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ABSTRACT This paper proposes a discrete-time observer to estimate states of continuous-time nonlinear
systems with presences of noises. Most conventional discrete-time state observers are designed using
discrete-time models, which are derived by applying the forward-difference method to continuous-time
models without considering their poor accuracy. This poor accuracy of the discretization may affect the
accuracy of the observer-based on it and lead to a misevaluation. The proposed observer is based on an
application of the extended Kalman filter (EKF) for a discrete-time model derived by a discretization method
called continualized discretization. The proposed observer was applied to estimate the states of the Lorenz
and van der Pol oscillators, which have complex dynamics such as limit cycle and chaos. The simulation
results showed that the proposed observer gives better performances in estimating the real state and retaining
the system dynamics of the original continuous-time model than the conventional method.

INDEX TERMS Discrete-time model, state estimation, nonlinear, continualized discretization, van der Pol
oscillator, Lorenz system.

NOMENCLATURE
x̄ (t) : continuous-time state
xk : discrete-time state
x̂k : estimated state
ȳ (t) : system output
v̄ (t) : system noise
w̄ (t) : measurement noise
f (x) : system function
h (x) : output function
T : sampling interval
0 (xk ,T ) : discrete-time integration gain
Df : Jacobian matrix of function f

I. INTRODUCTION
System state variables are required for most feedback control
design and system analysis methods [1]. However, the entire
states are usually too expensive or impossible to measure
in most applications. Furthermore, even when the states are
measurable, they may include noises, which come from mea-
surements or disturbances. In these cases, some forms of state
estimation (observer) are necessary to estimate the real state
of the system. If the stochastic properties of the uncertainties
are available, the Bayesian state estimation methods, such
as Kalman filter, are employed. In the cases, when only the
bounds of the uncertainties are available, the deterministic
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approach using set valued state estimation methods are
applied [2]–[4]. While there are many observer techniques
have been studied for linear systems successfully, the the-
ory of observer for nonlinear systems is still a significant
challenge [5]–[7].

Since the state observer and digital controller are imple-
mented on computers, many studies on the state observer are
based on an assumption that there exists a discrete-timemodel
of the given system [8]–[13]. However, most physical sys-
tems are modelled by continuous-time differential equations.
Thus, a discrete-time versions, which are usually derived
by discretizing the continuous-time model, are needed for
the implementation of the observer [14]. While there are
some accurate discretization methods, such as Runge-Kutta
families [15]–[17], usable for offline computation systems,
those are available for online observers or controls design for
nonlinear systems, are still relatively rare. In most conven-
tional applications of the state observer, forward difference
method (is also called Euler’s method) [18] is usually used
for the discretization due to its versatility and simplicity.
However, the accuracy of this method is poor unless an
efficient high sampling frequency is used. However, this high
sampling frequency may be unachievable in many practical
cases due to constrains on hardware and system cost [19],
[20]. This poor accuracy of the discretization may affect the
accuracy of the observer-based on it and lead to a misevalua-
tion [18]. Unfortunately, most studies on state observer have
not considered this issue. There is still a gap needed to be
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filled to design the discrete-time observers for the continuous-
time systems.

Among some rarely proposed discretization methods
for nonlinear system, a discretization method called
continualized discretization, which is based on discrete-time
integration gain and continualization concepts, has been
developed [22], [23]. This method has been used to derive
highly accurate discrete-time models, which can retain
complex dynamical properties for various continuous-time
nonlinear systems, for example, the chaotic behavior in
the Lorenz system and the limit cycle in the van der Pol
oscillator [22]. A sampled-data feedback control based on
this discretization method for a scalar Riccati system has
been shown to give better performances than that one
using the conventional forward-difference method [24].
This continualized discretization method is expected to fill
the above-mentioned gap between the discrete-time state
observer and the continuous-time system. The contributions
of this paper are as below:
• Presents a continualized discretization method, which
available for online observers or controls design for
nonlinear systems, to derive discrete-time model from
a continuous-time model.

• Proposes a discrete-time observer for autonomous
nonlinear continuous-time systems with presences of
noises by using this continualized discretization method
and the dominated Extended Kalman Filter (EKF).

• Applies the proposed observer to estimate the states
of the Lorenz and van der Pol oscillators, which have
complex dynamics such as limit cycle and chaos.

The organization of this paper is as follows: Section II
summarizes the continualized discretization method and
the discrete-time model used in this paper. In section III,
the discrete-time state observer using the continualized dis-
cretizationmethod and EKF is proposed for general nonlinear
systems. Section IV presents simulation results for van
der Pol and Lorenz oscillators to evaluate the proposed
method comparing with the conventional one using the
forward-difference method. Some conclusions are given in
Section V.

II. CONTINUALIZED DISCRETIZATION METHOD
Consider a continuous-time dynamical system given by the
following differential equation

d x̄ (t)
dt
= f (x̄ (t)) , x̄ (0) = x̄0, (1)

where x̄ ∈ Rn is a system state vector and f : Rn → Rn

is a system function, which is nonlinear. The function f is
assumed to satisfy the Lipschitz condition. Thus, there exists
a solution of the differential equation (1) and this solution is
unique.

A discrete-time state xk is said to be a discretization of
the continuous-time state x̄ (t) if the following condition is
satisfied for any fixed instant τ

lim
T→0

kT≤τ<(k+1)T

xk = x̄ (τ ) . (2)

When xk is a discretization of x̄ (t) and xk = x̄ (kT ) for any
discrete-time instant k and sampling period T , it is said to be
an exact discretization of x̄ (t) [26].

Following the above definition for discretization, the
discrete-time model for the system in eq. (1) using
continualized discretization method [24] is given by [19]

δxk = 0 (xk ,T ) f (xk) , x0 = x̄0, (3)

where δ is the delta operator, satisfying that

δxk =
xk+1 − xk

T
. (4)

The discrete-time model given by eq. (3) uses the same
function f that appears in eq. (1). Function0 ∈ Rn×n in eq. (3)
is the discrete-time integration gain. It is defined as

0 (xk ,T ) =
1
T

∫ T

0
e[Df(xk )]τdτ, (5)

where Df (xk) is the Jacobian matrix of the function f at xk .
When the Jacobian matrix Df (xk) is invertible, the
discrete-time integration gain given by eq. (5) can be written
by the following form

0 (xk ,T ) =
eT [Df(xk )] − I

T
[Df (xk)]−1 . (6)

Remark 1: For the linear continuous-time system, i.e., the
function f in eq. (1) is given by

f (x̄ (t)) = Ax̄ (t)+ b, (7)

where A ∈ Rn×n and b ∈ Rn are system parameters,
the discrete-time integration gain can be written as

0 (xk , T ) =
1
T

∫ T

0
eAτdτ. (8)

The discrete-time model given by eq. (3) with the above
discrete-time integration gain is an exact discrete-timemodel.
Remark 2: When the integration gain 0 is defined by

a unity matrix, eq. (3) represents the conventional forward
difference method.
Remark 3 ([24]): When the Jacobian matric Df (xk)

is invertible, the equilibrium points of the continualized
discrete-time model given by eq. (3) and their asymptoti-
cal stabilities are identical to those of the continuous-time
model (1).

III. DISCRETE-TIME STATE ESTIMATION FOR
NONLINEAR SYSTEM WITH NOISES
Consider a nonlinear continuous-time system with the
presence of noises given by

d x̄ (t)
dt
= f (x̄ (t))+ v̄ (t) , (9)

ȳ (t) = h (x̄ (t))+ w̄ (t) , (10)

where x̄ ∈ Rn is the system state and ȳ ∈ Rm is a measurable
system output. The functions f : Rn→ Rn and h : Rn→ Rm

are nonlinear. Vectors v̄ (t) ∈ Rn is a system noise and
w̄ (t) ∈ Rm is a measurement noise. Assume that the
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sampled-data of v̄ (t) and w̄ (t) are zero-mean white Gaussian
and have covariance matrices of Q and R, respectively.

In the sampled-data systems, the system noise v̄ (t) and
measurement noise w̄ (t) are assumed to affect the sys-
tem through zero-order-hold and be constant during each
sampling interval [21]. The discrete-time model of the
continuous-time system given by eqs. (9) and (10) can
be derived by using the contiualized discretization method
presented in Section II, as

δxk = 0 (xk ,T ) (f (xk)+ vk) , (11)

yk = h (xk)+ wk , (12)

where

0 (xk ,T ) =
1
T

∫ T

0
e[Df(xk )]τdτ (13)

with Df is the Jacobian matrix of f, vk and wk are the
sampled-data of v̄ (t) and w̄ (t), respectively. It should be
noted that the state yk in eq. (12) is the sampled-data of the
measurable output ȳ.

By substituting the delta operation δ defined as eq. (4) into
eq. (11), we can derive that

xk+1 = T0 (xk ,T ) f (xk)+ xk + T0 (xk ,T ) vk . (14)

Let the estimation of the system state x̄ in the system (9) from
the sampled-data of the measurable output yk is x̂k . In this
study, the state x̂k is estimated by a nonlinear state estimator
using extended Kalman filter [27], which has the algorithm
as follows:

1. State estimation:

x̂−k = 8
(
x̂k−1

)
, (15)

where

8
(
x̂k−1

)
= T0

(
x̂k−1,T

)
f
(
x̂k−1

)
+ x̂k−1. (16)

2. Calculation for error covariance:

P−k =
[
D8

(
x̂k−1

)]
Pk−1

[
D8

(
x̂k−1

)]T
+ [T0 (xk ,T )]Q [T0 (xk ,T )]T , (17)

where D8
(
x̂k−1

)
is the Jacobian matrix of 8

(
x̂k
)
at

x̂k−1.
3. Observational update for state estimate:

x̂k = x̂−k +Kk
[
yk − h

(
x̂−k
)]
, (18)

where Kk is the Kalman gain, which is given by

Kk

= P−k Dh
(
x̂−k
)T [[

Dh
(
x̂−k
)]
P−k

[
Dh

(
x̂−k
)]T
+R

]−1
,

(19)

where Dh
(
x̂−k
)
is the Jacobian matrix of h

(
x̂k
)
at x̂−k .

4. Update for error covariance:

Pk =
[
I−KkDh

(
x̂−k
)]
P−k . (20)

Remark 4: The estimation error ε = x̄ (kT ) − x̂k of
the proposed discrete-time state estimation is exponentially
boundedwhen the following conditions are satisfied for every
k ≥ 0 [28]:
1. The Jacobian matrices D8

(
x̂k
)

and Dh
(
x̂k
)

are
bounded.

2. The covariance matric Pk
(
x̂k
)

are positive and
bounded.

3. The function D8
(
x̂k
)
is nonsingular for k ≥ 0.

4. Covariance matrices Q, and R are positive.
5. There are positive real numbersχ1,χ2, γ 1, and γ 2 such

that if
∥∥xk − x̂k

∥∥ ≤ γ1 and ∥∥xk − x̂k
∥∥ ≤ γ2, then∥∥8(xk)−8 (x̂k)− D8 (x̂k) (xk − x̂k

)∥∥
≤ χ1

∥∥xk − x̂k
∥∥ , (21)

and∥∥h (xk)− h
(
x̂k
)
− Dh

(
x̂k
) (
xk − x̂k

)∥∥
≤ χ2

∥∥xk − x̂k
∥∥ . (22)

IV. SIMULATION RESULTS
In this session, the proposed discrete-time state estimation
method is applied for the Van der Pol and Lorenz systems
with the presence of noises. The simulations have been car-
ried out to assess performances of the proposed method,
which is based on the continualized discrete-time model, and
the conventional method using the forward difference model.
The simulations were calculated using Matlab/Simulink in
a computer, whose processor is Intel Core i7-2600 CPU
@3.4GHz.

A. VAN DER POL OSCILLATOR
The nonlinear van der Pol oscillator is one of an important
model for the phenomena of limit-cycle oscillation [29], [30].
The van der Pol oscillator with the presence of noises is
modeled by the following differential equation
d x̄ (t)
dt
=

[
x̄2 (t)

−x̄1 (t)+ ε
(
1− x̄1 (t)2

)
x̄2 (t)

]
+ v̄ (t) , (23)

where x̄ = (x̄1, x̄2), ε > 0 is a friction coefficient that
characterizes the nonlinearity and v̄ ∈ R2 is a system noise.
The measurable system output is given by

y = x̄1 (t)+ w̄ (t) , (24)

where w̄ a measurement noise.
The state estimator of the above Van der Pol oscillator is

given by eqs. (15)-(20), where the functions f, h, and their
Jacobian matrices Df and Dh are given by

f (x) =
[

x2
−x1 + ε

(
1− x21

)
x2

]
, (25)

h (x) = x1, (26)

Df =
[

0 1
−1− 2εx1x2 ε

(
1− x21

) ] , (27)

Df =
[

0 1
−1− 2εx1x2 ε

(
1− x21

) ] , (28)

respectively.
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FIGURE 1. Time responses of the proposed observer and the
conventional observer for the van der Pol oscillator with ε = 0.5 and
T = 0.1 s.

FIGURE 2. Phase planes of the proposed observer and the conventional
observer for the van der Pol oscillator with ε = 0.5 and T = 0.1 s.

The simulations have been carried out for 100 seconds with
the arbitrary noise covariance matrices of Q = [0.01; 0.01]
and R = 0.5. The initial state of the continuous-time
system is x̄0 = (2, 3), while the initial conditions for
the discrete-time state estimator are x̂0 = (0, 0) and
P0 = [0 0; 0 0]. Figures 1 and 2 show the time responses and
the phase planes of the proposed estimator using continual-
ized discretization method, the conventional estimator using
forward difference method, and the measurement with noises
comparingwith the true values, which are the responses of the
continuous-time model without noises, for the coefficient of
ε = 0.5 and sampling period T = 0.1 seconds. In this case,

FIGURE 3. Time responses of the proposed observer and the
conventional observer for the van der Pol oscillator with ε = 0.5 and
T = 0.5 s.

FIGURE 4. Phase planes of the proposed observer and the conventional
observer for the van der Pol oscillator with ε = 0.5 and T = 0.5 s.

both the proposed and the conventional estimators yield
the limit cycle responses that are close to the true values
regardless of the difference in the initial condition. However,
the responses of the proposed estimator are more exact both
in-phase and amplitude. When the sampling interval T is
increased to 0.5 seconds, as can be seen in Figs 3 and 4,
the responses of the conventional estimator diverge after a
short time, while the responses of the proposed estimator still
tracking the true values of the Van der Pol system almost
exactly. Figures 1 and 3 show that the high sampling fre-
quency can improve the performances of the sampled-date
system, by contrast, it also may increase the effect of the
noise. Figures 5 and 6 show the responses of estimators for
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FIGURE 5. Time responses of the proposed observer and the
conventional observer for the van der Pol oscillator with ε = 1.5 and
T = 0.1 s.

FIGURE 6. Phase planes of the proposed observer and the conventional
observer for the van der Pol oscillator with ε = 1.5 and T = 0.1 s.

the sampling T of 0.1 seconds but with the friction coefficient
ε of 1.5, which increases the nonlinearity of the system.
The proposed estimator yields accurate responses and gives a
better performance than the conventional one.When the coef-
ficient ε is increased further to 3, the responses of the conven-
tional estimator diverge, while the responses of the proposed
estimator still track to the true values and preserve the limit
cycle dynamics of the continuous-time system without noise,
as showed in Figs. 7 and 8.

Table 1 summaries errors and computation times of the
conventional and the proposed methods for the van der Pol
oscillator with the conditions used in the simulations. The
error is defined by an average of squared differences between

FIGURE 7. Time responses of the proposed observer and the
conventional observer for the van der Pol oscillator with ε = 3 and
T = 0.1 s.

FIGURE 8. Phase planes of the proposed observer and the conventional
observer for the van der Pol oscillator with ε = 3 and T = 0.1 s.

continuous-time and discrete-time responses as

error =
T
tl

[
kT=tl∑
k=0

n∑
i=1

( x̄i (t)|t=kT − xik)
2

]1/2
(29)

where tl is the length of the simulation time and n is the order
of the system. In this study, tl has a value of 100 second.
It should be noted that the differences between the initial
values of the continuous-time states and the discrete-time
states may affect to value of this error. The computation
times of the conventional method and proposed method are
measured by using cputime command in the Matlab. While
the proposed method uses a longer CPU time, this time
still enable us to estimate the true value of the system
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TABLE 1. Conditions used for simulations of van del Pol oscillator.

FIGURE 9. Phase planes of the proposed observer and the conventional
observer for the Lorenz system with r = 17 and T = 0.02 s.

online (by the real time) with a high accuracy comparingwith
the conventional method, especially for the cases of large
sampling interval.

B. LORENZ SYSTEM
Consider the following Lorenz differential equation, which is
usually used to model the atmospheric dynamics [31], [32],
given by

dx̄1 (t)
dt

dx̄2 (t)
dt

dx̄3 (t)
dt

 =
 σ (x̄2 − x̄1)
rx̄1 − x̄2 − x̄1x̄3
−bx̄3 + x̄1x̄2

+ v̄ (t) , (30)

where v̄ ∈ R3 is a system noise. The state x̄1 is proportional
to the convective velocity; the state x̄2 is proportional to the
temperature difference between ascending and descending
flows; and the state x̄3 is proportional to the mean convective
heat flow. The traditional Lorenz system usually takes the

FIGURE 10. Phase planes of the proposed observer and the conventional
observer for the Lorenz system with r = 17 and T = 0.05 s.

Prandtl number σ at 10 and the coefficient b, which is related
to the wave number, at 8

/
3. The reduced Rayleigh number r

is variable.
In the present study, we assume that only the state x̄1 is

measurable. Thus, the system output is given by

y = x̄1 (t)+ w̄ (t) . (31)

The state estimator of the above Lorenz system is given by
eqs. (15)-(20), where the functions f, h, and their Jacobian
matrices Df and Dh are given by

f (x) =

 σ (x̄2 − x̄1)
rx̄1 − x̄2 − x̄1x̄3
−bx̄3 + x̄1x̄2

 , (32)

h (x) = x1, (33)

Df =

 −σ σ 0
r − x̄3 −1 −x̄1
x̄2 x̄1 −b

 , (34)

Dh =
[
1 0 0

]
, (35)

respectively.
The simulations have been carried out with the noise

covariance matrices of Q = [0.001; 0.001; 0.001] and
R = 0.01. The initial condition of the continuous-time
state is x̄0 = (1, 2, 3), while the initial conditions for
the discrete-time state estimator are x̂0 = (0, 0, 0) and
P0 = [0 0 0; 0 0 0; 0 0 0]. Figure 9 shows the phase planes
(x1, x2) and (x1, x3) of the proposed estimator using contin-
ualized discretization method and the conventional estimator
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FIGURE 11. Phase planes of the proposed observer and the conventional
observer for the Lorenz system with r = 28 and T = 0.02s.

using forward difference method comparing with the true
values, which are the responses of the continuous-time model
without noises, for the Rayleigh number r = 17 and the
sampling period T = 0.02 seconds. In this case, the pro-
posed estimator yields the responses that converge to the

equilibrium point
(
−8
√
2
/
3, −8

√
2
/
3, 16

)
of the original

system immediately closing to the true values; while the
responses of conventional estimator have a chaotic behavior
before converging to the same equilibrium point. When the
sampling interval T increases to 0.05 seconds, as can be seen
in figure 10, the responses of the conventional estimator oscil-
late around to the point of (−7, −300, −750), which is far
different from the true equilibrium point, while the responses
of the proposed estimator still track the true responses of the
Lorenz system almost exactly. Figures 11 show the responses
of the estimators for the sampling T of 0.02 seconds but
with the Rayleigh number r of 28. In this case, both meth-
ods give responses that are relatively similar to the chaotic
behavior of the true responses. However, the responses of
the proposed estimator are more accurate than those of the
conventional one. When the sampling interval T is increased
to 0.05 seconds, as can be seen in Fig. 12, the responses of
the conventional estimator diverge, while the responses of
the proposed estimator still track to the true responses and
preserve the chaotic behavior of the continuous-time system
without noise. The errors and computation times of the con-
ventional and the proposed methods for the Lorenz system

FIGURE 12. Phase planes of the proposed observer and the conventional
observer for the Lorenz system with r = 28 and T = 0.05s.

TABLE 2. Conditions used for simulations of lorenz system.

with the conditions used in the simulations are summarized
by Table 2.

V. CONCLUSION
A discrete-time observer was proposed to estimate the states
of the continuous-time nonlinear systemswith the presence of
noises. The proposed observer applies the extended Kalman
filter for the discrete-time model using the continualized dis-
cretization method. The discrete-time model is described by
a product of the discrete-time integration gain and the system
function, which are the same as that of the continuous-time
model. The discrete-time integration is a solution of the equa-
tion derived by the continualization process. The proposed
observer was applied to estimate the states of van der Pol and
Lorenz oscillators with the presence of noises. The simulation
results showed that the proposed observer gives better per-
formances in retaining the complex system dynamics such as
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limit cycle and chaos than the conventional one based on the
forward-difference method even for relatively low sampling
frequencies. Although the present study considers the noises
to be Gaussian and applies the EKF for nonlinear systems,
the idea in this study is extendable to systems, where the
noises are non-Gaussian, using the set-valued state estima-
tion methods. It is expected that the proposed observer will
contribute to a wide range of applications in digital control
and system analysis.
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