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This paper is concerned with Isbell conjugacy [J. R. Isbell, Ill. J. Math. 4, 541–552 (1960; Zbl 0104.01704)].
Given a small category A, any functor X : Aop → Set gives rise to a functor X∨ : A → Set, its Isbell
conjugate, defined by

X∨ (a) = [Aop, Set] (A (−, a) , X)

The same operation with A in place of Aop produces from X∨ a further functor X∨∨ : Aop → Set,
and so on, giving an infinite sequence X, X∨, X∨∨, ... of functors A on with alternating variances. The
conjugacy operations define an adjunction between [Aop, Set] and [A, Set]

op
, so that we have

[Aop, Set] (X, Y ∨) ∼= [A, Set] (Y, X∨)

naturally in X : Aop → Set and Y : A → Set, the unit and counit of the adjunction being canonical
maps X → X∨∨ and Y → Y ∨∨. A covariant or contravariant functor on A is said to be reflexive if the
canonical map to its double conjugate is an isomorphism. The reflexive completion R (A) of A is the
category of reflexive functors on A (covariant or contravariant), being the invariant part of the conjugacy
adjunction.
The main text of the paper is divided into two parts, the first part consisting of §§2–6 while the second
part consisting of §§7–12. A synopsis of the paper goes as follows.
• The paper begins with the definition of conjugacy on small categories, giving several characteriza-
tions of the conjugacy operations with a raft of examples (§2 and §3).

• To define conjugacy on an arbitrary category, the notion of small functor is exploited (§4).
• §5 states the definition of the reflexive completion, while §6 gives a slew of examples.
• §7 collects necessary results on dense and adequate functors, which are used to give a unique
characterization of the reflexive completion sharpening a result of Isbell’s in §8.

• Reflexive completion is functorial, but only with respect to a very limited class of functors, namely,
small-adequate ones, as is shown in §9.differs from many other completions in that it is only func-
torial in a very restricted sense. It is often the case that the functor R (F ) : R (A) → R (B) induced
by a functor F : A → B is an equivalence, which is the case, by way of example, if B is either small
or both complete and cocomplete (Corollary 9.8).

• The relationship between reflexive completion and Cauchy completion is discussed in §10.
• A category is called reflexively complete if it is the reflexive completion of some category. A reflexively
complete category has absolute (co)limits, and if it is the reflexive completion of a small category,
then it has initial and terminal objects too, but these are all the limits and colimits that it generally
has, as is discussed in §11.

• Informally speaking, one can understand R (A) as the intersection of the free completions of A
under small colimiits and small limits. §12 makes this idea precise.
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