
Parameter Evolution Self-Adaptive Strategy and
its Application for Cuckoo Search

Yifan He1, Claus Aranha2, and Tetsuya Sakurai2

1 Graduate School of Systems and Information Engineering, University of Tsukuba
he.yifan.xs@alumni.tsukuba.ac.jp

2 Faculty of Engineering, Information and Systems, University of Tsukuba
{caranha,sakurai}@cs.tsukuba.ac.jp

Abstract. Cuckoo Search (CS) is a simple yet efficient swarm intel-
ligence algorithm based on Lévy Flight. However, its performance can
depend heavily on the parameter settings. Though many studies have
designed control strategies for scaling factor α, few have considered the
adaption of the stability parameter β (of Lévy Flight). In this paper, we
propose the Parameter Evolution Self-Adaptive strategy (PESA) to con-
trol β. PESA uses an evolutionary algorithm that runs in parallel to CS.
We show that PESA can also be extended to control the parameters of
other meta-heuristics, using Differential Evolution (DE) as a second ex-
ample. We compare our strategy with the well-established self-adaptive
strategy used in JADE, both in CS and DE, on classical benchmark
functions. We discuss the increased flexibility of PESA and analyze the
effect of changing the frequency of updating parameter values in CS.

Keywords: Self-adaption · Cuckoo Search · Lévy Flight.

1 Introduction

Cuckoo Search (CS) is a simple yet efficient meta-heuristic. The efficiency of
CS derives mainly from the utilization of Lévy Flight (LF). LF is a type of
random walk where the step length is drawn from a heavy-tailed distribution.
Therefore, the parameters (i.e., scaling factor α and stability parameter β) of
the step-length distribution can heavily influence CS performance. Although it
has been suggested that a fixed value for the stability parameter (β = 1.5) could
work on any problem, results from practical studies (for example, Kordestani’s
recent work [6]) shows that the optimal setting of β depends on the problem.
Therefore, a (self-)adaptive strategy for controlling β is promising. However,
while the (self-)adaptive strategies of other CS parameters such as α and pa
have been well-studied in the literature [8,11,16], the self-adaptive strategy for
β has not been well discussed yet. Some studies have developed such a strategy
for a limited range, or a set of discrete candidate values [6,11]. However, to the
best of our knowledge, there is no self-adaptive strategy in the CS literature to
control β in its complete domain (i.e., (0, 2]).

Self-adaptive strategies for parameter control have been well studied in other
Evolutionary Algorithms. For example, JADE [20] has been designed to adapt

2 Y. He et al.

the two parameters of Differential Evolution (DE). In JADE, the algorithm con-
tinuously estimates the expectation value of good parameters based on successful
parameters in the last generation. This algorithm has been shown to be effective
and was further developed by other researchers in recent years [14]. However, the
strategy in JADE cannot control β in CS without proper modification (as we
found in our pre-experiment). So in this study, we propose a novel self-adaptive
strategy that can control β in CS, as well as a variety of parameters in other
meta-heuristics, called Parameter Evolution Self-Adaptive strategy (PESA).

PESA is an indicator-based strategy to control algorithm parameter values
at an individual level. This strategy maintains two populations: a population
of solutions and a population of algorithm parameters. PESA searches the pa-
rameter population using a secondary EA and a fitness function based on the
progress of individuals in the solution population. PESA’s structure makes it
easy to apply it to several meta-heuristics and several types of parameters. This
work is related to previous research on using EA to fine-tune control parameters.
However, two key ideas of our method are the online evolution of parameters
(selection and mutation of new parameters done at optimization time), and its
general design that aims to work with several EAs.

In this work, we consider two implementations of PESA: First, we show an
implementation to adaptively control the β parameter from CS in its full con-
tinuous interval (i.e., [0.1, 1.9]). Next, we consider an implementation to control
the F and CR parameters from DE. We compare the PESA implementations for
each search algorithm to JADE (and its corresponding modifications for use with
the CS: JACS). On a set of 14 benchmark functions on 30 dimensions, PESA
performs a better control of β when compared to JACS, while it has comparable
results to JADE on the control of F and CR. This may indicate that the pro-
posed strategy can be used with little modification for the control of parameters
in a wide range of meta-heuristics. We also analyze the sensitivity of PESA to
the frequency of control parameter updates.

2 Background

2.1 Cuckoo Search and Lévy Flight

CS was proposed by Yang in 2009 [18]. It has a simple structure, and many
subsequent studies have shown it is an efficient meta-heuristic search. Its effi-
ciency is derived from the powerful Lévy Flight operator (LF). Generally, LF
is a random walk based on a stable distribution. Since a (non-Gaussian) stable
distribution holds infinite variance, a large step of any arbitrary size can occur.
This property helps CS escape from local optima during the optimization. The
LF operator is formulated in Eq.(1), where x(t) is the position of search point
x at time t. L(α, β) is a step generated from a stable distribution with scaling
factor α and stability parameter β.

x(t) = x(t−1) + L(α, β) (1)

Parameter Evolution Self-Adaptive Strategy 3

0 2 4
×1015

0.0

0.5

1.0

1.5
×1014 β = 0.1

0 2 4 6
×101

−8

−6

−4

−2

0
×101 β = 1.0

−2 −1 0
×101

0

2

4

β = 1.9

Fig. 1. 50-step Lévy Flights with different β and α = 1 started from (0, 0).
When β = 0.1, the search range is nearly infinite, which shows a possibility of
using Lévy Flight to search an unbounded space.

Fig. 1 illustrates 50 steps of three LFs with same α = 1, same start point
(0, 0), but different βs. The scale of search ranges are quite different. Generally, a
stable distribution holds infinite variance for 1 ≤ β < 2, and its expectation value
is diverged when 0 < β < 1. When β = 2, it becomes a Gaussian distribution.
These properties show that any large step can be found in LF when β 6= 2,
and LF can lose its average position and go everywhere in the search space
when 0 < β < 1. Therefore, LF with a proper β can be used for searching an
unbounded space [4].

2.2 Parameter Adaption Strategies in Cuckoo Search

Because of the importance of parameter tuning, self-adaptive strategies are fre-
quently studied and applied in meta-heuristics literature. In the case of CS, the
adaption of the scaling factor α is a well-studied problem. Several studies have
proposed adaptive strategies that adjust α based on generations [16,21] and in-
dividual fitness [12]. Researchers have also applied adaptive CS to solve some
application problems [15,17].

On the other hand, the adaptation of the stability parameter β has not been
studied as much as α in the adaptive CS literature. Mlakar has proposed a
hybrid self-adaptive CS [11]. However, in his study, β is limited to [1.2, 1.8].
Kordestani has utilized multiple β values and designed learning automation to
switch between fixed values (0.75 and 1.90) based on probability [6]. Abedi has
proposed a similar design, where the solution is explored with β =1.0, 1.5, and
2.0 [1]. Lee has injected LF mutation into Evolutionary programming [7]. He has
also developed an “adaptive” strategy, where four candidates are generated with
fixed β (1.0, 1.3, 1.7, 2.0), and the best one is selected as offspring.

We find that most of the (self-)adaptive strategies in the CS literature are
dealing with α and pa. In a few existing studies for adaption of β, the candidate
values are discrete [1,6,7] or a restricted range [11]. What is more, even in the case
of deterministic parameter CS, performance with small β is seldom discussed.

4 Y. He et al.

2.3 Parameter Adaption in Other Meta-Heuristics

Since the (self)-adaption design of parameter β in CS has not been well discussed,
we introduce self-adaptive adaption in another famous meta-heuristics named
differential evolution (DE). Specifically, we introduce JADE [20]. Many variants
of JADE and other (self-)adaptive design of DE can be found in the review work
by Al-Dabbagh [2]. The full description of JADE can be referred to Zhang’s
study [20]. In JADE, each solution has an associated parameter value, and the
selection of new parameters happens at the same time as the selection of new
solutions. Parameters are obtained from a probability distribution, and the shape
of this distribution is estimated during the optimization process.

Another idea for select parameter values of an EA is to use a secondary
EA. The most well-known approach for this is the Meta-EAs [3,9]. Usually, a
Meta-EA maintains multiple sub-populations of the primary EA, each with a
corresponding parameter setting. The Meta-EA will analyze a full run of each
sub-population, and therefore is computationally expensive.

A slightly different approach is to use a secondary EA that runs in paral-
lel with the primary EA to guide parameter control in self-adaptive strategies.
Posik has proposed a method to co-evolve the solutions and mutation steps in
evolutionary strategy (ES) [13]. In this way, we can consider JADE as a paral-
lel Estimation of Distribution Algorithm (EDA) guiding the DE’s parameters.
PLADE [19] has applied particle swarm optimization (PSO) to guide DE param-
eters. However, to our best knowledge, such a technique has not been applied to
control the stability parameter in CS.

3 Proposed Method

3.1 Parameter Evolution Self-Adaptive Strategy

In this paper, we propose the Parameter Evolution Self-adaptive strategy (PESA),
which is a generalization of JADE [20], PLADE [19], and Posik’s study [13].

PESA uses two parallel populations of the same size: a solution population
and a parameter population. Individual xi in the solution population is the stan-
dard solution candidate for an EA, while pi is the set of parameters that will
be used to operate on xi, and will be evaluated by a secondary, and possibly
different, EA.

The fitness yi of an individual xi is calculated as usual, using the problem’s
fitness function f . On the other hand, the fitness indicator Ii of parameter can-
didate pi is calculated by an indicator function g, which evaluates the search
progress of the corresponding solution in the last nstep generations. This implies
that the secondary EA evaluates, selects, and modifies the parameter population
less frequently than the primary EA, this difference being controlled by the nstep
parameter. An important characteristic to keep in mind is that this secondary
EA does not consume extra fitness evaluations. The assessment of parameters is
based on the solution information that has already been computed in the first
EA. The outline of PESA is described in Algorithm 1.

Parameter Evolution Self-Adaptive Strategy 5

Algorithm 1 Parameter Evolved Self-Adaptive Strategy (PESA)

1: Input: solution population X = {x1, · · · , xN}, parameter population P =
{p1, · · · , pN}, fitness function f , indicator function g;

2: while termination criteria is not satisfied do
3: increase generation counter t;
4: evaluate solution fitness: yti = f(xti)
5: calculate offspring solution xt+1

i based on xti and parameter pi;
6: if t is multiple of nstep then

7: evaluate parameter fitness: Ii = g(xti, y
t
i , x

t−1
i , yt−1

i , · · · , xt−nstep
i , y

t−nstep
i)

8: calculate next parameter p′i based on Ii and secondary EA;

As shown in Fig. 2, compared with Meta-EAs [3,9], each parameter setting
in PESA corresponds with an individual rather than a sub-population of base-
level EA. This further lead to two difference in the evolutionary process. First,
a parameter is assessed by the search progress of only one individual. Second,
in Meta-EAs, the fitness of a parameter is computed based on an independent
run of one sub-population. However, in our PESA, individuals do not run inde-
pendently; the search progress of one solution may be partially contributed by
another individual. This shows that the fitness of a parameter in PESA should
be well-designed.

Posik has proposed a co-evolutionary algorithm for real parameter optimiza-
tion [13]. In that study, the two populations, a population of solutions and a
population of mutation steps, are co-evolved. Compared to his study, our method
co-evolves solutions with parameters rather than mutation steps. An essential
difference between parameters and mutation steps is that a parameter can gener-
ate multiple types (size) of step sizes. Therefore, evolving parameters is generally
more difficult. To deal with this problem, we introduce a multi-generation as-
sessment, where each parameter is assessed for nstep generations.

It is not hard to note that JADE (without external archive) [20] is a special
case of PESA. PESA determines that the quality of parameters is assessed by an
indicator function, and then selected independently from the selection process
of solutions. In JADE, there is no explicit indicator function, and the selection
of parameters and solutions are both based on the fitness of the solution. This
could be expressed in PESA as Ii = max(yt−1i − yti , 0) as the indicator function.

3.2 Parameter Evolution Cuckoo Search

PESA is a general strategy for controlling parameters of an EA, which requires
the definition of the indicator function and the secondary EA rules for generating
new parameters.

In this paper, we introduce Parameter Evolution Cuckoo Search (PECS) as a
specific implementation of PESA for cuckoo search. Since parameter α and β are
highly correlated, we design self-adaption for stability parameter β but tune α for
simplicity. In PECS, the solutions are evolved by CS (in Line 5 of Algorithm 1),
and the parameters are evolved by another EA (Line 8 of the same algorithm).

6 Y. He et al.

Fig. 2. Conceptual Difference between Parameter Evolved Self-Adaptive Strat-
egy (PESA) and Meta-EA. Meta-EA evaluates a parameter set by running an
entire subpopulation with that parameter, while PESA evaluates a parameter
set based on a single corresponding individual.

The indicator function that expresses the fitness of a parameter set is com-
puted cumulatively by the corresponding improvement over nstep generations of
CS, as in Eq.(2). A new parameter set is generated following the crossover step
described in Eq.(3) and the mutation step in Eq.(4), with probability pc and
pm, respectively. In these equations, βselect is a stability parameter chosen by
roulette selection, every time before the parameter reproduction step. The selec-
tion probability of βi is equal to Ii/ΣIi. σ is a random uniform value between 0
and 1. The selection between the new parameter set and the old one is based on
the comparison of a pair of positions, before and after implementing LF (i.e., xi
and x′i). This marks an important difference between the selection of solutions
by CS and the selection of parameters by the secondary EA.

Ii+ = max{f(xi)− f(x′i), 0} (2)

β′i = βi + σ ∗ (βselect − βi), σ ∈ [0, 1] (3)

β′′i = β′i + L(θ, λ) (4)

Implementation of Lévy Flight. To implement LF, we use Eq.(1) and Eq.(5).
The first case of the equation below is based on Gutowski’s study [4], where a
simulation method is constructed to generate only positive LF random numbers
for β ∈ (0, 2). We multiply {-1,1}, which means the equal probability of 1 and
-1, to achieve both positive and negative LF random numbers. The symbol rand

Parameter Evolution Self-Adaptive Strategy 7

stands for a uniform random number in [0, 1]. The second case is implemented by
Mantegna’s algorithm [10]. This algorithm approximates a symmetrical stable
distribution, however, for a limited range of β ∈ [0.3, 1.99].

L(α, β) =

{
α · {−1, 1} · (rand−

1
β − 1), 0.1 ≤ β < 0.3

α · u
|v|1/β 0.3 ≤ β ≤ 1.9

(5)

4 Experiments

We show our PESA can control the stability parameter β (with a tuned α) in
CS, as well as F and CR in DE. In other words, we compare the performance
of different adaptive strategies to solve the parameter space of CS and DE. The
source code for all algorithms, extra figures and data are in our public website 3.

4.1 Comparison with Self-Adaptive Strategy in JADE

CS-based Algorithms Totally, we have four algorithms to compare, namely
PECS, JACS, Random Parameter CS (RPCS), and CS (Tuned).

– PECS: CS where β is controlled by the proposed PESA.
– JACS: CS where β is controlled by JASA. In our pre-experiments, we find

that without a proper modification, JACS performs poorly on most of the
problems. Thus, we implemented a modification to realize the quality of LF
in terms of fitness improvement by applying weighted mean. This modifica-
tion is similar to what proposed by Tanabe [14].

– RPCS: CS where β is randomly generated from [0.1, 1.9] before mutation.
– CS (Tuned): CS where β is fine-tuned on each benchmark problem.

DE-based Algorithms To test PESA’s performance on controlling DE, we
include PEDE (DE controlled by PESA). As comparison methods, we use JADE
and Random Parameter DE (RPDE). The mutation method of all three methods
is DE/current-to-pbest/1, and all three algorithms (PEDE, JADE, RPDE) are
implemented without an external archive for simplicity.

Experimental Settings for CS-based Algorithms For a fair comparison,
we tuned parameters of all CS-based algorithms based on the average evaluation
cost and average fitness of 21 runs with maximum evaluations of 15,000 on
Sphere and Rastrigin. We set the population size N as 20, which is a common
value. We tuned α and β in pairs to get a proper α. Based on the results, we set
α on all problems as 1e-07. We then tuned pa to 0.1. For JACS, we tuned the
scaling factor of Cauchy distribution γ=0.1 and learning rate c=0.1. We set the
initial value of µβ as 1.0 (average of 0.1 and 1.9). For PECS, we set θ and λ to

3 https://y1fanhe.github.io/research/bioma2020

https://y1fanhe.github.io/research/bioma2020

8 Y. He et al.

0.1 and 1.0, respectively. This setting is the same as LF by Cauchy distribution
with a scaling factor of 0.1. We tuned pc and pm to 0.7 and 0.3, respectively. We
set nstep as 5, and discuss the influence of this parameter in Section 4.2. For CS
(Tuned), we run algorithm with β={ 0.1, 0.2, ..., 1.9 } and chose the best β to
compare.

In our experiment, a total of 14 benchmark problems (30-dimension) are in-
cluded. We have implemented them based on Jamil’s review work on continuous
benchmark problems [5]. They are F1: Sphere, F2: Sum Squares, F3: Rosenbrock,
F4: Zakharov, F5: Ackley, F6: Alpine N.1, F7: Periodic, F8: Styblinski-Tank, F9:
Rastrigin, F10: Griewank, F11: Schwefel, F12: Salomon, F13: Xin-She Yang’s N.2,
and F14: Xin-She Yang’s N.4 function. F1 - F4 are unimodal problems and F5 -
F14 are multimodal problems.

The experiment is performed with 31 repetitions. Each algorithm will run
with a maximum evaluation of 300,000. The termination criterion is when the
fitness meets the tolerance (to the optimal fitness value). The tolerance for each
problem is computed as follows. We first run CS with β from 0.1 to 1.9 for
300,000 evaluations for 31 repetition and use the distance from the best average
fitness to the optimal fitness as tolerance. We record the success rate in 31 runs
as well as the mean and standard deviation of the number of evaluation numbers
in successful runs as results.

Experimental Settings for DE-based Algorithms We use a population
of 100 and a pbest rate of 0.05 for all methods. F and CR are controlled by
a self-adaptive strategy within [0, 1]. For JADE, the parameters used for self-
adaptive strategy is µF=µCR=0.5, γ=0.1, c=0.1. These settings are the same as
in Zhang’s study [20]. We use the tuned parameters in the previous experiments
for the parameters of the adaptive strategy in PEDE. The maximum evaluations
are set to 300,000. We run JADE in the same procedure to set tolerance for DE-
based algorithms.

Experimental Results Table 1 and Table 2 presents the results of six CS-based
algorithm and three DE-based algorithms on F1 - F14, respectively. We addi-
tionally performed the aggregated Friedman test and the aggregated Wilcoxon
Signed-Rank test. The results have shown that the improvement of PECS over
JACS and RPCS in terms of the number of evaluations is statistically significant
(p-values 0.028 and 0.003, respectively), while there is no statistical difference
between all four CS-based methods in terms of success rate (p-value=0.155).
JADE is better than PEDE in terms of success rate, however, without statisti-
cal significance (p-value=0.058). All DE-based algorithms perform in the same
tier in terms of the number of evaluations (p-value=0.054). These results show
that PESA can work better than JASA on controlling CS and perform a com-
parable result with JASA on controlling DE. This may indicate that our PESA
can work in a more general case compared to JASA.

Parameter Evolution Self-Adaptive Strategy 9

Table 1. Success rate (SR), mean and standard deviation of evaluation numbers
for CS-based algorithms (The numbers after CS are the best values of β)

Fun. Method SR Mean Std. Fun. Method SR Mean Std.

F1

PECS 1.00 5.47e+04 6.67e+03

F8

PECS 1.00 7.23e+04 2.79e+04
JACS 1.00 9.03e+04 2.92e+03 JACS 1.00 1.00e+05 1.09e+04
RPCS 1.00 7.07e+04 3.89e+03 RPCS 1.00 1.74e+05 3.95e+04

CS (0.6) 0.68 2.63e+05 2.44e+04 CS (0.4) 0.65 2.62e+05 2.11e+04

F2

PECS 1.00 5.80e+04 5.70e+03

F9

PECS 0.94 1.73e+05 4.89e+04
JACS 1.00 9.34e+04 3.47e+03 JACS 0.81 1.57e+05 3.86e+04
RPCS 1.00 7.90e+04 4.88e+03 RPCS 0.16 2.66e+05 2.86e+04

CS (0.5) 0.94 2.22e+05 2.98e+04 CS (0.4) 0.81 2.50e+05 3.17e+04

F3

PECS 0.81 8.61e+04 7.13e+04

F10

PECS 0.71 4.37e+04 3.92e+04
JACS 0.61 8.76e+04 5.67e+04 JACS 0.81 5.62e+04 1.59e+04
RPCS 0.52 1.24e+05 6.37e+04 RPCS 0.26 1.27e+05 7.47e+04

CS (0.4) 0.87 7.41e+04 5.34e+04 CS (0.2) 0.77 3.01e+04 4.49e+03

F4

PECS 0.00 - -

F11

PECS 0.71 2.29e+05 4.40e+04
JACS 0.00 - - JACS 0.39 2.29e+05 3.11e+04
RPCS 0.00 - - RPCS 0.00 - -

CS (0.3) 0.77 2.71e+05 1.86e+04 CS (0.2) 0.94 2.30e+05 3.01e+04

F5

PECS 1.00 6.15e+04 5.96e+03

F12

PECS 0.00 - -
JACS 1.00 1.03e+05 4.57e+03 JACS 0.00 - -
RPCS 1.00 1.14e+05 1.19e+04 RPCS 0.00 - -

CS (0.5) 0.68 2.73e+05 1.48e+04 CS (0.2) 0.61 1.31e+05 5.45e+04

F6

PECS 1.00 3.91e+04 2.68e+04

F13

PECS 1.00 1.76e+05 3.31e+04
JACS 1.00 2.89e+04 2.13e+04 JACS 1.00 2.16e+05 3.44e+04
RPCS 0.97 2.79e+04 1.64e+04 RPCS 0.00 - -

CS (0.3) 0.74 1.38e+05 6.16e+04 CS (0.3) 1.00 5.87e+04 1.37e+04

F7

PECS 1.00 1.54e+04 2.45e+03

F14

PECS 1.00 2.61e+04 2.52e+03
JACS 1.00 1.75e+04 1.74e+03 JACS 1.00 4.08e+04 2.67e+03
RPCS 1.00 1.60e+04 1.90e+03 RPCS 1.00 4.83e+04 3.54e+03

CS (0.6) 1.00 5.83e+04 1.14e+04 CS (0.5) 1.00 1.31e+05 1.88e+04

10
−5

10
−2

10
1

fit
ne

ss

PECS
JACS

0.0 0.2 0.4 0.6 0.8 1.0 1.2
evaluations ×105

0.5

1.0

β

(a) F9

10
0

10
1

fit
ne

ss

PECS
JACS

0.0 0.5 1.0 1.5 2.0 2.5 3.0
evaluations ×105

0.5

1.0

1.5

β

(b) F12

Fig. 3. Mean of β and fitness in best run on F9 and F12 for adaptive CS

10 Y. He et al.

Table 2. Success rate (SR), mean and standard deviation of evaluation numbers
for DE-based algorithms

Fun. Method SR Mean Std. Fun. Method SR Mean Std.

F1

PEDE 1.00 3.43e+04 2.24e+03
F8

PEDE 0.48 6.38e+04 7.40e+03
JADE 1.00 3.33e+04 1.20e+03 JADE 0.90 8.96e+04 6.10e+03
RPDE 1.00 3.70e+04 7.28e+02 RPDE 0.35 6.79e+04 1.03e+04

F2

PEDE 1.00 3.94e+04 2.13e+03
F9

PEDE 1.00 1.52e+05 5.24e+03
JADE 1.00 3.78e+04 1.33e+03 JADE 1.00 1.77e+05 3.20e+03
RPDE 1.00 4.21e+04 7.51e+02 RPDE 0.00 - -

F3

PEDE 0.03 2.75e+05 0.00e+00
F10

PEDE 0.74 5.38e+04 6.56e+03
JADE 0.55 1.99e+05 7.28e+03 JADE 1.00 5.57e+04 1.62e+04
RPDE 0.00 - - RPDE 0.87 5.66e+04 4.76e+03

F4

PEDE 1.00 9.92e+04 5.69e+03
F11

PEDE 0.32 2.10e+05 4.58e+04
JADE 0.94 1.05e+05 1.20e+04 JADE 0.16 2.49e+05 4.18e+04
RPDE 1.00 1.66e+05 4.42e+03 RPDE 0.00 - -

F5

PEDE 1.00 5.76e+04 1.98e+03
F12

PEDE 0.00 - -
JADE 1.00 6.47e+04 2.64e+03 JADE 0.16 6.87e+04 1.08e+04
RPDE 1.00 7.34e+04 1.08e+03 RPDE 0.03 1.41e+05 0.00e+00

F6

PEDE 1.00 2.38e+04 1.20e+04
F13

PEDE 0.65 1.86e+05 4.65e+04
JADE 1.00 3.80e+04 1.16e+03 JADE 0.71 1.29e+05 2.76e+04
RPDE 1.00 5.94e+04 3.36e+03 RPDE 0.00 - -

F7

PEDE 1.00 9.86e+04 8.02e+03
F14

PEDE 0.10 2.42e+05 2.43e+04
JADE 1.00 9.79e+04 6.03e+03 JADE 1.00 2.67e+05 1.31e+04
RPDE 0.00 - - RPDE 0.97 1.24e+05 4.55e+04

Discussion It is interesting to see how β evolves with different strategies. As
an example, the evolutionary process best fitness and mean of β in the best runs
of PECS and JACS on F9 and F12 are plotted in Fig. 3. On F9, we can find
that both methods decrease β at first to perform a global search, and increase
to perform precious local search later. What is more, our PECS increases β
much earlier than JACS, and thus holds a better convergence speed. On F12:
Salomon function, the evolutionary process of β in PECS is periodic. The ring-
shaped local optima occur periodically on the domain. This may indicate that
the search process of parameters is too greedy, and the parameters are evolved to
large β at an early phase. On this problem, the performance of all self-adaptive
CS is worse than a fine-tuned CS with β=0.2. This also shows the nature of
self-adaptive EAs; the strategy can only reward the short-term benefits.

4.2 Comparison on Using Different nstep

In our PECS, a parameter is assessed with nstep generations. The setting of nstep
can influence performance. A small nstep leads to an inaccurate assessment on
the performance of parameters, while with a large nstep, parameters have less
chance to be updated. Also, the solution may move far away from the current
position after a large generation. Fig. 4 presents the evolutionary process of β

Parameter Evolution Self-Adaptive Strategy 11

0.5

1.0

1.5

β

nstep=1

0.5

1.0

1.5

β
nstep=5

0.5

1.0

1.5

β

nstep=10

0.0 0.5 1.0 1.5 2.0 2.5 3.0
evaluations ×10

5

0.5

1.0

1.5

β

nstep=50

Fig. 4. Mean of β in best run of PECS on F9 with different nstep

by nstep={ 1, 5, 10, 50 } on F9. It is not hard to find that on all the three
problems, small nstep leads to a rapid change in β. On F9, when nstep=1, the
fitness keeps a high value for a large number of evaluations, which indicates that
the algorithm cannot escape from the local optimal. However, when nstep=50,
the convergence speed is slower than nstep=5 and 10. A similar observation can
be found in most of the testing problems. Therefore, nstep=5 or 10 should be a
good choice for this parameter.

5 Conclusions

In this study, we proposed a novel self-adaptive strategy (PESA) to control the
stability parameter of LF in CS from a wide range ([0.1, 1.9]). The proposed self-
adaptive strategy is a co-evolution between solutions and parameters. We also
showed that the proposed PESA is a generalization of many literature methods,
such as JADE [20]. In the experiments, we showed that for both CS and DE, the
proposed PESA could perform better or at least comparable results, compared
with the strategy in JADE (JASA).

In the future, we will assess our methods on CEC benchmarks and compared
them with other state-of-the-art algorithms. We will apply our strategy to more
EAs to test its flexibility. We will extend our method to control multiple param-
eters simultaneously. Also, it is essential to discover a new metric to guide the
search for parameters. What is more, it is also interesting to adapt our method
to a multi-objective evolutionary algorithm.

12 Y. He et al.

References

1. Abedi Firouzjaee, H., Kordestani, J.K., Meybodi, M.R.: Cuckoo search with com-
posite flight operator for numerical optimization problems and its application in
tunnelling. Engineering Optimization 49(4), 597–616 (2017)

2. Al-Dabbagh, R.D., Neri, F., Idris, N., Baba, M.S.: Algorithmic design issues in
adaptive differential evolution schemes: Review and taxonomy. Swarm and Evolu-
tionary Computation 43, 284–311 (2018)

3. Grefenstette, J.J.: Optimization of control parameters for genetic algorithms. IEEE
Transactions on systems, man, and cybernetics 16(1), 122–128 (1986)

4. Gutowski, M.: Lévy flights as an underlying mechanism for global optimization
algorithms. arXiv preprint math-ph/0106003 (2001)

5. Jamil, M., Yang, X.S.: A literature survey of benchmark functions for global optimi-
sation problems. International Journal of Mathematical Modelling and Numerical
Optimisation 4(2), 150–194 (2013)

6. Kordestani, J.K., Firouzjaee, H.A., Meybodi, M.R.: An adaptive bi-flight cuckoo
search with variable nests for continuous dynamic optimization problems. Applied
Intelligence 48(1), 97–117 (2018)

7. Lee, C.Y., Yao, X.: Evolutionary programming using mutations based on the lévy
probability distribution. IEEE Transactions on Evolutionary Computation 8(1),
1–13 (2004)

8. Li, X., Yin, M.: Modified cuckoo search algorithm with self adaptive parameter
method. Information Sciences 298, 80–97 (2015)

9. Luke, S., Talukder, A.K.A.: Is the meta-ea a viable optimization method? In: Pro-
ceedings of the 15th annual conference on Genetic and evolutionary computation.
pp. 1533–1540 (2013)

10. Mantegna, R.N., Stanley, H.E.: Stochastic process with ultraslow convergence to a
gaussian: the truncated lévy flight. Physical Review Letters 73(22), 2946 (1994)

11. Mlakar, U., Fister Jr, I., Fister, I.: Hybrid self-adaptive cuckoo search for global
optimization. Swarm and Evolutionary Computation 29, 47–72 (2016)

12. Ong, P.: Adaptive cuckoo search algorithm for unconstrained optimization. The
Scientific World Journal 2014 (2014)

13. Posik, P.: Real-parameter optimization using the mutation step co-evolution. In:
2005 IEEE Congress on Evolutionary Computation. vol. 1, pp. 872–879. IEEE
(2005)

14. Tanabe, R., Fukunaga, A.: Success-history based parameter adaptation for differ-
ential evolution. In: 2013 IEEE congress on evolutionary computation. pp. 71–78.
IEEE (2013)

15. Valian, E., Tavakoli, S., Mohanna, S., Haghi, A.: Improved cuckoo search for relia-
bility optimization problems. Computers & Industrial Engineering 64(1), 459–468
(2013)

16. Walton, S., Hassan, O., Morgan, K., Brown, M.: Modified cuckoo search: a new
gradient free optimisation algorithm. Chaos, Solitons & Fractals 44(9), 710–718
(2011)

17. Wang, J., Zhou, B.: A hybrid adaptive cuckoo search optimization algorithm for
the problem of chaotic systems parameter estimation. Neural Computing and Ap-
plications 27(6), 1511–1517 (2016)

18. Yang, X.S., Deb, S.: Cuckoo search via lévy flights. In: 2009 World congress on
nature & biologically inspired computing (NaBIC). pp. 210–214. IEEE (2009)

Parameter Evolution Self-Adaptive Strategy 13

19. Zhan, Z.H., Zhang, J.: Self-adaptive differential evolution based on pso learning
strategy. In: Proceedings of the 12th annual conference on Genetic and evolutionary
computation. pp. 39–46 (2010)

20. Zhang, J., Sanderson, A.C.: Jade: adaptive differential evolution with optional
external archive. IEEE Transactions on evolutionary computation 13(5), 945–958
(2009)

21. Zhang, Y., Wang, L., Wu, Q.: Modified adaptive cuckoo search (macs) algorithm
and formal description for global optimisation. International Journal of Computer
Applicationsin Technology 44(2), 73 (2012)

	Parameter Evolution Self-Adaptive Strategy and its Application for Cuckoo Search

