1	Weight change during middle age and risk of stroke and coronary heart disease:
2	The Japan Public Health Center–based Prospective Study
3	
4	Koichi Kisanuki ¹ , Isao Muraki ¹ , Kazumasa Yamagishi ² , Yoshihiro Kokubo ³ , Isao Saito ⁴ ,
5	Hiroshi Yatsuya ⁵ , Norie Sawada ⁶ , Hiroyasu Iso ^{1,2} *, Shoichiro Tsugane ⁶ for the JPHC
6	Study Group
7	
8	1 Public Health, Department of Social Medicine, Osaka University Graduate School of
9	Medicine, Osaka, Japan
10	2 Department of Public Health Medicine, Faculty of Medicine, and Health Services
11	Research and Development Center, University of Tsukuba, Ibaraki, Japan
12	3 Department of Preventive Cardiology, National Cerebral and Cardiovascular Center,
13	Osaka, Japan
14	4 Department of Public Health and Epidemiology, Faculty of Medicine, Oita University,
15	Yufu, Japan.
16	5 Department of Public Health, Fujita Health University, Toyoake, Aichi, Japan
17	6 Epidemiology and Prevention Group, Center for Public Health Sciences, National
18	Cancer Center, Tokyo, Japan

19 ***Corresponding author:** Hiroyasu Iso, MD, PhD, MPH

- 20 Public Health, Department of Social Medicine, Osaka University Graduate School of
- 21 Medicine, 2-2 Yamadaoka, Suita 565-0871, Japan.
- 22 Tel: +81-6-6879-3911
- 23 Fax: +81-6-6879-3919
- 24 E-mail: iso@pbhel.med.osaka-u.ac.jp
- 25
- 26 This research paper is a doctoral thesis of Koichi Kisanuki.
- 27
- 28 Tables/Figures (\leq 5): 4 Tables/ 1 Figure
- 29 Supplementary Tables: 7

31 Abstract

32	Background and aims: The impact of weight changes in middle age on the incidence
33	of cardiovascular disease has not been well elucidated. We investigated whether a 5-
34	year weight change was associated with risk of stroke and coronary heart disease (CHD)
35	in middle-aged individuals.
36	Methods: We analyzed data of 74,928 participants aged 40–69 years who provided
37	responses to the baseline and 5-year follow-up questionnaires in the Japan Public Health
38	Center-based Prospective Study. Weight change was calculated by subtracting self-
39	reported weight at baseline from that at 5-year follow-up. Stroke and CHD events were
40	confirmed by reviewing hospital records.
41	Results: During 997,406 person-years of follow-up, we documented 3,975 stroke and
42	914 CHD events. The multivariable HRs of stroke for losing \geq 5 kg compared to stable
43	weight (change ≤ 2 kg) was 1.17 (95% CI, 1.01–1.37) in men versus 1.33 (1.13-1.57) for
44	losing ≥ 5 kg and 1.61 (1.36–1.92) for gaining ≥ 5 kg in women (U-shaped association).
45	These associations did not change after the exclusion of early events. The multivariable
46	HR of CHD for gaining \geq 5 kg was 1.22 (0.95–1.58) in men. After exclusion of early
47	events within another 5 years, that positive association became stronger [multivariable
48	HR 1.34 (1.00–1.82)].

49	Conclusions: Weight gain during middle age was associated with an increased risk of
50	stroke in women and an increased risk of CHD in men. Weight loss was associated with
51	an increased risk of stroke in both men and women.
52	
53	Keywords: Weight change; Stroke; Coronary heart disease; Prospective cohort study;
54	Population study
55	

56 Introduction

Although obesity is a known risk factor for cardiovascular disease (CVD) and 57guidelines recommend sustained weight reduction in overweight/obese individuals [1-58593], the relationship between weight change during middle age and incident CVD has not been fully elucidated. Increasing efforts have been made to assess the relationship 60 between weight change and CVD incidence. Weight change in early to middle age was 61 reportedly associated with an increased risk of CVD [4]. Two recent studies examined 62the associations between short- and long-term weight change and cardiovascular health, 63 64 but the results were inconsistent regarding short-term weight changes during middle age [5, 6]. Although previous findings were reported mostly in the United States, where 65 overweight/obesity has been prevalent and continuously increases [7], previous findings 66 may not be simply extrapolated to Asian populations because the prevalence of 67 overweight/obesity is not so high in Asian countries including Japan compared to that in 68 69 the US and European countries and their body fat distributions differ from those of Caucasians [8]. Also, the case-mix of stroke and coronary heart disease (CHD) varies 70according to countries [9], possibly due to the difference in ethnicities or lifestyles. In 7172our prior study, the association of weight change during middle age with risk of incident stroke was examined in which weight gain was associated with increased risk of stroke 73

 $\mathbf{5}$

74	in women while the association was weak in men [10]. Accumulation of incident cases
75	by the continued follow-up enabled us to examine the sex-specific associations with
76	incident risk of CHD or subtypes of ischemic stroke. Therefore, we investigated the
77	association of incident stroke and CHD with weight change during middle age in a large
78	long-term population-based prospective cohort study in Japan.
79	
80	Materials and Methods
81	Study design and population
82	The Japan Public Health Center-based prospective (JPHC) study comprised a
83	population-based sample of 140,420 Japanese adults aged 40-69 years. The study
84	design was described in detail previously [11]. In brief, this study consisted of cohorts I
85	and II. Cohort I was started in 1990, enrolling 61,595 residents aged 40-59 years from
86	five public health center (PHC) areas across Japan. Cohort II was established in 1993,
87	enrolling 78,825 residents aged 40-69 years from six other PHC areas. A self-
88	administered questionnaire mailed to all participants at baseline and every 5 years after
89	baseline until 15 years of follow-up was achieved to obtain information regarding
90	anthropometry; medical history; and lifestyle including smoking status, alcohol intake,
91	and physical activity.

92	The JPHC Study protocol received approval from the National Cancer Center,
93	Tokyo, Japan (approval no.: 13-021), and Osaka University, Osaka, Japan (approval no.:
94	2001-021). Informed consent was obtained when the participant responded to the
95	baseline questionnaire, in which the study purpose and follow-up methods were
96	described and explained.
97	Of 140,420 participants in the JPHC study, we excluded participants from two
98	PHC areas due to the unavailability of CVD incidence data and differences in inclusion
99	criteria (n = 23,524) as well as ineligible participants (non-Japanese nationality,
100	emigration occurring before the start of follow-up, age missing, duplicate registration,
101	and study refusal) (n = 252). We also excluded participants who did not respond to the
102	baseline or 5-year follow-up questionnaires ($n = 35,712$), those who reported a history
103	of CVD or any cancer at baseline or those who developed CVD or any cancer from
104	baseline to 5-year follow-up survey ($n = 2,340$ for CVD, $n = 1,062$ for any cancer), and
105	those who had body mass index (BMI) less than 14 kg/m ² or \ge 40 kg/m ² at baseline or in
106	the 5-year follow-up survey owing to possible unreliable reporting ($n = 2,602$). Finally,
107	74,928 participants (34,358 men and 40,570 women) were recruited in the study (Figure
108	1).

111	We used self-reported height and weight, both of which had sufficiently high validity in
112	the JPHC study, the Spearmen correlation coefficients between the self-reported and
113	measured BMI estimates were 0.89 in men and 0.91 in women for cohort I and 0.91 in

Assessment of weight changes and potential confounding factors 110

men and 0.92 in women for cohort II [12, 13]. The mean BMIs (standard deviations) 114

[interquartile range] were 23.5 (2.9) [21.4-25.2] for self-reported and 23.5 (3.0) [21.4-115

116 25.4] for measured ones among participants for analysis in the current study. Weight

change was calculated by subtracting weight at baseline from that at the 5-year follow-117

118 up survey and was classified into the following five categories: $loss \ge 5 \text{ kg}$; loss 3-4 kg;

stable (change ≤ 2 kg); gain 3–4 kg; and gain ≥ 5 kg. 119

As potential confounding factors, we also asked smoking status, alcohol intake, 120 physical activity, and histories of dyslipidemia, hypertension and diabetes mellitus in 121the baseline questionnaire. Histories of dyslipidemia, hypertension, or diabetes mellitus 122were asked as following: 'Have the following conditions been diagnosed by 123physicians?' and 'Do you currently take medicines prescribed by physicians for the 124following diseases?', and participants chose their responses from the disease list 125126including dyslipidemia, hypertension, diabetes mellitus and other chronic diseases.

128 Follow-up survey

To identify stroke and CHD incidence, all major hospitals with facilities for treating 129patients with acute stroke and CHD located in the study areas were registered. The 130 131 medical records in the registered hospitals were reviewed regularly by physicians blinded to the baseline and follow-up survey data. 132According to the National Survey of Stroke criteria [14], patients were 133diagnosed with stroke when participants developed apparent focal symptoms and 134confirmed with computed tomography scan, magnetic resonance imaging, or autopsy 135136 findings. As stroke subtypes, we classified intraparenchymal or subarachnoid 137hemorrhage as hemorrhagic stroke and thrombotic or embolic stroke as ischemic stroke. Thrombotic stroke was cerebral infarction at the locations of basal ganglia, brain stem, 138 thalamus, internal capsule, cerebral white matter, or cortical areas without the evidence 139of embolism. Embolic stroke depended on clinical diagnosis with the presence of an 140 141 embolus in the brain or hemorrhagic infarction and/or a possible source of embolus such as moderate or severe valvular heart disease, atrial fibrillation, or intracardiac thrombus. 142143CHD was diagnosed as myocardial infarction and sudden cardiac death (death within 1 144hour from event onset) according to the criteria of the MONICA project [15], which requires apparent chest pain and evidence from electrocardiograms, cardiac biomarkers, 145

146	and/or autopsy. The final diagnosis for stroke, its types and CHD was made by the
147	consensus of an independent review board consisting three to four physician-
148	epidemiologists.
149	Participants lost to follow-up were censored at the last confirmed date of their
150	presence in the study area. Residence and survival were ascertained annually by review
151	of private registries in the municipality. Residency and death registrations are required
152	by law in Japan.
153	
154	Statistical analysis
155	Person-years of follow-up for each participant was calculated from the date of the 5-
156	year follow-up survey to the date of the first endpoint diagnosis of stroke or CHD,
157	death, move from the study area, or end of the follow-up (end of 2009 for cohort I, end
158	of 2012 for cohort II).
159	Hazard ratios (HRs) and their 95% confidence intervals (CIs) were calculated
160	using Cox proportional hazards models. The proportional hazard assumption was
161	confirmed by including product terms of weight change (continuous) and person-year
162	(continuous) and was not violated for each outcome. To test for a linear or U-shaped
163	trend across the weight change categories, we assigned median weight change values in

164	each category and included a continuous variable of exposure for the linear trend and
165	squared continuous variable of exposure for the U-shaped trend. We adjusted for
166	baseline survey values of age (continuous), BMI (continuous), PHC areas (nine total),
167	smoking status (never smoker; former smoker; current smoker $\leq 19, 20-29, \geq 30$
168	cigarettes/day; or missing), hypertension (yes, no, or missing), diabetes mellitus (yes,
169	no, or missing), dyslipidemia (yes, no, or missing), physical activity (<1 day/month, 1-3
170	days/month, 1-6 days/week, almost every day, or missing), and alcohol intake (non-
171	drinker; occasional drinker; drinker of ethanol intake 1–149, 150–299, 300–499, and
172	≥450 g/week; or missing). Missing covariate values were adjusted for using a dummy
173	variable. First, we adjusted for age, second, adjusted further for BMI, and then adjusted
174	further for smoking status, physical activity, and alcohol intake, and PHC areas. The
175	final model was adjusted further for hypertension, diabetes mellitus, and dyslipidemia.
176	We also performed the analyses stratified by initial BMI (<25 or \geq 25 kg/m ²). We tested
177	statistical interactions for sex and BMI (<25 or \ge 25 kg/m ²) by using a cross-product
178	term. To evaluate the delayed impact of a short-term weight change, we examined the
179	association excluding early-onset occurring 5 years from the start of the follow-up.
180	Statistical analyses were conducted using SAS software, version 9.4 (SAS Institute,
181	Inc., USA). For all analyses, two-sided values of $p < 0.05$ were considered to indicate

182	statistical	significance.

184	Results
185	Table 1 shows age-adjusted means and proportions of baseline characteristics according
186	to weight change category. The range of weight change was -35 to 44 kg for men and -
187	39 to 35 kg for women. Weight change was inversely associated with age, initial BMI,
188	prevalence of hypertension, and diabetes mellitus in both men and women. In men,
189	heavy alcohol drinkers were more likely to lose weight. The characteristics of
190	participants for analysis were similar to those in baseline survey (Supplementary Table
191	S1).
192	During 997,406 person-years of follow-up, we documented 914 CHD events
193	(655 men, 259 women) and 3,975 strokes (2,278 men, 1,697 women), including 2,445
194	ischemic strokes (1,503 men, 942 women) and 1,511 hemorrhagic strokes (764 men,
195	747 women). The cases of subtypes of ischemic and hemorrhagic stroke were 1,911
196	thrombotic strokes (1,156 men, 755 women), 534 embolic strokes (347 men, 187
197	women), 1,080 intraparenchymal hemorrhages (623 men, 457women) and 431
198	subarachnoid hemorrhages (141 men, 290 women).
199	Table 2 shows the HRs for incident stroke according to weight change over the

200	5 years compared with stable weight (≤ 2 kg). Among men, a weight loss of ≥ 5 kg was
201	associated with a higher risk of total stroke: the multivariable HR of total stroke was
202	1.17 (95% CI, 1.01–1.37) for losing \geq 5 kg weight. The excess risks of stroke subtypes
203	associated with weight loss of \geq 5 kg were similarly observed, but the associations did
204	not reach statistical significance, probably due to an insufficient sample size (Table 3
205	and Supplementary Table S2). Among women, weight change and the risks of total
206	stroke and its subtypes had a U-shaped association (Tables 2 and 3), and that association
207	was stronger for ischemic stroke (either thrombotic or embolic stroke) than for
208	hemorrhagic stroke (either intraparenchymal or subarachnoid hemorrhage) (Tables 3
209	and Supplementary Table S2). After the exclusion of early events, though the results
210	were based on smaller number of events, the association between weight change and
211	risks of total stroke and its subtypes did not change substantially in both men and
212	women (Supplementary Table S3). The U-shaped association for total stroke was also
213	observed in BMI-adjusted and BMI-specific incidence rates (Supplementary Table S4).
214	Table 4 shows the HRs for incident CHD according to weight change over the
215	5 years compared with stable weight (\leq 2 kg). The age-adjusted HR of CHD was higher
216	for a weight gain of \geq 5 kg in men, but that association was no longer statistical
217	significance after adjustment for potential confounding factors. After excluding early

218	events occurring within 5 years of follow-up, the HR of CHD for weight gain of \geq 5 kg
219	became pronounced and statistically significant in men [multivariable HR 1.34 (95%
220	CI, 1.00–1.82), p <0.05]. In women, weight change was not associated with risk of CHD
221	(Supplementary Table S3).
222	When we performed the analyses stratified by initial BMI (<25 or \ge 25 kg/m ²),
223	the results were similar to those of the main analyses of the outcomes (Supplementary
224	Tables S5 and S6).
225	When we altered the exposure from weight change to BMI change, we
226	observed similar results (Supplementary Table S7).
227	
228	Discussion
229	This study addressed the prospective association of body weight change during middle
230	age with CVD outcomes in the general population. In this large prospective cohort
231	study, a U-shaped association of weight change during middle age and incident stroke
232	was observed in women. In men, weight loss \geq 5 kg was associated with an increased
233	risk of stroke. Weight gain of \geq 5 kg was associated with an increased risk of CHD in
234	men after the exclusion of early events.
235	The association between weight change and subsequent risk of total CVD was
236	examined in several previous studies, which reported a U-shaped association [16, 17].

237	However, limited studies separately examined the associations of weight change with
238	stroke [6, 10] and CHD [6, 13, 18, 19]. Regarding stroke risk, long-term weight gain
239	since young to middle adulthood was positively associated [6, 20, 21], but the
240	association with short-term weight change in middle age was inconsistent. In the
241	Atherosclerosis Risk In Communities (ARIC) study, among 15,792 US men and women
242	aged 45–64 years with mean BMI 27.6 kg/m ² , the association with weight gain ($\geq 10\%$)
243	over 3 years was not positive (HR 0.75, 95% CI 0.39–1.43), while weight loss (\geq 3%)
244	was associated with an increased risk (HR 1.45, 1.10-1.92) compared to weight
245	maintenance (≤3%) during 3-year follow-up [6]. In the Singaporean Chinese Health
246	Study (SCHS), however, among 36,338 Singaporean Chinese men and women aged 45-
247	74 years with mean BMI 23.0 kg/m ² , both weight gain ($\geq 10\%$) and weight loss ($\geq 10\%$)
248	over a mean period of 5.7 years were associated with an increased risk of stroke (HR
249	1.25, 0.98–1.60 and 1.35, 1.07–1.69, respectively) compared to stable weight (\leq 5%)
250	during a mean follow-up period of 14.2 years [22]. In previous JPHC report with a
251	median follow-up of 7.9 years, weight gain was associated with an increased risk of
252	stroke in women [10]. While the reason for the elevated risk of stroke among the weight
253	loss group is unclear, weight loss due to underlying diseases or sarcopenia has been
254	discussed as being among these reasons [23]. In this study, age, BMI, and the

255	prevalence of hypertension and diabetes mellitus were higher in the weight loss of \geq 5 kg
256	group than in the stable weight group. The possible confounding by some underlying
257	diseases or sarcopenia cannot be excluded.
258	Regarding CHD outcome, long-term weight gain since early life (5 years) or
259	young adulthood (18–25 years) to middle adulthood was associated with a higher risk
260	[6, 19, 20] and prior JPHC report also observed similar results in men [13], but the
261	associations for short-term weight gain during middle age were inconclusive among
262	previous studies. Among 6,445 British men aged 40–59 years with mean BMI 25.6
263	kg/m ² without a history of CHD, the relative risk of heart attack for weight gain (>10%)
264	over a 5-year period compared to that for stable weight ($\leq 4\%$) was 1.45 (0.97–2.13)
265	over a 6.5-year follow-up [18]. In the Honolulu Heart Program (HHP), however, among
266	6,176 Japanese-American men with a mean age of 54 years and mean BMI 22.0 kg/m ² ,
267	weight gain (>2.5 kg) over a mean period of 6.1 years compared to stable weight (≤ 1
268	kg) was not associated with risk of CHD (relative risk 1.10, 0.84–1.46) during a
269	maximum follow-up period of 17 years [19]. In the SCHS, the HR of CHD was 1.11
270	(0.93-1.34) for weight gain (\geq 10%) [22]. In the ARIC study, weight gain (\geq 10%) was
271	not associated with risk of CHD (HR 1.06, 0.70-1.61) [6]. In the present study, the
272	association for weight gain became pronounced when we excluded the event within the

273	first five years, supporting that the adverse effect of weight gain may be apparent with
274	some delay. In the ARIC study, the positive association for weight gain was relatively
275	weak among previous studies because the 3-year follow-up may be too short to observe
276	the adverse effect [6]. Regarding weight loss, the positive association was observed in
277	the SCHS, in which the HR of CHD was 1.23 (1.04–1.45) for weight loss ($\geq 10\%$) [22].
278	Similarly, in the ARIC, weight loss (\geq 3%) was associated with an elevated CHD risk
279	(HR 1.46, 1.18–1.81) [6]. In the British study, the relative risk of heart attack for weight
280	loss (>10%) was 1.79 (0.98–3.25) [18]. In the HHP, weight loss (>2.5 kg) was not
281	associated with risk of CHD (relative risk 1.25, 0.98–1.60) [19]. The lack of association
282	for weight loss in our study might be due to differences in BMI distributions and the
283	CVD outcomes (either mortality or incidence). The mean BMI was higher in ARIC
284	(27.6 kg/m^2) and British (25.6 kg/m^2) compared to other studies $(22.0-23.5 \text{ kg/m}^2)$. The
285	outcome in SCHC was mortality, while that in other studies was incidence. To confirm
286	the impact of weight change in middle age on stroke and CHD, further researches,
287	especially randomized controlled trials, are needed.
288	In this study, weight gain was associated with an increased risk of CHD only in
289	men. Even at similar BMI, men had a larger visceral fat area and a smaller subcutaneous
290	fat area than women [24]. Estrogen exerts cardiovascular protective effects through

altering serum lipid concentrations and improving endothelial function in the coronaryartery [25].

The major strengths of our study are its prospective design, long follow-up 293294period, and large sample size representative of the general population. However, the present study has several potential limitations. First, we used self-reported height and 295weight values, and we cannot eliminate a possibility of misclassification due to 296297reporting errors. However, the validity of BMI calculated from self-reported height and weight was confirmed in the present study. Second, we did not assess measures of 298299adiposity other than BMI, such as waist-to-hip ratio; hence, we do not know whether the 300 weight changes were due to changes in lean mass or fat mass. Third, the change in risk 301 factors over time were not considered and a surrogate measure (i.e., weight change) may not sufficiently capture the exposure to underlying risk profiles. Fourth, due to the 302 observational study design, causality between weight changes and the risk of CVD 303 304 cannot be adequately addressed, partly due to residual confounding. Finally, our cohort comprises Japanese individuals, thus limiting the generalizability of our findings to 305other ethnicities. 306

307 In this large long-term prospective cohort study, weight gain during middle age 308 was associated with an increased risk of stroke in women, and with an increased risk of

- 309 CHD in men, while weight loss was associated with an increased risk of stroke in both
- 310 men and women. Our findings suggest that a weight change during middle age either
- 311 gain and loss may be a clinical clue of an increased risk of CVD.

Conflict of interest

313	KK is an employee of Takeda Pharmaceutical Co. Ltd. The authors declare no conflict
314	of interest with respect to this research study and paper.
315	
316	Financial support
317	This work was supported by a grant from the National Cancer Center Research and
318	Development Fund (since 2011; the principal investigator is ST), a Grant-in-Aid for
319	Cancer Research from the Ministry of Health, Labor and Welfare of Japan (1989-2010;
320	the principal investigator from 1997 to 2010 was ST), and a Grant-in-Aid from the
321	Ministry of Agriculture, Forestry and Fisheries (MAFF-CPS-2016-1-1).
322	
323	Author contributions
324	KK conceived the idea for the study. KK, IM and HI designed the work. All authors
325	acquired data and played an important role in interpreting the results. KK and IM analyzed
326	the data. KK drafted the manuscript. IM, KY, YK, IS, HY, NS, HI and ST critically revised
327	the manuscript. All authors approved the final version of the manuscript and agreed to be
328	accountable for all aspects of the work.
329	
330	Acknowledgments

331 We thank all staff members in PHC areas for their kind cooperation.

332 References

333	1.	Arnett DK, Blumenthal RS, Albert MA, Buroker AB, Goldberger ZD et al. 2019
334		ACC/AHA Guideline on the Primary Prevention of Cardiovascular Disease: A
335		Report of the American College of Cardiology/American Heart Association Task
336		Force on Clinical Practice Guidelines. Circulation 2019;140:e596-e646. doi:
337		10.1161/CIR.000000000000678
338	2.	Piepoli MF, Hoes AW, Agewall S, Albus C, Brotons C et al. ESC Scientific
339		Document Group. 2016 European Guidelines on cardiovascular disease
340		prevention in clinical practice: The Sixth Joint Task Force of the European
341		Society of Cardiology and Other Societies on Cardiovascular Disease Prevention
342		in Clinical Practice (constituted by representatives of 10 societies and by invited
343		experts)Developed with the special contribution of the European Association for
344		Cardiovascular Prevention & Rehabilitation (EACPR). Eur Heart J
345		2016;37:2315-2381. doi: 10.1093/eurheartj/ehw106.
346	3.	Jensen MD, Ryan DH, Apovian CM, Ard JD, Comuzzie AG et al. American
347		College of Cardiology/American Heart Association Task Force on Practice
348		Guidelines; Obesity Society. 2013 AHA/ACC/TOS guideline for the
349		management of overweight and obesity in adults: a report of the American

350		College of Cardiology/American Heart Association Task Force on Practice
351		Guidelines and The Obesity Society. Circulation 2014;129(25 Suppl 2):S102-
352		138. doi: 10.1161/01.cir.0000437739.71477.ee.
353	4.	Zheng Y, Manson JE, Yuan C, Liang MH, Grodstein F et al. Associations of
354		Weight Gain From Early to Middle Adulthood With Major Health Outcomes
355		Later in Life. JAMA 2017;318:255-269. doi: 10.1001/jama.2017.7092.
356	5.	Chen C, Ye Y, Zhang Y, Pan XF, Pan A. Weight change across adulthood in
357		relation to all cause and cause specific mortality: prospective cohort study. BMJ
358		2019;367:15584. doi: 10.1136/bmj.15584.
359	6.	Stevens J, Erber E, Truesdale KP, Wang CH, Cai J. Long- and short-term weight
360		change and incident coronary heart disease and ischemic stroke: the
361		Atherosclerosis Risk in Communities Study. Am J Epidemiol 2013;178:239-248.
362		doi: 10.1093/aje/kws461.
363	7.	GBD 2015 Obesity Collaborators, Afshin A, Forouzanfar MH, Reitsma MB, Sur
364		P, Estep K et al. Health Effects of Overweight and Obesity in 195 Countries over
365		25 Years. N Engl J Med 2017;377:13-27. doi: 10.1056/NEJMoa1614362.
366	8.	Nazare JA, Smith JD, Borel AL, Haffner SM, Balkau B et al. Ethnic influences
367		on the relations between abdominal subcutaneous and visceral adiposity, liver

368		fat, and cardiometabolic risk profile: the International Study of Prediction of
369		Intra-Abdominal Adiposity and Its Relationship With Cardiometabolic
370		Risk/Intra-Abdominal Adiposity. Am J Clin Nutr 2012;96:714-726. doi:
371		10.3945/ajcn.112.035758.
372	9.	Salim SV, Alvaro A, Emelia JB, Marcio SB, Clifton WC et al. Heart Disease and
373		Stroke Statistics-2020 Update: A Report From the American Heart Association.
374		Circulation 2020;141:e139-e596. doi: 10.1161/CIR.000000000000757.
375	10.	Saito I, Iso H, Kokubo Y, Inoue M, Tsugane S. Body mass index, weight change
376		and risk of stroke and stroke subtypes: the Japan Public Health Center-based
377		prospective (JPHC) study. Int J Obes 2011;35:283-291. doi:
378		10.1038/ijo.2010.131.
379	11.	Tsugane S, Sawada N. The JPHC study: design and some findings on the typical
380		Japanese diet. Jpn J Clin Oncol 2014;44:777-782. doi: 10.1093/jjco/hyu096.
381	12.	Tsugane S, Sasaki S, Tsubono Y. Under- and overweight impact on mortality
382		among middle-aged Japanese men and women: a 10-y follow-up of JPHC study
383		cohort I. Int J Obes Relat Metab Disord 2002;26:529-537. doi:
384		10.1038/sj.ijo.0801961.
385	13.	Chei CL, Iso H, Yamagishi K, Inoue M, Tsugane S. Body mass index and weight

change since 20 years of age and risk of coronary heart disease among Japanese: 386 the Japan Public Health Center-Based Study. Int J Obes 2008;32:144-151. doi: 387 10.1038/sj.ijo.0803686. 388 Walker AE, Robins M, Weinfeld FD. The National Survey of Stroke. Clinical 389 14. findings. Stroke 1981;12(2 Pt 2 Suppl 1):I13-44. 390 15. Tunstall-Pedoe H, Kuulasmaa K, Amouyel P, Arveiler D, Rajakangas AM, Pajak 391 392A. Myocardial infarction and coronary deaths in the World Health Organization MONICA Project. Registration procedures, event rates, and case-fatality rates in 393 39438 populations from 21 countries in four continents. Circulation 1994;90:583-395612. doi: 10.1161/01.cir.90.1.583. 396 16. Karahalios A, English DR, Simpson JA. Change in body size and mortality: a systematic review and meta-analysis. Int J Epidemiol 2017;46:526-546. doi: 397 10.1093/ije/dyw246. 398 De Stefani FDC, Pietraroia PS, Fernandes-Silva MM, Faria-Neto J, Baena CP. 399 17. Observational Evidence for Unintentional Weight Loss in All-Cause Mortality 400 and Major Cardiovascular Events: A Systematic Review and Meta-Analysis. Sci 401 402*Rep* 2018;8:15447. doi: 10.1038/s41598-018-33563-z. Walker M, Wannamethee G, Whincup PH, Shaper AG. Weight change and risk 403 18.

of heart attack in middle-aged British men. Int J Epidemiol 1995;24:694-703.

- 405 doi: 10.1093/ije/24.4.694.
- 406 19. Galanis DJ, Harris T, Sharp DS, Petrovitch H. Relative weight, weight change,
- and risk of coronary heart disease in the Honolulu Heart Program. Am J
 Epidemiol 1998;147:379-386. doi: 10.1093/oxfordjournals.aje.a009460.
- 409 20. Song M, Hu FB, Wu K, Must A, Chan AT et al. Trajectory of body shape in
- 410 early and middle life and all cause and cause specific mortality: results from two
- 411 prospective US cohort studies. *BMJ* 2016;353:i2195. doi: 10.1136/bmj.i2195.
- 412 21. Prestgaard E, Mariampillai J, Engeseth K, Erikssen J, Bodegård J et al. Change
- in Body Weight and Long-Term Risk of Stroke and Death in Healthy Men. *Stroke*

414 2020;51:1435-1441. doi: 10.1161/STROKEAHA.119.027233.

- 415 22. Pan XF, Yuan JM, Koh WP, Pan A. Weight change in relation to mortality in
- 416 middle-aged and elderly Chinese: the Singapore Chinese Health Study. Int J

417 *Obes* 2019;43:1590-1600. doi: 10.1038/s41366-018-0259-y.

- 418 23. Strandberg TE, Strandberg AY, Salomaa VV, Pitkälä KH, Tilvis RS, Sirola J et
- al. Explaining the obesity paradox: cardiovascular risk, weight change, and
- 420 mortality during long-term follow-up in men. *Eur Heart J* 2009;30:1720-1727.
- 421 doi: 10.1093/eurheartj/ehp162.

422	24.	Ryo M, Funahashi T, Nakamura T, Kihara S, Kotani K et al. Fat accumulation							
423		and obesity-related cardiovascular risk factors in middle-aged Japanese men and							
424		women. Intern Med 2014;53:299-305. doi: 10.2169/internalmedicine.53.9476.							
425	25.	Mendelsohn ME, Karas RH. The protective effects of estrogen on the							
426		cardiovascular system. N Engl J Med 1999;340:1801-1811. doi:							
427		10.1056/NEJM199906103402306.							

428 Figure Legends

429 Figure 1. Flowchart of Cohort Selection

430

		Weight change over 5 years					
	Loss of ≥5 kg	Loss of 3-4 kg	Stable (≤2 kg)	Gain 3-4 kg	Gain≥5 kg	p for trend ^a	
Men							
Number	3196	3173	20936	3620	3433		
Age, years	53.6	53.2	52.1	50.9	51.0	< 0.001	
BMI, kg/m ²	25.2	24.1	23.3	23.2	22.9	< 0.001	
BMI at 5-year survey, kg/m ²	22.3	22.9	23.3	24.5	25.6	< 0.001	
Weight, kg	67.8	64.9	62.5	62.8	62.0	<0.001	
Weight at 5-year survey, kg	60.3	61.5	62.5	66.1	69.3	< 0.001	
Current smokers, %	52.8	51.9	49.9	50.8	55.8	0.81	

Table 1. Age-adjusted means and proportions of baseline characteristics according to weight change over 5 years

Alcohol intake ≥300 g/week, %	31.6	30.9	31.4	29.4	28.2	< 0.001	
Sports ≥ 1 day/week, %	17.6	18.7	18.6	18.6	17.9	0.47	
Hypertension, %	22.0	22.6	18.0	16.6	16.5	< 0.001	
Diabetes mellitus, %	9.6	9.0	5.4	5.6	5.6	< 0.001	
Dyslipidemia, %	1.7	1.5	1.4	1.1	0.8	0.004	
Women							
Number	3147	3590	26596	4324	2913		
Age, years	54.9	54.3	52.5	50.7	51.2	< 0.001	
BMI, kg/m ²	25.6	24.1	23.3	23.1	23.1	< 0.001	
BMI at 5-year survey, kg/m ²	22.2	22.6	23.3	24.5	26.1	< 0.001	
Weight, kg	58.7	55.6	53.6	53.4	53.5	< 0.001	

Weight at 5-year survey, kg	51.2	52.2	53.6	56.7	60.6	< 0.001
Current smokers, %	6.4	5.3	4.4	4.5	6.7	0.03
Alcohol intake ≥300 g/week, %	0.8	1.0	0.9	0.9	1.1	0.85
Sports ≥ 1 day/week, %	16.7	17.2	17	16.2	15.4	0.82
Hypertension, %	24.2	20.6	16.6	15	17.3	< 0.001
Diabetes mellitus, %	5.1	4.4	2.4	2.3	3.2	< 0.001
Dyslipidemia, %	2.1	2.7	2.1	1.9	2.3	0.24

433 ^a Linear regression for continuous variables and logistic regression for categorical variables.

434 BMI, body mass index

		Weight change over 5 years						
		S ^r		Stable (≤2		-		
	Loss of ≥5 kg	Loss of 3-4 kg	kg)	Gain 3-4 kg	Gain≥5 kg	<i>p</i> for linear	<i>p</i> for quadratic	
Men								
No. at risk	3196	3173	20936	3620	3433			
Person-years	38365	39953	273128	47259	44170			
No. of cases	270	235	1356	203	214			
Incidence per 10,000 person-	70.4	50.0	40.6	12.0	40.4			
year	/0.4	38.8	49.6	43.0	48.4			
Age-adjusted HR	1.30 (1.13-1.50)	1.06 (0.91-1.23)	Reference	0.95 (0.82-1.17)	1.01 (0.86-1.17)	0.003	0.02	

Table 2. Sex-specific age-adjusted and multivariable HRs and 95% CIs of total stroke according to weight change over 5 years

Age and BMI-adjusted HR	1.21 (1.08-1.43)	1.03 (0.89-1.20)	Reference	0.95 (0.81-1.11)	1.02 (0.87-1.19)	0.03	0.04
Multivariable HR ^a	1.19 (1.04-1.38)	1.03 (0.89-1.20)	Reference	0.96 (0.83-1.12)	1.00 (0.86-1.17)	0.05	0.11
Multivariable HR ^b	1.17 (1.01-1.37)	1.00 (0.86-1.16)	Reference	0.96 (0.82-1.12)	0.99 (0.85-1.15)	0.08	0.20
Women							
No. at risk	3147	3590	26596	4324	2913		
Person-years	40854	48035	367181	59336	39125		
No. of cases	203	190	981	154	169		
Incidence per 10,000 person-	49.7	39.6	26.7	26.0	43.2		
year							
Age-adjusted HR	1.54 (1.31-1.80)	1.30 (1.11-1.53)	Reference	1.12 (0.94-1.33)	1.69 (1.42-2.01)	0.58	< 0.001
Age and BMI-adjusted HR	1.38 (1.17-1.62)	1.25 (1.07-1.47)	Reference	1.13 (0.95-1.35)	1.71 (1.44-2.04)	0.51	< 0.001

Multivariable HR ^a	1.35 (1.15-1.60)	1.26 (1.07-1.48)	Reference	1.12 (0.94-1.33)	1.67 (1.41-1.99)	0.56	< 0.001
Multivariable HR ^b	1.33 (1.13-1.57)	1.26 (1.07-1.48)	Reference	1.11 (0.93-1.32)	1.61 (1.36-1.92)	0.64	<0.001
<i>p</i> for sex interaction			<0.001				

⁴³⁹ ^a Adjusted further for smoking status, physical activity, alcohol intake, and public health center areas.

⁴⁴⁰ ^b Adjusted further for hypertension, diabetes mellitus, and dyslipidemia.

441 CI, confidence interval; HR, hazard ratio

442

443

Table 3. Sex-specific age-adjusted and multivariable HRs and 95% CIs of ischemic and hemorrhagic strokes according to weight change

446	over 5	years
		-

		Weigh					
		I 62.41	Stable (≤2			-	6 I.:
	Loss of ≥5 kg	Loss of 5-4 kg	kg)	Gain 3-4 kg	Gain ≥5 kg	<i>p</i> for linear	<i>p</i> for quadratic
Men							
No. at risk	3196	3173	20936	3620	3433		
Person-years	38365	39953	273128	47259	44170		
Ischemic stroke							
No. of cases	185	158	889	141	130		

Incidence per 10,000 person-

	48.2	39.5	32.5	29.8	29.4		
year							
Age-adjusted HR	1.34 (1.13-1.58)	1.05 (0.87-1.25)	Reference	1.03 (0.85-1.23)	0.95 (0.78-1.16)	0.01	0.07
Age and BMI-adjusted I	HR 1.26 (1.06-1.49)	1.01 (0.85-1.22)	Reference	1.03 (0.86-1.24)	0.97 (0.80-1.18)	0.06	0.14
Multivariable HR ^a	1.20 (1.01-1.43)	1.00 (0.84-1.21)	Reference	1.04 (0.86-1.24)	0.95 (0.78-1.16)	0.10	0.31
Multivariable HR ^b	1.17 (0.98-1.39)	0.97 (0.80-1.16)	Reference	1.03 (0.86-1.24)	0.93 (0.77-1.14)	0.16	0.49
Hemorrhagic stroke							
No. of cases	82	77	461	62	82		
Incidence per 10,000 pe	rson-	10.2	16.0	12 1	19.6		
year	21.4	19.5	10.9	15.1	18.0		
Age-adjusted HR	1.20 (0.94-1.54)	1.10 (0.85-1.41)	Reference	0.82 (0.62-1.08)	1.09 (0.85-1.40)	0.22	0.16

	Age and BMI-adjusted HR	1.18 (0.92-1.52)	1.09 (0.84-1.40)	Reference	0.82 (0.62-1.08)	1.10 (0.86-1.41)	0.29	0.19
	Multivariable HR ^a	1.15 (0.89-1.48)	1.10 (0.85-1.41)	Reference	0.83 (0.63-1.09)	1.09 (0.85-1.40)	0.35	0.25
	Multivariable HR ^b	1.14 (0.89-1.47)	1.08 (0.84-1.39)	Reference	0.83 (0.63-1.09)	1.09 (0.84-1.39)	0.37	0.28
W	omen							
	No. at risk	3147	3590	26596	4324	2913		
	Person-years	40854	48035	367181	59336	39125		
	Ischemic stroke							
	No. of cases	123	114	527	81	97		
	Incidence per 10,000 person-	20.1	22.7	14.4	12.7	24.8		
yea	ar	50.1	23.1	14.4	15.7	24.0		
	Age-adjusted HR	1.71 (1.39-2.11)	1.40 (1.14-1.73)	Reference	1.16 (0.92-1.47)	1.91 (1.52-2.39)	0.46	< 0.001

	Age and BMI-adjusted HR	1.48 (1.20-1.83)	1.34 (1.08-1.65)	Reference	1.18 (0.93-1.49)	1.95 (1.56-2.45)	0.60	< 0.001
	Multivariable HR ^a	1.45 (1.17-1.79)	1.34 (1.08-1.65)	Reference	1.17 (0.92-1.48)	1.94 (1.55-2.44)	0.55	< 0.001
	Multivariable HR ^b	1.42 (1.15-1.75)	1.33 (1.07-1.64)	Reference	1.16 (0.91-1.46)	1.84 (1.47-2.32)	0.61	< 0.001
p	for sex interaction			< 0.001				
ł	Iemorrhagic stroke							
	No. of cases	79	76	451	71	70		
	Incidence per 10,000 person-	10.3	15.8	123	12.0	17.9		
yea	r	17.5	13.0	12.5	12.0	17.9		
	Age-adjusted HR	1.31 (1.01-1.69)	1.18 (0.92-1.52)	Reference	1.04 (0.81-1.35)	1.40 (1.07-1.84)	0.84	0.003
	Age and BMI-adjusted HR	1.23 (0.95-1.60)	1.16 (0.90-1.49)	Reference	1.05 (0.81-1.36)	1.41 (1.07-1.85)	0.82	0.01
	Multivariable HR ^a	1.21 (0.93-1.58)	1.18 (0.91-1.51)	Reference	1.03 (0.80-1.34)	1.35 (1.02-1.77)	0.98	0.02

Multivariable HR ^b	1.20 (0.92-1.57)	1.18 (0.91-1.52)	Reference	1.03 (0.79-1.34)	1.31 (1.00-1.73)	0.97	0.03
<i>p</i> for sex interaction			<0.001				

⁴⁴⁷ ^a Adjusted further for smoking status, physical activity, and alcohol intake, and public health center areas.

⁴⁴⁸ ^b Adjusted further for hypertension, diabetes mellitus, and dyslipidemia.

449 CI, confidence interval; HR, hazard ratio

450

451

		Weight change over 5 years					
	I. (5.5.1	L 62.41	Stable (≤2			n for linear	
	Loss of ≥3 kg	Loss of 3-4 kg	kg)	Gain 3-4 kg	Gain≥5 kg	<i>p</i> for linear	<i>p</i> for quadratic
Men							
No. at risk	3196	3173	20936	3620	3433		
Person-years	38365	39953	273128	47259	44170		
No. of cases	62	79	373	68	73		
Incidence per 10,000 person-	14.2	10.0	12.7		14.5		
year	16.2	19.8	13.7	14.4	16.5		
Age-adjusted HR	1.07 (0.81-1.42)	1.34 (1.05-1.73)	Reference	1.18 (0.91-1.53)	1.34 (1.04-1.73)	0.41	0.07

Table 4. Sex-specific age-adjusted and multivariable HRs and 95% CIs of CHD according to weight change over 5 years

Age and BMI-adjusted HR	0.97 (0.73-1.29)	1.28 (0.99-1.64)	Reference	1.18 (0.91-1.54)	1.38 (1.07-1.77)	0.11	0.15
Multivariable HR ^a	0.88 (0.66-1.18)	1.24 (0.97-1.60)	Reference	1.14 (0.88-1.48)	1.20 (0.96-1.60)	0.14	0.64
Multivariable HR ^b	0.87 (0.65-1.16)	1.20 (0.93-1.55)	Reference	1.13 (0.87-1.46)	1.22 (0.95-1.58)	0.13	0.76
Women							
No. at risk	3147	3590	26596	4324	2913		
Person-years	40854	48035	367181	59336	39125		
No. of cases	29	27	163	24	16		
Incidence per 10,000 person-	7.1	5 (4.4	4.0	4.1		
year	7.1	5.6	4.4	4.0	4.1		
Age-adjusted HR	1.33 (0.89-1.99)	1.10 (0.73-1.66)	Reference	1.06 (0.69-1.65)	1.09 (0.65-1.83)	0.41	0.27
Age and BMI-adjusted HR	1.20 (0.80-1.82)	1,07 (0.71-1.61)	Reference	1.06 (0.69-1.66)	1.11 (0.66-1.86)	0.72	0.39

Multivariable HR ^a	1.15 (0.76-1.74)	1.04 (0.69-1.57)	Reference	1.07 (0.69-1.66)	1.09 (0.64-1.84)	0.82	0.49
Multivariable HR ^b	1.10 (0.72-1.66)	1.00 (0.67-1.51)	Reference	1.03 (0.67-1.60)	0.99 (0.59-1.66)	0.78	0.80
<i>p</i> for sex interaction			0.66				

⁴⁵⁴ ^a Adjusted further for smoking status, physical activity, and alcohol intake, and public health center areas.

⁴⁵⁵ ^b Adjusted further for hypertension, diabetes mellitus, and dyslipidemia.

456 CHD, coronary heart disease; CI, confidence interval; HR, hazard ratio

457