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ABSTRACT We study the problem of identifying a set of key nodes from a network when limited knowledge
about its structure is available. Most studies assume complete knowledge of the given network when
identifying a set of key nodes, but in current practice, networks of interest are often too huge to obtain
their entire topological structures. When the complete structure of a network is not available, network
sampling strategies are often used to obtain a partial structure of the network. We investigate how network
sampling strategies affect the problem of identifying a key node set. Specifically, we investigate the effect of
conventional network sampling strategies on the solutions found for two types of key node set identification
problems: the minimum p-median problem and the influence maximization problem. Our results show
that when the network is obtained using crawl-based network sampling strategies, both the minimum p-
median and the influence maximization problems are effectively solved by simple heuristic algorithms
with sampling ratios in the 10-20% range. We also find that among three conventional sampling strategies
(random sampling, random walk sampling, and sample edge counts) checked in this paper, random walk
sampling is the most robust strategy in terms of effectively identifying the key node sets of diverse types of
networks.

INDEX TERMS Influence maximization problem, key node set identification, minimum p-median problem,

network sampling, social networks.

I. INTRODUCTION

Identifying a set of key nodes in a given network is a fun-
damental research problem in network science research, and
it has broad application [1]-[6]. Examples of the key node
set identification problem include classical problems in graph
theory such as minimum p-median (MM) and minimum
p-center problems [3], [7]. The MM problem is motivated by
applications to city planning, and is useful for determining
facility locations [3]. The influence maximization (IM) prob-
lem is another popular key node set identification problem,
which is expected to be useful for so-called ““viral” marketing
in social networks [4], [8]-[15]. IM aims to identify a small
set of influential nodes (called seed nodes) for which the
expected size of the influence cascade triggered by the seed
nodes is maximized [8]. Note that the problem of identifying
k most important nodes using centrality or other metrics
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[16]-[19] in a network is also considered to be a key node
set identification problem.

One of the main research challenges in identifying key
node sets has been to develop computationally efficient algo-
rithms [4], [7], [20]. Because key node set identification
problems are typically NP-hard [7], [8], naive algorithms for
the problems are infeasible for use with large-scale networks.
Many researchers have proposed efficient algorithms for key
node set identification. Some algorithms offer theoretical
guarantees on the quality of the solutions, and others are
heuristic algorithms without theoretical guarantees [4], [7].
Thanks to the efforts of these researchers, scalable key node
set identification algorithms are widely available [4], [7], [9],
[13], [14].

However, some issues remain open in key node set iden-
tification. Notably, most existing studies assume complete
knowledge is available for a given network whose key nodes
are to be identified, but modern networks of interest are
often too large for their entire topological structures to be
efficiently known [21]-[29]. For instance, social networks,
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which represent relationships among social media users,
are often very large, and access to network data is typi-
cally limited, so only a part of the network structure can
be known [21], [24], [30]. It is also fundamentally diffi-
cult to obtain the current complete structure of the Inter-
net due to both its scale and its distributed, heterogeneous
nature [31], [32].

When the complete structure of a network is not available,
a network sampling is often used to obtain a partial structure
of the network [22], [23], [26]-[30], [33]. If arbitrary access
to any nodes is allowed, random sampling seems to be a
natural choice for simplicity because of its simplicity and
neutrality. However, in many real applications, random access
to nodes is not allowed [30], [33], so crawl-based sampling
techniques have been widely used for analyzing the struc-
ture of several types of large-scale networks, such as online
social networks [23], the world wide web [34], and peer-to-
peer (P2P) networks [35]. When using crawl-based network
sampling, it is assumed that only one node can be visited
initially, but the neighbors of already visited nodes can be
visited at each step. Popular crawl-based network sampling
strategies include random walk (RW) sampling [36], breadth-
first search (BFS), depth-first search (DFS), and sample edge
counts (SEC) [22]. It is known that crawl-based sampling
strategies have a bias toward high-degree nodes; that is, when
using crawl-based network sampling strategies, the probabil-
ity of visiting high-degree nodes is much higher than that
of visiting low-degree nodes [22]. This bias in crawl-based
network sampling is generally not desirable when estimating
network characteristics, and therefore, considerable effort has
been devoted to eliminating the bias in crawl-based sam-
pling strategies [23], [29], [37]. In contrast with the problem
of general characterization of network topology, the bias
in crawl-based sampling might be beneficial when finding
key nodes in a network. A pioneering work by Maiya and
Berger-Wolf [22] suggested the benefit of the bias of crawl-
based sampling strategies in identifying high-degree nodes.
Their finding suggest the hypothesis that the bias in crawl-
based sampling is beneficial also for identifying the set of
key nodes.

This paper revisits the benefit of the biases in crawl-based
network sampling strategies and examines how the crawl-
based network sampling applied to a given network affects
identification of the key node set in the network. It is naturally
expected that when the sample size is small, identifying a key
node set from such a partial network will be quite difficult or
even impossible. However, because of the bias in crawl-based
sampling, we expect that the key node set can be identified
even from the limited knowledge obtained with crawl-based
sampling. We address the following research questions in
particular. (1) How do network sampling strategies affect the
effectiveness of key node set identification algorithms? (2)
How large a sample do we need in order to obtain a reasonable
solution for key node set identification problems? To answer
these questions, we formulate two types of key node set
identification problems, assuming limited knowledge about
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the network structures. These two problems are variants of
popular key node set identification problems: the MM and
the IM problems. We apply simple heuristic algorithms to the
problems, and examine the effects of network sampling on
both of the MM and IM problems.

Our main contributions are summarized as follows.

« We show that the biases in crawl-based sampling strate-
gies are beneficial in both the MM and IM problems.
Although the definitions of the key nodes in the MM
and IM problems are notably different, similar simple
heuristic algorithms can achieve reasonable solutions to
both problems when the partial structure of the network
is obtained via crawl-based sampling.

o« We demonstrate that crawl-based sampling strategies
require only 10-20% sample sizes to obtain reasonable
solutions of both the IM and MM problems. When a
10-20% sample size is available, heuristic algorithms
can find a key node set that is comparable to the
key node set obtained from examining the complete
network.

o We reveal that a moderate level of bias in crawl-based
sampling strategies is central to identifying the key node
set effectively and robustly in an unknown network;
that is, weak bias in the sampling strategies degrades
the quality of solutions, and strong bias deteriorates the
stability of the solutions.

This paper is organized as follows. In Section II, we pro-
vide definitions and give the formulations of the problems
studied in this paper. In Section III, we explain the research
methodology. In Sections IV and V, we present the results
for the MM problem and the IM problem, respectively. In
Section VI, we discuss the implications and future direc-
tions of this work. Finally, in Section VII, we conclude this

paper.

Il. PRELIMINARIES

A. DEFINITIONS

This paper considers the class of problems that require find-
ing a set of key nodes in a ground truth network G = (V, E)
using only an incomplete subnetwork G’ = (V', E’). The
incomplete network G’ is obtained by applying network sam-
pling strategies to the ground truth network G. The graph
G can be either directed or undirected, but for simplicity, in
what follows, G is assumed to be undirected. Note that we
consider network sampling and key node set identification
independently. Although a problem of jointly optimizing both
of the network sampling and key node set identification can
be formulated, studying such problem is beyond the scope of
this paper.

A network sampling strategy probes to obtain the nodes
inS € V(S| = M), where M is called the sample size.
Probing node v reveals the nodes adjacent to v. Let T be a
set of nodes adjacent to nodes in S. Then, the set of nodes in
the incomplete network G’ is V/ = § U T. The set of links in
the incomplete network G' is E' = {(u, v)lu e SNv e T}.
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B. MINIMUM p-MEDIAN PROBLEM

FOR INCOMPLETE NETWORKS

Before introducing the MM problem for incomplete net-
works, we explain the original MM problem. Given an undi-
rected unweighted network G = (V,E), eachnode v € V
has a demand w(v). Let d(u, v, G) be the shortest path length
between nodes u and v in the network G, and let D(v, X, G) =
min[d(u, v, G) : u € X]. Then, the MM problem is defined
as follows.

Problem 1 Minimum p-Median Problem [3]: Given a net-
work G and w(v) for each node v € V, find a set of p nodes X
(1X| = p, X C V) such that the objective function (i.e., total
cost) f(X) =Y ,cy w(v)D(v, X, G) is minimized.

We now define the minimum p-median (MM) problem
for incomplete networks. To the best of our knowledge, the
MM problem under limited knowledge about the network
is a novel problem that has not been studied before. In the
original MM problem, the network G and the demand for all
nodes are available. In contrast, in the MM problem for
incomplete networks, only the network G’ is available for
finding the median node set X that minimizes the total cost
f(X). The MM problem for incomplete networks is defined as
follows.

Problem 2 Minimum p-Median Problem for Incomplete
Networks: A subnetwork G' = (V', E') of the ground truth
network G is obtained through sampling the nodes in a
node set S C V. For each node v € V', its demand w(v)
is given. From these, find a set of p nodes X (|X| = p,
X C V) that minimizes the objective function f(X) =
Y ey WD, X, G).

C. INFLUENCE MAXIMIZATION PROBLEM

FOR INCOMPLETE NETWORKS

The IM problem for incomplete networks is formulated anal-
ogously to the MM problem for incomplete networks. We
first explain the original IM problem. Influence maximization
problem is a combinatorial optimization problem on a graph
that aims to identify a small set of influential nodes (known
as seed nodes) such that the expected size of the influence
cascade triggered by the seed nodes is maximized. While the
IM problem has been studied under several types of influence
cascade, the independent cascade (IC) model [8] is the most
popular. This paper focuses on the IM problem using the IC
model, although our problem formulation can be extended to
the IM problem with other types of influence cascade. In the
IC model, each node is either active or inactive. When node
u becomes active at time step ¢, node u will influence each
inactive neighbor node v ((#, v) € E) with probability p, , at
the next time step ¢ + 1. Namely, a node v becomes active
with probability p,, ,. The parameter p, , of the IC model is
the probability of spreading influence between nodes u and
v. Note that each node has a single chance to influence each
of its neighbor. At time step O, the nodes selected as seed
nodes (U € V) become active, and the other nodes are set
as inactive. Then, the stochastic process explained above is
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repeated until it ends (i.e., no nodes are newly activated in
the time step). Let W be a set of link weights representing the
probability of influence spread, U € V be a subset of nodes
in graph G, and o (U, G, W) be the expected number of active
nodes at the end of the process of the IC model on network
G with probabilities W when U is the set of seed nodes. The
IM problem is then defined as follows [8].

Problem 3 Influence Maximization Problem: Given a
social network G, influence spread probabilities W, and an
integer k, the aim is to find a set of seed nodes U (U C V,
|U| = k) such that o (U, G, W), which we call the influence
spread, is maximized under the IC model.

In contrast with the original IM problem, in the IM problem
for incomplete networks, the ground truth network G is not
available for use in finding a set of seed nodes. Only a
subnetwork G = (V, E’) of G is available. The IM problem
for incomplete networks is then defined as follows.

Problem 4 Influence Maximization Problem for Incom-
plete Networks: Given an incomplete network G/, influence
spread probabilities W' = {p, ,|(u, v) € E’}, and an integer
k, find a set of seed nodes U (U C V, |U| = k) such that
o (U, G, W) is maximized under the IC model.

The IM problem under limited knowledge about the
network was first proposed in our previous conference
papers [24], [38] and has also been studied by other research
groups [39], [40]. In this paper, through extensive experi-
ments, we comprehensively investigate the effects of network
sampling on both the IM problem and the MM problem.

lil. METHODOLOGY

A. GENERATING INCOMPLETE NETWORKS

We generate an incomplete network G’ from a given ground
truth network G using the following three network sampling
strategies.

1) SAMPLE EDGE COUNT (SEC) [22]

SEC aims to obtain high-degree nodes without global knowl-
edge of the network by greedily taking the node with the
highest expected degree among known but unselected nodes.
Let S be a set of chosen nodes. Initially, S contains a randomly
selected node. SEC greedily obtains the node with the most
links from the nodes in S. This method greedily obtains the
node with the highest expected degree. SEC is intended to
have a strong bias toward high-degree nodes.

2) RANDOM WALK (RW) [36]

Initially, RW obtains and visits a randomly selected node.
Then, RW repeatedly obtains and visits a randomly selected
unvisited neighbor node of the most recently visited node
until a specified number of nodes is obtained. If a visited node
has no unvisited neighbor, then a randomly selected unvisited
neighbor of some other visited node is obtained. RW does not
intentionally visit high-degree nodes, but visited nodes still
have a higher degree on average than the nodes that would be
obtained from an unbiased random sampling.
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Algorithm 1 Simple Greedy Algorithm for Minimum p-
Median Problem on Incomplete Networks

1: initialize X < @

while [X| < pdo

3 selectu < arg ming(X U {v})
veV/\X

X < XU {u}

. end while
return X

»

A A

3) RANDOM SAMPLING (RANDOM)

Random sampling repeatedly obtains a node uniformly at
random from all nodes in a network until a specified number
of nodes is obtained.

B. ALGORITHMS FOR FINDING THE KEY NODE SET

We use simple heuristic algorithms for both of the MM and
IM problems. We apply existing MM and IM algorithms
for complete networks to an incomplete network G’. Then,
we investigate how the network sampling strategies affect
the effectiveness of the existing key node set identifica-
tion algorithms. This paper focuses on the effectiveness of
the algorithms and does not experimentally investigate their
computational cost. But note that the key node sets can be
obtained from incomplete networks with lower computa-
tional cost than from the complete networks because the com-
putational cost of the key node set identification algorithms
depends on the size of the networks.

For the MM problem, we use a greedy algorithm for the
original MM problem [41]. Since the MM problem is NP-
hard, the greedy algorithm is often used for solving the MM
problem [41]. Although the objective function f(X) can be
calculated using the ground truth network G and demand
for all nodes in the original greedy algorithm, in the MM
problem for incomplete networks, this information is not
available. Therefore, in the MM algorithm for an incomplete
subnetwork, the following objective function g(X) is used
instead of f(X).

TABLE 1. Characteristics of networks used in the experiments for the MM
problem.

AS P2P  PowerGrid
Number of nodes 10,670 6,299 4,941
Average degree 4.12 6.60 5.34
Density 0.00039 0.0010 0.0011
Clustering coefficient 0.456  0.015 0.11
Average shortest path length 3.64 4.64 19.0
Graph diameter 10 9 46

In this, g(X) can be calculated from an incomplete network
G’ and w(v)(v € V). Similar to the original greedy algorithm,
the heuristic algorithm iteratively adds a node u to the median
node set such that g({X U u}) is minimized. Pseudocode for
the algorithm is shown in Algorithm 1.

For the IM problem, we use TIM+- as an efficient approx-
imation algorithm [10]. TIM+- is a state-of-the-art algorithm
that achieves efficient computational cost and high effective-
ness. We apply TIM+ to the incomplete network G'.

IV. RESULTS OF MINIMUM p-MEDIAN PROBLEM

A. DATASET AND PRELIMINARIES

As the ground truth networks G, we use (1) a network
of Autonomous System (AS) [42],! (2) a P2P network of
Gnutella (P2P) [43] .2 and (3) a network of the US pow-
ergrid (PowerGrid) [44].3 Characteristics of each network
are shown in Table 1, and the degree distributions for each
network are shown in Fig. 1.

We randomly generated the demand of the nodes using a
Zipf distribution, a normal distribution, and an exponential
distribution. The results in [41] show that the degree of a node
and the demand of the node are correlated, and therefore we
use the following procedures to generate the demand of each
node. We first generate |V| random variables according to
the given distribution. We then assign the i-th largest variable
as the demand of the node with the i-th highest degree. We
next swap the demand of each node with the demand of

1 http://snap.stanford.edu/data/oregon1.html

gX) = E wDv, X, G) @)) Zhitp://snap.stanford.edu/data/p2p-Gnutel1a08.html
vev’ 3https://toreopsahl.com/datasets/#uspowergrid
1 T T T 1 T 1 T
° L]
L4 °
- 01F e - o1l . o - = 01k N 3
~ [ ] ~ () S~ L]
= 0oif % ] a oo S .
£ £ o % £ .
3 - 3 0.01 f . 4 3 001 f . 4
o 0.001 f ‘ E o) % o
[<} [<} o
& AL & 0.001 % 3 = 0.001 f .- +
0.0001 cummmmesee o0 o E . ®e o : °
o0 ®0 o -
1e-05 . L L 0.0001 L 0.0001 .
1 10 100 1000 10000 1 10 100 1 10 100
Degree k Degree k Degree k
(a) AS (b) P2P (c) PowerGrid

FIGURE 1. Degree distribution of each network used in the experiments for the MM problem.
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FIGURE 2. Total cost vs. number of median nodes (sample size: 10%); distribution of the demand: Zipf; parameter determining the correlation
between degree of a node and its demand: g = 0.9): Total cost when using incomplete networks obtained with RW is comparable with the cost when

using the complete network.
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FIGURE 3. Normalized cost vs. sample size (distribution of the demand: Zipf; parameter determining the correlation between degree of a node and its
demand: g = 0.9; number of median nodes: p = 50): A 20% sample size achieves a normalized cost of 1.1-1.3 for all three networks when using RW.

some other randomly selected node with probability 1 — ¢
(0 < g < 1). The parameter g controls the strength of the
correlation between node demand and node degree. We used
y = 2 as the parameter of the Zipf distribution, mean p = 1
and standard deviation o = 0.1 for the normal distribution,
and mean A = 1 for the exponential distribution.

We apply the algorithm introduced in Section III to the
incomplete network G’ obtained by SEC, RW, and random
sampling, and obtain the set of median nodes X for each. To
obtain the median node set X, we assume that the demand
w(v) is available for each node v € V’. We then calculate
the total cost f(X) for the median node set X while changing
the sample size, sampling strategy, and distribution of node
demand. We generated the demands and obtained sample
subnetworks for each parameter setting 20 times. The results
shown from here are averaged over the 20 simulation runs for
each configuration.

B. RESULTS

We first fixed the sample size as 10% of nodes (M = 0.1|V]),
and investigated the total cost while changing the number of
median nodes (Fig. 2). The distribution of node demand is
the Zipf distribution. As the parameter of correlation between
degree and demand, we used ¢ = 0.9. The results when
using the complete network and the demand of all nodes are
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included in the figures (denoted as greedy). These results
show that the total cost when selecting median nodes from
incomplete networks is comparable with the cost when using
the complete network. When using the incomplete network
obtained via SEC, the increase in cost relative to the cost for
the complete network is only 10% for AS and 15% for P2P. In
contrast, for PowerGrid, the cost when using the incomplete
network obtained via SEC is significantly higher than the cost
when using other sampling strategies. As shown in Fig. 1,
there are no strong hubs that have significantly high degree
in the PowerGrid, and therefore the benefit of finding high-
degree nodes is smaller in PowerGrid than in AS and P2P. In
the MM problem, selecting median nodes that are far from
each other is generally desirable to achieve lower cost, but
SEC typically traverses the network only near the starting
node. This drawback of SEC also detrimentally affects the
cost when applying SEC to PowerGrid for subnetwork selec-
tion.

We next investigate the relation between the sample size
and the total cost. Fig. 3 shows the normalized cost when
selecting 50 median nodes from the incomplete networks,
compared against the sample size (characterized as the frac-
tion of sampled nodes). The normalized cost is defined as the
cost when selecting 50 median nodes from the incomplete
networks divided by the cost when selecting 50 median nodes
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FIGURE 4. Comparison among different distributions of demand (the parameter determining the correlation between degree of a node and its demand:
q = 0.9; number of median nodes: p = 50): The total cost when the node demand follows a Zipf distribution is higher than the cost when the node
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FIGURE 5. Normalized cost vs. the parameter determining the correlation between degree of a node and its demand q (sample size: 10%; number of
median nodes: p = 50): When the node demand follows the Zipf distribution, the total cost increases as the correlation between degree and demand

of node decreases.

from the complete networks. These results show that when
the incomplete network is obtained via RW, a 20% sample
size achieves a normalized cost of 1.1-1.3 for all three net-
works. For AS and P2P, a 10% sample size is large enough
to achieve a normalized cost of 1.2. This result suggests
that when the subnetwork is obtained via RW, reasonable
solutions for the MM problem can be obtained from only
limited observations of the networks. The cost when using
SEC is lower than that when using RW for the AS and
P2P networks, but it is much higher than the cost when
using RW for PowerGrid. These results suggest that when we
crawl completely unknown networks to determine the median
nodes, using RW and collecting 10-20% of samples is a good
approach.

We next investigate the effects of node demand on the
total cost. Fig. 4 shows the normalized cost for each demand
distribution. For comparison purposes, the results when the
demands of all nodes are fixed to 1 (denoted as Fixed) are
also shown. Here, we use SEC for the AS and P2P networks,
and RW for the PowerGrid network. The number of median
nodes is fixed to 50. The results show that the total cost when
the node demand follows a Zipf distribution, which has a
heavy-tailed distribution, is higher than the cost when the
node demand follows other distributions. Moreover, we also
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change the parameter g that controls the correlation between
node degree and the node demand (Fig. 5). Here, the fraction
of sampled nodes is 0.1, and the number of median nodes is
50. From these results, when the node demand follows the
Zipf distribution, the total cost increases as the correlation
between degree and demand of node decreases. When the
correlation between node degree and node demand is low,
low-degree nodes tend to have higher demand than when the
correlation is strong. Low-degree nodes are more difficult
to discover by sampling strategies than high-degree nodes
are. As a consequence, high-demand and low-degree nodes
are likely to be unknown when selecting the median nodes
in the low-correlation scenario. This is why the correlation
affects the total cost. We can also find that there is little dif-
ference between exponential and normal distributions. This
could be explained by the fact that both distributions have an
exponential tail, which implies that there are no extremely
high-demand nodes. From this observation, the MM problem
for incomplete networks requires a larger sample when the
correlation between degree and demand is very low and the
demand distribution is heavy-tailed.

We now tackle the problem of finding median nodes when
the demand of all nodes is available but the topology is
only partially known. To do this, we examine the benefit of
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FIGURE 6. Total cost when the demand of all nodes is available (distribution of the demand: Zipf; the parameter determining the correlation between
degree of a node and its demand: g = 0; the number of median nodes: p = 50): Using incomplete networks achieves a lower total cost than the high

demand heuristic.

TABLE 2. Characteristics of each network used in the experiments for the IM problem.

NetHEPT NetPHY Facebook-small Facebook-large
Number of nodes 15,233 37,154 4,039 63731
Average degree 4.23 9.74 43.7 48.5
Density 0.00028  0.00026 0.011 0.00076
Clustering coefficient 0.677 0.87 0.62 0.25
Average shortest path length 5.84 6.26 3.69 4.3
Graph diameter 22 19 8 15
1 T 1 T T 0.1 T T T 1 4 T T
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FIGURE 7. Degree distributions of networks used in experiments for IM problem.

knowledge about the network topology for the MM problem.
We use h(X), defined as follows, as the objective function of
the greedy algorithm instead of g(X):

h(X) =Y wDw, X, ).
veV

To calculate A(X) for node v ¢ V', we let D(v, X, G') =
dmax + 1, where d . is the diameter of G'.

Fig. 6 shows the normalized total cost when the node
demand follows the Zipf distribution, with ¢ 0 for
the situation where the demand of all nodes is available.
For comparison purposes, the results when selecting the 50
nodes having the highest demand as the median nodes are
included in the figures (denoted as high demand). These
results show that if node demand is available, a good solu-
tion can be obtained when there is no correlation between
degree and demand. Comparing the results of high demand
with the results when using incomplete networks shows

(@)
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that network topology is useful for achieving a lower total
cost.

V. RESULTS OF INFLUENCE MAXIMIZATION PROBLEM
A. DATASET AND PRELIMINARIES
As the ground truth network G, we use four real social net-
works: NetHEPT [12], NetPHY [12], Facebook-small [45],
and Facebook-large [46]. NetHEPT and NetPHY represent
co-authorship among researchers, and Facebook-small and
Facebook-large represent friendships among Facebook users.
These are widely used as benchmark datasets for IM prob-
lems [8], [10]-[12], [47]-[51]. Multiple links are simply
converted to a single link [24], [52]. Characteristics of each
network are shown in Table 2, and the degree distribution of
each network is shown in Fig. 7.

We synthetically generated the influence-spread proba-
bilities of each link, using the weighted cascade (WC)
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comparable with influence spread when using the complete network.
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FIGURE 9. Influence spread vs. number of seed nodes (influence-spread probability p = 0.01): Influence spread when selecting seed nodes from
incomplete networks is comparable with influence spread when using the complete network.

model [12]. Specifically, for each link (u,v), we let
puv = 1/d,, where d, is the in-degree of node v. The
WC model is widely used for generating influence-spread
probabilities for the evaluation of IM algorithms [10]-[12],
[47], [53]. We also used p,, = 0.01 for all node pairs (&, v)
for comparison.

We apply the algorithm introduced in Section III to incom-
plete networks G’ obtained via SEC, RW, and random sam-
pling and obtain the set of seed nodes U. As a parameter
for TIM+ we used ¢ = 0.1. For the obtained seed node
set U, we calculate the influence spread o (U, G, W) through
simulation of the IC model on the ground-truth network G.
We run each simulation 1,000 times and take the average of
the influence spread.

B. RESULTS

Similar to the approach in the previous section, we fixed the
sample size as 10% of nodes (M = 0.1|V|) and investigated
the influence spread while changing the number of seed
nodes. Figs. 8 and 9 show the results when using, respec-
tively, the WC model and the uniform (p = 0.01) model
for influence-spread probabilities. The results when applying
TIM+ to the complete network are included in the figures
(denoted as TIM+-). For Facebook-large with p = 0.01, we
failed to obtain the results from TIM+ due to the scalability
limits already reported in [54]. We therefore added the results
when using degree discount IC [12] (denoted as DDIC),
which is a lightweight heuristic algorithm, instead of the
results of TIM+ for Facebook-large with p = 0.01. The
obtained results show that influence spread when selecting
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seed nodes from incomplete networks is comparable with
influence spread when using the complete network. Except
for Facebook-small, using incomplete networks obtained via
RW and SEC achieved higher influence spread than using
incomplete networks obtained via random sampling. This
result confirms the benefit of crawl-based sampling strategies
for finding a key node set, as also seen in the results for
the MM problem. For Facebook-small, using an incomplete
networks obtained via random sampling achieved higher
influence spread than using networks obtained via RW and
SEC. In particular, when using SEC, the influence spread is
much smaller than when using other strategies. As shown in
Table 2, Facebook-small has a higher density than the other
networks. The benefit of finding hub nodes is low in dense
networks since influence can be easily spread, even from low-
degree nodes. In contrast, the drawback of high locality with
SEC can affect the selection of good seed nodes.

We next investigate the effects of sample size. Figs. 10
and 11 show the normalized influence spread when select-
ing 50 seed nodes from the incomplete networks. The nor-
malized influence spread is defined as the influence spread
when selecting 50 seed nodes from the incomplete networks
divided by the influence spread when selecting 50 seed
nodes from the complete network. For Facebook-large with
p = 0.01, seed nodes in the complete network were selected
using DDIC; for other settings, seed nodes in the complete
network were selected using TIM+. Fig. 10 shows the results
for the WC model, and Fig. 11 shows the results for p = 0.01.
From these results, a normalized influence spread of 0.8-0.9
can be achieved by using only a small sample size of 10-20%.
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spread of 0.8-0.9 can be achieved by using a sample size of 10-20%.

These results suggest that we can obtain a set of influential
seed nodes from a small sample. They also suggest that the
crawl-based sampling strategies RW and SEC are effective
for obtaining the partial structure of a network when iden-
tifying an influential node set. Only for Facebook-small was
random sampling more effective than SEC and RW. However,
when the sample size was 20%, RW achieved a normalized
influence spread of 0.7 for the WC model and approximately
0.9 for p = 0.01. This suggests that when RW is used and
20% of nodes are sampled, sufficient influence spread can be
achieved, and in many cases a smaller sample is sufficient.

VI. DISCUSSION

An important implication of our results is that the partial
structure of a network obtained via crawl-based network sam-
pling is sufficient for identifying key node sets. Our results
suggest that a 10% sample size is enough in many cases.
This is a good result for real applications since access to
real networks is typically limited (e.g., by restrictions on the
number of API calls for social media graphs).

Another implication is that using RW sampling with a
moderate level of bias is a robust strategy when the ground
truth network is completely unknown. SEC sampling is
designed to find high-degree nodes, and the bias of visiting
high-degree nodes in SEC is stronger than in RW sampling.
Our results show that SEC outperformed RW in several net-
works. However, SEC was not robust, and sometimes per-
formed poorly for several types of networks. For instance,
for the PowerGrid network in the MM problem, and for the
Facebook-small network in the IM problem, using the SEC
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strategy resulted in considerably worse results than using
other strategies. When using the SEC strategy, the crawling
process tends to be confined to a strongly clustered sub-
network, which sometimes results in very poor outcomes.
These results suggest that a strong bias in SEC degrades its
robustness. Therefore, when we do not have any knowledge
about the ground truth network, RW sampling should be used
rather than SEC sampling.

We recognize some limitations of this study and suggest
them as future research directions. First, the generalizability
of our findings to other types of key node set identification
problems is still not clear. There are several types of key node
set identification problems, such as several variants of the
IM problem and the minimum p-center problem. Our results
show that similar heuristics (i.e., applying algorithms for the
complete network to the incomplete network) can be effective
for both IM and MM problems on incomplete networks. We
therefore expect that other types of key node set identifica-
tion problems for incomplete networks can be solved with a
similar approach. We are interested in validating our results
against other types of key node set identification problems
in future research. We are also interested in key node set
identification problems for other types of networks such as
dynamic networks and multi-layer networks. Second, our
study is purely experimental, and theoretical verification of
our results is also an important direction for future research.
In particular, it would be worthwhile to derive the sample
sizes necessary to achieve specific targets for practitioners
using key node set identification algorithms. Third, we only
consider some combinations of existing sampling strategies
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and existing key node set identification algorithms, and there
is a room for development of more effective algorithms. We
are interested in exploring how to choose pairs of sampling
strategies and key node set identification algorithms for more
robust key node set identification. Using more simple key
node set identification algorithms such as using centrality
measures of nodes would be a option for more robust key
node set identification. Moreover, the sampling strategy could
be adaptively changed during sampling. Such new adaptive
sampling strategy could be effective for the key node set
identification.

VII. CONCLUSION

We studied two variants of the problem of identifying a set
of key nodes from a network under limited knowledge about
its structure. Specifically, we investigated how conventional
network sampling strategies affect the solutions obtained
for the MM and IM problems, which are popular key node
set identification problems, when only partial networks are
known. The conventional crawl-based sampling strategies are
known to have a bias toward high-degree nodes. Although
these biases are not desirable for estimating the general char-
acteristics of unknown networks, they are expected to be ben-
eficial for identifying key node sets. Our results have shown
the benefits of biases in crawl-based sampling strategies for
the IM and MM problems. We showed that both the IM
and MM problems are effectively solved by similar simple
heuristic algorithms when the subnetworks were obtained by
crawl-based sampling strategies. For many cases, we showed
that a 10-20% sample size is enough to find key node sets
that are comparable with the key node sets obtained from
the complete networks. We also examined which sampling
strategy should be used for identifying the key node sets.
Our results suggest that using RW sampling is a good option.
SEC sampling is sometimes better than RW but is sometimes
considerably worse.
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