Molecular Cloning and Expression Pattern of the Splicing Variant of Chick Neuron Navigator 2
 Tomoyuki MASUdA, Chie SAKUMA, Toshiyuki Yamagish,
 Takayuki Ueno, Yuriko Yamada and Hiroyuki Yagnoma

Reprinted from
Saito Ho-on Kai Museum Research Bulletin, No. 75
March 2011

MOLECULAR CLONING AND EXPRESSION PATTERN OF THE SPLICING VARIANT OF CHICK NEURON NAVIGATOR 2

Tomoyuki Masuda*, Chie Sakuma*, Toshiyuki Yamagishi**,
Takayuki Ueno*, Yuriko Yamada* and Hiroyuki Yaginuma*

Abstract

To identify novel genes differentially expressed in the dorsal spinal cord of mouse embryos, we used the Kazusa cDNA array system and laser capture microdissection. Through this process, we identified a cDNA encoding mouse Neuron navigator 2 (Nav2) whose expression was found in the dorsolateral part of the spinal cord. To reveal the function of this gene in the spinal cord development, we isolated a cDNA encoding chick Nav2 splicing variant (Nav2s). Sequence analyses revealed that chick Nav2s encodes a protein of 2393 amino acids. In situ hybridization analyses showed that chick Nav2s was detected in the spinal cord, the dermamyotome and in dorsal root ganglion neurons. These results suggest the possibility that Nav2 may be involved in the early developmental process of the spinal cord or the navigation of axons beyond species.

Keywords: cDNA microarray, spinal cord, in situ hybridization, chick, mouse

Introduction

The Caenorhabditis. elegans unc-53 gene plays a crucial role in cell migration and outgrowth of axons (Hedgecock et al., 1987; Hekimi and Kershaw, 1993 ; Stringham et al., 2002). Three vertebrate homolog of unc-53 (named unc53H1, unc53H2 and unc53H3) were cloned based on the homology with C. elegans. Unc53H2 is identical to Neuron navigator 2 (Nav2) previously identified as the

[^0]atRA-responsive gene (Maes et al., 2002 ; Merrill et al., 2002). Transcripts of the Nav2 gene contain two putative actin-binding domains, two proline-rich sequences and a putative ATP/GTP nucleotide-binding site (AAA domain). A recent study using Nav2 hypomorphic homozygous mutant mice suggests that Nav2 is required for normal cranial nerve development (McNeill et al., 2010). Furthermore, our previous study showed that Nav2 is strongly expressed in the mouse embryonic spinal cord, suggesting the crucial role in the migration or outgrowth of neurons in the spinal cord (Masuda et al., 2009). However, the function of the Nav2 protein in the spinal cord development is not clear. For the first step to gain further insight into the molecular function of the Nav2 protein in vertebrates, we cloned chick Nav2 splicing variant (Nav2s) and investigated its expression pattern in the chick embryo.

Materials and Methods

cDNA cloning of a chick Nav2 splicing variant

cDNA fragments of approximately 7.2 kbp were amplified from a chick cDNA library by the PCR using primers corresponding to the chick Nav2 DNA sequence. The primers for the PCR are 5^{\prime}-acccgctgcctgcagtgctgccg -3^{\prime} and 5^{\prime}-atgagttgtgattg. ggactct-3.' The amplified DNA fragments were ligated to pCS + vector and sequenced by using an ABI PRISM 3100 DNA sequencer (Life Technologies).

Animals

Chicken eggs were purchased from a local farm and incubated at $37.6^{\circ} \mathrm{C}$ until they reached the appropriate ages (stage 22 and 26 ; Hamburger and Hamilton, 1992).

In situ hybridization and immunohistochemistry

Transverse sections ($25-\mu$ m thick) of stage 22 and 26 chick embryos were cut on a cryostat and mounted on silane-coated slides. Hybridization and detection procedures were performed as described earlier (Masuda et al., 2009).

Results and Discussion

We isolated 6 positive clones from a chick cDNA library, using 22 - or $23-$ mer oligonucleotide probes originated from the registered chick Nav2 gene sequence. Sequence analyses revealed that all independent clones shared identical nucleotide sequences that are different from the registered sequence. We named this chick Nav2 splicing variant 'Nav2s.' The nucleotide and amino acid sequences of chick Nav2s cDNA are shown in Figure 1. The chick Nav2s gene was $7,179 \mathrm{bp}$ long which could encode a protein of 2393 amino acids.

Figure 1. Nucleotide and amino acid sequences of chick Nav2s cDNA. The coding region is numbered starting from the translation initiation codon. The calponin homology domain ($80-189 \mathrm{aa}$) and the ATPases associated with a variety of cellular activities (AAA) domain (2053-2207 aa) are underlined.
1201 GAAAAGTTGAAACTCTTCAATAGCAAAGGAGGCTCCAAAGCAGGGGGGACAACGCTTGAG 1260 $E K L K L F N S K G G S K A G G T T L E$
1261 TGTTCAGCGTCTCGTGACAACAGTTGTGAAAAGCTAGAGACACTTCCCAGCTTTGAGGAG 1320C S A S R D N S C E K L E T L P S F E E
1321 AGCGAAGAAATCGATGCCACAAACCAGAATGTGAGCAATCCAGGATCGATGTCCAGTAGC 1380S E E I D A T N Q NV S N P G S M S S S
1381 CCCAAAATTGCACTCAAGGGAATCGCACAAAGGACTTTTAGCCGGGCACTGACTAATAAG 1440$P K I \quad A L K G I A Q R T F S R A L T N K$
1441 AAAAGTTCTCCCAAGGGCAATGAGAAGGAGAAAGAGAAACAGAAGGAGAAAGAAAAGGAT 1500K S S P K G N E K E K E K Q K E K E K D
1501 AAAAGTAAAGACACGGGGAAAAGAACATCTATCACCGAAAAGCTGGATGTAAAAGAGGAA 1560K S K D T G K R T S I T E K L D V K E E
1561 TCAAAAGAAGAACAGACAGTGCTAGCAACAACAGAGATGCCAAAAAAGTCCTCAAAGATT 1620S K E E O T V L A T T E M P K K S S K I
1621 GCAAGCTTTATTCCGAAAGGAGGAAAGCTGAAGAGTGCCAAGAAGGAGGCCTCAGCCCCT 1680A S F I P K G G K L N S A K K E A S A P
1681 TTGCACAGTGGAATACCAAAACCAGGAATGAAAAACACCGCAGGGAAATCCTCAAGTGCO 1740L H S G I P K P G M K N T A G K S S S A
1741 CCAGTTTCTACAAAAGAAAGCGAGAGGAGCCGCAGTGGGAAACCTGGCTCGGGACTCTCG 1800
P V S T K E S E R S R S G K P G S G L S
1801 CATCAGAAGTCTCAGCTAGACAGCAGGAATTCCAGTTCGTCTTCAAGCTTAGCCTCTTCC 1860H O K S O L D S R N S S S S S S L A S S
1861 GAAGGAAAAGGCATCGGAGGCCTCAACAGCAGCAACAGCAGCCAGTCTGTCAGCGGGCCG 1920E G K G I G G L N S S N S S O S V S G P
1921 GCCACCACACACAGCACGGGAAGCAACACCGTCAGTGTTCAGCTACCTCAGCCCCAGCAG 1980A T T H S T G S N T V S V O L P O P O O
1981 CAATATAGCCACCGGAATACAGCCACAGTAGGTCCGTTCATGTAGAGATCACAGACAGAG 2040
0 Y S H P N T A TVA P FMY R S O T E
2041 AATGAAGGAAATGTAACAGGTGAGGCCAGCACGGGAGGGGTCAGCATGGATTCTACTCTC 2100N E G N V T A E A S T G G V S M D S T L
2101 TATGTCAAAACTGGACAGCCTGGTCTCGAAGACCTCTCAGGAGAGGATCCAGAAACTCGG 2160Y V K T G O P G L E D L S G E D P E T R
2161 CGATTACGAACTGTGAAAAACATTGCCGATCTTCGACAGAACTTGGAGGAAACAATGTCC 2220
R L R T V K N I Á D L R Q N LEE T M S
2221 AGTTTGCGAGGAACCCAGGTCACTCACAGCACGTTGGAAACTACATTTGACACCAATGTG 2280S L R G T Q V T H S T L E T T F D T N V
2281 ACCACCGAGATAAGCGGTCGCAGCATTCTCAGCTTGACAGGGCGACCAACCCCTTTGTCG 2340
T T E I S G R S I L S L T G R P T P L S2341 TGGAGACTGGGGCAGTCCAGCCCCCGCCTGCAGGCAGGTGATGCTCCATCCATGGGAAAT 2400

Figure 1. (continued).

2401 GGGTATCCTCCCAGAGGGAATGCCAGCCGCTTCATCAACACGGAATCGGGACGTTACATG2460G Y P P R G N A S R F I N T E S G R Y M2461 TATTCAGCACCTTTGCGAAGACAGCTAGCATCTCGTGGCAGCAGTGTCTGCCATGTGGAC 2520$Y \quad S \quad A \quad P \quad L \quad R \quad R \quad D \quad L \quad A \quad S \quad R \quad G \quad S \quad S \quad V \quad C \quad H \quad V \quad D$
2521 ATCTCAGACAAAGGAAGTGATGAAATAGATCTGGAAGGCATCACCATGGATGCCACCGGC 2580I S D K G S D E I D L E G I T M D A T G
2581 TACATGAGTGATGGAGATGTGCTGGGCAAGAATATCAGGACTGACGATATCACCAGTGGG 2640$Y M S \quad D \quad D \quad V \quad L \quad G \quad N \quad I \quad R \quad T \quad D \quad D \quad I \quad T \quad S \quad G$
2641 TATATGACTGATGGTGGCTTGGGCCTCTACACTCGAAGGCTAAACCGGCTGCCTGATGGC 2700Y M T D G G L G L Y T R R L N R L P D G2701 ATGGCTGCAGTGCGAGAGACGATGCAGCGCAACAGGTCCCTGGGACTCGGGGATGCTGAC 2760M A A V R E T M O R N N T S L G L G D A D
2761 AGCTGGGATGACAGCAGCTCTGTCAGCAGTGGGATCAGTGACACCATAGATAATCTCAGC 2820
S W D D S S S V S S G I S D T I D N L S
2821 ACTGATGACATTAACACCAGCTCCTCTATCAGCTCTTATGCCAACACACCTGCCTCCTCC 2880
$T \quad D \quad D \quad I \quad N \quad T \quad S \quad S \quad S \quad I \quad S \quad S \quad Y \quad A \quad N \quad T \quad P \quad A ~ S ~ S ~$2881 CGTAAAAACTTAGATGCACAGACTGATGCAGAAAAGCATTCCCAGGTCGAGCGGAATTCC 2940
R K N L D A Q T D A E K H S \quad O V E R
2941 TTATGGTCCAGTGATGAAGTCAAGAAATCAGACGGAGGATCCGAGAGTGGCATAAAAATG 3000

3001 GAGCCAGGATCTAAATGGAGGGGGAATCCCTCTGATGTGTCTGATGAATCTGATAAAAGC 3060
3061 ACTTCTGGTAGGAAGAACACTGTTATTTCGCAGACGGGTTCCTGGAGACGGGGGATGTCG 3120

3121 GCTCAGGTTGGCATTACCAGACGAAGGACTAAACGTTCAACCACCTCGGGGACATTAAAG 3180
A Q V G I T T P R T K P S T T S G T L K
3181 ACACCTGGAACAGGGAAAACTGATGACGCCAAGGTATCAGAAAAGGGTAGACTATCTCCT 3240T P G T G K T D D A K V S E K G R L S P
3241 AAGGCTGGACATGTTAAACGTTCCCCATCAGATGCAGGACGCAGCAGTGGTGATGAATCC 3300K A G H V K R S P3301 AAAAAGCTTCCCACAAGTAACTCTAGAACAACTGCTGCTAATGCTAATACATTCGGATTT 3360
3361 AAGAAACAGAGCGGGTCAGCCGTAGGCATGACTATAATTACTGCCAGTGGGGCAACTATC 3420

3421 ACCAGTAGATCAGCTACTCTGGGAAAAATCCCAAAGTCATCCGGACTCATGGGTAGGACC 34803481 ACTGGTCGGAAGACTAGTGTTGATGGCTCACAGAACCAGGATGATGGCTACTTAGCACTT 3540

Figure 1. (continued)
3541 AgTGCCCGAACTAACCTTCAGTATCGTAGTTTACCCCGGCCCAGTAAATCAAGTAGCAGA 3600
S A R T N L Q Y R S L P R P S K S S S R
3601 AgTGgagctgggaitagatctagcactagtagcatagactccaacaitangcagcaiatca 3660 S G A G N R S S T S S I D S NI S S K S
3661 GCTGGGTTGCCTGTCCCTAAAATGAGAGAGCCTGCCAAGGTAATTCTTGGAAGCTCTCTC 3720A G L P V P K M R E P A K V I L G S S L
3721 CCAGGATTAGTCAATCAGACTGATAAAGAGAAAGGGATTTCGTCTGACAACGAAAGCGTG 3780P G L V N O T D K E K G I S S D N E S V
3781 GCCTCATGTAATTCTGTTAAAGTGAACCCTGCATCACAGACTGCTTCTAGTGGAGCTCAA 3840
A S C N S V K V N P A S O T A S S G A Q
3841 AGTACTCACCAGCAAGGAGCCAAGTACCCTGATGTGGCCTCTCCCACTTTGCGCAGACTT 3900S T H O O G A K Y P D V A S P T L R R L
3901 TTTGGTGGAAAGCCTAGTAAACAAGTTCCCATCACAACAGCAGAAAATATGAAAAATTCA 3960
F G G K P S K O V P I T T A E N M K N S
3961 GTAGTCATCTCCAATCCTCATGCTACTATGAACCAGCAGGGTAATCTTGATTCACCATCT 4020
V V I S N P H A T M N O O G N L D S P S
4021 GGCAGTGGTATACTAAGCAGTGGGGGCAGCAGTCCTCTCTATAGTAAAAACACAGATTTG 4080G S G I L S S G G S S P L Y S K N T D L4081 AACCAGTCTCCACTAGCTTCTAGTCCCAGTTCTGCACATTCAGCTCCTTCCAACAGTTTA4140N 0 S P L A S S P S S A H S A P S N S L
4141 ACATGGGGCACCAACGCAAGTAGCTCTTCAGCTGTTAGCAAGGATGGCATTGGCTATCAG 4200T W G T N A S S S S A V S K D G I G Y 0
4201 TCTGTCAGCAGTCTTCATACCAGCTGTGAATCCATTGATATCTCTCTGAGCAGTGGAGGT 4260S V S S L H T S C E S I D I S L S S G G4261 GGGCTGAGCCATAACTCCTCCGGTAGCTTGATTCCAGCCTCTAAAGATGATTCTCTGACT4320G L S H N S S G S L I P A S K D D S L T
4321 CCCTTTGTCCGAACCAACAGTGTTAAGACCACACTGTCTGAAAGGTATACTCCITCCTCC 4380P F V R T N S V K T T L S E R Y T P S S
4381 CAACTTCGTAGCCAGGAAGATGCAAAAGAATGGCTACGGTCACATTCAGCAGGAGGGCTC 4440$0 \mathrm{~L} R \mathrm{~S}$ Q E D A K E W L R S H S A G G L
4441 CAGGACACTGCTGGCAATTCTCCATTTTCATCAGGATCCAGCATAACATCACCTTCTGGA 45000 D T A G N S P F S S G S S I T S P S G
4501 ACTAGATTTAACTTCTCCCAGCTTGCAAGCCCAACCACTGCAGCCCAGATGAGCTTGTCA 4560T R F N F S O L A S P T T A A Q M S L S
4561 AATCCAACCATGCTGCGGACCCATAGCCTTTCCAATGCAGATGGCCCCTATGACCCCTAT 4620N P T M L R T H S L S N A D G P Y D P Y
4621 AGTGACACACGCTTCAGGAACAGCTCCATGTCCTTGGACGAGAAGAGCAGAACAATGAGC 4680
S D T R F R N S S M S L D K S R T M S
4681 CGATCTGGCTCGTTCCGTGATGGCTTTGAAGAAGTGCATGGTTCTTCTCTCTCTTTGGTA 4740
R S G S F R D G F E E V H G S S L S L V

Figure 1. (continued).
4741 TCCAGTACATCATCTATTTATTCAACACCTGAAGAGAAGTGCCAATCAGAGATTCGCAAG 4800
S S T S S I Y S T P E E K C O S E I R K
4801 CTACGAAGAGAGTTGGATGCATCCCAAGAGAAAGTATCAGCTCTGACAACTCAGCTGACT 4860$L R E E L D A S O E K V S A L T T O L T$
4861 GCGAATGCCCACCTTGTGGCAGCATTTGAGCAGAGTCTGGGGAACATGACGATCAGACTG 4920A N A H L V A A F E O S L G N M T I R L
4921 CAGAGCCTCACCATGACAGCTGAACAAAAGGACTCTGAACTGAATGAGCTAAGGAAGACT 49800 S L T M T A E O K D S E L N E L R K T
4981 ATTGAACTACTGAAGAAGCAAAATGCTGCTGCCCAGGCTGCCATTAATGGAGTCATCAAC 50401 ELLKK ONAAA OA A I NGVIN
5041 ACACCTGAGCTCAACTGCAAAGGAACTGGAGCTGCTCAACCCACAGACTTGCGGATCCGA 5100T P E L N C K G T G A A O P T D L R I R
5101 AGACAGCACTCTTCGGATAGCGTCTCCAGCATTAACAGTGCTACCAGCCACTCTAGCGTG 5160R O H S S D S V S S I N S A T S H S S V
5161 GGAAGCAACATAGAGAGTGATTCAAAGAAAAAGAAGAGGAAGAACTGGGTCAATGAGTTA 5220G S N I E S D S K K K K R K N W VN E L
5221 CGCAGCTCCTTCAAGCAAGCTITTGGTAAAAAGAAGTCTCCCAAGTCAGCATCTTCTCAT 5280$R \quad S \quad$ S K Q A F G K K K S P K S A S S H
5281 TCGGATATtGAGGAGATGACAGATTCTTCATTACCTTCATCACCAAAGCTACCACACCAT 5340
S D I E E M T D S S L P S S P K L P H H
5341 AACTCTACCGTTTCTACACCATTGCTGAGAGCTTCTCATTCCAATTCTCTTATTTCTGAA 5400N S T V S T P L L R A S H S N S L I S E
5401 TGCACAGACAGTGAAGCTGAAACAGTCATGCAGTTACGCAATGAACTAAGAGACAAGGAG 5460C T D S E A E TVMOLRNELRDKE
5461 ATGAAGTTGACTGACATTCGTCTAGAAGCCCTTAGCTCTGCTCATCAGCTTGACCAGCTT 5520M K L T D I R L E A L S S A H O L D O L
5521 CGGGAGGCAATGAACAGAATGCAGAGTGAAATTGAGAAGTTAAAAGCAGAAAATGATCGA 5580R E A M N R M O S E I E K L K A E N D R
5581 CTGAAGTCTGAAAACCACAGCAGCTGTAGCAGGGCTCAGTCTCAGGCTTCCATTTCATCC 5640
L K S E N H S S C S R A O S O A S I S S
5641 TCTCCAAGACATTCAGTGGGTCTCTCTCAACACAGTTTGAACCTCACAGAGTCAACTAGT 5700S P R H S V G L S O H S L N L T E S T S
5701 CTCGACATGCTGTTAGATGACACTGGTGATGGCTCTGCCCGGAAGGAAGGAGGCAGACAT 5760
L D M L L D D T G D G S A R K E G G R H
5761 GTCAAAATAGTTGTCAGTITTCAGGATGAAATGAAATGGAAGGAGGATTCAAGGCCGCGT 5820
$V K I V V S F Q \quad D E M K W K E D S R P R$
5821 ACCTTCCTCATAGGTTGCATTGGAGTGAGCGGGAAGACCAAATGGGATGTTCTGGATGGT 5880
T F L I G C I G V S G K T K W D V L D G
5881 GTTGTTAGACGGCTGTTTAAGGAGTACATCATTCACGTGGATCCAGTGAGTCAGCTGGGG 5940

Figure 1. (continued).
$V \vee R R L F K E Y I I H V D P V S Q L G$
5941 CTGAATTCAGACAGTGTTCTGGGTTACAGCATTGGAGAGATCAAACGCACAAATAGTGCC 6000

6001 GAGACACCTGAGCTGTTGCCCTGTGGCTATCTGGTTGGAGAAAACAATACTATTTCAGTT 6060 E T P E L L P G G Y L V G E N N T I S V

6061 ACCATCAAAGGTATCTGTGAAAACAGCTTGGACTGCCTGGTGTTTGAATCACTGATCCCA 6120 T I K G I G E N S L D G L V F E S L I P

6121 AAGCCCATACTGCAGCGCTACATCTCTCTCCTGATGGAACACCGGCGGATTATCTTGTCT
6180
K P I L Q R Y I S L L M E H R R I I L S
6181 GGCCCCAGTGGCACTGGTAAAACATACCTAGCAAACCGGCTCTCTGAGTATATGGTCCTG 6240
G P S G T G K T Y L A N R L S E Y MVL
6241 CGGGAGGGCAGGGAGCTGGCTGACGGAATTATTGCAACCTTCAACGTGGACCATAAGTCC
6300
R E G R E L A D G I I A T F N V D H K S
6301 AGTAAGGAACTTCGCCAATACCTGTCCAACCTAGCAGACCAATGTAATAGTGAAAATAAT
6360
S K E L R O Y L S N L A D Q C N S E N N
6361 GCTGTAGATATGCCTCTTGTAATTATTTTGGACAACTTGCATCATGTTAGCTCCCTAGGA
A V D M P L V I I L D N L H HV S S L G
6421 GagatcttcaatggacttctaanttgcangtaccacaiatgTccgtatattattcgcaca
E I F N G L L N C K Y H K C P Y I I G. I.
6481 ATGAACCAAGCCACCTCCTCAACACCAAATCTTCAACTTCACCATAATTTCAGATGGGTG
6540
M N Q A T S S T P N L Q L H H N F R W V
6541 CTATGTGCTAACCACACTGAGCCAGTCAAGGGCTITCTTGGCCGTTTCCTGAGAAGAAAA
$L C A N H \quad T E P V K G F L G R F L R R K$
6601 CTGATTGAAACAGAGATCAGTGGCAGAATGAGAAATGCAGAGCTGGTTAAAATTATTGAT
L I E T E I SGGRNRNAELVKII D
6661 TGGATTCCAAAGGTCTGGCAACATCTGAACAAGTTCTTGGAGGCTCATAGCTCCTCTGA
W I P K V W O H L N K F L E A H S S S D
6721 GTTACTATTGGTCCACGGCTCTTCCTCTCTTGTCCAATAGATGTAGATGGTTCAAGAGTT
V T I G P R L F L S G P I D V D G S R V
6781 TGGTTTACTGACTTGTGGAACTACTCCATCATCCCATACCTTCTGGAGGCAGTTAGAGAA
W F T D L W N Y S I I P Y L L E A V R E
6841 GGGCTTCAGCTGTATGGGAGGAGAGCTCCCTGGGAGGATCCTGCCAAATGGGTAATGGAC
G L Q L Y G R R A P W E D P A K W V M D
6901 ACATACCCATGGGCAGCCACCCCGCAGCACCATGAGTGGCCTCCTCTGCTACAGCTGCGG
6960
T Y P W A A T P Q H H E W P P L L Q L R
6961 CCTGAGGATGTGGGGTTTGATGGCTACTCCTTGTCACGGGAAGGCTCAACCAGCAAACAA 7020 $P E D V G F D G Y S L S R E G S T S K O$

7021 GTTCCAGTGAGTGACGCTGAAGGAGATCCACTGATGAACATGCTAATGAGACTGCAAGAA
7080
$V P V S D A E G B L M N M L R L Q E$

Figure 1. (continued).
7081 GCAGCCAACTACTCAAGTCCCCAGAGTTACGACAGTGACTCTAACAGCAACAGCCATCAC 7140
A A N Y S S P O S Y D S D S N S N S H H
7141 gatgacatactcgattcatctctggaitcaacgttgtga 7179 D D I L D S S L E S T L *

Figure 1. (continued).

Figure 2. Expression of the Nav2s gene in the chick embryo at stage 22. (A) Transverse sections of stage 22 chick embryos were hybridized with the chick Nav2s probe. The chick Nav2s signal was shown in blue. (B) Staining with the anti-Islet-1/2 antibody (brown) was done to show DRG neurons and motor neurons (MN). DM, dermamyotome; DREZ, dorsal root entry zone; NC, notochord; SC, spinal cord.

Figure 3. Expression of the Nav2s gene in the chick embryo at stage 26. (A) Transverse sections of stage 26 chick embryos were hybridized with the chick Nav2s probe. The chick Nav2s signal was shown in blue. (B) Staining with the anti-Islet-1/2 antibody (brown) was done to show DRG neurons and motor neurons (MN). DM, dermamyotome; NC, notochord; SC, spinal cord.

Next, we investigated the expression of chick Nav2s at the thoracic level of chick embryos (Fig. 2). At stage 22, the mRNA of the Nav2s gene was strongly expressed in the dorsolateral edges of the spinal cord (Fig. 2). Its expression was also detected in dorsal root ganglion (DRG) neurons and in the dermamyotome, and
slight expression was also noted in the dorsal root entry zone and in motor neurons (Fig. 2). At stage 26, the Nav2s gene was detected in the whole spinal cord and DRG neurons (Fig. 3). The dermamyotome continued to express Nav2s (Fig. 3).

Transcripts of Neuron navigator family genes are microtubule-associated protein (Martínez-López et al., 2005). Together with our results that Nav2s is expressed in commissural neurons in the early spinal cord, it is highly possible that Nav2s could regulate the migration or axon guidance of commissural neurons in the spinal cord. In addition, we suppose that sensory deficits observed in Nav2 mutant mice (Peeters et al., 2004) may be a secondary effect from the disorganization of the spinal cord neurons.

Acknowledgements

This work was supported by grants from The Saito Gratitude Foundation, Japan. We also thank Dr. Nobuyuki Kai for his helpful suggestion.

References

Hamburger, V. and Hamilton, H.L., 1992: A series of normal stages in the development of the chick embryo. Dev. Dyn., 195, p. 231-272.
Hedgecock, E.M., Culotti, J.G., Hall, D.H. and Stern, B.D., 1987: Genetics of cell and axon migrations in Caenorhabditis elegans. Development, 100, p. 365-382.
Hekimi, S. and Kershaw, D., 1993: Axonal guidance defects in a Caenorhabditis elegans mutant reveal cell-extrinsic determinants of neuronal morphology. J. Neurosci., 13, p. 4254-4271.

Maes, T., Barcelo, A. and Buesa, C., 2002 : Neuron navigator: a human gene family with homology to unc-53, a cell guidance gene from Caenorhabditis elegans. Genomics, 80, p. 21-30.
Martínez-López, M.J., Alcántara, S., Mascaró, C., Pérez-Brangulı, F., Ruiz-Lozano, P., Maes, T., Soriano, E. and Buesa, C., 2005: Mouse Neuron navigator 1, a novel microtubuleassociated protein involved in neuronal migration. Mol. Cell. Neurosci., 28, p. 599612.

Masuda, T., Kai, N., Sakuma, C., Kobayashi, K., Koga, H. and Yaginuma, H., 2009 : Laser capture microdissection and cDNA array analysis for identification of mouse KIAA/ FLJ genes differentially expressed in the embryonic dorsal spinal cord. Brain Res., 1249, p. 61-67.
McNeill, E.M., Roos, K.P., Moechars, D. and Clagett-Dame, M., 2010 : Nav2 is necessary for cranial nerve development and blood pressure regulation. Neural Dev., 5, p. 6.
Merrill, R.A., Plum, L.A., Kaiser, M.E. and Clagett-Dame, M., 2002: A mammalian homolog of $u n c-53$ is regulated by all-trans retinoic acid in neuroblastoma cells and embryos. Proc. Natl. Acad. Sci. USA, 99, p. 3422-3427.
Peeters, P.J., Baker, A., Goris, I., Daneels, G., Verhasselt, P., Luyten, W.H.M.L., Geysen, J.J.G.H., Kass, S.U. and Moechars, D.W.E., 2004 : Sensory deficits in mice hypomorphic for mammalian homologue of unc-53. Dev. Brain Res., 150, p. 89-101.
Stringham, E., Pujol, N., Vandekerckhove, J. and Bogaert, T., 2002 : Unc-53 controls longitudinal migration migration in C. elegans. Development, 129, p. 3367-3379.

[^0]: * Department of Anatomy, Fukushima Medical University School of Medicine, Fukushima 960-1295, Japan <E-mail: tmasu@fmu.ac.jp>
 ** Department of Anatomy, Graduate School of Medicine, Osaka City University, Osaka 545-8585, Japan

