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Oury [https://www.researchgate.net/publication/258453234_Duality_for_Joyal's_category_theta_
and_homotopy_concepts_for_theta2-sets] has shown that his constructed model structure on Θ2-
sets is Cartesian closed. Around the same time, C. Rezk [Geom. Topol. 14, No. 1, 521–571 (2010; Zbl
1203.18015)] constructed a model structure on Θn-spaces, which, in the case of n = 2, was expected to be
Quillen equivalent to a model structure on the category of Θ2-sets proposed by Joyal and Cisinski (later
constructed by D. Ara [J. K-Theory 14, No. 3, 701–749 (2014; Zbl 1322.18002)] and by the author [“A
homotopy theory of weak ω-categories”, Preprint, arXiv:1207.0860]) that coincides with Oury’s model
structure.
J. E. Bergner and C. Rezk [Geom. Topol. 17, No. 4, 2163–2202 (2013; Zbl 1273.18031); “Comparison
of models for (∞, n)-categories. II”, Preprint, arXiv:1406.4182] have shown by means of a zig-zag of
Quillen equivalences that the category of Θn-spaces with Rezk’s model structure models the same ho-
motopy theory as the model category of Psh∆ (Θn−1)-enriched categories with the Bergner-Lurie model
structure for categories enriched in Θn−1-spaces with Rezk’s model structure. Since the equivalence is
highly indirect, many of the ideas from J. Lurie’s work [Higher topos theory. Princeton, NJ: Princeton
University Press (2009; Zbl 1175.18001)] on (∞, 1)-categories could not be adapted straightforwardly, in
particular, his construction of the Yoneda embedding and his proof of Yoneda’s lemma.
The principal objective in this paper is to rectify this situation in two steps.
[1] The author exploits Oury’s machinery to construct a model structure on Θ [C]-sets modelling weak

enrichment in simplicial presheaves on C, comparing it with an intermediate model structure of
Rezk to demonstrate that they are Quillen equivalent. Therefore one can use results in [C. Rezk,
Geom. Topol. 14, No. 1, 521–571 (2010; Zbl 1203.18015)] to localize this model structure hom-wise
with respect to what Rezk calls a Cartesian presentation on , which is again Quillen equivalent to
Rezk’s localized model structure by merit of D.-C. Cisinski’s results on simplicial completion [Les
préfaisceaux comme modèles des types d’homotopie. Paris: Société Mathématique de France (2006;
Zbl 1111.18008)]. The author’s model structure is Cartesian monoidal as a model category.

[2] The author constructs a version of the coherent realization and nerve adjunction between Θ [C]-sets
and categories enriched in simplicial presheaves on C, which turn out to be a Quillen equivalence
between appropriate model structures by using an enhanced version of D. Dugger and D. I. Spivak’s
calculus of necklaces [Algebr. Geom. Topol. 11, No. 1, 263–325 (2011; Zbl 1214.55013); Algebr.
Geom. Topol. 11, No. 1, 225–261 (2011; Zbl 1213.55015)].
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