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Abstract: To start a step such as some realization of minimized and integrated devices, it requires
simply understanding the surface status of hybrid perovskite on the e-beam irradiation because many
commercial semiconductor devices are performed with a surface patterning process using e-beam
or etching gas. The surface status of CH3NH3PbBr3 (MAPbBr3) single crystal was studied after a
grazing e-beam irradiation in an ultra-high vacuum. The prepared hybrid perovskite single crystal
was irradiated by the 3 degree-grazing e-beam with energy of 15 kV for 10 min using a reflection
high-electron energy diffraction technique. The e-beam irradiation on the MAPbBr3 hybrid perovskite
single crystal induced the deformation from MAPbBr3 into MABr, Br2, and Pb on the surface. The gas
phases of MABr and Br2 are depleted from the surface and the Pb element has remained on the
surface. As a result of the e-beam irradiation, it formed a polycrystalline-like phase and Pb metal
particles on the surface, respectively.
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1. Introduction

Recently, organic-inorganic hybrid perovskite (OHP) materials have shown impressive results,
especially in the case of solar cells, including a power conversion efficiency of over 25%, because
of their key physical properties such as high absorption coefficient, high carrier mobility, and long
carrier lifetime [1–4]. However, there are attempts to overcome the critical problems such as material
instability and environmental issues caused by Pb-based perovskite, due to which the research on
OHP materials is still focused on the solar cell application [5–7]. In the case of materials instability,
particularly, the degradation of OHP materials under electron beam, UV (ultra-violet), and visible
light illumination conditions has been reported [6–11]. C. Xiao, et al. had reported the two-steps
degradation mechanism such as (1) defect formation caused by irradiation damage and (2) phase
transformation induced by electron-beam heating with a high-energy electron beam (5 and 10 kV) [7].
Additionally, the e-beam effect exposed with the perpendicular direction between the e-beam and
the hybrid perovskite layer was reported by N. Klein-Kedem, et al. to explain the degradation of the
perovskite structure [8].
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Interestingly, these reports show the behavior on the bulk status in solar-cell device structures
because the e-beam was exposed only to the active hybrid perovskite area in a device structure.
This approach would be a reasonable to understand the damage effects induced by several variables
such as the local heat and radiation damage in the solar-cell application field. However, there is
no serious study on the surface status of hybrid perovskite materials by the e-beam irradiation yet.
If we try to make a designed pattern on the surface of hybrid perovskite materials using the e-beam
irradiation which is a useful and conventional tool in the semiconductor industrials, its effect on the
surface should be studied firstly.

In the last decade, researchers have started exploring the possibility of new applications using
hybrid perovskite materials such as optoelectronics, memory, laser, THz application, transistor, sensors,
and batteries, alongside with specific researches on defects, phonon, and electronic structures, which can
be important fundamentals to support future perovskite-applied research [12–21]. At the same time,
we believe that it requires to start a next step such as some realization of minimized and integrated
devices needed in the semiconductor industrials [22]. To perform this next step, the etching (or
patterning) method and its effect on the surface of active material should be firstly studied. The e-beam
is one of candidates for etching (or patterning) and we need to understand the surface status of hybrid
perovskite on the e-beam irradiation for etching (or patterning).

In this short communication, we have studied the surface status of the hybrid perovskite single
crystal, CH3NH3PbBr3 (MAPbBr3), by a grazing e-beam irradiation with high energy. Also, the surface
degradation in the hybrid perovskite material is discussed with the remaining Pb particles and the
polycrystalline-like phase.

2. Materials and Methods

MAPbBr3 single crystal was grown by an inverse temperature method [23]. A MAPbBr3 precursor
solution (1.2 M) was prepared by mixing MABr and PbBr2 (1:1 molar ratio) in dimethylformamide (DMF).
After 30 min of stirring, the solution was filtered through a 0.2 mm pore-size polytetrafluoroethylene
(PTFE) syringe filter, and the filtered precursor solution was gradually heated to 90 ◦C using an oil-bath.
Several hundred micron-sized single seed crystals were formed within 1 h. Large-sized (centimeter
scale) single crystals were prepared through a crystallization process over 24 h by use of the chosen
seed crystals with regular changes of the precursor solution. (Figure 1a)

For a grazing e-beam irradiation on the surface of a single crystal, we used an electron gun in a
reflection high-energy electron diffraction (RHEED) system. Before and after loading the sample to the
RHEED chamber, we performed the surface scratching using a knife and the annealing process at 100 ◦C
for 10 min, respectively [24]. The base pressure of the RHEED chamber was 1.1 × 10−9 Torr. The energy,
current, and incident angle were 15 kV, 20 µA, and 3 deg., respectively (Figure 1b). After irradiating for
10 min, we took out the sample and then performed atomic force microscopy (AFM), scanning electron
microscopy (SEM), X-ray diffraction (XRD), and high-resolution X-ray photoelectron spectroscopy
(XPS). We performed the AFM measurement using SPM-9700 made by Shimazu (Kyoto, Japan).
The used SEM system is the HITACHI SU9000 model (Krefeld, Germany) with the acceleration voltage
of 5.0 kV and the emission current of 10 µA. The XRD is RINT-TTRIII/NM with CuKα source made
by Rigaku (Tokyo, Japan). We used the Versa ProbeII with a monochromated AlKα (ULVAC-PHI,
Kanagawa, Japan) for all XPS measurements and obtained the C 1s, N 1s, Pb 4f, and I 4d core-level
spectra. The binding energies were calibrated with reference to the Au 4f 7/2 level (84.0 eV) [25].
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Figure 1. (a) The prepared MAPbBr3 single crystals with the diameter of 0.6 cm. In the scanning 
electron microscopy (SEM) measurement for the as-received sample (before the e-beam irradiation), 
it shows very flat surface. (b) The reflection high-energy electron diffraction (RHEED) screen with no 
spots. It shows a dynamic flowing on the screen. (c) The top surface morphology measured by SEM. 
The recessed surface irradiated by the grazing e-beam and many particles on the surface were 
observed. (d) the four different features (the red numbers) are observed. In the 1 and 3 areas, 
interestingly, the steps (measured by atomic force microscopy (AFM)) and pin-holes are clearly 
observed. 

3. Results and Discussion 

Interestingly, the dynamic flowing on the screen of RHEED was observed without any atomic 
patterns or spots [26] (Figure 1b). It might be due to a surface charging effect, and the similar results 
have been reported before [6–8].  

With the SEM measurement, many small particles and steps have been observed on the surface 
(Figure 1c) where four patterns on the surface have been shown on the following locations in Figure 
1d: location 1) many steps (indicated by the green arrow toward an inset AFM topology image), 
location 2) large surface roughness, location 3) pinholes/deep boundary (the white arrow), and 
location 4) particles. (Figure 1d) The e-beam irradiation on the MAPbBr3 single crystal seems to cause 
a polycrystalline-like phase by degradation. It is assumed that these findings can be employed to 
understanding a degradation mechanism of MAPbBr3, processing from location 1 to location 4 in 
sequence. Firstly, steps and valleys start appearing on the surface. Secondly, the height between steps 
becomes larger and larger. And then the pinholes occur on the step boundary while forming a grain 

Figure 1. (a) The prepared MAPbBr3 single crystals with the diameter of 0.6 cm. In the scanning
electron microscopy (SEM) measurement for the as-received sample (before the e-beam irradiation),
it shows very flat surface. (b) The reflection high-energy electron diffraction (RHEED) screen with no
spots. It shows a dynamic flowing on the screen. (c) The top surface morphology measured by SEM.
The recessed surface irradiated by the grazing e-beam and many particles on the surface were observed.
(d) the four different features (the red numbers) are observed. In the 1 and 3 areas, interestingly, the
steps (measured by atomic force microscopy (AFM)) and pin-holes are clearly observed.

3. Results and Discussion

Interestingly, the dynamic flowing on the screen of RHEED was observed without any atomic
patterns or spots [26] (Figure 1b). It might be due to a surface charging effect, and the similar results
have been reported before [6–8].

With the SEM measurement, many small particles and steps have been observed on the surface
(Figure 1c) where four patterns on the surface have been shown on the following locations in Figure 1d:
location 1) many steps (indicated by the green arrow toward an inset AFM topology image), location 2)
large surface roughness, location 3) pinholes/deep boundary (the white arrow), and location 4) particles.
(Figure 1d) The e-beam irradiation on the MAPbBr3 single crystal seems to cause a polycrystalline-like
phase by degradation. It is assumed that these findings can be employed to understanding a degradation
mechanism of MAPbBr3, processing from location 1 to location 4 in sequence. Firstly, steps and valleys
start appearing on the surface. Secondly, the height between steps becomes larger and larger. And then
the pinholes occur on the step boundary while forming a grain boundary. Finally, the one grain is
isolated and remains a particle. To confirm this assumption, it is required to know its atomic structure
and chemical state in bulk and surface, respectively.
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To see the bulk status after the grazing e-beam irradiation, we performed an XRD experiment
(Figure 2a). Only the typical MAPbBr3 structure was observed and there was no other significant
structure [27]. With this result, we confirmed the irradiation effect of the e-beam was only affected on
the surface.
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Figure 2. (a) The X-ray diffraction (XRD) result before and after the grazing e-beam irradiation.
The as-received sample still shows the small PbBr2 peak. After the e-beam irradiation, however,
it was disappeared. (b) The C, N, and O 1s core-level spectra before and after the e-beam irradiation.
The CH3NH2 molecular defect has appeared after the e-beam irradiation [28,29]. This defect is due to
the formation of a polycrystalline-like phase on the surface [29]. The O 1s core-level peak is appeared
slightly at around 532 eV which is shown with the physiosorbed oxygen on the surface.

To see the detailed changes on the surface, XPS was measured with C 1s, N 1s, Pb 4f, and Br
3d core-level spectra. (Figures 2b and 3) Also, we measured O 1s core-level to confirm the surface
contamination after taking out the sample from the RHEED chamber (Figure 2b). The peak with
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a small trace was observed. If this O 1s peak has some chemical bonding with carbon, nitrogen,
or other elements, we would observe some different chemical states in C, N 1s, Pb 4f, or Br 3d core-level
spectra [25]. However, we could not observe any significant change of chemical states in the C and N
1s core-level spectra (Figure 2b). The binding energies of C and N 1s core-levels are the same as those
of our several previous studies that showed only the hybrid perovskite state [28,29]. It means that
oxygen contamination does not make any chemical states bonded to CH3NH3

+ cation. Interestingly,
we found the Pb0+ chemical state (Pb metal) in the Pb 4f core-level spectrum (Figure 3a). However,
we could not observe any significant chemical state except for the hybrid perovskite state. The single
chemical state in the Br 3d core-level was confirmed by the curve fitting which was performed with
Doniach-Sŭnjić curves, convoluted with a Gaussian distribution function, considering instrumental
broadening and background noise due to inelastic scattering was subtracted by the Shirley (integral)
method (Figure 3b) [30,31].
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curves, convoluted with a Gaussian distribution function, considering instrumental broadening and 
background noise due to inelastic scattering was subtracted by the Shirley (integral) method (Figure 
3b) [30,31].  

 
Figure 3. (a) The Pb 4f core-level spectra before and after the grazing e-beam irradiation. The Pb0+ 
chemical state is clearly observed. (b) After the curve fitting, the Br 3d core-level spectra before and 
after the grazing e-beam irradiation shows the single chemical state perfectly. 

Figure 3. (a) The Pb 4f core-level spectra before and after the grazing e-beam irradiation. The Pb0+

chemical state is clearly observed. (b) After the curve fitting, the Br 3d core-level spectra before and
after the grazing e-beam irradiation shows the single chemical state perfectly.
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With these results, we can confirm three important facts—(1) the particles on the surface are pure
Pb metal, (2) the surface has no oxide state (which means the surface oxygen is a physical-absorption
state), and (3) the surface degradation is occurred by the e-beam irradiation. (Equation (1))

MAPbBr3 (single crystal)→MABr ↑ + Br2 ↑ +Pb (on the surface) (1)

As a result of grazing e-beam irradiation, the chemical bonding is broken first and then two gas
phases, such as MABr and Br2, are depleted from the surface. The Pb metal only remains on the
surface with the particle structure. The surface becomes the polycrystalline-like phase from the single
crystal phase. These understandings are similar to two reports by Z. Dang, et al. and A. Kostopoulou,
et al. in all-inorganic halide perovskite materials [10,32]. However, in the case of organic-inorganic
hybrid perovskite material, it shows that no remained molecular parts on the surface because of its
surface depletion.

4. Conclusions

We observed the surface degradation of MAPbBr3 single crystal using the 3 degree-grazing e-beam
irradiation with the 15-kV high energy. The e-beam irradiation causes the destruction of the chemical
structure of MAPbBr3 without creating any different chemical states such as etching. However, the Pb
metal element with the form of particles remains on the surface. If we use a focused and well-defined
sized e-beam, it will be possible to make a designed pattern of an organic-inorganic hybrid perovskite
main layer with Pb metal capper or wire on the surface. This experimental idea is suggested for
future work.
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