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ABSTRACT Non-small-cell lung cancer (NSCLC) is the most common type of lung cancer, which accounts
for a proportion of nearly 85%. The increasing availability of genome-wide gene expression data has
facilitated the identification of gene signatures that are significant to the precise classification of NSCLC
subtypes and personalized treatment decisions. Unsupervised feature selection is an effective computational
technique for searching the most discriminative feature subset to distinguish different classes and find the
potential information embedded in biological data. In this study, we proposed a novel unsupervised feature
selection method to identify the gene signatures for NSCLC subtype classification based on gene expression
data. The proposed method incorporated linear discriminant analysis, adaptive structure preservation, and
l2,1-norm sparse regression into a joint learning framework for unsupervised feature selection to select the
informative genes. An effective algorithm was developed to solve the optimization problem in the proposed
method. Furthermore, we performed module-based gene filtering before feature selection to reduce the
computational cost. We evaluated the proposed method on a gene expression dataset of NSCLC from The
Cancer Genome Atlas (TCGA). The experimental results show that the proposed method identified a small
number of gene signatures for accurate NSCLC subtype classification. Enrichment analysis of the identified
gene signatures was also performed by summarizing the key biological processes.

INDEX TERMS Unsupervised feature selection, non-small-cell lung cancer, subtype classification.

I. INTRODUCTION
Lung cancer which is a highly lethal malignant disease has
become the leading cause of cancer-related death worldwide
[1]. Small-cell lung cancer (SCLC) and non-small-cell lung
cancer (NSCLC) are the twomain types of lung cancer, where
NSCLC accounts for a proportion of nearly 85% and has a
better prognosis than SCLC [2]. Despite recent therapeutic
advances, due to the lack of predictive biomarkers, patients
with NSCLC still suffer from bleak outcomes [3]. Many
studies have indicated that precise treatment can improve
the overall survival of individuals with NSCLC if the sub-
types can be identified correctly. It is important to develop
novel prognostic biomarkers for subtype classification and
treatment optimization in NSCLC.

Recent advances in genome-wide sequencing techniques
have enabled the generation of a large amount of gene
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expression profiles, which facilitate the identification of
gene signatures that are significant to the precise classifica-
tion of NSCLC subtypes and personalized treatment deci-
sions [4]. Many existing studies have addressed to extract
gene expression signatures for NSCLC subtype classification
including mRNA, miRNA, and lncRNA signatures [5]–[7].
However, directly using the gene profiles as the signatures for
NSCLC lung cancer subtype classification usually plagued
with redundant information [8].

To reduce the redundant information and remove the
useless genes, many feature ranking methods have been
applied to select the effective gene signatures [9]–[12].
T-score [13] and Relief-F [14] are two typical feature ranking
methods, which consider the genes as individual features and
select a set of signatures from the top-ranking for cancer
subtype classification. Recursive Feature Elimination (RFE)
is a popular feature selection algorithm, which is commonly
used with Support Vector Machines (SVM), i.e., SVM-RFE
method, to repeatedly construct a model and remove
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features with low weights [15]. Some variants of SVM-RFE,
e.g., by integrating gene expression level and correlation [16]
or pathway knowledge [17], have been proposed to alter the
ranking criterion [18]. Other method using both expression
and network information also has been developed to identify
genes that are better indicators for survival [19]. All the above
feature ranking methods are supervised, which need class
labels or related gene information to select the effective gene
signatures for cancer subtype classification.

Unsupervised learning has attracted much attention in
recent years, which looks for previously undetected patterns
in data without pre-existing labels. Clustering is one of the
main methods of unsupervised learning to discover useful
information hidden in data [20]. Similar to the clustering
methods, unsupervised feature selection has also been uti-
lized to select the informative features/genes which better
capture the interesting natural classes of samples [21], [22].

Two of the widely used unsupervised feature selection
methods are the filter and embedded methods. The filter
methods are simple and fast but ignore the possible feature
correlations. Typical filter methods include the max vari-
ance (MaxVar) method and the Laplacian score (LapScore)
method [23]. In contrast to the filter methods, the embedded
methods consider the correlation of features with a learn-
ing model simultaneously. A family of methods has been
developed to maintain the underlying data structure in the
embedded learning processes [24]. These important struc-
tures include the global structure [25], [26], the local struc-
ture [27], [28], and the discriminative information [29], [30].
However, in most existing unsupervised feature selection
methods, the calculation of preserved structures in the embed-
ded space involves all the irrelevant and relevant features,
thus the irrelevant features will have adverse effects on the
structure characterization for selecting the precise features.

In this study, to select the effective and precise gene
signatures for the NSCLC subtype classification, we pro-
posed a novel unsupervised feature selection method which
maintains the important data structure by using only the
selected features. The proposed method incorporated linear
discriminant analysis, adaptive structure preservation, and
l2,1-norm sparse regression into a joint learning framework
for unsupervised feature learning to select the informative
genes. In the proposed method, the global structure was cap-
tured by the discriminant analysis, and the local structure was
revealed by a probabilistic neighborhood graph using only
the relevant features. By utilizing l2,1-norm regularization
to impose row sparsity on the weight matrix, the proposed
method optimized for selecting the discriminative genes
that were informative for the NSCLC subtype classification.
We developed an effective algorithm to solve the optimization
problem in the proposedmethod. Furthermore, module-based
gene filtering was performed before unsupervised feature
selection to reduce the computational cost. We evaluated the
proposed method on a gene expression dataset of NSCLC
from The Cancer Genome Atlas (TCGA). The experimental
results demonstrate that the proposed method identified a

small number of gene signatures for accurate NSCLC sub-
type classification. We also performed an enrichment analy-
sis of the selected gene signatures by summarizing the key
biological processes.

II. ADAPTIVE UNSUPERVISED FEATURE SELECTION
A. NOTATIONS
The gene expression dataset is recorded as a data matrix
X = [x1, x2, . . . , xn]T ∈ Rn×m, where xi ∈ Rm denotes
the ith sample and n is the number of samples. By using
g1, g2,. . . , gm to denote the m genes, the data matrix can
also be denoted as X = [g1, g2, . . . , gm]. Unsupervised
feature selection is performed with the objective to select the
d (d < m) most informative genes that can distinguish the
samples originating from different classes.

Assume that the n samples are from c classes. Denote
L = [l1, l2, . . . , lc] ∈ {0, 1}n×c as the label matrix, where
li = [l1i, l2i, . . . , lni]T ∈ {0, 1}n×1 is a label vector related to
class i, i.e., lji = 1 if xj is in class i and lji = 0 otherwise.
The scaled class indicator matrix is defined and calculated as
F = [F1,F2, . . . ,Fn]T = L(LTL)−1/2.

For a matrix W = (wij) ∈ Rv×u, the l2,1-norm of W is
defined as

‖W‖2,1 =
∑v

i=1

√∑u

j=1
w2
ij. (1)

B. LINEAR DISCRIMINANT ANALYSIS
Linear discriminant analysis is to project the data matrix
X to a low-dimensional space by a linear transformation
matrixW . Thus, the data matrix is transformed toW TX in the
low-dimensional space. Let W = [w1, . . . ,wm]T ∈ Rm×q,
where wi is the ith row of W . The total scatter matrix St and
the between-cluster scatter matrix Sb are defined as [31]

St =
∑n

i=1
(xi − µ)(xi − µ)T = X̃ X̃T , (2)

Sb =
∑c

i=1
ni(µi − µ)(µi − µ)T = X̃FFT X̃T , (3)

where µ is the mean of the n samples, µi is the mean of the
samples in class i, ni is the number of samples in class i,
X̃ = XHn is the centered data matrix ofX byHn = I− 1

n1n1
T
n .

By minimizing the within-cluster distance and maximizing
the between-cluster distance in the lower dimensional space,
the objective function of linear discriminant is calculated
as

max
W

Tr((W T StW )−1W T SbW ). (4)

C. ADAPTIVE STRUCTURE PRESERVATION
Most existing methods preserve the local structure by con-
structing a k-nearest neighbor graph. However, the k-nearest
neighbor graph is constructed based on all the irrelevant and
relevant features, which make the captured local structure
to be inevitably affected by the irrelevant features. We con-
sidered to preserve the local structure by constructing a
probabilistic neighborhood graph based on only the relevant
features.
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Similar to the methods in [32], [33], we used the Euclidean
distance to calculate the probabilistic neighborhood. Assume
that xi is connected to xj with probability pij, 0 ≤ pij ≤ 1.
The probabilities of all samples being connected to xi satisfy∑n

j=1 pij = 1. Let P = (pij)n×n. pij can be calculated by
solving the following optimization problem.

min
0≤pij≤1,

∑n
j=1 pij=1

n∑
j=1

(‖xi − xj‖2pij + λp2ij), (5)

where λ is the regularization parameter. The regularization
term is used to add a prior uniform distribution and avoid
the trivial solution. Note that a small distance ‖xi − xj‖2

will lead to a high probability. Thus, pij should be large if
‖φ(xi)−φ(xj)‖2 is small. With such a nice property, the prob-
ability neighborhood can be used for local structure preser-
vation. That is, in the low- dimensional space W TX , the
probabilistic neighborhood can be preserved. Thus, we have

min
0≤pij≤1,

∑n
j=1 pij=1

n∑
j=1

(‖W T xi −W T xj‖2pij + λp2ij). (6)

D. PROPOSED METHOD
We proposed a novel unsupervised feature selection method
to select the informative genes for accurate NSCLC subtype
classification. The proposed method utilized adaptive struc-
ture preservation for unsupervised feature selection. Thus,
we referred to it as the AUFS method.

By incorporating linear discriminant analysis, adaptive
structure preservation, and l2,1-norm sparse regression into
a learning framework, the objective function of the proposed
AUFS method can be formulated as

min
W ,F,P

− Tr(W T SbW )+ α‖W‖2,1

+ β

n∑
j=1

(‖W T xi −W T xj‖2pij + λp2ij)

s.t. F ≥ 0,FTF = Ic,W T StW = I , 0 ≤ pij ≤ 1,
n∑
j=1

pij = 1, (7)

where α and β are two balanced parameters. F is constrained
to be nonnegative [25], and the condition of F = L(LTL)−1/2

is relaxed to FTF = Ic.W T StW = I is set to avoid the trivial
solution by constrainingW to be uncorrelated with respect to
St [34].
The term ‖W‖2,1 in (7) is set to ensure that W is sparse

in rows. The ith row wi corresponds to the weight of gene gi.
Thus, the sparsity constraint on rows makes W suitable for
gene selection [31]. Each gene is ranked according to ‖wi‖2
in descending order and the top genes will be selected.

E. OPTIMIZATION ALGORITHM
It is difficult to derive the closed solution of the optimization
problem in (7) directly, since it contains three differ-
ent variables with different regularizations and constraints.
We developed an iterative algorithm to convert the problem

into three sub-problems by updating one variable while fixing
the other two variables.

We replaced St with X̃ X̃T and replaced Sb with X̃FFT X̃T

in (7) according to (2) and (3), respectively. We also replaced
FTF = Ic with

γ
2 ‖F

TF − Ic‖2F . Therefore, equation (7) can
be rewritten as

min
W ,F,P

− Tr(W T X̃FFT X̃TW )+ α‖W‖2,1

+ β

n∑
j=1

(‖W T xi −W T xj‖2pij + λp2ij)

+
γ

2
‖FTF − Ic‖2F ,

s.t. F ≥ 0,W T X̃ X̃TW = I , 0 ≤ pij ≤ 1,
n∑
j=1

pij = 1, (8)

where γ > 0 is a parameter and it should be set large enough
to ensure the orthogonality.

1) UPDATE W BY FIXING F AND P
Let Ls = HnFFTHT

n and denote Lp = Dp − (P + PT )/2,
where DP is a diagonal matrix with the ith diagonal element
being

∑
j(pij + pji)/2. Let L = βLp − Ls. When F and P

are fixed, the optimization problem in (8) for updating W is
equivalent to the following problem.

min
W

Tr(W TXLXTW )+ α‖W‖2,1,

s.t. W T X̃ X̃TW = I . (9)

Denote U ∈ Rm×m as a diagonal matrix with the ith diagonal
element being Uii = 1

2‖wi‖2
. Since ∂‖W‖2,1

∂W = 2UW , we
constructed an auxiliary function and replace ‖W‖2,1 with
W TUW in (9), the problem is equivalent to

min
W

Tr(W T (XLXT + αU )W ),

s.t. W T X̃ X̃TW = I . (10)

The optimization problem of (10) can be solved by the fol-
lowing generalized eigenproblem.

(XLXT + αU )w̃ = λX̃ X̃T w̃. (11)

The solution of (10) is the matrix W ∈ Rm×q in which the
column vectors are the q smallest eigenvectors corresponding
to the q smallest eigenvalues in (11). We further normalized
W as (W T X̃ X̃TW )ii = 1, i = 1, . . . , q.

2) UPDATE F BY FIXING W AND P
When W and P are fixed, updating F is equivalent to the
following problem.

min
F
− Tr(W T X̃FFT X̃TW )+

γ

2
‖FTF − Ic‖2F ,

s.t. F ≥ 0. (12)

Since Tr(W T X̃FFT X̃TW ) = Tr(FT X̃TWW T X̃F), (12) can
be rewritten as

min
F
− Tr(FT X̃TWW T X̃F)+

γ

2
‖FTF − Ic‖2F ,

s.t. F ≥ 0. (13)
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Following [24], by denoting M = −X̃TWW T X̃ , F can be
updated by multiplicative rules, as

Fij← Fij
(γF)ij

(MF + γFFTF)ij
. (14)

Then, we normalized F to satisfy (FTF)ii = 1, i = 1, . . . , n.

3) UPDATE P BY FIXING W AND F
When W and F are fixed, updating P in (8) is equivalent to
the optimization problem in (6). Let gij = ‖W T xi −W T xj‖2.
Let gi ∈ Rn×1 denote a vector with the jth element being
gij. Let pi ∈ Rn×1 denote a vector with the jth element being
pij. Let 1n ∈ Rn×1 denote a vector with all of its elements
being 1. The vector form of (6) can be written as

min
0≤pij≤1,pTi 1n=1

‖pi +
gi
2λ
‖
2. (15)

The Lagrangian function of (15) is

0 =
1
2
‖pi +

gi
2λ
‖
2
− µ(pTi 1n − 1)− σ Ti pi, (16)

where µ and σi are the Lagrangian multipliers. Based on
the KKT condition [35], we can obtain the optimal solution
pij as

pij = (−
gij
2λ
+ µ)+. (17)

Following [32], [33] and assume that gi1, gi2, . . . , gin are
ordered from large to small, to satisfy that each sample has
only k nearest neighbors, the regularization parameter λ can
be set based on the number of nearest neighbors k , as

λ =
k
2
gi,k+1 −

1
2

k∑
j=1

gij. (18)

Compared to the parameter λ, k is much easier and more
intuitive to tune. Thus, λ can be better handled by searching
k . Then, based on (18), pij can obtained as

pij =
gi,k+1 − gi,j

kgi,k+1 −
∑k

j=1 gij
. (19)

4) ALGORITHM
The procedure of the proposed AUFS method was
summarized in Algorithm 1. It will stop when the objective
function of equation (8) tends to a constant or the change
is very close to zero. The most time consuming operation
of Algorithm 1 is to solve the generalized eigenproblem
in (11). The time complexity of this operation is O(m3)
approximately, where m is the number of features.
The optimization procedure in Algorithm 1 will

monotonically decrease the objective function in (7) in each
iteration. Since the objective function has lower bounds
(e.g., 0), the above iteration will converge. Besides, empirical
results showed that the convergence of Algorithm 1 was fast.
In the experiments, only several iterations (no more than
15 iterations) were needed to reach convergence.

Algorithm 1 The Proposed AUFS Method

Input: Gene expression data matrix X ∈ Rn×m; Parameters
k , c, q, α, β, γ ; Number of selected genes d ;

Output: d selected genes;
1: The iteration step t = 1; Initialize F1

∈ Rn×c and set
U1
∈ Rm×m as an identity matrix;

2: Initialize P1 based on (19) by setting g1ij = ‖xi − xj‖
2;

3: Calculate L1s = HnF1(F1)THT
n and L1p = D1

p −

(P1 + (P1)T )/2;
4: Calculate L1 = βL1p − L

1
s ;

5: Calculate W 1 by solving the generalized eigenproblem
(XL1XT + αU1)w̃ = λX̃ X̃T w̃;

6: repeat
7: CalculateM t

= −X̃TW t (W t )T X̃ ;
8: Update F t+1ij = F tij

(γF t )ij
(M tF t+γF t (F t )TF t )ij

;

9: Update the diagonal matrix U t+1 with the ith diagonal
element as U t+1

ii =
1

2‖wti‖2
;

10: Update Pt+1 based on (19) and gt+1ij = ‖(W t )T xi −
(W t )T xj‖2;

11: Calculate L t+1s = HnF t+1(F t+1)THT
n and

L t+1p = Dt+1p − (Pt+1 + (Pt+1)T )/2;
12: Calculate L t+1 = βL t+1p − L t+1s ;
13: UpdateW t+1 by solving the generalized eigenproblem

(XL t+1XT ++αU t+1)w̃ = λX̃ X̃T w̃;
14: t=t+1;
15: until Convergence
16: Sort each gene gi based on ‖wi‖2 in descending order.

The top d ranked genes are selected.

III. MATERIALS
A. DATASET
We used a published gene expression dataset that has been
studied in [16], which was primarily obtained from TCGA
and generated by high-throughput techniques. This dataset
contains two major subtypes of NSCLC: lung squamous cell
carcinoma (LUSC) and lung adenocarcinoma (LUAD). The
objective is to distinguish these two subtypes of NSCLC.
The samples without sufficient expression data have been
excluded and finally 1013 samples were enrolled in the
study, where 501 samples belonged to the LUSC subtype
and 512 samples belonged to the LUAD subtype. Then,
the differentially expressed (DE) genes in each subtype were
identified with Edger [36]. All the DE genes were annotated
based on the Ensembl database at http://asia.ensembl.org/.
By selecting the genes (i.e., mRNAs and lncRNAs) that
were differentially co-expressed in both LUAD and LUSC
subtypes, 5469 genes (i.e., 3924 mRNAs and 1545 lncRNAs)
were obtained for gene selection and classification.

B. INITIAL FILTERING OF GENES
To reduce the computational cost of the proposed feature
selection method, we filtered out the genes that were less rel-
evant to the two subtypes of NSCLC. Similar to the previous
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FIGURE 1. The correlation between modules and two subtypes of NSCLC.

study in [16], we constructed a dissimilarity matrix based on
the topological overlap matrix (TOM), which reflected the
gene-wise similarity. A hierarchical clustering tree with all
the 5469 genes was then constructed based on the dissimi-
larity matrix, by which highly connected and co-expressed
genes were clustered into some co-expression modules. The
first principal component of each module, i.e., the eigen-
genes, was used to analyze the correlation between the mod-
ules and the subtype information. Only the genes in the
most relevant modules were kept for further selection. The
proposed AUFSmethodwas then performed to select the can-
didate genes from each module and finally identified a small
number of genes from the candidate genes as the informative
genes for the NSCLC subtype classification.

IV. RESULTS
A. INITIAL FILTERING OF GENES
We performed module-based gene filtering before applying
the proposed feature selection method, with the objective to
reduce the computational cost and filter out the genes that
were less relevant to the two subtypes of NSCLC.We used the
methods in [16] to calculate the dissimilarity matrix, and per-
formed hierarchical clustering to divide the 5469 genes into
multiple modules. The relationship between the eigengenes
of each module and the labels of two subtypes of NSCLC
were analyzed by WGCNA [37]. The WGCNA function was
implemented by ‘WGCNA’ (v1.63) [38]. Figure 1 shows the
correlation between the modules and the two subtypes of
NSCLC (i.e., LUAD and LUSC). 17 modules denoted by
different colors were identified by hierarchical clustering.
The modules that were most relevant to LUAD and LUSC

are turquoise and grey. We used the genes in turquoise and
grey modules for further selection using the proposed AUFS
method. Finally, 960 genes in turquoise and 1882 genes in
grey were reserved and would be used as input to AUFS.

B. EXPERIMENTAL SETTINGS
1) EVALUATION METRICS
The proposed method was evaluated based on accuracy,
sensitivity, and specificity, which are defined as follows.

Accuracy =
TP+ TN

TP+ TN + FP+ FN
, (20)

Sensitivity =
TP

TP+ FN
, (21)

and

Specificity =
TN

TN + FP
, (22)

where TP is True Positives, i.e., the number of positive sam-
ples correctly classified as positive, TN is True Negatives,
i.e., the number of negative samples correctly classified as
negative, FP is False Positives, i.e., the number of negative
samples incorrectly classified as positive, and FN is False
Negatives, i.e., the number of positive samples incorrectly
classified as negative [39].

2) PARAMETER SETTINGS
There are five parameters in the proposed method, i.e., the
number of nearest neighbors k , the projected low-dimensions
q, and three parameters in the objective function (8), i.e., α,
β, and γ . In the experiments, k was set as 5, q was set
as 2, and γ was set as 26. α and β were tuned over
{1, 101, 102, 103, 104, 105, 106}. We utilized four classifiers,
i.e., k-nearest neighbor (kNN) [40], Decision Tree (DT) [41],
Support Vector Machine (SVM) [42], and Linear Discrimi-
nant Analysis (LDA) [43], for NSCLC subtype classification
with the selected genes. We used the toolbox of Matlab to
run the four classifiers with default settings. The training
data and test data were set as 70% and 30% of the total
samples, respectively. We created cross-validation partition
for the samples using Matlab function ‘‘cvpartition’’. Unsu-
pervised feature selection was performed to rank the genes.
The classifiers were trained and tested using the top-ranked
genes. All experiments were repeated 100 times and the mean
results of test data were reported.

C. SELECTING CANDIDATE GENES FROM TWO MODULES
The proposed method was performed to select the candidate
genes from the turquoise and grey modules, respectively.

1) COMPARISON WITH UNSUPERVISED FEATURE
SELECTION METHODS
We compared the proposed AUFS method with several
state-of-the-art unsupervised feature selection methods to
select the candidate genes from the two modules. The com-
pared methods includes LapScore [23], MCFS [26], NDFS
[27], UDFS [30], and GLFS [24]. After initially selecting
960 genes in the turquoise module and 1882 genes in the
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FIGURE 2. Comparison of different unsupervised feature selection methods in the turquoise module to select candidate
genes by using (a) kNN and (b) SVM classifiers.

FIGURE 3. Comparison of different unsupervised feature selection methods in the grey module to select candidate genes by
using (a) kNN and (b) SVM classifiers.

grey module, different unsupervised feature selection meth-
ods were performed to rank the genes in each module, respec-
tively. The top-ranked genes were picked for training and
testing. The number of picked genes varied from 1 to 20.
The comparison results by the kNN and SVM classifiers in
the turquoise and grey module are shown in Figures 2 and 3,
respectively. The proposed AUFS method outperforms other
compared methods. The curve of AUFS stays above the five
other curves in each case. Note that in the turquoise module,
the proposed method can maintain high accuracies when
the number of selected genes is no more than three, which
is a significant improvement compared to other methods.
That is because the proposed method preserves the local
structure based on only the relevant features, avoiding the
adverse effects by the irrelevant features on the structure
characterization for selecting the precise features.

2) SELECTED CANDIDATE GENES
Table 1 lists the top 10 genes ranked by the proposed method
in the turquoise and grey modules, respectively. These genes
are obtained by setting α = 106, β = 102 in the turquoise
module and α = 105, β = 102 in the grey module.
The 20 genes were selected as the candidate genes for fur-
ther selection. The proposed method was performed on the

TABLE 1. Top-ranked genes obtained by AUFS in turquoise and grey
modules.

20 candidate genes again to select the most informative genes
as the signatures. We ranked the 20 candidate genes by the
proposed method, and the top-ranked candidate genes were
picked for training and testing. The number of picked candi-
date genes varied from 1 to 20. The classification results by
the four classifiers (i.e., kNN, DT, SVM, and LDA) on the
top-ranked candidate genes are shown in Figure 4. We can
see from Figure 4 that all the four classifiers obtain the best
results (i.e., highest accuracies) when the number of picked
candidate genes equals to 17. These 17 candidate genes are
considered to be the most relevant to the two subtypes of
NSCLC. Therefore, we identified these 17 candidate genes
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FIGURE 4. Classification results by four classifiers on top-ranked
candidate genes.

TABLE 2. Gene signatures identified by AUFS.

as the signatures and listed them in Table 2. Among them,
9 genes were from the turquoise module and 8 genes were
from the grey module.

D. ANALYSIS OF SELECTED SIGNATURES
1) COMPARISON WITH OTHER NSCLC SUBTYPE
CLASSIFICATION METHOD
Su et al. [16] proposed a gene selection method (called
WGRFE) to select the gene signatures to distinguish LUSC
from LUAD. They embedded the WGRFE and the standard
RFE with SVM and RF to rank the genes, respectively.
Their results demonstrated that RF-WGRFE achieved bet-
ter performance than SVM-WGRFE. RF-WGRFE identified
13 gene signatures.We compared the proposedAUFSmethod
using the 17 identified signatures with RF-WGRFE using
the 13 identified signatures. Table 3 presents the comparison
results by using four classifiers, i.e., kNN, DT, SVM, and
LDA. Both AUFS and RF-WGRFE identified a small number
of gene signatures. The genes KRT6A, KRT16, SPRR1B,
KRT6B, PERP identified by AUFS were also identified
by RF-WGRFE. We can see from Table 3, the proposed
AUFS method performs better than RF-WGRFE in most
cases.

TABLE 3. Comparison with Su et al.’s method.

FIGURE 5. The significantly enriched GO terms. Each bar represents a GO
term.

FIGURE 6. The top significantly enriched GO terms. The left half of the
circle is the signature and each color corresponds to a GO term in right
half of the circle.

2) FUNCTIONAL ENRICHMENT ANALYSIS
We used Gene Ontology (GO) [44] to analyze the biological
meaning of the gene signatures identified by the pro-
posed AUFS method. The GO enrichment analysis was
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implemented by using the packages in [45]. Specific GO
including biological process (BP), cellular component (CC)
and molecular function (MF) were investigated. We ana-
lyzed the enrichment of the 17 identified gene signatures
in Table 2. The threshold for significant enrichment was set as
p-value=0.05. Figure 5 shows the significantly enriched GO
terms. Each bar represents a GO term and a higher bar means
a higher degree of enrichment. We can see from figure 5 that
24 terms were obtained, which includes 10 BP terms, 11 CC
terms, and 3 MF terms. 13 out of the 17 signatures were ver-
ified to present biological meaning and the top significantly
enriched GO terms are shown in figure 6. Compared to the
13 gene signatures identified in [16], the 17 identified gene
signatures obtained lower p-values (as shown in figure 5) and
more signatures were verified to present biological meaning
(as shown in figure 6). We also note that cornification and
keratinocyte differentiation are the most significant terms.
The term keratinization has been reported to be associated
with LUSC in some previous studies [46].

V. CONCLUSION
The increasing availability of genome-wide gene expression
data has facilitated the identification of gene signatures for
precise NSCLC subtypes classification. Most existing fea-
ture selection methods applied to signature identification
are supervised, which need class labels or related gene
information. To utilize the useful information hidden in data,
we proposed a novel unsupervised feature selection method
to identify the most discriminative gene signatures for the
NSCLC subtype classification. The proposed method incor-
porated discriminant analysis, adaptive structure preserva-
tion, and l2,1-norm sparse regression into a joint learning
framework to select the informative genes. We developed an
effective algorithm to solve the optimization problem in the
proposed method. Furthermore, we perform module-based
gene filtering before feature selection to reduce the com-
putational cost and filter out the genes that were less rele-
vant to the subtypes of NSCLC. We evaluate the proposed
method on a published gene expression dataset of NSCLC
from TCGA, which contained two major subtypes LUAD
and LUSC. The experimental results demonstrate that the
proposed method identified a small number of gene signa-
tures for accurate subtype classification: i.e., distinguishing
LUSC from LUAD. Enrichment analysis of the selected
gene signatures was also performed by summarizing the
key biological processes. The results show that cornification
and keratinocyte differentiation are the most significant GO
terms.

Although the proposed method is applied to identify the
gene signatures for the NSCLC subtype classification based
on gene expression data, the proposed method is generally
applicable to other types of biological data and other types of
tumors. In this study, we mainly focus on distinguishing the
two subtypes LUSC and LUAD of NSCLC. In future work,
we will apply the proposed method to classify more other
subtypes of NSCLC and also other types of biological data.
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