilities 7

173 Negriff et al. 2015 Journal of Adolescent Health 3

174 Newland et al. 2015 Journal of Child and Family Studies 3

175 Nielsen et al. 2017 International Archives of Occupational and Environmental Health 2

176 Nishiguchi et al. 2016 Psychiatry Research 2

177 Occhipinti et al. 2015 PLoS ONE 6

178 Olesen et al. 2013 BMC Psychiatry 9

179 Paek et al, 2016 Annals of Behavioral Medicine 3

180 Palosaari et al. 2013 Journal of Abnormal Psychology 3

181 Palosaari et al. 2016 Journal of Abnormal Child Psychology 3

182 Pastorelli et al. 2016 Journal of Child Psychology and Psychiatry 2

183 Patalay et al. 2015 Journal of Child Psychology and Psychiatry 3

184 Pearl et al. 2014 Journal of Child and Family Studies 4

185 Peter et al. 2016 Social Science & Medicine 2

186 Pettersson et al. 2011 BMC Public Health 2

187 Peyre et al. 2016 BMC Psychiatry 2

188 Pickard et al. 2017 Journal of the American Academy of Child and Adolescent Psychiatry 3

(Continued)
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Table 1. (Continued)

ID Authors Year Journal the number of time point (T)

189 Poirier et al. 2016 European Child & Adolescent Psychiatry 5

190 Pössel & Black 2014 Journal of Clinical Psychology 3

191 Preckel et al. 2013 Journal of Adolescence 3

192 Priest et al. 2017 BMC Psychiatry 2

193 Rappe 2009 Journal of Abnormal Child Psychology 2

194 Rawal et al. 2014 Journal of Child Psychology and Psychiatry 2

195 Rhodes et al. 2015 Annals of Behavioral Medicine 3

196 Ribeiro et al. 2011 BMC Pediatrics 2

197 Richardson et al. 2011 Social Psychiatry and Psychiatric Epidemiology 2

198 Richie et al. 2015 Child Development 5

199 Richter et al. 2015 International Archives of Occupational and Environmental Health 2

200 Rivas-Drake et al. 2017 Child Development 3

201 Rommel et al. 2015 PLoS ONE 3

202 Ruttle et al. 2015 Psychoneuroendocrinology 3

203 Salihovic et al. 2012 Journal of Abnormal Child Psychology 4

204 Savage et al. 2015 Journal of the American Academy of Child & Adolescent Psychiatry 4

205 Senste et al. 2017 Journal of Abnormal Child Psychology 3

206 Seymour et al. 2014 Journal of Abnormal Child Psychology 3

207 Shaffer et al. 2013 Journal of Abnormal Child Psychology 6

208 Shields & Beaver 2011 Journal of Adolescent Health 2

209 Shimazu et al. 2009 Social Science & Medicine 3

210 Skalická et al. 2015 Child Development 2

211 Solberg et al. 2016 Psychological Medicine 3

212 Song et al. 2012 Helthcare Informativs Research 3

213 Spanos et al. 2010 Journal of Abnormal Psychology 3

214 Spilt et al. 2014 Child Development 4

215 Stavrakakis et al. 2012 Journal of Adolescent Health 3

216 Stinglhamber et al. 2015 PLoS ONE 2

217 Stratton et al. 2014 The Journal of Pain 3

218 Sturaro et al. 2011 Child Development 4

219 Sutin & Zonderman 2012 Psychological Medicine 2

220 Szabo et al. 2014 Journal of Crohn’s and Colitis 4

221 Tabri et al. 2015 Psychological Medicine 104

222 Tang et al. 2009 Ageing International 2

223 Taylor et al. 2013 Psychological Medicine 2

224 Taylor et al. 2014 Journal of Autism and Developmental Disorders 2

225 Telley et al. 2015 Journal of Health and Social Behavior 3

226 Teppers et al. 2014 Journal of Adolescence 2

227 Tiet et al. 2010 Journal of Child and Family Studies 2

228 Tiggelman et al. 2015 Quality of Life Research 3

229 Timmermans et al. 2010 Psychological Medicine 7

230 Ting-Lan & Bellmore 2012 Journal of Abnormal Child Psychology 3

231 Trucco et al. 2014 Journal of Child Psychology and Psychiatry 2

232 Tsai et al. 2017 Journal of Abnormal Child Psychology 2

233 Tseng et al. 2015 Journal of Abnormal Child Psychology 3

234 Tucker et al_1 2013 Journal of Adolescent Health 2

235 Tucker et al_2 2013 Journal of Adolescent Health 4

(Continued)
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Case studies

Method

To compare analysis results based on different cross-lagged longitudinal models, we focused

on the 165 papers that collected longitudinal data with more than two time points. Among

these papers, we randomly selected 50 papers and using the contact information provided in

each of the paper we contacted the corresponding authors of the papers via email to request

they share the dataset to help our research. In this contact, we emphasized that (1) our primary

research purpose is simply to compare analysis results from different cross-lagged models, not

to criticize their findings, (2) we would not provide any estimation results from the original

Table 1. (Continued)

ID Authors Year Journal the number of time point (T)

236 Usami et al. 2015 Multivariate Behavioral Research 6

237 Van Dorn et al. 2017 Psychological Medicine 11

238 van Dulmen et al. 2012 Journal of Adolescent Health 3

239 van Zalk & Tillfors 2017 Child and Adolescent Psychiatry and Mental Health 3

240 Vanhalst et al. 2013 Journal of Abnormal Child Psychology 5

241 Vaz et al. 2014 PLoS ONE 2

242 Vella et al. 2017 Medicine and Science in Sports and Exercise 2

243 Vitezova et al. 2015 Maturitas 2

244 von Salisch et al. 2017 Journal of Abnormal Child Psychology 2

245 von Stumm & Deary 2013 Psychology and Aging 2

246 Voss et al. 2016 European Journal of Ageing 2

247 Waller et al. 2015 Journal of Abnormal Child Psychology 2

248 Wang & Fredricks 2014 Child Development 3

249 Wang & Kenny_1 2014 Journal of Abnormal Child Psychology 3

250 Wang & Kenny_2 2014 Child Development 2

251 Wang et al. 2012 Child: Care, health and development 2

252 Webb et al. 2016 Journal of Adolescent Health 5

253 Weinstein et al. 2017 PeerJ 2

254 Welp et al. 2016 Critical Care 3

255 Whelan et al. 2015 Journal of Child Psychology and Psychiatry 2

256 Wichstrøm et al. 2016 Journal of Adolescence 4

257 Wickrama et al. 2010 Journal of Aging and Health 3

258 Williams et al. 2011 Child Development 7

259 Wolf et al. 2016 Psychological Medicine 2

260 Wolff 2011 Dyslexia 3

261 Wols et al. 2015 Journal of Adolescence 2

262 Wood et al. 2012 Child Development 7

263 Wouters et al. 2016 AIDS and Behavior 2

264 Yan & Dix 2014 Journal of Child Psychology and Psychiatry 4

265 Yu et al. 2015 Social Science & Medicine 9

266 Zahl et al. 2017 Pediatrics 3

267 Zavos et al. 2012 Behavior Genetics 2

268 Zhou et al. 2014 PLoS ONE 3

269 Zhou et al. 2015 Psychiatry Research 3

270 Zhu et al. 2017 Journal of Abnormal Child Psychology 3

271 van den Eijnden et al. 2010 Journal of Abnormal Child Psychology 2

https://doi.org/10.1371/journal.pone.0209133.t001
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paper or relevant information in the datasets to prevent identification of the source of the

paper, (3) we would not share the dataset with any other researchers, and that (4) we did not

need information about variables that are not relevant to cross-lagged analysis (e.g., personal

information of participants).

To increase response rates from authors, we contacted the authors after one month if we

had not received a reply from the first contact. As a result, we received a total of 21 responses

from the authors (response rate: 42%), and among them, five authors (from five different

papers) granted us access to their datasets. We were unable to obtain permissions from the

authors of the other 16 papers, mainly because sharing with us might have violated the data

sharing policy of their sources. To summarize the procedure for case studies as well as litera-

ture review so far, a flow diagram is provided in Fig 2. Among the five datasets, two datasets

were publicly available online without special permission from the authors, two datasets were

provided directly by the authors, and one dataset was provided after a review of the data use

Fig 2. Flow diagram for literature review and case studies.

https://doi.org/10.1371/journal.pone.0209133.g002
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agreement that we submitted. Note that one of the datasets provides us with the access only to

the sample means and sample (co)variances information (rather than the raw data), which

allowed us to estimate the parameters but not to fully account for missing data.

Among five datasets, two datasets have three time points and the others have more than

three time points (mean of the number of time points is 6.0). The average sample size of these

datasets is large (= 2, 741). In this paper, we do not give the exact number of participants and

time points for each study to prevent the identification of the studies. While all five studies

applied CLPM, some of them specified the model in slightly different ways. Specifically, two

studies assumed second-order autoregressive and cross-lagged parameters as well as first-

order parameters. Another study assumed a mediator between two variables. In addition,

one study assumed time-invariant parameters (i.e., stability), while the other four studies did

not.

To ensure the comparability of the results between datasets, in the current analysis, we

assume time-invariant parameters for autoregressive and cross-lagged coefficients (β and γ)

and residual and error (co)variances (ω2 and ψ2). In addition, neither second-order parameters

nor external variables (e.g., mediators) were included in any of the analyses. This setup also

means that the results reported in the current paper are all different from those reported in the

original papers. Note that one study collected multi-group data and applied the CLPM using

multi-group analysis. For this dataset, we assumed group-invariant parameters for autoregres-

sive and cross-lagged coefficients as well as residual and error (co)variances (i.e., measurement

invariance between groups) while setting no constraints on the difference of temporal means

between groups.

All analyses were conducted using Mplus version 7.4 (Muthen & Muthen [17]). However,

we found improper solutions (i.e., negative variance for trait factor or singular Hessian matrix

was produced) and non-convergence in four of the five datasets when using maximum likeli-

hood (ML) estimation to fit the RI-CLPM or the STARTS model. One potential reason is that

large auto-regressive parameters might have adversely affected the risk of obtaining negative

estimates of trait factor variances (as well as other variances) of these models. In such cases, we

instead used Bayes estimation, based on a Markov chain Monte Carlo method under the

assumption of non-informative priors. With Bayes estimation, we obtained parameter esti-

mates successfully without any convergence problems. For more detailed discussion about ML

and Bayes estimation in terms of estimation problems in applying the STARTS model, see

Lüdtke, Robitzsch, & Wagner [16].

Result

Table 2 provides (unstandardized) autoregressive/cross-lagged parameter estimates and stan-

dard errors for the CLPM, the RI-CLPM, and the STARTS model. Except for the cross-lagged

parameter estimates in Research 2, all autoregressive/cross-lagged parameter estimates with

the CLPM were statistically significant with two-sided α = .05. This can be partly attributed to

the large sample sizes in these datasets, which increased the statistical power.

Although the RI-CLPM and the STARTS model also showed significant estimates in most

cases, ĝx is not statistically significant in Research 4, while it is significant with the CLPM.

Another different result is that the sign of ĝx in the STARTS model was different from that

with the CLPM in Research 3.

We also found notable differences in the magnitudes of parameter estimates among cross-

lagged models. The RI-CLPM provided smaller autoregressive parameter estimates (b̂) than

the CLPM did (approximately 0.49 times the size), while the STARTS model provided larger

estimates on average (approximately 1.45 times the size).
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The relation between parameter estimates from different cross-lagged longitudinal models

must depend in complicated ways on the magnitude of the parameter values and on research

design factors (e.g., N and T), and we need to be careful when generalizing the findings. But,

one potential explanation for the increased autoregressive parameters in the STARTS model is

the dissociation of measurement errors in the model because the autoregressive parameters

are the major source of correlations (i.e., the variance–covariance matrix) between time points.

For the RI-CLPM, in contrast, the decreased autoregressive parameter estimates may be a con-

sequence of trait factors, which would explain a large portion of the correlations between time

points.

The differences in estimates of autoregressive parameters between the RI-CLPM and the

STARTS model also lead to differences between their cross-lagged parameter estimates and

those found by the CLPM. In this case study, the RI-CLPM and the STARTS model showed

smaller cross-lagged estimates (in absolute value, 0.66 and 0.62 times the size, respectively)

from those with the CLPM. Although we need to be careful about the generalizability of find-

ings, it is well-known that the magnitude of within-cluster (in this case, within-person) rela-

tions (i.e., cross-lagged parameters in the RI-CLPM and the STARTS model) is smaller than

those of between-cluster (in this case, between-person) relations, when the between-cluster dif-

ference is larger than the within-cluster difference. The decreased cross-lagged effects could be

explained by this so-called ecological fallacy (Robinson [18]).

With regard to standard errors, interestingly, the standard errors of ĝ in the RI-CLPM and

the STARTS model are, on average, 1.6 and 2.7 times, respectively, the size of those with the

CLPM. These results indicate that the inclusion of parameters that are specific to these models

(i.e., trait factor (co)variances in the RI-CLPM and those and error (co)variances in the

STARTS model) leads to an increase in standard errors. In combination with the observed

upward or downward changes in autoregressive and cross-lagged parameter estimates, these

results indicate that the RI-CLPM and the STARTS model will produce substantially different

results on statistical tests than the CLPM will.

It is also important to note that, among the five datasets, the CLPM was chosen as the

best model in terms of model fit only once, when the Bayesian Information Criterion was

used in Research 2. This result indicates that many previous studies that applied only the

CLPM may have drawn erroneous conclusions about the magnitude and presence of recipro-

cal effects.

The results described here indicate the importance of comparing alternative models when

testing for reciprocal effects, and the potential (in most cases, unintended) consequences of

not considering multiple models. However, one might be concerned about the generalizability

of the results due to the small number of studies (i.e., five) presented here. Another important

issue is the improper solutions observed in two of the five datasets when applying the STARTS

model. To address these issues more extensively, we conducted two statistical simulation stud-

ies, one focusing on the frequency of improper solutions and the other focusing on parameter

estimates. Although the previous case studies indicated that these models could produce

largely different parameter estimates, to the best of our knowledge, no previous research has

performed statistical simulation that directly compared the parameter estimates (and associ-

ated standard errors) produced by different cross-lagged longitudinal models we discussed

here (i.e., the CLPM, the RI-CLPM, and the STARTS model). In addition, although some past

studies have examined the frequency of improper solutions, focusing especially on the

STARTS model (e.g., Cole et al [14]; Lüdtke et al [16]), no studies have systematically investi-

gated the differences of longitudinal models used and examined the potential impact of model

misspecification. Our statistical simulation also aims to extend the previous studies by address-

ing these points.
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Simulation study

Frequency of improper solutions

To systematically investigate the rate of improper solutions under various conditions, we per-

formed Monte Carlo simulations, where both data generation model and analysis models were

selected from the three models we have discussed, resulting in 9 (= 3 × 3) combinations of data

generation and analysis models. This way, we can examine the potential influence of model

misspecification (as well as the correct model specification) on improper solutions. For sim-

plicity of the simulations, the stability of parameters was assumed.

For data generation, we systematically changed the number of total participants (N = 200,

600, 1, 000), the number of time points (T = 4, 6, 8), and the size of autoregressive parameters

(β = βx = βy = 0.5, 0.7, 0.9). In this simulation, cross-lagged parameters γ were all fixed to 0.2.

For the STARTS model, measurement error variances were set to

(c
2
¼ c

2

x ¼ c
2

y ¼ 0:2; 0:5; 0:8). For the other models, ψ2 is always set to zero. Variances of the

temporal deviation terms at the first time point (Varðx�i1Þ and Varðy�i1Þ), which are equivalent

to those of observations in case of the CLPM, were fixed to 1 − ψ2. The size of β reflects the

determination coefficients in cross-lagged regressions. For models with trait factors (i.e., the

RI-CLPM and the STARTS model), we posited normal distribution for the trait factors and

their variances were set to the half size of those of temporal deviation terms at the first time

point (i.e., to Varðx�i1Þ=2 and Varðy�i1Þ=2).

Without loss of generality, the temporal group means were set to μxt = μyt = t − 1 for each

time point. Correlation of the trait factors was set to 0.2. Correlation of temporal deviation

terms at the first time point was set to 0.2, and in the STARTS model (time-invariant) correla-

tions between measurement errors were set to 0.2. Finally, residual variances were fixed to

o2 ¼ o2
x ¼ o

2
y ¼ 0:2, and correlation of residuals between variables was fixed to 0.2 for each

time point.

We generated simulated data (200 trials for each combination) by crossing these factors,

resulting in 81 (= 3(N) × 3(T) × 3(β) × 3(ψ2)) combinations of factors for each pair of data gen-

eration model and data analysis model. Each simulated dataset was analyzed by the three types

of analysis models, and we counted the number of improper solutions, which was defined as

(1) out-of-range parameter estimates (e.g., negative variances parameters) or (2) a singular

approximate Hessian matrix after termination of iteration. The whole simulation procedure,

including data generation and analysis, was conducted in R (R Core Team [19]) using the

lavaan (Rosseel [20]) package with the ML estimation method. Simulation code is available in

S1 File.

Table 3 presents the marginal proportions (i.e. proportion after aggregating across all the

other factors) of improper solutions observed with each data analysis model under each level

of the factors we manipulated. We mainly inspected marginal proportions in order to have an

overall grasp of the factors that relate to the frequency of improper solutions. When the CLPM

is used for analysis, it did not show improper solutions under any conditions. When CLPM is

used for data generation, Table 3 shows that RI-CLPM and the STARTS model showed very

large proportions of improper solutions (in the range of 40%-100%). Notably, in cases of the

STARTS model, which posited measurement error (co)variances and residuals, 90% of the

results exhibited improper solutions.

Interestingly, the manipulated factors, such as the number of total participants (N) and

number of time points (T) did not influence the results much. These results indicate that the

impact of model misspecification dominates the risk of improper solutions, with the factors

being manipulated playing a much smaller role. The same pattern was observed with different
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data generation models. Model misspecification was the biggest cause of improper solutions,

and the STARTS model especially produced a higher number of improper solutions. One par-

ticularly important observation is that improper solutions were still observed in the STARTS

model even when the model was correctly specified. Indeed, the proportion of improper

solutions was unacceptably high, at more than 70%. Note that, even compared with previous

investigations (Cole et al [14]; Lüdtke et al [16]), our simulations showed larger number of

improper solutions. This might be attributed to differences in the stability of measurements

between the current simulations and the simulations in the previous studies. Instead of con-

trolling the residual variances, the variances of all variables were set to 1 in the simulations of

both Cole et al [14] and Lüdtke et al, [16], while we did not do this in the current investigation.

In most of the current simulation conditions the variances of variables are implicitly assumed

to increase over time, as is often the case with longitudinal data of developmental changes and

growths. Standard latent growth model (LGM) also implicitly has that assumption (e.g., in lin-

ear LGM, variance of true score increases over time). Thus, the relative impacts of trait factor

variances, (time-invariant) measurement error variances, and residual variances on observa-

tions become smaller at later time points, increasing the risk of out-of-range estimates in these

variance estimates. Another important difference is that such previous investigations have

considered univariate (rather than bivariate) version of the STARTS model. The bivariate ver-

sion of the STARTS model, which we simulated in the current study, might have a bigger risk

of improper solutions caused by a singular Hessian matrix.

For correctly specified models, the RI-CLPM showed smaller proportions of improper solu-

tions than the STARTS model, especially when sample size and the number of time points

were larger. However, the proportion of improper solutions was still not negligible (at 10–

15%). Therefore, although the RI-CLPM and the STARTS model can be considered as alterna-

tives to the CLPM when investigating within-person reciprocal effects, these models might be

susceptible to improper solutions, especially in the presence of model misspecification.

Statistical properties of estimates

To investigate the statistical properties of cross-lagged parameter estimates in each cross-

lagged longitudinal model, we performed another Monte Carlo simulation. As in the previous

Table 3. Marginal proportions of improper solutions observed at each data analysis model under each level of the

factors.

Data generation model

CLPM RI-CLPM STARTS

Analysis model CLPM RI-CLPM STARTS CLPM RI-CLPM STARTS CLPM STARTS CLPM

β = 0.5 .00 .66 .95 .00 .01 .98 .00 .00 .71

β = 0.7 .00 .59 .99 .00 .08 1.00 .00 .00 .89

β = 0.9 .00 .67 1.00 .00 .05 1.00 .00 .20 .94

ψ2 = 0.2 .00 .65 .98 .00 .05 .98 .00 .00 .84

ψ2 = 0.5 .00 .64 .99 .00 .04 1.00 .00 .00 .82

ψ2 = 0.8 .00 .63 .98 .00 .05 1.00 .00 .20 .88

N = 200 .00 .65 .98 .00 .11 1.00 .00 .07 .90

N = 400 .00 .64 .98 .00 .05 1.00 .00 .07 .87

N = 800 .00 .63 .98 .00 .02 .99 .00 .07 .83

N = 1600 .00 .64 .98 .00 .01 .99 .00 .07 .78

T = 4 .00 .64 .98 .00 .10 .98 .00 .01 .75

T = 6 .00 .63 .98 .00 .03 1.00 .00 .09 .81

T = 8 .00 .64 .99 .00 .01 1.00 .00 .11 .98

https://doi.org/10.1371/journal.pone.0209133.t003
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simulation, the data generation model and analysis model were selected from the three types

of models. For data generation, we systematically changed the number of total participants

(N = 200, 600, 1, 000), the number of time points (T = 4, 6, 8), and the size of autoregressive

parameters (β = βx = βy = 0.5, 0.7) and cross-lagged parameters (γ = γx = γy = 0.0, 0.1, 0.2).

Other parameters were the same as in the previous simulation.

We generated simulated data (100 trials for each combination) by crossing these factors,

resulting in 162 (= 3(N) × 3(T) × 2(β) × 3(γ) × 3(ψ2)) combinations of factors for each pair of

data generation model and data analysis model. Each simulated dataset was analyzed by the

three types of analysis models. In this simulation, when improper solutions (e.g., out-of-range

parameter estimates or a singular approximate Hessian matrix) were observed, the results

were discarded and the simulations were repeated until the total number of successful trials

was 100 for each condition. The whole simulation procedure, including data generation and

analysis, was conducted in R (R Core Team [19]) using the lavaan (Rosseel [20]) package with

the ML estimation method. Simulation code is available in S1 File.

From the results of the previous simulation, we expected a large proportion of improper

solutions when applying the RI-CLPM and the STARTS model (especially when the analysis

model was misspecified), which would indicate that the parameter estimates in these models

might be substantially biased by discarding results with improper solutions. Therefore, we lim-

ited our attention here mainly to the differences in the standard errors of the cross-lagged

parameters estimates between models. Standard errors might be less influenced by the occur-

rence of improper solutions, given that improper solutions are mainly caused by the magni-

tude of point estimates (e.g., out-of-range parameter estimates or a singular approximate

Hessian matrix) rather than the magnitudes of associated standard errors Comparing the mag-

nitudes of standard errors among models is useful because this might suggest the reason why

inconsistent results are obtained among models in testing statistical significance of cross-

lagged parameters, as we will discuss later.

Table 4 presents the marginal means (i.e. means aggregated across all of the other factors)

of estimated standard errors for different data generation models and analysis models.

Table 4. Marginal means of standard errors estimated at each model.

Data generation model

CLPM RI-CLPM STARTS

Analysis model CLPM RI-CLPM STARTS CLPM RI-CLPM STARTS CLPM RI-CLPM STARTS

γ = 0 0.02 0.03 0.08 0.01 0.03 0.12 0.02 0.03 0.41

γ = 0.1 0.02 0.03 0.09 0.01 0.03 0.13 0.02 0.03 0.40

γ = 0.2 0.02 0.03 0.10 0.01 0.03 0.15 0.02 0.03 0.42

β = 0.5 0.02 0.03 0.06 0.01 0.03 0.09 0.02 0.03 0.32

β = 0.7 0.02 0.03 0.12 0.01 0.03 0.18 0.02 0.03 0.50

ψ2 = 0.2 0.01 0.03 0.06 0.01 0.03 0.08 0.02 0.03 0.12

ψ2 = 0.4 0.02 0.03 0.08 0.01 0.03 0.13 0.02 0.03 0.30

ψ2 = 0.6 0.02 0.03 0.13 0.01 0.03 0.18 0.02 0.03 0.82

N = 200 0.02 0.04 0.14 0.02 0.04 0.20 0.03 0.04 0.67

N = 600 0.01 0.02 0.07 0.01 0.02 0.11 0.02 0.02 0.35

N = 1000 0.01 0.02 0.06 0.01 0.02 0.09 0.01 0.02 0.22

T = 4 0.02 0.04 0.11 0.02 0.04 0.16 0.02 0.04 0.53

T = 6 0.02 0.02 0.08 0.01 0.02 0.12 0.02 0.03 0.39

T = 8 0.01 0.02 0.08 0.01 0.02 0.12 0.02 0.02 0.32

https://doi.org/10.1371/journal.pone.0209133.t004
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From Table 4, as we have observed from the five case studies, standard errors in the

RI-CLPM and the STARTS model tend to be larger than those in the CLPM in most cases. Spe-

cifically, the standard errors were 1.3–2.6 times the size of the CLPM in the RI-CLPM and 3.3–

38.7 times the size in the STARTS model. The standard errors decrease as T and N increase in

cross-lagged models. In addition, β and ψ2, which relate to the (relative) magnitudes of mea-

surement error variances, explain the magnitudes of the estimated standard errors in the

STARTS model. Although these estimated standard errors in the RI-CLPM and the STARTS

model might be somewhat biased by discarding the results with improper solutions, Table 4

provides an important suggestion for practice: when the true model is either the RI-CLPM or

the STARTS model, standard errors with the CLPM tend to be smaller than those with other

models, indicating that (incorrectly) applying the CLPM without comparing alternative mod-

els runs a great risk of committing a type-1 error when statistically testing for reciprocal

effects.

Tables 5, 6 and 7 shows the marginal means of the proportions of models reaching consis-

tent/inconsistent conclusions about the statistical significance of cross-lagged parameters for

different data generation models and analysis models.

From these tables, it is obvious that different models tend to show inconsistent results (in

terms of statistical significance) for cross-lagged parameters when γ 6¼ 0. Notably, when they

show different results, in most cases only the simpler model (the CLPM being compared with

the RI-CLPM and the STARTS model; the RI-CLPM being compared with the the STARTS

model) showed a significant result. Note that the influences of T and N vary depending on the

data generation models and analysis models, and when γ = 0 models tend to converge to agree-

ment more frequently. Note, however, that our simulations used relatively small values for

Table 5. Marginal means of proportions that models suggest consistent/inconsistent conclusions about reciprocal relations (CLPM vs RI-CLPM).

Data generation model

CLPM RI-CLPM STARTS

Analysis

model

both non-

sig

STARTS

only

RI-CLPM

only

both

sig

both non-

sig

STARTS

only

RI-CLPM

only

both

sig

both non-

sig

STARTS

only

RI-CLPM

only

both

sig

γ = 0 0.94 0.01 0.04 0.01 0.92 0.01 0.07 0.00 0.92 0.03 0.04 0.01

γ = 0.1 0.01 0.00 0.46 0.53 0.07 0.02 0.38 0.53 0.31 0.02 0.51 0.16

γ = 0.2 0.00 0.00 0.20 0.80 0.00 0.00 0.18 0.82 0.06 0.00 0.53 0.40

β = 0.5 0.32 0.00 0.15 0.52 0.34 0.02 0.12 0.52 0.47 0.02 0.27 0.23

β = 0.7 0.31 0.00 0.31 0.37 0.32 0.00 0.30 0.38 0.38 0.01 0.46 0.15

ψ2 = 0.2 0.31 0.00 0.25 0.43 0.32 0.02 0.21 0.45 0.38 0.02 0.33 0.27

ψ2 = 0.4 0.32 0.00 0.25 0.44 0.33 0.01 0.21 0.45 0.43 0.01 0.38 0.18

ψ2 = 0.6 0.32 0.00 0.21 0.47 0.33 0.01 0.20 0.45 0.48 0.02 0.38 0.12

N = 200 0.32 0.00 0.36 0.32 0.38 0.02 0.29 0.32 0.56 0.02 0.32 0.10

N = 600 0.32 0.00 0.19 0.49 0.31 0.01 0.20 0.49 0.39 0.01 0.39 0.21

N = 1000 0.31 0.00 0.15 0.53 0.31 0.00 0.14 0.55 0.34 0.01 0.38 0.27

T = 4 0.32 0.00 0.44 0.24 0.36 0.01 0.40 0.24 0.48 0.02 0.45 0.05

T = 6 0.31 0.00 0.18 0.50 0.32 0.01 0.16 0.51 0.43 0.01 0.38 0.18

T = 8 0.31 0.00 0.08 0.60 0.31 0.01 0.07 0.60 0.37 0.02 0.26 0.35

“both non-sig” indicates that both models showed non-significant estimates for cross-lagged relations.

“RI-CLPM only” indicates that only the RI-CLPM showed significant estimates for cross-lagged relations.

“CLPM only” indicates that only the CLPM showed significant estimates for cross-lagged relations.

“both sig” indicates that both models showed significant estimates for cross-lagged relations.

https://doi.org/10.1371/journal.pone.0209133.t005
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Table 6. Marginal means of proportions that models suggest consistent/inconsistent conclusions about reciprocal relations (CLPM vs STARTS).

Data generation model

CLPM RI-CLPM STARTS

Analysis

model

both non-

sig

STARTS

only

RI-CLPM

only

both

sig

both non-

sig

STARTS

only

RI-CLPM

only

both

sig

both non-

sig

STARTS

only

RI-CLPM

only

both

sig

γ = 0 0.82 0.13 0.04 0.01 0.86 0.07 0.07 0.01 0.94 0.01 0.05 0.00

γ = 0.1 0.01 0.00 0.77 0.22 0.08 0.01 0.81 0.09 0.32 0.00 0.67 0.01

γ = 0.2 0.00 0.00 0.79 0.21 0.00 0.00 0.91 0.09 0.06 0.00 0.93 0.01

β = 0.5 0.30 0.02 0.44 0.24 0.32 0.03 0.53 0.12 0.49 0.00 0.49 0.01

β = 0.7 0.25 0.07 0.62 0.06 0.31 0.02 0.66 0.01 0.39 0.00 0.61 0.00

ψ2 = 0.2 0.23 0.08 0.42 0.26 0.28 0.06 0.52 0.14 0.39 0.01 0.59 0.02

ψ2 = 0.4 0.28 0.03 0.55 0.13 0.32 0.02 0.62 0.04 0.44 0.00 0.56 0.00

ψ2 = 0.6 0.31 0.01 0.62 0.06 0.34 0.00 0.64 0.02 0.50 0.00 0.50 0.00

N = 200 0.29 0.03 0.57 0.11 0.37 0.03 0.55 0.05 0.58 0.00 0.42 0.00

N = 600 0.27 0.05 0.52 0.16 0.29 0.03 0.62 0.07 0.40 0.00 0.59 0.01

N = 1000 0.26 0.06 0.51 0.17 0.28 0.03 0.62 0.08 0.35 0.00 0.64 0.01

T = 4 0.32 0.00 0.65 0.02 0.36 0.00 0.63 0.01 0.50 0.00 0.50 0.00

T = 6 0.26 0.06 0.50 0.18 0.30 0.04 0.58 0.08 0.44 0.00 0.55 0.00

T = 8 0.24 0.08 0.44 0.24 0.28 0.04 0.58 0.10 0.38 0.00 0.60 0.01

“both non-sig” indicates that both models showed non-significant estimates for cross-lagged relations.

“STARTS only” indicates that only the STARTS showed significant estimates for cross-lagged relations.

“CLPM only” indicates that only the CLPM showed significant estimates for cross-lagged relations.

“both sig” indicates that both models showed significant estimates for cross-lagged relations.

https://doi.org/10.1371/journal.pone.0209133.t006

Table 7. Marginal means of proportions that models suggest consistent/inconsistent conclusions about reciprocal relations (RI-CLPM vs STARTS).

Data generation model

CLPM RI-CLPM STARTS

Analysis

model

both STARTS only RI-CLPM only both sig both STARTS only RI-CLPM only both sig both STARTS only RI-CLPM only both sig

γ = 0 0.84 0.14 0.01 0.01 0.91 0.08 0.01 0.00 0.96 0.01 0.04 0.00

γ = 0.1 0.44 0.03 0.34 0.19 0.44 0.01 0.45 0.10 0.82 0.00 0.17 0.01

γ = 0.2 0.19 0.00 0.59 0.21 0.18 0.00 0.73 0.09 0.59 0.00 0.40 0.01

β = 0.5 0.44 0.03 0.30 0.23 0.42 0.03 0.43 0.12 0.74 0.00 0.24 0.01

β = 0.7 0.54 0.08 0.33 0.04 0.60 0.02 0.37 0.01 0.84 0.00 0.16 0.00

ψ2 = 0.2 0.45 0.11 0.20 0.24 0.47 0.06 0.33 0.14 0.70 0.01 0.27 0.02

ψ2 = 0.4 0.52 0.04 0.31 0.12 0.53 0.02 0.41 0.04 0.80 0.00 0.20 0.00

ψ2 = 0.6 0.51 0.02 0.43 0.05 0.53 0.01 0.45 0.01 0.86 0.00 0.14 0.00

N = 200 0.63 0.05 0.23 0.09 0.64 0.03 0.29 0.05 0.88 0.00 0.12 0.00

N = 600 0.45 0.06 0.34 0.15 0.48 0.03 0.43 0.07 0.78 0.00 0.21 0.01

N = 1000 0.40 0.06 0.37 0.16 0.42 0.03 0.48 0.07 0.71 0.00 0.28 0.01

T = 4 0.75 0.00 0.22 0.02 0.75 0.00 0.23 0.01 0.94 0.00 0.06 0.00

T = 6 0.43 0.07 0.34 0.16 0.44 0.04 0.44 0.08 0.81 0.00 0.19 0.00

T = 8 0.30 0.10 0.38 0.22 0.34 0.05 0.52 0.10 0.62 0.01 0.36 0.01

“both non-sig” indicates that both models showed non-significant estimates for cross-lagged relations.

“STARTS only” indicates that only the STARTS showed significant estimates for cross-lagged relations.

“RI-CLPM only” indicates that only the RI-CLPM showed significant estimates for cross-lagged relations.

“both sig” indicates that both models showed significant estimates for cross-lagged relations.

https://doi.org/10.1371/journal.pone.0209133.t007
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trait factor variances and measurement error variances, and as in the previous simulation, this

may have contributed to the results that simpler models were favored. For example, a larger

size of β indicates relative smaller impact of trait factor variances over time, which might have

made parameter estimates somewhat unstable.

Note that when the true model is either the RI-CLPM or the STARTS model, (mostly, nega-

tive) biased point estimates were observed even when models were correctly specified. Mar-

ginal means of (standardized) point estimates and corresponding biases for different data

generation models and analysis models are provided in Table B in S1 File. Although we have

to take care about possible biased results here as a consequence of discarding the results when

improper solutions were produced, in applying the RI-CLPM and the STARTS model, this

simulation clearly demonstrates that statistical tests of cross-lagged effects can often show sub-

stantially inconsistent results, regardless of the number of participants or time points, espe-

cially when cross-lagged relations are actually present. One primary source of this should be

the inflated standard errors of cross-lagged parameter estimates, as observed earlier.

Tables 8 and 9 shows the marginal means of the proportions of models preferred by infor-

mation criteria (Akaike Information Criterion: AIC, and Bayesian Information Criterion:

BIC) under different data generation models and analysis models.

With both AIC and BIC, when the true model was the STARTS model, the RI-CLPM was

preferred in most of the cases. When the true model was the RI-CLPM, the CLPM was often

preferred. It should be noted, however, again that there may be a bias in the results as we dis-

carded the results with improper solutions and our simulations used relatively small values for

trait factor variances and measurement error variances.

General discussion

In this manuscript, we discussed the importance of considering alternative models such as the

RI-CLPM and the STARTS model to infer reciprocal effects, and presented potential problems

of applying commonly-used CLPM (specifically, the conflation of between-person and within-

person effects). Through a literature search, case studies, and statistical simulations, we showed

the current predominance of the CLPM for testing cross-lagged effects in the medical literature

Table 8. Marginal means of the proportions of models preferred by Akaike Information Criterion.

Data generation model

CLPM RI-CLPM STARTS

Analysis model CLPM RI-CLPM STARTS CLPM RI-CLPM STARTS CLPM RI-CLPM STARTS

γ = 0 0.91 0.08 0.00 0.46 0.53 0.00 0.00 0.98 0.02

γ = 0.1 0.93 0.07 0.00 0.42 0.58 0.00 0.00 0.98 0.02

γ = 0.2 0.95 0.04 0.00 0.41 0.59 0.00 0.00 0.99 0.01

β = 0.5 0.92 0.07 0.01 0.09 0.91 0.00 0.00 0.98 0.02

β = 0.7 0.94 0.06 0.00 0.78 0.22 0.00 0.00 0.99 0.01

ψ2 = 0.2 0.93 0.06 0.01 0.35 0.65 0.00 0.00 0.99 0.00

ψ2 = 0.4 0.93 0.06 0.00 0.44 0.56 0.00 0.00 0.99 0.01

ψ2 = 0.6 0.92 0.08 0.00 0.50 0.50 0.00 0.00 0.97 0.03

N = 200 0.94 0.06 0.00 0.46 0.54 0.00 0.00 0.98 0.01

N = 600 0.93 0.07 0.00 0.42 0.58 0.00 0.00 0.98 0.02

N = 1000 0.93 0.07 0.00 0.41 0.59 0.00 0.00 0.98 0.02

T = 4 1.00 0.00 0.00 0.55 0.45 0.00 0.00 1.00 0.00

T = 6 0.94 0.06 0.00 0.40 0.59 0.00 0.00 0.99 0.01

T = 8 0.86 0.14 0.01 0.34 0.66 0.00 0.00 0.97 0.03

https://doi.org/10.1371/journal.pone.0209133.t008
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and demonstrated the risk of drawing inconsistent conclusions depending on the model

tested. In addition, we showed the potential risk of improper solutions when applying alterna-

tive models (the STARTS model, in particular) with the ML method, especially when the

model is misspecified.

One important observation was that many researchers implicitly precluded the option of

using RI-CLPM or the STARTS model by collecting data from only two time points. Given the

substantially different results obtained from different models, we recommend that applied

researchers collect longitudinal data at more than two time points, even if the time lag between

occasions is set to be optimal to effectively capture the theoretical process (see Dormann & Grif-

fin [21] on this point). If we were to assume the instability of parameters across time points,

more than three time points are required to compare model fits between RI-CLPM and the

STARTS model. If collecting data from a larger number of time points, then performing model

selection based on model fit indices is an important step in minimizing the risk of drawing erro-

neous conclusions about reciprocal effects. Parameter estimation may be a serious obstacle,

though, especially when applying the STARTS model. Although improving research design (e.g.,

by choosing an appropriate sample size) is important, choosing a different estimation strategy,

such as Bayesian estimation (Lüdtke, Robitzsch, & Wagner [16]), and choosing a better specified

analysis model via model selection seems to be more useful. Future research should more inten-

sively investigate the utility of Bayesian estimation in applying various cross-lagged models.

One potential limitation of the alternative models is the large number of improper solutions

observed in our study. Although we acknowledge that large number of improper solutions

might be caused by the specific true parameter values used in our simulations, our results indi-

cate that, when researcher encounters improper solutions in applying the RI-CLPM and the

STARTS model, this might suggest the possibility of model misspecification. This is especially

the case in applying the RI-CLPM, because in this model, a dominant factor that caused

improper solutions was model misspecification (Table 3). However, we also observed that

alternative models produce improper solutions even when researchers do not misspecify the

true model. Future studies should examine how this is caused and effective ways to address the

problem.

Table 9. Marginal means of the proportions of models preferred by Bayesian Information Criterion.

Data generation model

CLPM RI-CLPM STARTS

Analysis model CLPM RI-CLPM STARTS CLPM RI-CLPM STARTS CLPM RI-CLPM STARTS

γ = 0 0.93 0.06 0.00 0.53 0.47 0.00 0.01 0.98 0.01

γ = 0.1 0.95 0.05 0.00 0.49 0.51 0.00 0.00 0.98 0.01

γ = 0.2 0.96 0.04 0.00 0.46 0.54 0.00 0.00 0.99 0.01

β = 0.5 0.94 0.05 0.00 0.15 0.85 0.00 0.00 0.98 0.02

β = 0.7 0.95 0.05 0.00 0.83 0.17 0.00 0.00 0.99 0.01

ψ2 = 0.2 0.95 0.05 0.00 0.41 0.59 0.00 0.00 0.99 0.00

ψ2 = 0.4 0.95 0.05 0.00 0.50 0.50 0.00 0.00 0.99 0.01

ψ2 = 0.6 0.94 0.06 0.00 0.57 0.43 0.00 0.01 0.96 0.03

N = 200 0.96 0.04 0.00 0.57 0.43 0.00 0.01 0.98 0.01

N = 600 0.94 0.06 0.00 0.47 0.53 0.00 0.00 0.98 0.01

N = 1000 0.94 0.06 0.00 0.44 0.56 0.00 0.00 0.98 0.01

T = 4 1.00 0.00 0.00 0.66 0.34 0.00 0.01 0.99 0.00

T = 6 0.96 0.04 0.00 0.45 0.55 0.00 0.00 0.99 0.01

T = 8 0.88 0.11 0.00 0.37 0.63 0.00 0.00 0.97 0.03

https://doi.org/10.1371/journal.pone.0209133.t009
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Some limitations should be noted. First, the RI-CLPM and the STARTS model assume that

autoregressive and cross-lagged parameters are fixed across participants, but we could incor-

porate random slopes for these effects. This would allow investigating the possible individual

differences in within-person reciprocal effects. Such a model can be easily implemented with a

multilevel modeling framework (e.g., Bringmann et al [22]; Schuurman, Ferrer, de Boer-Son-

nenschein, & Hamaker [23]; they both used the framework of multilevel vector autoregression

model). We suspect that such new models may be more susceptible to improper solutions

given the increased number of parameters and complicated covariance structure. Future inves-

tigations should provide clearer insights into how researchers can choose the appropriate anal-

ysis model in practice. A second point relates to the extension of the current discussion to

other statistical models. For example, medical researchers are often interested in testing media-

tion effects to understand the mechanism by which one variable influences another (e.g.,

Richiardi, Bellocco, & Zugna [24]; Ten Have & Joffe [25]; VanderWeele [26]), and they are

often assessed in a longitudinal design (e.g., Huang & Yuan [27]; Preacher [28]). The issue of

the current paper applies especially to longitudinal mediation models that include cross-lagged

relations (e.g., a dynamic autoregressive mediation model; Maxwell, Cole & Mitchell [29]). If

researchers fail to account for stable individual differences, then the estimated mediation

effects conflate between-person and within-person processes. The current discussion is useful

for considering possible alternatives when evaluating longitudinal mediation effects, and

investigating the statistical properties of estimates and the frequency of estimation problems

should be intriguing topics for future research. Finally, although the current study focused

only on the medical literature, future study should examine common practices for testing

reciprocal effects in other fields. This would give us more empirical insights into the similari-

ties and differences in these cross-lagged models.
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