
Department of Policy and Planning Sciences

Discussion Paper Series

No.1377

Completely Positive Factorization by Riemannian

Smoothing Method

by

Zhijian LAI and Akiko YOSHISE

July 2021
Revised September 2022

UNIVERSITY OF TSUKUBA
Tsukuba, Ibaraki 305-8573

JAPAN

Completely Positive Factorization by a Riemannian

Smoothing Method

ZHIJIAN LAI∗ AKIKO YOSHISE†

Abstract

Copositive optimization is a special case of convex conic programming, and it consists
of optimizing a linear function over the cone of all completely positive matrices under lin-
ear constraints. Copositive optimization provides powerful relaxations of NP-hard quadratic
problems or combinatorial problems, but there are still many open problems regarding copos-
itive or completely positive matrices. In this paper, we focus on one such problem; finding a
completely positive (CP) factorization for a given completely positive matrix. We treat it as
a nonsmooth Riemannian optimization problem, i.e., a minimization problem of a nonsmooth
function over a Riemannian manifold. To solve this problem, we present a general smoothing
framework for solving nonsmooth Riemannian optimization problems and show convergence to
a stationary point of the original problem. An advantage is that we can implement it quickly
with minimal effort by directly using the existing standard smooth Riemannian solvers, such
as Manopt. Numerical experiments show the efficiency of our method especially for large-scale
CP factorizations.

Keywords: completely positive factorization, smoothing method, nonsmooth Riemannian
optimization problem

AMS: 15A23, 15B48, 90C48, 90C59

1 Introduction

The space of n× n real symmetric matrices Sn is endowed with the trace inner product 〈A,B〉 :=
trace(AB). A matrix A ∈ Sn is called completely positive if for some r ∈ N there exists an entrywise
nonnegative matrix B ∈ Rn×r such that A = BB>, and we call B a CP factorization of A. We
define CPn as the set of n× n completely positive matrices, equivalently characterized as

CPn := {BB> ∈ Sn | B is a nonnegative matrix } = conv{xx> | x ∈ Rn+},

where conv(S) denotes the convex hull of a given set S. We denote the set of n × n copositive
matrices by COPn := {A ∈ Sn | x>Ax ≥ 0 for all x ∈ Rn+}. It is known that COPn and CPn
are duals of each other under the trace inner product; moreover, both CPn and COPn are proper
convex cones [3, Section 2.2]. For any positive integer n, we have the following inclusion relationship
among other important cones in conic optimization:

CPn ⊆ S+
n ∩Nn ⊆ S+

n ⊆ S+
n +Nn ⊆ COPn,

where S+
n is the cone of n×n symmetric positive semidefinite matrices and Nn is the cone of n×n

symmetric nonnegative matrices. See the monograph [3] for a comprehensive description of CPn
and COPn.

Conic optimization is a subfield of convex optimization that studies minimization of linear
functions over proper cones. Here, if the proper cone is CPn or its dual cone COPn, we call the
conic optimization problem a copositive programming problem. Copositive programming is closely

∗Graduate School of Systems and Information Engineering, University of Tsukuba, Tsukuba, Ibaraki 305-8573,
Japan. E-mail:s2130117@s.tsukuba.ac.jp
†Corresponding author. Faculty of Engineering, Information and Systems, University of Tsukuba, Tsukuba,

Ibaraki 305-8573, Japan. E-mail:yoshise@sk.tsukuba.ac.jp

1

mailto:s2130117@s.tsukuba.ac.jp
mailto:yoshise@sk.tsukuba.ac.jp

CP Factorization by a Riemannian Smoothing Method 2

related to many nonconvex, NP-hard quadratic and combinatorial optimizations [29]. For example,
consider the so-called standard quadratic optimization problem,

min{x>Mx | e>x = 1, x ∈ Rn+}, (1)

where M ∈ Sn is possibly not positive semidefinite and e is the all-ones vector. Bomze et al. [9]
showed that the following completely positive reformulation,

min{〈M,X〉 | 〈E,X〉 = 1, X ∈ CPn},

where E is the all-ones matrix, is equivalent to (1). Burer [15] reported a more general result, where
any quadratic problem with binary and continuous variables can be rewritten as a linear program
over CPn. As an application to combinatorial problems, consider the problem of computing the
independence number α(G) of a graph G with n nodes. De Klerk and Pasechnik [24] showed that

α(G) = max{〈E,X〉 | 〈A+ I,X〉 = 1, X ∈ CPn},

where A is the adjacency matrix of G. For surveys on applications of copositive programming, see
[6, 10, 16, 28, 29].

The difficulty of the above problems lies entirely in the completely positive conic constraint.
Note that because neither COPn nor CPn is self-dual, the primal-dual interior point method for
conic optimization does not work as is. Besides this, there are many open problems related to
completely positive cones. One is checking membership in CPn, which was shown to be NP-hard
by [27]. Computing or estimating the cp-rank, as defined later in (3), is also an open problem. We
refer the reader to [4, 28] for a detailed discussion of those unresolved issues.

In this paper, we focus on finding a CP factorization for a given A ∈ CPn, i.e., the CP
factorization problem:

Find B ∈ Rn×r s.t. A = BB> and B ≥ 0, (CPfact)

which seems to be closely related to the membership problem A ∈ CPn. Sometimes, a matrix is
shown to be completely positive through duality, or rather, 〈A,X〉 ≥ 0 for all X ∈ COPn, but in
this case, a CP factorization will not necessarily be obtained.

1.1 Related work on CP factorization

Various methods of solving CP factorization problems have been studied. Jarre and Schmallowsky
[33] stated a criterion for complete positivity, based on the augmented primal dual method to solve
a particular second-order cone problem. Dickinson and Dür [26] dealt with complete positivity
of matrices that possess a specific sparsity pattern and proposed a method for finding CP factor-
izations of these special matrices that can be performed in linear time. Nie [36] formulated the
CP factorization problem as an A-truncated K-moment problem, for which the author developed
an algorithm that solves a series of semidefinite optimization problems. Sponsel and Dür [45]
considered the problem of projecting a matrix onto CPn and COPn by using polyhedral approx-
imations of these cones. With the help of these projections, they devised a method to compute
a CP factorization for any matrix in the interior of CPn. Bomze [7] showed how to construct a
CP factorization of an n × n matrix based on a given CP factorization of an (n − 1) × (n − 1)
principal submatrix. Dutour Sikirić et al. [43] developed a simplex-like method for a rational CP
factorization that works if the input matrix allows a rational CP factorization.

In 2020, Groetzner and Dür [31] applied the alternating projection method to the CP factoriza-
tion problem by posing it as an equivalent feasibility problem (see (FeasCP)). Shortly afterwards,
Chen et al. [19] reformulated the split feasibility problem as a difference-of-convex optimization
problem and solved (FeasCP) as a specific application. In fact, we will solve this equivalent feasi-
bility problem (FeasCP) by other means in this paper. In 2021, Boţ and Nguyen [12] proposed a
projected gradient method with relaxation and inertia parameters for the CP factorization problem,
aimed at solving

min
X
{‖A−XX>‖2 | X ∈ Rn×r+ ∩ B(0,

√
trace(A))}, (2)

where B(0, ε) := {X ∈ Rn×r | ‖X‖ ≤ ε} is the closed ball centered at 0. The authors argued that
its optimal value is zero if and only if A ∈ CPn.

CP Factorization by a Riemannian Smoothing Method 3

1.2 Our contributions and organization of the paper

Inspired by the idea of Groetzner and Dür [31], wherein (CPfact) is shown to be equivalent to
a feasibility problem called (FeasCP), we treat the problem (FeasCP) as a nonsmooth Rieman-
nian optimization problem and solve it through a general Riemannian smoothing method. Our
contributions are summarized as follows:

1. Although it is not explicitly stated in [31], (FeasCP) is actually a Riemannian optimization
formulation. We propose a new Riemannian optimization technique and apply it to the problem.

2. In particular, we present a general framework of Riemannian smoothing for the nonsmooth
Riemannian optimization problem and show convergence to a stationary point of the original
problem.

3. We apply the general framework of Riemannian smoothing to CP factorization. Numerical
experiments clarify that our method is competitive with other efficient CP factorization methods,
especially for large-scale matrices.

In Section 2, we review the process to reconstruct (CPfact) into another feasibility problem; in
particular, we take a different approach to this problem from those in other studies. In Section 3, we
describe the general framework of smoothing methods for Riemannian optimization. To apply it to
the CP factorization problem, we employ a smoothing function named LogSumExp. Section 4 is a
collection of numerical experiments for CP factorization. As a meaningful supplement, in Section
5, we conduct further experiments (FSV problem and robust low-rank matrix completion) to
explore the numerical performance of various sub-algorithms and smoothing functions on different
applications.

2 Preliminaries

2.1 cp-rank and cp-plus-rank

First, let us recall some basic properties of completely positive matrices. Generally, many CP
factorizations of a given A may exist, and they may vary in their numbers of columns. This gives
rise to the following definitions: the cp-rank of A ∈ Sn, denoted by cp(A), is defined as

cp(A) := min{r ∈ N | A = BB>, B ∈ Rn×r, B ≥ 0}, (3)

where cp(A) =∞ if A /∈ CPn. Similarly, we can define the cp-plus-rank as

cp+(A) := min{r ∈ N | A = BB>, B ∈ Rn×r, B > 0}.

Immediately, for all A ∈ Sn, we have

rank(A) ≤ cp(A) ≤ cp+(A). (4)

Every CP factorization B of A is of the same rank as A since rank(XX>) = rank(X) holds for
any matrix X. The first inequality of (4) comes from the fact that for any CP factorization B,

rank(A) = rank(B) ≤ the number of columns of B.

The second is trivial by definition.
Note that computing or estimating the cp-rank of any given A ∈ CPn is still an open problem.

The following result gives a tight upper bound of the cp-rank for A ∈ CPn in terms of the order n.

Theorem 2.1 (Bomze, Dickinson, and Still [8, Theorem 4.1]). For all A ∈ CPn, we have

cp(A) ≤ cpn :=

{
n for n ∈ {2, 3, 4}
1
2n(n+ 1)− 4 for n ≥ 5.

(5)

The following result is useful for distinguishing completely positive matrices in either the interior
or on the boundary of CPn.

Theorem 2.2 (Dickinson [25, Theorem 3.8]). We have

int(CPn) = {A ∈ Sn | rank(A) = n, cp+(A) <∞}
= {A ∈ Sn | rank(A) = n,A = BB>, B ∈ Rn×r, B ≥ 0,

bj > 0 for at least one column bj of B}.

CP Factorization by a Riemannian Smoothing Method 4

2.2 CP factorization as a feasibility problem

Groetzner and Dür [31] reformulated the CP factorization problem as an equivalent feasibility
problem containing an orthogonality constraint.

Given A ∈ CPn, we can easily get another CP factorization B̂ with r′ columns for every integer
r′ ≥ r, if we also have a CP factorization B with r columns. The simplest way to construct such
an n× r′ matrix B̂ is to append k := r′ − r zero columns to B, i.e., B̂ := [B, 0n×k] ≥ 0. Another
way is called column replication, i.e.,

B̂ := [b1, . . . , bn−1,
1√
m
bn, . . . ,

1√
m
bn︸ ︷︷ ︸

m:=r′−n+1 columns

], (6)

where bi denotes the i-th column of B. It is easy to see that B̂B̂> = BB> = A. The next lemma
is easily derived from the previous discussion, and it implies that there always exists an n × cpn
CP factorization for any A ∈ CPn. Recall that definition of cpn is given in (5).

Lemma 2.3. Suppose that A ∈ Sn, r ∈ N. Then r ≥ cp(A) if and only if A has a CP factorization
B with r columns.

Let O(r) denote the orthogonal group of order r, i.e., the set of r× r orthogonal matrices. The
following lemma is essential to our study. (Note that many authors have proved the existence of
such an orthogonal matrix X (see, e.g., [17, Lemma 2.1] and [31, Lemma 2.6]).

Lemma 2.4. Let B,C ∈ Rn×r. BB> = CC> if and only if there exists X ∈ O(r) with BX = C.

The next proposition puts the previous two lemmas together.

Proposition 2.5. Let A ∈ CPn, r ≥ cp(A), A = B̄B̄>, where B̄ ∈ Rn×r may possibly be not
nonnegative. Then there exists an orthogonal matrix X ∈ O(r) such that B̄X ≥ 0 and A =
(B̄X)(B̄X)>.

This proposition tells us that one can find an orthogonal matrix X which can turn a “bad”
factorization B̄ into a “good” factorization B̄X. Let r ≥ cp(A) and B̄ ∈ Rn×r be an arbitrary
(possibly not nonnegative) initial factorization A = B̄B̄>. The task of finding a CP factorization
of A can then be formulated as the following feasibility problem,

Find X s.t. B̄X ≥ 0 and X ∈ O(r). (FeasCP)

We should notice that the condition r ≥ cp(A) is necessary; otherwise, (FeasCP) has no solution
even if A ∈ CPn. Regardless of the exact cp(A) which is often unknown, one can use r = cpn in
(5). Note that finding an initial matrix B̄ is not difficult. Since a completely positive matrix is
necessarily positive semidefinite, one can use Cholesky decomposition or spectral decomposition
and then extend it to r columns by using (6). The following corollary shows that the feasibility of
(FeasCP) is precisely a criterion for complete positivity.

Corollary 2.6. Set r ≥ cp(A), B̄ ∈ Rn×r an arbitrary initial factorization of A. Then A ∈ CPn if
and only if (FeasCP) is feasible. In this case, for any feasible solution X, B̄X is a CP factorization
of A.

In this study, solving (FeasCP) is the key to finding a CP factorization, but it is still a hard
problem because O(r) is nonconvex.

2.3 Approaches to solving (FeasCP)

Groetzner and Dür [31] applied the so-called alternating projections method to (FeasCP). They
defined the polyhedral cone, P := {X ∈ Rr×r : B̄X ≥ 0}, and rewrote (FeasCP) as

Find X s.t. X ∈ P ∩ O(r).

CP Factorization by a Riemannian Smoothing Method 5

The alternating projections method is as follows: choose a starting point X0 ∈ O(r); then compute
P0 = projP(X0) and X1 = projO(r)(P0), and iterate this process. Computing the projection onto
P amounts to solving a second-order cone problem (SOCP), while computing the projection onto
O(r) amounts to a singular value decomposition. Note that we need to solve an SOCP alternately
at every iteration, which is still expensive in practice. A modified version without convergence
involves calculating an approximation of projP(Xk) by using the Moore-Penrose inverse of B̄; for
details, see [31, Algorithm 2].

Our way is to use the optimization form. Here, we denote by max(·) (resp. min(·)) the max-
function (resp. min-function)) that selects the largest (resp. smallest) entry of a vector or matrix.
Notice that −min(·) = max(−(·)). We associate (FeasCP) with the following optimization problem:

max
X∈O(r)

{min (B̄X)}.

For consistency of notation, we turn the maximization problem into a minimization problem:

min
X∈O(r)

{max (−B̄X)}. (OptCP)

The feasible set O(r) is known to be compact [32, Observation 2.1.7]. In accordance with the ex-
treme value theorem [40, Theorem 4.16], (OptCP) attains the global minimum, say t. Summarizing
these observations together with Corollary 2.6 yields the following proposition.

Proposition 2.7. Set r ≥ cp(A), and let B̄ ∈ Rn×r be an arbitrary initial factorization of A.
Then the following statements are equivalent:

1. A ∈ CPn.

2. (FeasCP) is feasible.

3. In (OptCP), there exists a feasible solution X such that max(−B̄X) ≤ 0; alternatively,
min(B̄X) ≥ 0.

4. In (OptCP), the global minimum t ≤ 0.

3 Riemannian smoothing method

The problem of minimizing a real-valued function over a Riemannian manifoldM, which is called
Riemannian optimization, has been actively studied during the last few decades. In particular, the
Stiefel manifold,

St(n, p) = {X ∈ Rn×p | X>X = I},

(when n = p, it reduces to the orthogonal group) is an important case and is our main interest here.
We treat the CP factorization problem, i.e., (OptCP) as a problem of minimizing a nonsmooth
function over a Riemannian manifold, for which variants of subgradient methods [11], proximal
gradient methods [23], and the alternating direction method of multipliers (ADMM) [34] have been
studied.

Smoothing methods [21], which use a parameterized smoothing function to approximate the
objective function, are effective on a class of nonsmooth optimizations in Euclidean space. Re-
cently, Zhang, Chen and Ma [47] extended a smoothing steepest descent method to the case of
Riemannian submanifolds in Rn. This is not the first time that smoothing methods have been
studied on manifolds. Liu and Boumal [35] extended the augmented Lagrangian method and exact
penalty method to the Riemannian case. The latter leads to a nonsmooth Riemannian optimiza-
tion problem to which they applied smoothing techniques. Cambier and Absil [18] dealt with the
problem of robust low-rank matrix completion by solving a Riemannian optimization problem,
wherein they applied a smoothing conjugate gradient method.

In this section, we propose a general Riemannian smoothing method and apply it to the CP
factorization problem.

CP Factorization by a Riemannian Smoothing Method 6

3.1 Notation and terminology of Riemannian optimization

Let us briefly review some concepts in Riemannian optimization, following the notation of [13].
Throughout this paper, M will refer to a complete Riemannian submanifold of Euclidean space
Rn. Thus, M is endowed with a Riemannian metric induced from the Euclidean inner product,
i.e., 〈ξ, η〉x := ξ>η for any ξ, η ∈ TxM, where TxM ⊆ Rn is the tangent space to M at x. The
Riemannian metric induces the usual Euclidean norm ‖ξ‖x := ‖ξ‖ =

√
〈ξ, ξ〉x for ξ ∈ TxM. The

tangent bundle TM :=
⊔
x∈M TxM is a disjoint union of the tangent spaces ofM. Let f :M→ R

be a smooth function on M. The Riemannian gradient of f is a vector field grad f on M that is
uniquely defined by the identities: for all (x, v) ∈ TM,

Df(x)[v] = 〈v, grad f(x)〉x

where Df(x) : TxM → Tf(x)R ∼= R is the differential of f at x ∈ M. Since M is an embedded
submanifold of Rn, we have a simpler statement for f that is also well defined on the whole Rn:

grad f(x) = Projx(∇f(x)),

where ∇f(x) is the usual gradient in Rn and Projx denotes the orthogonal projector from Rn to
TxM. For a subset D ⊆ Rn, the function h ∈ C1(D) is smooth, i.e., continuously differentiable on
D. Given a point x ∈ Rn and δ > 0, B(x, δ) denotes a closed ball of radius δ centered at x. R++

denotes the set of positive real numbers. We use subscript notation xi to select the ith entry of a
vector and superscript notation xk to designate an element in a sequence {xk}.

3.2 Ingredients

Now let us consider the nonsmooth Riemannian optimization problem (NROP):

min
x∈M

f(x), (NROP)

whereM⊆ Rn and f : Rn → R is a proper lower semi-continuous function (maybe nonsmooth or
even non-Lipschitzian) on Rn. For convenience, the term smooth Riemannian optimization problem
(SROP) refers to (NROP) when f(·) is continuously differentiable on Rn. To avoid confusion in
this case, we use g instead of f ,

min
x∈M

g(x). (SROP)

Throughout this subsection, we will refer to many of the concepts in [47].
First, let us review the usual concepts and properties related to generalized subdifferentials in

Rn. For a proper lower semi-continuous function f : Rn → R, the Fréchet subdifferential and the
limiting subdifferential of f at x ∈ Rn are defined as

∂̂f(x) := {∇h(x) | ∃δ > 0 such that h ∈ C1(B(x, δ)) and

f − h attains a local minimum at x on Rn},

∂f(x) := { lim
`→∞

v` | v` ∈ ∂̂f
(
x`
)
,
(
x`, f

(
x`
))
→ (x, f(x))}.

The definition of ∂̂f(x) above is not the standard one: the standard definition follows [39, 8.3
Definition]. But these definitions are equivalent by [39, 8.5 Proposition]. For locally Lipschitz
functions, the Clarke subdifferential at x ∈ Rn, ∂◦f(x), is the convex hull of the limiting subdiffer-
ential. Their relationship is as follows:

∂̂f(x) ⊆ ∂f(x) ⊆ ∂◦f(x).

Notice that if f is convex, ∂f(x) and ∂◦f(x) coincide with the classical subdifferential in convex
analysis [39, 8.12 Proposition].

Example 1 (Bagirov, Karmitsa, and Mäkelä [2, Theorem 3.23]). From a result on the pointwise
max-function in convex analysis, we have

∂max(x) = conv{ei | i ∈ I(x)},

where ei’s are the standard bases of Rn and I(x) = {i | xi = max(x)}.

CP Factorization by a Riemannian Smoothing Method 7

Next, we extend our discussion to include generalized subdifferentials of a nonsmooth func-
tion on submanifolds M. The Riemannian Fréchet subdifferential and the Riemannian limiting
subdifferential of f at x ∈M (see, e.g., [47, Definition 3.1]) are defined as

∂̂Rf(x) := {gradh(x) | ∃δ > 0 such that h ∈ C1(B(x, δ)) and

f − h attains a local minimum at x on M},

∂Rf(x) := { lim
`→∞

v` | v` ∈ ∂̂Rf
(
x`
)
,
(
x`, f

(
x`
))
→ (x, f(x))}.

If M = Rn, the above definitions coincide with the usual Fréchet and limiting subdifferentials in
Rn. Moreover, it follows directly that, for all x ∈ M, one has ∂̂Rf(x) ⊆ ∂Rf(x). According to

[47, Proposition 3.2], if x is a local minimizer of f on M, then 0 ∈ ∂̂Rf(x). Thus, we call a point
x ∈M a Riemannian limiting stationary point of (NROP) if

0 ∈ ∂Rf(x). (7)

In this paper, we will treat it as a necessary condition for a local solution of (NROP) to exist.
The smoothing function is the most important tool of the smoothing method.

Definition 3.1 (Zhang and Chen [46, Definition 3.1]). A function f̃(·, ·) : Rn×R++ → R is called
a smoothing function of f : Rn → R, if f̃(·, µ) is continuously differentiable in Rn for any µ > 0,

lim
z→x,µ↓0

f̃(z, µ) = f(x)

and there exist a constant κ > 0 and a function ω : R++ → R++ such that

|f̃(x, µ)− f(x)| ≤ κω(µ) with lim
µ↓0

ω(µ) = 0. (8)

Example 2 (Chen, Wets, and Zhang [22, Lemma 4.4]). The LogSumExp function, lse(x, µ) :
Rn × R++ → R, given by

lse(x, µ) := µ log(
∑n
i=1 exp(xi/µ)),

is the smoothing function of max(x) because we can see that
(i) lse(·, µ) is smooth on Rn for any µ > 0. Its gradient ∇x lse(x, µ) is given by σ(·, µ) : Rn →

∆n−1,

∇x lse(x, µ) = σ(x, µ) :=
1∑n

`=1 exp(x`/µ)
[exp(x1/µ), · · · , exp(xn/µ)]>, (9)

where ∆n−1 := {x ∈ Rn |
∑n
i=1 xi = 1, xi ≥ 0} is the unit simplex.

(ii) For all x ∈ Rn and µ > 0, we have max(x) < lse(x, µ) ≤ max(x) + µ log(n). Then, the
constant κ = log(n) and ω(µ) = µ. The above inequalities imply that limz→x,µ↓0 lse(z, µ) =
max(x).

Gradient sub-consistency or consistency is crucial to showing that any limit point of the Rie-
mannian smoothing method is also a limiting stationary point of (NROP).

Definition 3.2 (Zhang, Chen and Ma [47, Definition 3.4 & 3.9]). A smoothing function f̃ of f is
said to satisfy gradient sub-consistency on Rn if, for any x ∈ Rn,

Gf̃ (x) ⊆ ∂f(x), (10)

where the subdifferential of f associated with f̃ at x ∈ Rn is given by

Gf̃ (x) := {u ∈ Rn | ∇xf̃ (zk, µk)→ u for some zk → x, µk ↓ 0}.

Similarly, f̃ is said to satisfy Riemannian gradient sub-consistency on M if, for any x ∈M,

Gf̃ ,R(x) ⊆ ∂Rf(x), (11)

where the Riemannian subdifferential of f associated with f̃ at x ∈M is given by

Gf̃ ,R(x) = {v ∈ Rn | grad f̃ (zk, µk)→ v for some zk ∈M, zk → x, µk ↓ 0}.

CP Factorization by a Riemannian Smoothing Method 8

If one substitutes the inclusion with equality in (10), then f̃ satisfies gradient consistency on
Rn, and similarly in (11) for M. Thanks to the following useful proposition from [47], we can
induce gradient sub-consistency on M from that on Rn if f is locally Lipschitz.

Proposition 3.3 (Zhang, Chen and Ma [47, Proposition 3.10]). Let f be a locally Lipschitz function
and f̃ a smoothing function of f. For f̃ , if gradient sub-consistency holds on Rn, then Riemannian
gradient sub-consistency holds on M as well.

The next example illustrates Riemannian gradient sub-consistency on M for lse(x, µ) in Ex-
ample 2, since any convex function is locally Lipschitz continuous.

Example 3 (Chen, Wets, and Zhang [22, Lemma 4.4]). The smoothing function lse(x, µ) of max(x)
satisfies gradient consistency on Rn. That is, for any x ∈ Rn,

∂max(x) = Glse(x) = { lim
xk→x,µk↓0

σ(xk, µk)}.

Note that the original assertion of [22, Lemma 4.4] is gradient consistency in the Clarke sense, i.e.,
∂◦max(x) = Glse(x).

3.3 Riemannian smoothing method

Motivated by the previous papers [18, 35, 47] on smoothing methods and Riemannian manifolds,
we propose a general Riemannian smoothing method. Algorithm 1 is the basic framework of this
general method.

Algorithm 1: Basic Riemannian smoothing method for (NROP)

Initialization: Given θ ∈ (0, 1), µ0 > 0, and x−1 ∈M, select a smoothing function f̃ and a
Riemannian algorithm (called sub-algorithm here) for (SROP).
for k = 0, 1, 2, . . .

Solve
xk = arg min

x∈M
f̃(x, µk) (12)

approximately by using the chosen sub-algorithm, starting at xk−1

if final convergence test is satisfied
stop with approximate solution xk

end if
Set µk+1 = θµk

end for

Now let us describe the convergence properties of the basic method. First, let us assume that
the function f̃(x, µk) has a minimizer on M for each value of µk.

Theorem 3.4. Suppose that each xk is an exact global minimizer of (12) in Algorithm 1. Then
every limit point x∗ of the sequence {xk} is a global minimizer of the problem (NROP).

Proof. Let x̄ be a global solution of (NROP), that is,

f(x̄) ≤ f(x) for all x ∈M.

From the Definition 3.1 of the smoothing function, there exist a constant κ > 0 and a function
ω : R++ → R++ such that, for all x ∈M,

− κω(µ) ≤ f̃(x, µ)− f(x) ≤ κω(µ) (13)

with limµ↓0 ω(µ) = 0. Substituting xk and combining with the global solution x̄, we have that

f̃(xk, µk) ≥ f(xk)− κω(µk) ≥ f(x̄)− κω(µk).

CP Factorization by a Riemannian Smoothing Method 9

By rearranging this expression, we obtain

− κω(µk) ≤ f̃(xk, µk)− f(x̄). (14)

Since xk minimizes f̃(x, µk) on M for each µk, we have that f̃(xk, µk) ≤ f̃(x̄, µk), which leads
to

f̃(xk, µk)− f(x̄) ≤ f̃(x̄, µk)− f(x̄) ≤ κω(µk). (15)

The second inequality above follows from (13). Combining (14) and (15), we obtain

|f̃(xk, µk)− f(x̄)| ≤ κω(µk). (16)

Now, suppose that x∗ is a limit point of {xk}, so that there is an infinite subsequence K
such that limk∈K x

k = x∗. Note that x∗ ∈ M because M is complete. By taking the limit as
k →∞, k ∈ K, on both sides of (16), again by the definition of the smoothing function, we obtain

|f(x∗)− f(x̄)| = lim
k∈K
|f̃(xk, µk)− f(x̄)| ≤ lim

k∈K
κω(µk) = 0.

Thus, it follows that f(x∗) = f(x̄). Since x∗ ∈M is a point whose objective value is equal to that
of the global solution x̄, we conclude that x∗, too, is a global solution.

This strong result requires us to find a global minimizer of each subproblem, which, however,
cannot always be done. The next result concerns the convergence properties of the sequence
f̃(xk, µk) under the condition that f̃ has the following additional property:

0 < µ2 < µ1 =⇒ f̃(x, µ2) < f̃(x, µ1) for all x ∈ Rn. (17)

Example 4. The above property holds for lse(x, µ) in Example 2; i.e., we have lse(x, µ2) <
lse(x, µ1) on Rn, provided that 0 < µ2 < µ1. Note that under the equality,

n∑
l=1

exp(xl/µ) = exp{lse(x, µ)/µ},

the i-th component of σ(x, µ) can be rewritten as

σi(x, µ) = exp{(xi − lse(x, µ))/µ}.

For any fixed x ∈ Rn, consider the derivative of a real function µ→ lse(x, ·) : R++ → R. Then we
have

∇µ lse(x, µ) = lse /µ−
∑n
i=1 xi exp(xi/µ)

µ exp (lse /µ)
=(lse−

∑n
i=1 xi exp{(xi − lse)/µ})/µ

=(lse−
∑n
i=1 xiσi)/µ ≤ 0,

where “lse, σ” are shorthand for lse(x, µ) and σ(x, µ). For the last inequality above, we observe
that σ ∈ ∆n−1; hence, the term

∑n
i=1 xiσi is a convex combination of all entries of x, which implies

that
∑n
i=1 xiσi ≤ max(x) < lse . This completes the proofs of our claims.

In [18], the authors considered a special case of Algorithm 1, wherein the smoothing function

f̃(x, µ) =
√
µ2 + x2 of |x| also satisfies (17) and a Riemannian conjugate gradient method is used

for (12).

Theorem 3.5. Suppose that f∗ := infx∈M f(x) exists and the smoothing function f̃ has property
(17). Let fk := f̃(xk, µk). Then the sequence {fk} generated by Algorithm 1 is strictly decreasing
and bounded below by f∗; hence,

lim
k→∞

|fk − fk−1| = 0.

Proof. For each k ≥ 1, xk is obtained by approximately solving

min
x∈M

f̃(x, µk),

CP Factorization by a Riemannian Smoothing Method 10

starting at xk−1. Then at least, we have

f̃(xk−1, µk) ≥ f̃(xk, µk) = fk.

Since µk = θµk−1 < µk−1, property (17) ensures

fk−1 = f̃(xk−1, µk−1) > f̃(xk−1, µk).

The claim that sequence {fk} is strictly decreasing follows from these two inequalities.
Suppose that, for all µ > 0 and for all x ∈ Rn,

f̃(x, µ) ≥ f(x). (18)

Then for each k,
fk = f̃(xk, µk) ≥ f(xk) ≥ inf

x∈M
f(x) = f∗,

which proves our claims.
Now, we show (18) is true if the smoothing function has property (17). Fix any x ∈ Rn; (17)

implies that f̃(x, ·) is strictly decreasing as µ→ 0. Actually, f̃(x, ·) is monotonically increasing on
µ > 0. On the other hand, from the definition of the smoothing function, we have that

lim
µ↓0

f̃(x, µ) = f(x).

Hence, we have infµ>0 f̃(x, µ) = f(x), as claimed.

Note that the above weak result does not ensure that {fk} → f∗. Next, for better convergence
(compared with Theorem 3.5) and an effortless implementation (compared with Theorem 3.4), we
propose an enhanced Riemannian smoothing method: Algorithm 2. This is closer to the version
in [47], where the authors use the Riemannian steepest descent method for solving the smoothed
problem (19).

Algorithm 2: Enhanced Riemannian smoothing method for (NROP)

Initialization: Given θ ∈ (0, 1), µ0 > 0 and a nonnegative sequence {δk} with δk → 0, and
x−1 ∈M, select a smoothing function f̃ and a Riemannian algorithm (called sub-algorithm
here) for (SROP).
for k = 0, 1, 2, . . .

Solve
xk = arg min

x∈M
f̃(x, µk) (19)

approximately by using the chosen sub-algorithm, starting at xk−1, such that

‖ grad f̃(xk, µk)‖ < δk (20)

if final convergence test is satisfied
stop with approximate solution xk

end if
Set µk+1 = θµk

end for

The following result is adapted from [47, Proposition 4.2 & Theorem 4.3]. Readers are encour-
aged to refer to [47] for a discussion on the stationary point associated with f̃ on M.

Theorem 3.6. In Algorithm 2, suppose that the chosen sub-algorithm has the following general
convergence property for (SROP):

lim inf
`→∞

‖ grad g(x`)‖ = 0. (21)

Moreover, suppose that, for all µk, the function f̃(·, µk) satisfies the convergence assumptions of
the sub-algorithm needed for g above and f̃ satisfies the Riemannian gradient sub-consistency on
M. Then

CP Factorization by a Riemannian Smoothing Method 11

1. For each k, there exists an xk satisfying (20); hence, Algorithm 2 is well defined.

2. Every limit point x∗ of the sequence {xk} generated by Algorithm 2 is a Riemannian limiting
stationary point of (NROP) (see (7)).

Proof. Fix any µk. By (21), we have lim inf`→∞ ‖ grad f̃(x`, µk)‖ = 0. Hence, there is a convergent
subsequence of ‖ grad f̃(x`, µk)‖ whose limit is 0. This means that, for any ε > 0, there exists an
integer `ε such that ‖ grad f̃(x`ε , µk)‖ < ε. If ε = δk, we get xk = x`ε . Thus, statement (1) holds.

Next, suppose that x∗ is a limit point of {xk} generated by Algorithm 2, so that there is an
infinite subsequence K such that limk∈K x

k = x∗. From (1), we have

lim
k∈K
‖ grad f̃(xk, µk)‖ ≤ lim

k∈K
δk = 0,

and we find that grad f̃(xk, µk)→ 0 for k ∈ K, xk ∈M, xk → x∗, µk ↓ 0. Hence,

0 ∈ Gf̃ ,R(x∗) ⊆ ∂Rf(x∗).

Now let us consider the selection strategy of the nonnegative sequence {δk} with δk → 0. In
[47], when µk+1 = θµk shrinks, the authors set

δk+1 := ρδk (22)

with an initial value of δ0 and constant ρ ∈ (0, 1). In the spirit of the usual smoothing methods
described in [21], one can set

δk := γµk (23)

with a constant γ > 0. The latter is an adaptive rule, because µk determines subproblem (19) and
its stopping criterion at the same time. The merits and drawbacks of the two rules require more
discussion, but the latter seems to be more reasonable.

We conclude this section by discussing the connections with [18] and [47]. Our work is based
on an efficient unification of them. [18] focused on a specific algorithm and did not discuss the
underlying generalities, whereas we studied a general framework for Riemannian smoothing. Recall
that the “smoothing function” is the core tool of the smoothing method. In addition to what are
required by its definition (see Definition 3.1), it needs to have the following “additional properties”
(AP) in order for the algorithms to converge:

(AP1) Approximate from above, i.e., (17). (Needed in Algorithm 1)

(AP2) (Riemannian) gradient sub-consistency, i.e., Definition 3.2. (Needed in Algorithm 2)

We find that not all smoothing functions satisfy (AP1) and for some functions it is hard to
prove whether (AP2) holds. For example, all the functions in Table 1 are smoothing functions of
|x|, but only the first three meet (AP1); the last two do not. In [21], the authors showed that the
first one in Table 1, f̃1(x, µ), has property (AP2). The others remain to be verified, but doing so
will not be a trivial exercise. To a certain extent, Algorithm 1 as well as Theorem 3.5 guarantee
a fundamental convergence result even if one has difficulty in showing whether one’s smoothing
function satisfies (AP2). Therefore, it makes sense to consider Algorithms 1 and 2 together for the
sake of the completeness of the general framework.

Algorithm 2 expands on the results of [47]. It allows us to use any standard method of (SROP),
not just steepest descent, to solve the smoothed problem (19). Various standard Riemannian
algorithms for (SROP), such as the Riemannian conjugate gradient method [41] (which often
performs better than Riemannian steepest descent), the Riemannian Newton method [1, Chapter
6], and the Riemannian trust region method [1, Chapter 7], have extended the concepts and
techniques used in Euclidean space to Riemannian manifolds. As shown by Theorem 3.6, no
matter what kind of sub-algorithm is implemented for (19), it does not affect the final convergence
as long as the chosen sub-algorithm has property (21). On the other hand, we advocate that the
sub-algorithm should be viewed as a “Black Box” and the user should not have to care about the
code details of the sub-algorithm at all. We can directly use an existing solver, e.g., Manopt [14],
which includes the standard Riemannian algorithms mentioned above. Hence, we can choose the
most suitable sub-algorithm for the application and quickly implement it with minimal effort.

CP Factorization by a Riemannian Smoothing Method 12

Table 1. List of smoothing functions of the absolute value function |x| with κ and ω(µ) in (8)

κ ω(µ)

f̃1(x, µ) =

 |x| if |x| > µ
2

x2

µ + µ
4 if |x| ≤ µ

2

1
4 µ

f̃2(x, µ) =
√
µ2 + x2 1 µ

f̃3(x, µ) = 2µ log(1 + e
x
µ)− x 2 log(2) µ

f̃4(x, µ) = x tanh(xµ), where tanh(z) is the hyperbolic tangent function. 1 µ

f̃5(x, µ) = x erf(xµ), where erf(z) := 2√
π

∫ z
0
e−t

2

dt is the Gauss error function. 2
e
√
π

µ

4 Numerical experiments on CP factorization

The numerical experiments in Section 4 and 5 were performed on a computer equipped with an
Intel Core i7-10700 at 2.90GHz with 16GB of RAM using Matlab R2022a. Our Algorithm 2 is
implemented in the Manopt framework [14] (version 7.0). The number of iterations to solve the
smoothed problem (19) with the sub-algorithm is recorded in the total number of iterations. We
refer readers to the supplementary material of this paper for the available codes.1

In this section, we describe numerical experiments that we conducted on CP factorization in
which we solved (OptCP) using Algorithm 2, where different Riemannian algorithms were employed
as sub-algorithms and lse(−B̄X, µ) was used as the smoothing function. To be specific, we used
three built-in Riemannian solvers of Manopt 7.0 — steepest descent (SD), conjugate gradient (CG),
and trust regions (RTR), denoted by SM SD, SM CG and SM RTR, respectively. We compared
our algorithms with the following non-Riemannian numerical algorithms for CP factorization that
were mentioned in subsection 1.1. We followed the settings used by the authors in their papers.

• SpFeasDC ls [19]: A difference-of-convex functions approach for solving the split feasibility
problem, it can be applied to (FeasCP). The implementation details regarding the parameters
we used are the same as in the numerical experiments reported in [19, Section 6.1].

• RIPG mod [12]: This is a projected gradient method with relaxation and inertia parameters
for solving (2). As shown in [12, Section 4.2], RIPG mod is the best among the many
strategies of choosing parameters.

• APM mod [31]: A modified alternating projection method for CP factorization; it is described
in Section 2.3.

We have shown that lse(x, µ) is a smoothing function of max(x) with gradient consistency. lse(·, µ)
of the matrix argument can be simply derived from entrywise operations. Then from the properties
of compositions of smoothing functions [5, Proposition 1 (3)], we have that lse(−B̄X, µ) is a
smoothing function of max(−B̄X) with gradient consistency. In practice, it is important to avoid
numerical overflow and underflow when evaluating lse(x, µ). Overflow occurs when any xi is large
and underflow occurs when all xi are small. To avoid these problems, we can shift each component
xi by max(x) and use the following formula:

lse(x, µ) = µ log(
∑n
i=1 exp((xi −max(x))/µ)) + max(x),

whose validity is easy to show.
The details of the experiments are as follows. If A ∈ CPn was of full rank, for accuracy reasons,

we obtained an initial B̄ by using Cholesky decomposition. Otherwise, B̄ was obtained by using
spectral decomposition. Then we extended B̄ to r columns by column replication (6). We set
r = cp(A) if cp(A) was known or r was sufficiently large. We used RandOrthMat.m [42] to generate
a random starting point X0 on the basis of the Gram-Schmidt process.

1Alternatively, https://github.com/GALVINLAI/General-Riemannian-Smoothing-Method.

https://github.com/GALVINLAI/General-Riemannian-Smoothing-Method

CP Factorization by a Riemannian Smoothing Method 13

For our three algorithms, we set µ0 = 100, θ = 0.8 and used an adaptive rule (23) of δk := γµk
with γ = 0.5. Except for RIPG mod, all the algorithms terminated successfully at iteration k,
where min(B̄Xk) ≥ −10−15 was attained before the maximum number of iterations (5,000) was
reached. In addition, SpFeasDC ls failed when L̄k > 1010. Regarding RIPG mod, it terminated
successfully when ‖A −XkX

>
k ‖2/‖A‖2 < 10−15 was attained before at most 10,000 iterations for

n < 100, and before at most 50,000 iterations in all other cases. In the tables of this section, we
report the rounded success rate (Rate) over the total number of trials, although the definitions of
“Rate” in the different experiments (described in Sections 4.1-4.4) vary slightly from one experiment
to the other. We will describe them later.

4.1 Randomly generated instances

We examined the case of randomly generated matrices to see how the methods were affected by the
order n or r. The instances were generated in the same way as in [31, Section 7.7]. We computed
C by setting Cij := |Bij | for all i, j, where B is a random n × 2n matrix based on the Matlab
command randn, and we took A = CC> to be factorized. In Table 2, we set r = 1.5n and r = 3n
for the values n ∈ {20, 30, 40, 100, 200, 400, 600, 800}. For each pair of n and r, we generated 50
instances if n ≤ 100 and 10 instances otherwise. For each instance, we initialized all the algorithms
at the same random starting point X0 and initial decomposition B̄, except for RIPG mod. Note
that each instance A was assigned only one starting point.

Table 2 lists the average time in seconds (Times) and the average number of iterations (Iters)
among the successful instances. For our three Riemannian algorithms, Iters contains the number
of iterations of the sub-algorithm. Table 2 also lists the rounded success rate (Rate) over the total
number (50 or 10) of instances for each pair of n and r. Boldface highlights the two best results
in each row.

As shown in Table 2, except for APM mod, each method had a success rate of 1 for all pairs of
n and r. Our three algorithms outperformed the other methods on the large-scale matrices with
n ≥ 100. In particular, SM CG with the conjugate-gradient method gave the best results.

4.2 A specifically structured instance

Let en denote the all-ones vector in Rn and consider the matrix [31, Example 7.1],

An =

(
0 e>n−1

en−1 In−1

)>(
0 e>n−1

en−1 In−1

)
∈ CPn.

Theorem 2.2 shows that An ∈ int(CPn) for every n ≥ 2. By construction, it is obvious that
cp(An) = n. We tried to factorize An for the values n ∈ {10, 20, 50, 75, 100, 150} in Table 3. For
each An, using r = cp(An) = n and the same initial decomposition B̄, we tested all the algorithms
on the same 50 randomly generated starting points, except for RIPG mod. Note that each instance
was assigned 50 starting points.

Table 3 lists the average time in seconds (Times) and the average number of iterations (Iters)
among the successful starting points. It also lists the rounded success rate (Rate) over the total
number (50) of starting points for each n. Boldface highlights the two best results for each n.

We can see from Table 3 that the success rates of our three algorithms were always 1, whereas
the success rates of the other methods decreased as n increased. Likewise, SM CG with the
conjugate-gradient method gave the best results.

CP Factorization by a Riemannian Smoothing Method 14

T
ab

le
2.

C
P

fa
ct

o
ri

za
ti

o
n

o
f

ra
n

d
o
m

co
m

p
le

te
ly

p
o
si

ti
ve

m
a
tr

ic
es

.

M
et

h
o
d
s

S
M

S
D

S
M

C
G

S
M

R
T

R
S
p
F

ea
sD

C
ls

R
IP

G
m

o
d

A
P

M
m

o
d

n
(r

=
1
.5
n

)
R

a
te

T
im

e s
It

er
s

R
a
te

T
im

e s
It

er
s

R
a
te

T
im

e s
It

er
s

R
a
te

T
im

e s
It

er
s

R
a
te

T
im

e s
It

er
s

R
a
te

T
im

e s
It

er
s

2
0

1
0
.0

4
0
9

4
9

1
0
.0

3
9
4

4
1

1
0
.0

5
1
4

3
5

1
0
.0
0
2
7

2
4

1
0
.0
0
8
1

1
2
2
9

0
.3

2
0
.3

5
0
2

2
3
1
8

3
0

1
0
.0

5
4
9

5
8

1
0
.0

4
7
7

4
4

1
0
.0

6
9
0

3
6

1
0
.0
0
7
5

2
4

1
0
.0
2
3
1

1
4
8
1

0
.0

4
1
.0

0
7
5

2
4
6
7

4
0

1
0
.0

7
3
5

6
5

1
0
.0

6
0
6

4
6

1
0
.0

8
5
9

3
7

1
0
.0
2
1
6

4
6

1
0
.0
5
7
4

1
9
9
0

0
-

-
1
0
0

1
0
.2

3
1
2

1
0
4

1
0
.1
5
2
0

5
6

1
0
.4

0
6
1

4
5

1
0
.2
8
3
1

1
0
9

1
0
.8

1
6
9

4
9
1
2

0
-

-
2
0
0

1
1
.0
7
2
3

1
6
7

1
0
.5
4
8
5

6
9

1
1
.9

8
5
5

5
3

1
2
.2

5
0
4

2
1
2

1
5
.2

9
0
8

9
6
1
6

0
-

-
4
0
0

1
1
4
.6

3
1
4

1
4
.1
4
5
3

8
6

1
2
2
.1

6
9

1
3
6
.9

6
3
6

1
9
0
.6

1
7
9
8
7

0
-

-
6
0
0

1
5
0
.6

4
7
4

1
1
4
.7

1
0
5

1
4
6
.4

8
0

1
1
4
0
.1

8
8
2

1
3
4
4
.7

2
6
1
4
6

0
-

-
8
0
0

1
1
3
3
.3

6
4
3

1
3
0
.0

1
0
9

1
9
3
.5

8
9

1
4
1
3
.3

1
2
2
5

1
8
9
1
.1

3
4
0
2
2

0
-

-

M
et

h
o
d
s

S
M

S
D

S
M

C
G

S
M

R
T

R
S
p
F

ea
sD

C
ls

R
IP

G
m

o
d

A
P

M
m

o
d

n
(r

=
3
n

)
R

a
te

T
im

e s
It

er
s

R
a
te

T
im

e s
It

er
s

R
a
te

T
im

e s
It

er
s

R
a
te

T
im

e s
It

er
s

R
a
te

T
im

e s
It

er
s

R
a
te

T
im

e s
It

er
s

2
0

1
0
.0

5
9
7

5
2

1
0
.0

5
5
1

4
2

1
0
.0

8
4
2

3
7

1
0
.0
0
5
7

1
5

1
0
.0
1
0
5

1
0
6
2

0
.3

0
0
.7

2
6
7

2
1
9
8

3
0

1
0
.0

7
9
3

5
9

1
0
.0

6
7
3

4
5

1
0
.1

1
6
1

3
9

1
0
.0
1
2
8

1
7

1
0
.0
3
3
6

1
1
2
7

0
-

-
4
0

1
0
.1

0
3
5

6
7

1
0
.0

8
8
2

4
8

1
0
.1

9
6
1

4
1

1
0
.0
2
5
6

1
9

1
0
.0
8
2
2

1
4
6
0

0
-

-
1
0
0

1
0
.5
6
3
2

1
0
3

1
0
.3
3
9
5

5
7

1
1
.4

1
2
8

5
0

1
0
.8

1
1
5

8
6

1
1
.1

9
0
9

4
7
5
3

0
-

-
2
0
0

1
4
.5
5
4
8

1
6
3

1
2
.4
1
1
6

6
8

1
1
4
.3

6
5

1
8
.1

5
1
7

1
8
4

1
9
.2

2
4
8

9
4
0
2

0
-

-
4
0
0

1
4
6
.5

2
9
6

1
1
9
.2

8
9

1
7
7
.1

8
0

1
1
2
4
.3

4
5
3

1
1
5
6
.6

1
7
5
6
3

0
-

-
6
0
0

1
2
0
9
.0

4
4
6

1
6
5
.7

9
9

1
2
9
4
.5

7
6

1
9
8
1
.8

7
9
5

1
6
1
6
.7

2
5
3
3
6

0
-

-
8
0
0

1
6
0
9
.7

6
2
8

1
1
6
0
.4

1
1
4

1
6
5
0
.7

8
3

1
4
0
2
7
.4

1
0
7
0

1
1
2
8
9
.4

2
6
8
2
0

0
-

-

T
ab

le
3.

C
P

fa
ct

o
ri

za
ti

o
n

o
f

a
fa

m
il

y
o
f

sp
ec

ifi
ca

ll
y

st
ru

ct
u

re
d

in
st

a
n

ce
s.

M
et

h
o
d
s

S
M

S
D

S
M

C
G

S
M

R
T

R
S
p
F

ea
sD

C
ls

R
IP

G
m

o
d

A
P

M
m

o
d

n
(r

=
n

)
R

a
te

T
im

e s
It

er
s

R
a
te

T
im

e s
It

er
s

R
a
te

T
im

e s
It

er
s

R
a
te

T
im

e s
It

er
s

R
a
te

T
im

e s
It

er
s

R
a
te

T
im

e s
It

er
s

1
0

1
0
.0

3
9
9

7
1

1
0
.0

3
1
3

4
9

1
0
.0

4
2
4

4
5

1
0
.0
0
4
3

1
4
9

1
0
.0
0
7
4

2
0
8
5

0
.8

0
0
.0

1
7
4

6
1
6

2
0

1
0
.0

4
8
6

8
5

1
0
.0

4
0
8

6
3

1
0
.0

6
3
7

5
5

0
.9

8
0
.0
1
3
9

2
0
1

0
.7

4
0
.0
2
1
2

3
4
7
8

0
.9

0
0
.0

5
9
1

8
6
4

5
0

1
0
.2

5
9
9

2
9
5

1
0
.1
0
7
3

1
0
1

1
0
.2
1
0
4

7
6

0
.9

8
0
.3

3
8
9

7
7
0

0
-

-
0
.7

6
0
.6

9
4
8

1
4
1
6

7
5

1
0
.3
8
4
3

3
2
9

1
0
.1
9
2
3

1
3
5

1
0
.4

2
9
3

9
3

0
.9

8
1
.0

7
0
6

1
1
8
6

0
-

-
0
.6

4
1
.4

8
0
9

1
5
1
0

1
0
0

1
0
.7
4
5
9

4
5
8

1
0
.3
2
8
9

1
6
8

1
0
.9

0
7
4

1
0
8

0
.8

0
1
.6

6
5
3

1
0
8
3

0
-

-
0
.6

0
2
.8

1
5
0

1
6
9
0

1
5
0

1
1
.8
0
7
6

6
4
7

1
0
.7
8
3
7

2
4
1

1
2
.6

0
3
0

1
4
5

0
.7

0
3
.7

6
5
2

1
1
7
0

0
-

-
0
.3

5
9
.9

9
3
0

2
9
5
9

CP Factorization by a Riemannian Smoothing Method 15

4.3 An easy instance on the boundary of CPn

Consider the following matrix from [44, Example 2.7]:

A =

41 43 80 56 50
43 62 89 78 51
80 89 162 120 93
56 78 120 104 62
50 51 93 62 65

 .

The sufficient condition from [44, Theorem 2.5] ensures that this matrix is completely positive and
cp(A) = rank(A) = 3. Theorem 2.2 tells us that A ∈ bd(CP5), since rank(A) 6= 5.

We found that all the algorithms could easily factorize this matrix. However, our three algo-
rithms returned a CP factorization B whose smallest entry was as large as possible. In fact, they
also maximized the smallest entry in the n × r symmetric factorization of A, since (OptCP) is
equivalent to

max
A=XX>,X∈Rn×r

{min (X)}.

When we did not terminate as soon as min(B̄Xk) ≥ −10−15, for example, after 1000 iterations,
our algorithms gave the following CP factorization whose the smallest entry is around 2.8573 �
−10−15:

A = BB> , where B ≈

3.5771 4.4766 2.8573
2.8574 3.0682 6.6650
8.3822 7.0001 6.5374
5.7515 2.8574 7.9219
2.8574 6.7741 3.3085

 .

4.4 A hard instance on the boundary of CPn

Next, we examined how well these methods worked on a hard matrix on the boundary of CPn.
Consider the following matrix on the boundary taken from [30]:

A =

8 5 1 1 5
5 8 5 1 1
1 5 8 5 1
1 1 5 8 5
5 1 1 5 8

 ∈ bd(CP5).

Since A ∈ bd(CP5) and A is of full rank, it follows from Theorem 2.2 that cp+(A) = ∞; i.e.,
there is no strictly positive CP factorization for A. Hence, the global minimum of (OptCP), t = 0,
is clear. None of the algorithms could decompose this matrix under our tolerance, 10−15, in the
stopping criteria. As was done in [31, Example 7.3], we investigated slight perturbations of this
matrix. Given

MM> =: C ∈ int(CP5) with M =

1 1 0 0 0 0
1 0 1 0 0 0
1 0 0 1 0 0
1 0 0 0 1 0
1 0 0 0 0 1

 ,

we factorized Aλ := λA+ (1− λ)C for different values of λ ∈ [0, 1) using r = 12 > cp5 = 11. Note
that Aλ ∈ int(CP5) provided 0 ≤ λ < 1 and Aλ approached the boundary as λ → 1. We chose
the largest λ = 0.9999. For each Aλ, we tested all of the algorithms on 50 randomly generated
starting points and computed the success rate over the total number of starting points.

Table 4 shows how the success rate of each algorithm changes as Aλ approaches the boundary.
The table sorts the results from left to right according to overall performance. Except for SM RTR,
whose success rate was always 1, the success rates of all the other algorithms significantly decreased
as λ increased to 0.9999. Surprisingly, the method of SM CG, which performed well in the previous
examples, seemed unable to handle instances close to the boundary.

CP Factorization by a Riemannian Smoothing Method 16

Table 4. Success rate of CP factorization of Aλ for values of λ from 0.6 to 0.9999.

λ SM RTR SM SD RIPG mod SM CG SpFeasDC ls APM mod

0.6 1 1 1 1 1 0.42
0.65 1 1 1 1 1 0.44
0.7 1 1 1 1 1 0.48
0.75 1 1 1 1 1 0.52
0.8 1 1 1 1 0.96 0.46

0.82 1 1 1 1 0.98 0.4
0.84 1 1 1 1 0.86 0.24
0.86 1 1 1 1 0.82 0.1
0.88 1 1 1 1 0.58 0.18
0.9 1 1 1 1 0.48 0.18

0.91 1 1 1 1 0.4 0.14
0.92 1 1 1 1 0.2 0.18
0.93 1 1 0.98 1 0.22 0.22
0.94 1 1 0.98 1 0.1 0.2
0.95 1 1 1 1 0.12 0.32
0.96 1 1 0.96 0.98 0.06 0.34
0.97 1 1 0.86 0.82 0.06 0.14
0.98 1 1 0.76 0.28 0.02 0
0.99 1 0.68 0.42 0 0 0

0.999 1 0 0.14 0 0 0
0.9999 1 0 0 0 0 0

5 Further numerical experiments: comparison with [18, 47]

As described at the end of Section 3, the algorithms in [47] and [18] are both special cases of our
algorithm. In this section, we compare them to show whether it performs better when we use other
sub-algorithms or other smoothing functions. We applied Algorithm 2 to two problems: finding
a sparse vector (FSV) in a subspace and robust low-rank matrix completion, which are problems
implemented in [47] and [18], respectively. Since they both involve approximations to the `1 norm,
we applied the smoothing functions listed in Table 1.

We used the six solvers built into Manopt 7.0, namely, steepest descent; Barzilai-Borwein (i.e.,
gradient-descent with BB step size); Conjugate gradient; trust regions; BFGS (a limited-memory
version); ARC (i.e., adaptive regularization by cubics).

5.1 FSV problem

The FSV problem is to find the sparsest vector in an n-dimensional linear subspace W ⊆ Rm;
it has applications in robust subspace recovery, dictionary learning, and many other problems in
machine learning and signal processing [37, 38]. Let Q ∈ Rm×n denote a matrix whose columns
form an orthonormal basis of W : this problem can be formulated as

min
x∈Sn−1

‖Qx‖0,

where Sn−1 := {x ∈ Rn | ‖x‖ = 1} is the sphere manifold, and ‖z‖0 counts the number of nonzero
components of z. Because this discontinuous objective function is unwieldy, in the literature, one
instead focuses on solving the `1 norm relaxation given below:

min
x∈Sn−1

‖Qx‖1, (24)

where ‖z‖1 :=
∑
i |zi| is the `1 norm of the vector z.

Our synthetic problems of the `1 minimization model (24) were generated in the same way as
in [47]: i.e., we chose m ∈ {4n, 6n, 8n, 10n} for n = 5 and m ∈ {6n, 8n, 10n, 12n} for n = 10. We
defined a sparse vector en := (1, . . . , 1, 0, . . . , 0)> ∈ Rm, whose first n components are 1 and the
remaining components are 0. Let the subspace W be the span of en and some n−1 random vectors
in Rm. By mgson.m [20], we generated an orthonormal basis of W to form a matrix Q ∈ Rm×n.

CP Factorization by a Riemannian Smoothing Method 17

Table 5. Number of successes from 50 pairs of random instances and random initial points for the
`1 minimization model (24) and n = 5.

(n,m) τ
Steepest-
descent

Barzilai-
Borwein

Conjugate-
gradient

Trust-
regions

BFGS ARC

(5, 20) 10−5 21 19 0 22 23 23
10−6 21 19 0 22 23 23
10−7 21 19 0 22 23 23
10−8 16 19 0 22 23 23

(5, 30) 10−5 36 42 0 34 36 35
10−6 36 42 0 34 36 35
10−7 36 42 0 34 36 35
10−8 34 42 0 34 36 35

(5, 40) 10−5 44 47 1 44 47 45
10−6 44 47 0 44 47 45
10−7 44 47 0 44 47 45
10−8 43 47 0 44 47 45

(5, 50) 10−5 47 47 2 45 45 45
10−6 47 47 2 45 45 45
10−7 47 47 0 45 45 45
10−8 46 47 0 45 45 45

(n,m) τ
Steepest-
descent

Barzilai-
Borwein

Conjugate-
gradient

Trust-
regions

BFGS ARC

(5, 20) 10−9 0 19 0 22 23 23
10−10 0 19 0 22 23 23
10−11 0 19 0 22 23 19
10−12 0 18 0 22 22 17

(5, 30) 10−9 8 42 0 34 36 35
10−10 1 42 0 34 36 35
10−11 0 42 0 34 36 33
10−12 0 42 0 34 34 29

(5, 40) 10−9 3 47 0 44 47 45
10−10 2 47 0 44 47 45
10−11 1 47 0 44 47 44
10−12 0 46 0 44 44 36

(5, 50) 10−9 5 47 0 45 45 45
10−10 2 47 0 45 45 45
10−11 0 47 0 45 45 45
10−12 0 47 0 45 45 37

With this construction, the minimum value of ‖Qx‖0 should be equal to n. We chose the initial
points by using the M.rand() tool of Manopt 7.0 that returns a random point on the manifold M and
set x0 = abs(M.rand()). The nonnegative initial point seemed to be better in the experiment.
Regarding the the settings of our Algorithm 2, we chose the same smoothing function f̃1(x, µ) in
Table 1 and the same gradient tolerance strategy (22) as in [47]: µ0 = 1, θ = 0.5, δ0 = 0.1, ρ = 0.5.
We compared the numerical performances when using different sub-algorithms. Note that with
the choice of the steepest-descent method, our Algorithm 2 is exactly the same as the one in [47].

For each (n,m), we generated 50 pairs of random instances and random initial points. We
claim that an algorithm successfully terminates if ‖Qxk‖0 = n, where xk is the k-th iteration.
Here, when we count the number of nonzeros of Qxk, we truncated the entries as

(Qxk)i = 0 if |(Qxk)i| < τ, (25)

where τ > 0 is a tolerance related to the precision of the solution, taking values from 10−5 to
10−12. Tables 5 and 6 report the number of successful cases out of 50 cases. Boldface highlights
the best result for each row.

As shown in Table 5 and 6, surprisingly, the conjugate-gradient method, which performed best
on the CP factorization problem in Section 4, performed worst on the FSV problem. In fact, it
was almost useless. Moreover, although the steepest-descent method employed in [47] was not bad

CP Factorization by a Riemannian Smoothing Method 18

Table 6. Number of successes from 50 pairs of random instances and random initial points for the
`1 minimization model (24) and n = 10.

(n,m) τ
Steepest-
descent

Barzilai-
Borwein

Conjugate-
gradient

Trust-
regions

BFGS ARC

(10, 60) 10−5 24 28 0 28 28 25
10−6 24 28 0 28 28 25
10−7 24 28 0 28 28 25
10−8 23 28 0 28 28 25

(10, 80) 10−5 39 37 1 40 39 40
10−6 39 37 0 40 39 40
10−7 39 37 0 40 39 40
10−8 39 37 0 40 39 40

(10, 100) 10−5 45 48 3 45 43 41
10−6 45 48 0 45 43 41
10−7 45 48 0 45 43 41
10−8 45 48 0 45 43 41

(10, 120) 10−5 44 46 1 44 44 43
10−6 44 46 0 44 44 43
10−7 44 46 0 44 44 43
10−8 44 46 0 44 44 43

(n,m) τ
Steepest-
descent

Barzilai-
Borwein

Conjugate-
gradient

Trust-
regions

BFGS ARC

(10, 60) 10−9 3 28 0 28 28 25
10−10 0 28 0 28 28 25
10−11 0 28 0 28 28 22
10−12 0 28 0 28 27 12

(10, 80) 10−9 5 37 0 40 39 40
10−10 0 37 0 40 39 40
10−11 0 37 0 40 39 39
10−12 0 37 0 40 37 30

(10, 100) 10−9 13 48 0 45 43 41
10−10 2 48 0 45 43 41
10−11 0 48 0 45 43 40
10−12 0 48 0 45 43 37

(10, 120) 10−9 14 46 0 44 44 43
10−10 0 46 0 44 44 43
10−11 0 46 0 44 44 43
10−12 0 46 0 44 43 40

at obtaining low-precision solutions with τ ∈ {10−5, 10−6, 10−7, 10−8}, it had difficulty obtaining
high-precision solutions with τ ∈ {10−9, 10−10, 10−11, 10−12}. The remaining four sub-algorithms
easily obtained high-precision solutions, with the Barzilai-Borwein method performing the best in
most occasions. Combined with the results in Section 4, this shows that in practice, the choice of
sub-algorithm in the Riemannian smoothing method (Algorithm 2) is highly problem-dependent.
For the other smoothing functions in Table 1, we obtained similar results as in Table 5 and 6.

5.2 Robust low-rank matrix completion

Low-rank matrix completion consists of recovering a rank-r matrix M of size m × n from only a
fraction of its entries with r � min(m,n). The situation in robust low-rank matrix completion is
one where only a few observed entries, called outliers, are perturbed, i.e.,

M = M0 + S,

where M0 is the unperturbed original data matrix of rank r and S is a sparse matrix. This is a
case of adding non-Gaussian noise for which the traditional `2 minimization model,

min
X∈Mr

‖PΩ(X −M)‖2

CP Factorization by a Riemannian Smoothing Method 19

0 20 40 60 80 100
Iteration

10-12

10-9

10-6

10-3

100

R
M
S
E

steepestdescent
barzilaiborwein
conjugategradient
trustregions
rlbfgs
arc

(a) f̃1

0 20 40 60 80 100
Iteration

10-12

10-9

10-6

10-3

100

R
M
S
E

steepestdescent
barzilaiborwein
conjugategradient
trustregions
rlbfgs
arc

(b) f̃2

0 20 40 60 80 100
Iteration

10-12

10-9

10-6

10-3

100

R
M
S
E

steepestdescent
barzilaiborwein
conjugategradient
trustregions
rlbfgs
arc

(c) f̃3

0 20 40 60 80 100
Iteration

10-12

10-9

10-6

10-3

100

R
M
S
E

steepestdescent
barzilaiborwein
conjugategradient
trustregions
rlbfgs
arc

(d) f̃4

0 20 40 60 80 100
Iteration

10-12

10-9

10-6

10-3

100

R
M
S
E

steepestdescent
barzilaiborwein
conjugategradient
trustregions
rlbfgs
arc

(e) f̃5

0 50 100 150
Time [s]

10-12

10-9

10-6

10-3

100

R
M

S
E

steepestdescent
barzilaiborwein
conjugategradient
trustregions
rlbfgs
arc

(f) f̃1

0 50 100 150
Time [s]

10-12

10-9

10-6

10-3

100

R
M

S
E

steepestdescent
barzilaiborwein
conjugategradient
trustregions
rlbfgs
arc

(g) f̃2

0 50 100 150
Time [s]

10-12

10-9

10-6

10-3

100

R
M

S
E

steepestdescent
barzilaiborwein
conjugategradient
trustregions
rlbfgs
arc

(h) f̃3

0 50 100 150
Time [s]

10-12

10-9

10-6

10-3

100

R
M

S
E

steepestdescent
barzilaiborwein
conjugategradient
trustregions
rlbfgs
arc

(i) f̃4

0 50 100 150
Time [s]

10-12

10-9

10-6

10-3

100

R
M

S
E

steepestdescent
barzilaiborwein
conjugategradient
trustregions
rlbfgs
arc

(j) f̃5

Figure 1. Perfect low-rank matrix completion of a rank-10 5000×5000 matrix without any outliers
using different smoothing functions in Table 1. (a)–(e) comprise the running iteration comparison;
(f)–(j) comprise the time comparison.

is not well suited to recovery of M0. Here, Mr := {X ∈ Rm×n | rank(X) = r} is a fixed rank
manifold, Ω denotes the set of indices of observed entries, and PΩ : Rm×n → Rm×n is the projection
onto Ω, defined as

Zij
PΩ7−→

{
Zij if (i, j) ∈ Ω

0 if (i, j) /∈ Ω.

In [18], the authors try to solve
min
X∈Mr

‖PΩ(X −M)‖1 ,

because the sparsity-inducing property of the `1 norm leads one to expect exact recovery when the
noise consists of just a few outliers.

In all of the experiments, the problems were generated in the same way as in [18]. In particular,
after picking the values of m,n, r, we generated the ground truth U ∈ Rm×r, V ∈ Rn×r with
independent and identically distributed (i.i.d.) Gaussian entries of zero mean and unit variance
and M := UV >. We then sampled k := ρr(m + n − r) observed entries uniformly at random,
where ρ is the oversampling factor. In our experiments, we set ρ = 5 throughout. We chose the
initial points X0 by using the rank-r truncated SVD decomposition of PΩ(M).

Regarding the setting of our Algorithm 2, we tested all combinations of the five smoothing
functions in Table 1 and six sub-algorithms mentioned before (30 cases in total). We set µ0 = 100
and chose an aggressive value of θ = 0.05 for reducing µ, as in [18]. The stopping criterion of the
loop of the sub-algorithm was set to a maximum of 40 iterations or the gradient tolerance (23),
whichever was reached first. We monitored the iterations Xk through the root mean square error
(RMSE), which is defined as the error on all the entries between Xk and the original low-rank
matrix M0, i.e.,

RMSE (Xk,M0) :=

√∑m
i=1

∑n
j=1 (Xk,ij −M0,ij)

2

mn
.

CP Factorization by a Riemannian Smoothing Method 20

5.2.1 Perfect low-rank matrix completion

As in [18], we first tested all the methods on a simple perfect matrix M (without any outliers) of
size 5000 × 5000 and rank 10. The results are shown in Figure 1. We can see that the choice of
smoothing function does not have much effect on numerical performance. In terms of the number
of iterations ((a)–(e)), our Algorithm 2 inherits the convergence of its sub-algorithm at least Q-
superlinearly when trust regions or ARC are used. But the single iteration cost of trust regions and
ARC is high; they are not efficient in terms of time. Specifically, the conjugate-gradient method

0 50 100 150 200
Iteration

10-8

10-6

10-4

10-2

100

R
M

S
E

steepestdescent
barzilaiborwein
conjugategradient
trustregions
rlbfgs
arc

(a) f̃1

0 50 100 150 200
Iteration

10-8

10-6

10-4

10-2

100
R

M
S
E

steepestdescent
barzilaiborwein
conjugategradient
trustregions
rlbfgs
arc

(b) f̃2

0 50 100 150 200
Iteration

10-8

10-6

10-4

10-2

100

R
M

S
E

steepestdescent
barzilaiborwein
conjugategradient
trustregions
rlbfgs
arc

(c) f̃3

0 50 100 150 200
Iteration

10-8

10-6

10-4

10-2

100

R
M

S
E

steepestdescent
barzilaiborwein
conjugategradient
trustregions
rlbfgs
arc

(d) f̃4

0 50 100 150 200
Iteration

10-8

10-6

10-4

10-2

100

R
M

S
E

steepestdescent
barzilaiborwein
conjugategradient
trustregions
rlbfgs
arc

(e) f̃5

0 5 10 15 20
Time [s]

10-8

10-6

10-4

10-2

100

R
M

S
E

steepestdescent
barzilaiborwein
conjugategradient
trustregions
rlbfgs
arc

(f) f̃1

0 5 10 15 20
Time [s]

10-8

10-6

10-4

10-2

100

R
M

S
E

steepestdescent
barzilaiborwein
conjugategradient
trustregions
rlbfgs
arc

(g) f̃2

0 5 10 15 20
Time [s]

10-8

10-6

10-4

10-2

100

R
M

S
E

steepestdescent
barzilaiborwein
conjugategradient
trustregions
rlbfgs
arc

(h) f̃3

0 5 10 15 20
Time [s]

10-8

10-6

10-4

10-2

100

R
M

S
E

steepestdescent
barzilaiborwein
conjugategradient
trustregions
rlbfgs
arc

(i) f̃4

0 5 10 15 20
Time [s]

10-8

10-6

10-4

10-2

100

R
M

S
E

steepestdescent
barzilaiborwein
conjugategradient
trustregions
rlbfgs
arc

(j) f̃5

0 50 100 150 200
Iteration

10-8

10-6

10-4

10-2

100

R
M

S
E

steepestdescent
barzilaiborwein
conjugategradient
trustregions
rlbfgs
arc

(k) f̃1

0 50 100 150 200
Iteration

10-8

10-6

10-4

10-2

100

R
M

S
E

steepestdescent
barzilaiborwein
conjugategradient
trustregions
rlbfgs
arc

(l) f̃2

0 50 100 150 200
Iteration

10-8

10-6

10-4

10-2

100

R
M

S
E

steepestdescent
barzilaiborwein
conjugategradient
trustregions
rlbfgs
arc

(m) f̃3

0 50 100 150 200
Iteration

10-8

10-6

10-4

10-2

100

R
M

S
E

steepestdescent
barzilaiborwein
conjugategradient
trustregions
rlbfgs
arc

(n) f̃4

0 50 100 150 200
Iteration

10-8

10-6

10-4

10-2

100

R
M

S
E

steepestdescent
barzilaiborwein
conjugategradient
trustregions
rlbfgs
arc

(o) f̃5

0 5 10 15 20
Time [s]

10-8

10-6

10-4

10-2

100

R
M

S
E

steepestdescent
barzilaiborwein
conjugategradient
trustregions
rlbfgs
arc

(p) f̃1

0 5 10 15 20
Time [s]

10-8

10-6

10-4

10-2

100

R
M

S
E

steepestdescent
barzilaiborwein
conjugategradient
trustregions
rlbfgs
arc

(q) f̃2

0 5 10 15 20
Time [s]

10-8

10-6

10-4

10-2

100

R
M

S
E

steepestdescent
barzilaiborwein
conjugategradient
trustregions
rlbfgs
arc

(r) f̃3

0 5 10 15 20
Time [s]

10-8

10-6

10-4

10-2

100

R
M

S
E

steepestdescent
barzilaiborwein
conjugategradient
trustregions
rlbfgs
arc

(s) f̃4

0 5 10 15 20
Time [s]

10-8

10-6

10-4

10-2

100

R
M

S
E

steepestdescent
barzilaiborwein
conjugategradient
trustregions
rlbfgs
arc

(t) f̃5

Figure 2. Low-rank matrix completion with outliers for two rank-10 500 × 500 matrices by using
different smoothing functions in Table 1. (a)–(j) corresponds to one matrix with outliers created
by using µN = σN = 0.1, while (k)–(t) corresponds to the other with outliers created by using
µN = σN = 1. (a)–(e) and (k)–(o) comprise the running iteration comparison; (f)–(j) and (p)–(t)
comprise the time comparison.

CP Factorization by a Riemannian Smoothing Method 21

employed in [18] stagnates at lower precision. Overall, Barzilai-Borwein performed best in terms
of time and accuracy.

5.2.2 Low-rank matrix completion with outliers

Given a 500×500 matrix for which we observed the entries uniformly at random with an oversam-
pling ρ of 5, we perturbed 5% of the observed entries by adding noise to them in order to create
outliers. The added item was a random variable defined as O = S±1 · N (µN , σ

2
N) where S±1 is a

random variable with equal probability of being equal to +1 or −1, while N (µN , σ
2
N) is a Gaussian

0 50 100 150 200
Iteration

10-8

10-6

10-4

10-2

100

R
M

S
E

steepestdescent
barzilaiborwein
conjugategradient
trustregions
rlbfgs
arc

(a) f̃1

0 50 100 150 200
Iteration

10-8

10-6

10-4

10-2

100

R
M

S
E

steepestdescent
barzilaiborwein
conjugategradient
trustregions
rlbfgs
arc

(b) f̃2

0 50 100 150 200
Iteration

10-8

10-6

10-4

10-2

100

R
M

S
E

steepestdescent
barzilaiborwein
conjugategradient
trustregions
rlbfgs
arc

(c) f̃3

0 50 100 150 200
Iteration

10-8

10-6

10-4

10-2

100

R
M

S
E

steepestdescent
barzilaiborwein
conjugategradient
trustregions
rlbfgs
arc

(d) f̃4

0 50 100 150 200
Iteration

10-8

10-6

10-4

10-2

100

R
M

S
E

steepestdescent
barzilaiborwein
conjugategradient
trustregions
rlbfgs
arc

(e) f̃5

0 50 100 150 200 250
Time [s]

10-8

10-6

10-4

10-2

100

R
M

S
E

steepestdescent
barzilaiborwein
conjugategradient
trustregions
rlbfgs
arc

(f) f̃1

0 50 100 150 200 250
Time [s]

10-8

10-6

10-4

10-2

100

R
M

S
E

steepestdescent
barzilaiborwein
conjugategradient
trustregions
rlbfgs
arc

(g) f̃2

0 50 100 150 200 250
Time [s]

10-8

10-6

10-4

10-2

100

R
M

S
E

steepestdescent
barzilaiborwein
conjugategradient
trustregions
rlbfgs
arc

(h) f̃3

0 50 100 150 200 250
Time [s]

10-8

10-6

10-4

10-2

100

R
M

S
E

steepestdescent
barzilaiborwein
conjugategradient
trustregions
rlbfgs
arc

(i) f̃4

0 50 100 150 200 250
Time [s]

10-8

10-6

10-4

10-2

100

R
M

S
E

steepestdescent
barzilaiborwein
conjugategradient
trustregions
rlbfgs
arc

(j) f̃5

0 50 100 150 200
Iteration

10-8

10-6

10-4

10-2

100

R
M

S
E

steepestdescent
barzilaiborwein
conjugategradient
trustregions
rlbfgs
arc

(k) f̃1

0 50 100 150 200
Iteration

10-8

10-6

10-4

10-2

100
R

M
S
E

steepestdescent
barzilaiborwein
conjugategradient
trustregions
rlbfgs
arc

(l) f̃2

0 50 100 150 200
Iteration

10-8

10-6

10-4

10-2

100

R
M

S
E

steepestdescent
barzilaiborwein
conjugategradient
trustregions
rlbfgs
arc

(m) f̃3

0 50 100 150 200
Iteration

10-8

10-6

10-4

10-2

100

R
M

S
E

steepestdescent
barzilaiborwein
conjugategradient
trustregions
rlbfgs
arc

(n) f̃4

0 50 100 150 200
Iteration

10-8

10-6

10-4

10-2

100

R
M

S
E

steepestdescent
barzilaiborwein
conjugategradient
trustregions
rlbfgs
arc

(o) f̃5

0 50 100 150 200 250
Time [s]

10-8

10-6

10-4

10-2

100

R
M

S
E

steepestdescent
barzilaiborwein
conjugategradient
trustregions
rlbfgs
arc

(p) f̃1

0 50 100 150 200 250
Time [s]

10-8

10-6

10-4

10-2

100

R
M

S
E

steepestdescent
barzilaiborwein
conjugategradient
trustregions
rlbfgs
arc

(q) f̃2

0 50 100 150 200 250
Time [s]

10-8

10-6

10-4

10-2

100

R
M

S
E

steepestdescent
barzilaiborwein
conjugategradient
trustregions
rlbfgs
arc

(r) f̃3

0 50 100 150 200 250
Time [s]

10-8

10-6

10-4

10-2

100

R
M

S
E

steepestdescent
barzilaiborwein
conjugategradient
trustregions
rlbfgs
arc

(s) f̃4

0 50 100 150 200 250
Time [s]

10-8

10-6

10-4

10-2

100

R
M

S
E

steepestdescent
barzilaiborwein
conjugategradient
trustregions
rlbfgs
arc

(t) f̃5

Figure 3. Low-rank matrix completion with outliers for two rank-10 5000×5000 matrices by using
different smoothing functions in Table 1. (a)–(j) corresponds to one matrix with outliers created
by using µN = σN = 0.1, while (k)–(t) corresponds to the other with outliers created by using
µN = σN = 1. (a)–(e) and (k)–(o) comprise the running iteration comparison; (f)–(j) and (p)–(t)
comprise the time comparison.

CP Factorization by a Riemannian Smoothing Method 22

random variable of mean µN and variance σ2
N .

Figure 2 reports the results of two 500 × 500 instances with outliers generated using µN =
σN = 0.1 and µN = σN = 1. Again, we can see that the choice of smoothing function does not
have much effect. In most cases, BFGS and trust regions were better than the other methods in
terms of number of iterations, and BFGS was the fastest. Furthermore, the conjugate-gradient
method employed in [18] still stagnated at solutions with lower precision, approximately 10−6, while
steepest descent, BFGS, and trust regions always obtained solutions with at least 10−8 precision.

Next, we ran the same experiment on larger 5000× 5000 matrices, with 5% outliers. Figure 3
illustrates the results of these experiments, with µN = σN = 0.1 and µN = σN = 1. In most cases,
trust regions still outperformed the other methods in terms of number of iterations, while BFGS
performed poorly. Barzilai-Borwein and the conjugate-gradient method were almost as good in
terms of time.

6 Concluding remarks

We examined the problem of finding a CP factorization of a given completely positive matrix and
treated it as a nonsmooth Riemannian optimization problem. To this end, we studied a general
framework of Riemannian smoothing for Riemannian optimization. The numerical experiments
clarified that our method can compete with other efficient CP factorization methods, in particular
on large-scale matrices.

Let us we summarize the relation of our approach to the existing CP factorization methods.
Groetzner and Dür [31] and Chen et al. [19] proposed different methods to solve (FeasCP). Boţ
and Nguyen [12] tried to solve another model (2). However, the methods they used do not belong
to the Riemannian optimization techniques, but are rather Euclidean ones, since they treated the
set O(r) := {X ∈ Rr×r : X>X = I} as a usual constraint in Euclidean space. By comparison, we
recognize the existence of manifolds, namely, the Stiefel manifold M = O(r), and use optimiza-
tion techniques specific to them. This change in perspective suggests the possibility of using the
rich variety of Riemannian optimization techniques. As the experiments in Section 4 show, our
Riemannian approach is faster and more reliable than the Euclidean methods.

In the future, we plan to extend Algorithm 2 to the case of general manifolds and, particularly,
to quotient manifolds. This application is believed to be possible, although effort should be put
into establishing analogous convergence results. In fact, convergence has been verified in a built-
in example in Manopt 7.0 [14]: robust pca.m computes a robust version of PCA on data and
optimizes a nonsmooth function over a Grassmann manifold. The nonsmooth term consists of the
l2 norm, which is not squared, for robustness. In robust pca.m, Riemannian smoothing with a
pseudo-Huber loss function is used in place of the l2 norm.

As in the other numerical methods, there is no guarantee that Algorithm 2 will find a CP
factorization for every A ∈ CPn. It follows from Proposition 2.7 that A ∈ CPn if and only if the
global minimum of (OptCP), say t, is such that t 6 0. Since our methods only converge to a
stationary point, Algorithm 2 provides us with a local minimizer at best. We are looking forward
to finding a global minimizer of (OptCP) in our future work.

Acknowledgments

This work was supported by the Research Institute for Mathematical Sciences, an International
Joint Usage/Research Center, at Kyoto University, JSPS KAKENHI Grant, number (B)19H02373,
and JST SPRING Grant, number JPMJSP2124. The authors would like to sincerely thank the
anonymous reviewers and the coordinating editor for their thoughtful and valuable comments which
have significantly improved the paper.

Data availability

The data that support the findings of this study are available from the corresponding author upon
request.

CP Factorization by a Riemannian Smoothing Method 23

Conflict of interest

All authors declare that they have no conflicts of interest.

References

[1] Absil, P.-A., Mahony, R., Sepulchre, R.: Optimization Algorithms on Matrix Manifolds.
Princeton University Press, Princeton (2009)

[2] Bagirov, A., Karmitsa, N., Mäkelä, MM.: Introduction to Nonsmooth Optimization: Theory,
Practice and Software. Springer International Publishing, Berlin (2014)

[3] Berman, A., Shaked-Monderer, N.: Completely Positive Matrices. World Scientific, Singapore
(2003)

[4] Berman, A., Dür, M., Shaked-Monderer, N.: Open problems in the theory of completely
positive and copositive matrices. Electron. J. Linear Algebra. 29, 46–58 (2015)

[5] Bian, W., Chen, X.: Neural network for nonsmooth, nonconvex constrained minimization via
smooth approximation. IEEE Trans. Neural Netw. Learn. Syst. 25, 545–556 (2013)

[6] Bomze, I.M.: Copositive optimization–recent developments and applications. Eur. J. Oper.
Res. 216, 509–520 (2012)

[7] Bomze, I.M.: Building a completely positive factorization. Cent. Eur. J. Oper. Res. 26, 287–
305 (2018)

[8] Bomze, I.M., Dickinson, P.J., Still, G.: The structure of completely positive matrices according
to their cp-rank and cp-plus-rank. Linear Algebra Appl. 482, 191–206 (2015)

[9] Bomze, I.M., Dür, M., De Klerk, E., Roos, C., Quist, A.J., Terlaky, T.: On copositive pro-
gramming and standard quadratic optimization problems. J. Glob. Optim. 18, 301–320 (2000)

[10] Bomze, I.M., Schachinger, W., Uchida, G.: Think co(mpletely) positive! Matrix properties,
examples and a clustered bibliography on copositive optimization. J. Glob. Optim. 52, 423–445
(2012)

[11] Borckmans, P.B., Selvan, S.E., Boumal, N., Absil, P.-A.: A Riemannian subgradient algorithm
for economic dispatch with valve-point effect, J. Comput. Appl. Math. 255, 848–866 (2014)

[12] Boţ, R. I., Nguyen, D.-K.: Factorization of completely positive matrices using iterative pro-
jected gradient steps. Numer. Linear Algebra Appl. 28, e2391 (2021)

[13] Boumal, N.: An Introduction to Optimization on Smooth Manifolds. To appear with Cam-
bridge University Press, Mar 2022.

[14] Boumal, N., Mishra, B., Absil, P.-A., Sepulchre, R.: Manopt, a Matlab toolbox for optimiza-
tion on manifolds. J. Mach. Learn. Res. 15, 1455–1459 (2014)

[15] Burer, S.: On the copositive representation of binary and continuous nonconvex quadratic
programs. Math. Program. 120, 479–495 (2009)

[16] Burer, S.: A gentle, geometric introduction to copositive optimization. Math. Program. 151,
89–116 (2015)

[17] Burer, S., Monteiro, R.D.C.: Local minima and convergence in low-rank semidefinite pro-
gramming. Math. Program. 103, 427–444 (2005)

[18] Cambier, L., Absil, P.-A.: Robust low-rank matrix completion by Riemannian optimization.
SIAM J. Sci. Comput. 38, S440–S460 (2016)

CP Factorization by a Riemannian Smoothing Method 24

[19] Chen, C., Pong, T.K., Tan, L., Zeng, L.: A difference-of-convex approach for split feasibility
with applications to matrix factorizations and outlier detection. J. Glob. Optim. 78, 107–136
(2020)

[20] Chen, M.: Gram-Schmidt orthogonalization. MATLAB Central File Exchange. https://www.
mathworks.com/matlabcentral/fileexchange/55881-gram-schmidt-orthogonalization

(2022). Accessed 24 June 2022

[21] Chen, X.: Smoothing methods for nonsmooth, nonconvex minimization. Math. Program. 134,
71–99 (2012)

[22] Chen, X., Wets, R.J.B., Zhang, Y.: Stochastic variational inequalities: residual minimization
smoothing sample average approximations. SIAM J. Optim. 22, 649–673 (2012)

[23] De Carvalho Bento, G., da Cruz Neto, J.X., Oliveira, P.R.: A new approach to the proximal
point method: convergence on general Riemannian manifolds. J. Optim. Theory Appl. 168,
743–755 (2016)

[24] De Klerk, E., Pasechnik, D.V.: Approximation of the stability number of a graph via copositive
programming. SIAM J. Optim. 12, 875–892 (2002),

[25] Dickinson, P.J.: An improved characterization of the interior of the completely positive cone.
Electron. J. Linear Algebra. 20, 723–729 (2010)

[26] Dickinson, P.J., Dür, M.: Linear-time complete positivity detection and decomposition of
sparse matrices. SIAM J. Matrix Anal. Appl. 33, 701–720 (2012)

[27] Dickinson, P.J., Gijben, L.: On the computational complexity of membership problems for
the completely positive cone and its dual. Comput. Optim. Appl. 57, 403–415 (2014)

[28] Dür, M.: Copositive programming — a survey. In: Diehl, M., Glineur, F., Jarlebring, E.,
Michiels W. (eds.) Recent advances in optimization and its applications in engineering, pp. 3–
20. Springer, Berlin, Heidelberg (2010).

[29] Dür, M., Rendl, F.: Conic optimization: A survey with special focus on copositive optimization
and binary quadratic problems. EURO J. Comput. Optim. 9, 100021 (2021)

[30] Dür, M., Still, G.: Interior points of the completely positive cone. Electron. J. Linear Algebra.
17, 48-53 (2008).

[31] Groetzner, P., Dür, M.: A factorization method for completely positive matrices. Linear
Algebra Appl. 591, 1–24 (2020)

[32] Horn, R.A., Johnson, C.R.: Matrix Analysis. Cambridge University Press, Cambridge (2012)

[33] Jarre, F., Schmallowsky, K.: On the computation of C∗ certificates. J. Glob. Optim. 45,
281–296 (2009)

[34] Kovnatsky, A., Glashoff, K., Bronstein, M.M.: MADMM: a generic algorithm for non-smooth
optimization on manifolds. In: European Conference on Computer Vision, pp. 680–696.
Springer, Cham (2016)

[35] Liu, C., Boumal, N.: Simple algorithms for optimization on Riemannian manifolds with con-
straints. Appl. Math. Optim. 82, 949–981 (2020)

[36] Nie, J.: The A-truncated K-moment problem. Found. Comput. Math. 14, 1243–1276 (2014)

[37] Qu, Q., Sun, J., Wright, J.: Finding a sparse vector in a subspace: Linear sparsity using
alternating directions. Adv. Neural. Inf. Process. Syst. 27 (2014)

[38] Qu, Q., Zhu, Z., Li, X., Tsakiris, M.C., Wright, J., Vidal, R.: Finding the sparsest vectors in
a subspace: Theory, algorithms, and applications. arXiv preprint arXiv:2001.06970. (2020)

https://www.mathworks.com/matlabcentral/fileexchange/55881-gram-schmidt-orthogonalization
https://www.mathworks.com/matlabcentral/fileexchange/55881-gram-schmidt-orthogonalization

CP Factorization by a Riemannian Smoothing Method 25

[39] Rockafellar, R.T., Wets, R.J.B.: Variational Analysis. Springer Science & Business Media,
Berlin (2009)

[40] Rudin, W.: Principles of Mathematical Analysis. McGraw-Hill, New York (1964)

[41] Sato, H., Iwai, T.: A new, globally convergent Riemannian conjugate gradient method. Optim.
64, 1011–1031 (2015)

[42] Shilon O.: Randorthmat. MATLAB Central File Exchange. https://www.mathworks.com/
matlabcentral/fileexchange/11783-randorthmat (2022). Accessed 7 April 2022

[43] Dutour Sikirić, M., Schürmann, A., Vallentin, F.: A simplex algorithm for rational cp-
factorization. Math. Program. 187, 25–45 (2020)

[44] So, W., Xu, C.: A simple sufficient condition for complete positivity. Oper. Matrices. 9,
233–239 (2015)

[45] Sponsel, J., Dür, M.: Factorization and cutting planes for completely positive matrices by
copositive projection. Math. Program. 143, 211–229 (2014)

[46] Zhang, C., Chen, X.: A smoothing active set method for linearly constrained non-Lipschitz
nonconvex optimization, SIAM J. Optim. 30, 1–30 (2020)

[47] Zhang, C., Chen, X., Ma, S.: A Riemannian smoothing steepest descent method for non-
Lipschitz optimization on submanifolds. arXiv preprint arXiv:2104.04199. (2021)

https://www.mathworks.com/matlabcentral/fileexchange/11783-randorthmat
https://www.mathworks.com/matlabcentral/fileexchange/11783-randorthmat

	1377本文.pdf
	Introduction
	Related work on CP factorization
	Our contributions and organization of the paper

	Preliminaries
	cp-rank and cp-plus-rank
	CP factorization as a feasibility problem
	Approaches to solving (??)

	Riemannian smoothing method
	Notation and terminology of Riemannian optimization
	Ingredients
	Riemannian smoothing method

	Numerical experiments on CP factorization
	Randomly generated instances
	A specifically structured instance
	An easy instance on the boundary of CPn
	A hard instance on the boundary of CPn

	Further numerical experiments: comparison with cambier2016robust,zhang2021riemannian
	FSV problem
	Robust low-rank matrix completion
	Perfect low-rank matrix completion
	Low-rank matrix completion with outliers

	Concluding remarks

	DP表紙1377.pdf
	Discussion Paper Series
	No.1377
	UNIVERSITY OF TSUKUBA

