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Abstract

Nonlinear optimization problems that feature an uncountable amount of local optima rep-
resent a challenging class of problems where a large part of instances are so ill-conditioned that
the only viable alternative is to use derivative-free algorithms. Two subfamilies of derivative-free
algorithms in particular, population heuristics and direct search are among the best candidates to
produce good results to those problems. Due to the impracticality of obtaining information from
the curvature of the functions by means of calculation of gradients, these methods rely on random-
ness to guide their solutions. In light of this, this work presents several deterministic procedures to
two derivative-free algorithms, the Artificial Bee Colony and the Nelder-Mead direct search, in an
attempt to provide algorithms that are invariant of starting point or choice of random seed to solve
a subfamily of unconstrained and constrained nonlinear multimodal problems. First, we introduce
the Adaptive Deterministic Variable Matrix (A-DVM), a deterministic decision variable technique
for the Artificial Bee Colony that relies on the measure of spread of the solution set throughout the
solution space. We also propose novel procedures to be integrated to the Nelder-Mead in the form
of polling steps using approximations of the true gradient. Finally, we devise an adapted augmented
lagrangian penalty method to be used together with additional rules to the Nelder-Mead and the
A-DVM based Artificial Bee colony to solve nonlinear multimodal constrained problem with non-
linear constraints. Research questions posed in this work are answered by numerical experiments
comparing the approaches against standard methods used to solve each problem as well as the state
of the art present in the literature.
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4.2 Nonlinear Least Squares instances of the Moré-Garbow-Hillstrom suite. . . . . . . 50
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Chapter 1

Introduction

Nonlinear optimization problems with deceptive local optima are commonplace in mathematical
models that represent real life problem. Most of the times, the closer a model is to the real problem,
the higher the probability of the objective function to be multimodal [1]. Derivative-free methods
are often used as the first option to tackle particularly difficult formulations because they can provide
satisfactory results without the need of thorough understanding of the problem in order to devise
a relaxation/modification to the mathematical model [2]. This can be attributed to the fact that
Derivative-free algorithms do not rely on information from the curvature of the function such as the
first or second derivatives.

Two subfamilies of the derivative-free methods, the direct search and Swarm Intelligence
family of algorithms, are used in a vast range of nonlinear problems, constrained or unconstrained
as a last resort to solve problems that are so ill-conditioned that nothing else is possible. This is
possible because they do not construct linear or quadratic approximation models, guiding incumbent
solutions solely by their objective function value. This flexibility comes at a heavy price though,
they are heavily dependent on pure randomness, such as the choice of starting point, update process
of solution set and even when choosing components of a solution vector. In sum, randomness
compromise their robustness [2].

In the interest of narrowing down the scope of the derivative-free algorithms solely to nonlin-
ear ill-conditioned multimodal problems, a natural course of action would be to compromise their
flexibility in favor of invariance. For this to be possible, we integrate procedures that are based on
deterministic processes, where it attempts to exploit the nature of the problem to better guide the
solutions. By doing so, not only we improve the reliability of such algorithms, but also enhance
their interpretability, so that it may be possible to understand their internal processes.

In this thesis, we specifically study constrained and unconstrained multimodal optimization
problems with less than 100 dimensions. These problems can be encountered in fields such as civil
engineering, financial engineering, chemistry and electric engineering. These problems not only are
nondifferentiable and highly nonconvex, but their constrained versions also feature nonlinear con-
straints [1]. Because derivative-free algorithms are the only viable option to solve these problems,
we focus on two of them in particular, the Artificial Bee Colony (ABC) and the Nelder-Mead, that
employ deterministic procedures in order to improve their robustness and overall performance.

A common weakness of metaheuristics is their extreme dependence on probability and lack
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of information of the problem space. Even if there is a global optimal solution near the current
search point, they might run the risk of overlooking it. As a means to avoid it, we introduce an
exhaustive search mechanism, named A-DVM, that can be included to any populational heuristic.
In this thesis we limit to study its effects into the Artificial Bee Colony algorithm. Meanwhile, the
Nelder-Mead algorithm does not depend on probability,but has no mechanism for global search.
In consideration of the multimodality of the target problem, we make it a kind of metaheuristic
algorithm by restarting from a stochastically selected initial simplex after convergence.

More specifically, we propose a selection method of decision variables for the ABC that
exploits the diagonal argument of Cantor in order to balance the emphasis on local and global
search of the algorithm. Then, we develop a reinforced Nelder-Mead that employs a polling step,
a deterministic procedure from model-based derivative free algorithms, based on an approximation
of the simplex gradient. Lastly, we also introduce a penalty method for the two algorithms to
handle constrained multimodal problems with nonlinear constraints, together with the new rules for
decision variable selection and restart of the solution set that exploits the nature of these problems.

Numerical comparisons are presented to corroborate all research questions posed in this the-
sis.

1.1 General Objective

This thesis’ objective is to present novel derivative-free algorithms that employ methods that are
rooted in deterministic procedures as an attempt to reduce their reliance on pure randomness focus-
ing on solving small scale nonlinear multimodal problems, be it constrained or unconstrained. The
performance of the new techniques and the research questions related to the methods are assessed
by means of several numerical experiments involving distinct families of multimodal instances.

1.1.1 Specific Objectives

The specific objectives are described as follows:

1. Introduce a deterministic decision variable selection process to derivative-free methods, in
particular the Artificial Bee Colony algorithm. Investigate potential improvements to the
original and variants to solve a restricted family of multimodal problems.

2. Introduce a novel Nelder-Mead direct search algorithm which uses a procedure that is com-
mon in model-based algorithms, the construction of the polling step. The polling then is used
as a way of monitoring the geometry of the solution set and restarting it in another region of
the search space, if applicable.

3. Propose an adapted penalty method for derivative-free algorithms that uses a set of solution
in their optimization process and investigate whether this method brings an improvement in
the performance of the aforementioned methods.

1.2 Thesis Organization

The thesis is divided into four main chapters:
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1. Theoretical Background. This chapter provides the theoretical background essential to un-
derstanding of the following three chapters. Detailed information on the Artificial Bee Colony
and the Nelder-Mead are provided. Furthermore, the complexity of the algorithms as well as
some information on some variants are also given.

2. Adaptive Decision Variable Matrix. We propose a method to select decision variables to be
integrated to the Artificial Bee Colony, a population heuristic from the family of Swarm In-
telligence algorithms. This method construct a binary selection matrix to choose components
of solution vectors to undergo update steps. The selection matrix is the result of the com-
position of two other matrices that choose decision variables by a random and deterministic
procedure, respectively. The degree of how much the deterministic selection is favored over
the random selection is regulated by a self adaptive parameter obtained from the estimation
of the spread of the solutions in the search space. The A-DVM is tested on multimodal un-
constrained minimization problems to assess its robustness compared to other derivative-free
methods.

3. Simplex gradients to the Nelder-Mead. We introduce a novel version of the Nelder-Mead
that employs a polling step to restart or merge the solution set with another solution set. We
do so as an attempt to introduce invariance of starting point to the algorithm, so it can be able
to properly converge to local optima in highly multimodal instances. In the polling step, a
polling set is constructed by means of a line search using a descent direction obtained from the
simplex gradient, an approximation of the true gradient. To ensure that the simplex gradient
is a well-enough approximation of the true gradient, the solution set is constructed from a
positive spanning basis. Efficacy of the new algorithm is assessed by a large benchmark suite
that features nonlinear multimodal problems.

4. Deterministic procedures to Derivative-free algorithms for constrained nonlinear mul-
timodal problems. Procedures for the algorithms explained in the previous chapters are pro-
posed to solve multimodal nonlinear constrained problems with nonlinear constraints. In this
chapter our contribution is threefold. First, an adapted augmented lagrangian penalty method
for solution sets is introduced. Second, an extension of the A-DVM to use extra rules for
constrained problems. Third, an initialization method and safeguards for the Nelder-Mead to
solve constrained instances. The new algorithms are assessed by means of eight engineering
design problems.

3



Chapter 2

Theoretical Background

This chapter introduces a collection of fundamental concepts essential to the understanding of the
upcoming chapters. The two derivative-free methods which were extensively studied in this work
are detailed in full.

From now on, we assume that any optimization algorithm detailed in this work solve an
optimization problem of the following form

minimize f (x)

subject to lj ≤ xj ≤ uj , j = 1, . . . , n.
(2.1)

Where f : Rn → R is nonlinear, multimodal and can be nondifferentiable or/and noncontinuous.
We assume each variable is box-constrained, otherwise lj = −∞ and uj =∞.

2.1 Artificial Bee Colony

Artificial Bee Colony (ABC) is a Swarm Intelligence (SI) heuristic developed by Karaboga [3]
based on the mathematical model of the foraging and information sharing behavior of honey bees to
solve unconstrained optimization problem in the form of (2.1). The popularity of the ABC is due to
its simple design and easiness to adapt to other families of optimization problems [4]. The canon-
ical ABC described in Algorithm 1 is composed of four main steps, initialization, employed bees,
onlooker bees, and scout bees step. In the initialization step, the solution set X is initialized based
on specific rules. Then, solutions are sampled and updated by local and global search procedures
iteratively until a stopping criterion is met.

ABC has three tunable parameters, the solution set size SN ; the maximum number of iter-
ations MCN ; and the solution stagnation threshold Lit. A brief description of each step is given
below. LetX = {x1,x2, . . . ,xSN} be the solution set where each xi is a point in Rn.

2.1.1 Initialization

If no information of the solution space is provided, xi is sampled from a uniform distribution in the
feasible interval [lj , uj ] of each decision variable xij , i.e., for i = 1, 2, . . . , SN ,
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Algorithm 1: Canonical Artificial Bee Colony
Input: f , MCN , SN , Lit

1 X ← Initialize(SN)
2 for t← 1 to MCN or until stopping criteria do
3 X ← EmployedBeesCycle(X, f)
4 X ← OnlookerdBeesCycle(X, f)
5 X ← ScoutBeesCycle(X, f, Lit)

6 end
7 returnX

xi = uj +U(0, 1) (lj − uj) , j = 1, . . . n. (2.2)
where U(0, 1) denotes a uniform distribution between 0 and 1. A counter lci = 0 to indicate
unsuccessful updates is initialized for each i.

2.1.2 Employed bees cycle

A randomly chosen component xij of each solution xi ∈X is moved by a random step size towards
the jth component of some xk ∈X, k 6= i. Therefore xi is updated into:

xiq =

{
xij + φ (xij − xkj ) if q = j,

xi
′
q , otherwise,

(2.3)

where φ ∈ U(−1, 1). To verify if the update step was successful, the value of f is evaluated and a
greedy selection is done for each i = 1, 2 . . . , SN :

xi =

{
xi + (xi

′
j − xij)ej , lci = 0 if f(xi + (xi

′
j − xij)ej) ≤ f(xi),

xi, lci = lci + 1 otherwise,
. (2.4)

where ej is the jth fundamental vector. Needless to say, if (2.3) fails, then (2.4) will flag (2.3) as a
failed update.

2.1.3 Onlooker bees phase

The solutionxi ∈X is chosen with probability pi according to a weighted roulette selection scheme
and updated using (2.3). This step can be thought of enhancing local search for solutions with better
objective function values. The probability pi is determined for each solution xi ∈X as follows,

pi =
F (xi)∑SN
i=1 F (x

i)
, (2.5)

where F (·) is the adjusted objective function value:

F (xi) =

{
1

1+f(xi)
if f(xi) ≥ 0∣∣1 + f(xi)

∣∣ otherwise.
(2.6)
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2.1.4 Scout bees phase

Let X̃ = {xk ∈ X | lck ≥ Lit} denote the set of solutions flagged as stagnated. A new point in
Rn is resampled using (2.2) if X̃ 6= ∅. This prevents the algorithm from premature convergence to
bad local optima and increases the number of explorations. The parameter Lit is commonly defined
equal to SN · n. If X̃ 6= ∅, then xw ∈ argmax{f(x) | x ∈ X̃} is always chosen to be resampled.

2.1.5 ABC Variants

Due to the modular nature of the ABC it is easy to make changes to any of the three steps of
the algorithm [5]. Many modifications were proposed by several researchers to improve on some
difficulties of the algorithm such as, inclusion of memory to assist local search; efficient mechanisms
to displace solutions stuck in local optima; handle high dimensional (n > 100) problem instances;
changes to the update rule; and initialization of solutions using local information. As observed by
Aydin et al. [6], the ABC variants often differ in some core components such as, the initialization
of the first solution set; the update step in the employed and onlooker bees; the computation of
selection probabilities in the onlooker bees, the way of displacing solutions in the scout step.

Some well-known and successful variants include the chaotic ABC version of Alatas and
Bilal [7] which uses chaotic maps for solution initialization, the ABC of Akay and Karaboga [8]
and Gao and Liu [9] which update multiple decision variables in a single update step. Additionally,
the ABC with modified selection scheme based on neighborhood distances by Diwold et al. [10],
integration of the Differential Evolution algorithm with the ABC by Xiang et al. [11] and Akay et
al. [12] are well known. The reader is encouraged to read the survey of Karaboga et al. [5], Sharma
and Bhambu [13] for further information.

2.1.6 Complexity of the Arficial Bee Colony

Complexity of the ABC is measured according to the number of function evaluation calls performed
at each iteration. For each iteration the number of FE’s is as follows: SN FE’s in the employed bees
phase; SN or SN

2 in the onlooker bees phase depending on the implementation of the ABC; lastly
1 to 0 or SN to 0 in the scout bees phase according to the implementation. The ABC of this work
use the former for both onlooker and scout bees phase.

Since there is no need to order the solution setX in the original implementation, the onlooker
and employed bees phase is carried out inO(n) time. Furthermore, the implementation of the scout
bees step in this work chooses at most 1 solution, therefore it is also performed in O(n) time.

2.2 Nelder-Mead Simplex Method

The Nelder-Mead (NM) method is a direct search method developed by Nelder and Mead [14]
in 1965 as a modification of the simplex-based direct search method from Spendley, Hext and
Himsworth [15] to solve problems of the form of (2.1). The algorithm is regarded as one of the
most widely cited of any direct search method, cited in a great number of works from a vast range
of fields of study [16]. Several reasons as to why this algorithm is so popular may be due to its
easy implementation; the capability to adapt to the local landscape of the objective function; and
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the low memory requirement. As a common aspect to any direct search method, its efficiency
deteriorates the higher the number of dimensions of the problem, a concept reinforced in some
works that showed that the NM is able to produce good results to functions that features no more
than 10 decision variables [16, 17, 18].

A solution set of the NM consists of a n× n+ 1 matrix Y =
[
y0 y1 · · ·yn

]
that describes

a simplex, a geometric figure in n dimensions of nonzero volume (also called nondegenerate) that
is the convex hull of n+ 1 vertices. Several heuristics to construct Y are available in the literature
which will be addressed in full detail in then next section.

At every iteration, each step of the algorithm attempts a geometric transformation to so that
the worst point yn ∈ argmax{f(y) | y ∈ Y } can be replaced by a better point in the following
way:

y′ = c+ α(c− yn). (2.7)

Where c is the centroid of the best n points, yn is the worst point of the simplex and α is the coeffi-
cient associated to the transformation. The steps are: reflection; expansion; internal contraction and
external contraction. If all fails, the shrink step takes place, where the entire simplex Y is shrunk
from the best vertex of simplex y0 ∈ argmin{f(y) | y ∈ Y }. At the termination, the algorithm
outputs the vertex of the simplex which yielded the least objective function value. Recent versions
of the NM differ much from the original proposed in 1965. We describe the most consolidated
version written in the work of Lagarias et al. [19] and Wright [20] and implemented as the function
fminsearch in MATLAB [21]. Algorithm 2 describes the steps of the NM following the guidelines
of Conn, Scheinberg and Vicente [2].

Algorithm 2: Nelder-Mead algorithm
Input: f(·), x0, t, γs, δic, δoc, δr, δe

Output: Yt =
{
y0,y1, · · · ,yn

}
where y0 = argmin f(y), y ∈ Yt

Initialization: Initialize simplex Y0 =
{
y0,y1, · · · ,yn

}
using x0

1 for i← 1 to t do
2 if Yi fails termination test then
3 return Yi
4 Yi ← Yi−1
5 Yi ← Order (Yi)
6 c← ComputeCentroid (Yi)
7 yr ← Reflection (Yi, c, δ

r)
8 Expansion (Yi, c, δ

e)
9 OutsideContraction (Yi, c, δ

oc)
10 InsideContraction

(
Yi, c, δ

ic
)

11 Shrink (Yi, γ
e)

12 end
13 return Yt

The standard parameter values that control the simplex transformations of the coefficients of
each step are γs = 1

2 , δ
ic = −1

2 , δ
oc = 1

2 , δ
r = 1, δe = 2, note that other notations for them

are used in [22, 19]. The parameters must satisfy the following constraints, δr > 0, δe > 1, δe >
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δr, 0 < δoc < 1, 0 < γe < 1. A different choice was proposed by Parkinson and Hutchinson [23],
a parameter tuning investigation was conducted by Fang and Zahara [24] and Wang and Shoup [25].
Lastly, Gao and Han [26] proposed adaptive parameters for multimodal functions and proved its
efficacy.

Each step of the algorithm is explained point-by-point.

1. Initialization: A n× n+ 1 matrix Y that represents a simplex is constructed from an initial
point x0 ∈ Rn. Methods invariant of an initial point x0 are unlikely to be good since the
performance of the NM hinges on a good enough initial point provided at the initialization.

2. Order: Arrange the n + 1 columns of Y in an increasing order according to their objective
function value. In case of any ties, Lagarias et al.[19] suggests to use the least subscript rule
as a tie-breaker.

3. Compute the centroid: Compute the centroid of the n best vertices of the simplex,

c =
1

n− 1

n−1∑
i=0

yi. (2.8)

4. Reflection: A point yr that is the located in the opposite side of the line segment separating
c and y0 is computed from (2.7) setting α = δr = 1. If f(y0) ≤ f(yr) < f(yn−1),
then yn is replaced by yr and the iteration is terminated with the new simplex as Y i+1 =
{y0, y1, . . . , yn−1, yr}.

5. Expansion: If f(yr) < f0, expansion is attempted beyond yr from c to search for a promis-
ing regions. The expanded point is calculated from (2.7) setting α = δe = 2. Evaluate f(ye).
If f(ye) ≥ f(yr), replace yn by ye and terminate the iteration. Otherwise replace yn by yr

and terminate the iteration with the new simplex as Y i+1 = {y0, y1, . . . , yn−1, ye}.

6. Contraction: If f(yr) ≥ f(yn−1), a contraction is performed between yr and yn. Depend-
ing on the value of f(yr), either a outside or inside contraction can take place. If either fail,
a shrink is done.

• Outside contraction: If f(yr) < f(yn), an outside contraction is performed, point
yoc is computed from (2.7) setting α = δoc = 0.5 and f(yoc) is evaluated. If f(yoc) ≤
f(yr), replace yn by yoc and terminate iteration with the new simplex as Y i+1 =
{y0, y1, . . . , yn−1, yoc}.

• Inside contraction: If f(yr) ≥ f(yn), perform an inside contraction, calculate yic

from (2.7) setting α = δic = −0.5 and evaluate f(yic). If f(yic) ≤ f(yr), replace yn

by yic and terminate iteration with the new simplex asY i+1 = {y0, y1, . . . , yn−1, yic}.

7. Shrink: If everything else fails, evaluate f at the n points y0+γs(yi−y0), i = 1, . . . , n, and
terminate the iteration with the new simplex Y i+1 = {y0, y0 + γs(yi − y0) i = 1, . . . , n}.
A standard choice for γs is 1

2 .
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8. Termination test: At the beginning of the iteration the simplex undergoes several termination
tests that verifies many conditions regarding the structure of the simplex. Usually these tests
verifies whether the simplex has converged to a point, if it became too small or has collapsed
into a subspace. Singer and Singer [27] and Nazareth and Tseng [28] suggest monitoring the
volume of the simplex as a efficient termination test. Depending on the implementation and
purpose of the NM, the simplex may be restarted instead of terminated as an attempt to search
for other promising regions from another starting point [29, 30].

Measuring the complexity of the NM in relation to the number of function evaluations (FE)
per iteration is simple. For each iteration the number of FE’s is as follows: 1 if the iteration ends in
a reflection; 2 if the iteration ends in an expansion or contraction; and n+ 2 if the iteration ends in
a shrink. Ordering of vertices is done in O(n) time using an insertion sort, and the centroid c can
be calculated as a rank-1 update from the old centroid in O(n) time. For more details, we suggest
the works of Singer and Singer [31] and Smith [32].

We first introduce some metrics that monitor the behavior of a simplex, then definitions of
positive bases and well-poisedness for linear interpolation models. The measures necessary for the
understading are the diameter (diam), oriented length (σ+), the volume (vol) and the normalized
volume (von). We begin with the definition of diameter:

diam(Y ) = max
0≤i<j≤n

∥∥yi − yj∥∥ , (2.9)

A less expensive operation called oriented length, can be used instead of the diameter:

σ+(Y ) = max
1≤i≤n

∥∥yi − y0∥∥ . (2.10)

Where it can be easily seen that σ+(Y ) ≤ diam(Y ) ≤ 2σ+(Y ). To distinguish simplices that have
the same shape, e.g., Y and cY , c > 0, the volume of the simplex is an indispensable measure:

vol(Y ) =
|det(L(Y ))|

n!
, (2.11)

where L(Y ) is the matrix of edge lengths defined as:

L(Y ) =
[
y1 − y0 y2 − y0 . . . yn−1 − y0 yn − y0

]>
, (2.12)

assuming that Y is ordered by the objective function value. Since a simplex forms an affinely
independent set, vol(Y ) > 0 invariant of the choice of centering point of the simplex [2]. However
the volume is not scale invariant so the normalized volume von is customarily used.

von(Y ) = vol
(

1

diam(Y )
Y

)
=
|det(L(Y ))|
n!diam(Y )n

. (2.13)

To cut down the computing power spent in the calculation of von(Y), Tseng [33] disregards
n! in (2.13). Lastly, on the subject of the volume of the simplex, we introduce the following lemma
that was proved by Lagarias et al. [19] to explain the changes in the volume of a NM simplex
throughout the iterations.

Lemma 2.2.1. Volume and nondegeneracy of Nelder-Mead simplices.
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1. If the initial simplex Y is nondegenerate, so are all subsequent Nelder-Mead simplices.

2. Following a nonshrink of type τ , vol(Yk+1) = |τ |vol(Yk).

3. Following a shrink step at iteration k, vol(Yk+1) = σnvol(Yk).

2.2.1 Convergence of the Nelder-Mead

We provide a brief background of the prominent works which studied convergence analysis and
developed of lower bounds of the Nelder-Mead in order to support our propositions in the sections
to follow.

For better legibility, we use the following notations regarding the search space of f in accor-
dance to Audet and Warren[34]. f ∈ C0 means that f is nondifferentiable, while f ∈ C1 and f ∈ C2
means that f is once and twice differentiable, respectively, i.e., gradient ∇f and Hessian H can be
computed. f ∈ C+ signifies that f is Locally Lipschitz continuous at all x ∈ Rn with Lipschitz
constant K, so for example, f ∈ C1+ is differentiable and the gradient ∇f is Lipschitz continuous
with Lipschitz constant K.

The Nelder-Mead has been shown to not converge on some instances of f ∈ C1 functions
[22] that are strictly convex, contradicting the assumption that it was globally convergent if the
function was convex. Using a particular starting point x0 from the well-known McKinnon function,
the authors have shown that after a set amount of iterations, the NM enters in a state where it
only does internal contractions and reflections(RFIC). Lagarias et al. [19, 35] has built upon [22]
conclusions and presented convergence properties to a minimizer for 1 for the standard NM and
to 2 dimension using a version that does not perform the expansion step. Kelley [36] proposes an
oriented restart method to replace the shrink operation, providing an sufficient descent condition
based on the simplex gradient. From those, the following partial convergence result is established:
if the Nelder-Mead algorithm satisfies a sufficient descent condition at all but a finite number of
iterations, and if no shrink steps are performed, then the accumulation points of the sequence of
iterates of the simplex are stationary points of f .

Nondegeneracy of the volume of the simplex and proofs that the sequence of iterates are
bounded away from 0 can be found in [30, 37, 38]. The last two propose convergent versions of
the NM that relies on meshes and frames spanned by positive bases to guarantee convergence in
instances where f ∈ C1.

The following theorem summarizes the properties of the NM, based on the observations of
Conn et. al [2].

Theorem 2.2.1. Consider the Nelder-Mead algorithm (Algorithm 2) to a function f bounded from
below on Rn, starting with a nondegenerate simplex ∆0.

1. The sequence {yk0} is convergent

2. If only a finite number of shrinks occur, then all of the n + 1 sequences {yki}, i = 0, . . . , n,
converge and their limits y∗

i
(i = 0, . . . , n) satisfy y∗

0 ≤ y∗1 ≤ · · · ≤ y∗n .

3. If only a finite number of operations that are not shrinks were to occur, then all vertices of the
simplex converge to a single point.
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Proof. First and second assertions are based on the fact that monotonically decreasing se-
quences bounded from below converges [2]. For third assertion, if no shrinks occur, then f is
strictly convex. If f is strictly convex, then the Nelder-mead algorithm is sure to converge to an
accumulation point, as proven by Lagarias [19] and Conn et al. [2].

2.2.2 Simplex Initialization

It is important to remember is that it is a local search global optimization algorithm, i.e., it forfeits
a search of a provable global optimum in favor of a ”good enough” local optimum x∗ solution
located in a neighborhood N where N (x∗) = {x ∈ Rn : ‖x− x∗‖2 ≤ ε} [39]. Therefore, the
performance and robustness of the NM relies strongly on the chosen starting point, size and structure
of the starting simplex [40]. Heuristics to build an initial simplex Y0 are vast and obscure. Although
the definition of a simplex says that it is an affinely independent set that spans the convex hull of a
convex set [41], in NM the only requirement of Y0 is to be non-degenerate so that the volume can
be properly monitored and its convergence properties be maintained. Most heuristics do not provide
a sound mathematical rigor that explain why it works, save a few that relies on the construction of
positive bases [2, 42].

We discuss two simplex initialization methods: the most well-known heuristic to date, seen
in works as old as 1985 like [43], mentioned in the book written by Haftka [44] and the standard
initializer in the fminsearch function in MATLAB [21] and the SciPy package [45]; and a recent
initialization method by Bolduc et al. [42] which proposed an uniform simplex with arbitrary ori-
entation.

Standard Simplex Initialization

This heuristic is mentioned in many works in the literature and is the initialization heuristic imple-
mented in MATLAB and Scipy. A n+1 simplex Y0 = [y0 y1 · · · yn] is constructed from an initial
point x0 ∈ Rn by the following rule:

yi =

{
(x01, . . . , x

0
i−2, cPx

0
i−1, x

0
i , . . . , x0n)> if x0i−1 6= 0

(x01, . . . , x
0
i−2, 0.00025, x0i , . . . , x

0
n)> otherwise.

(2.14)

Where cP is set to 1 + 0.05. It can be clearly observed that the oriented length σ+ of the simplex
is rather small and the simplex in not coordinate invariant, which could be troublesome if either the
lower bound li or upper bound ui of the i-th box constraint is above or below 0.00025.

Uniform Simplex

The term ”uniform simplex” has first appeared in the book of Audet and Hare, ”Derivative-free and
Blackbox Optimization” [34] as an exercise left to the reader to derive a simplex centered in the
origin. After its first appearance, Bolduc et al. [42] formalized the Uniform Simplex, developed
bounds and properties and extended to be able to be rotated towards any orientation. Let c be the
centroid of the simplex c = 1

n+1

∑n
i=0 xi, we refer to U to what the authors called a ”canonical

uniform simplex” as a simplex that has the following properties:
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(i) U is nondegenerate, i.e., vol(U) > 0.

(ii) ‖xi − c‖ = m > 0 for some m ∈ R and i = 0, 1, . . . , n. For this case m = 1.

(iii) (xi − c)>(xj − c) = k for some k ∈ m ∈ R for i, j = 0, 1, . . . , n, i 6= j.

(iv) c = 0.

(v) The subset ofM = [y1, . . . ,yn] of U is upper triangular.

(vi) All entries of diag(M) are positive.

We argue that uniform simplex U is a regular simplex on Rn centered at 0 because it satisfies
properties (i), (ii) and (iii) [46]. Construction of the canonical uniform simplex U can be done
analytically. Any simplex U is defined by the following matrix form:[

M |y0
]

=
[
y1 y2 y3 · · · yn|y0

]

=



a1 −a1
n −a1

n −a1
n · · · −a1

n −a1
n

0 a2 − a2
n−1 − a2

n−1 · · · − a2
n−1 − a2

n−1
0 0 a3 − a3

n−2 · · · − a3
n−2 − a3

n−2
0 0 0 a4 · · · − a4

n−3 − a4
n−3

...
...

...
...

. . .
...

...
0 0 0 0 · · · an −an


,

(2.15)

where the only difference between column y0 and column yn is that the last component of y0 is
−ynn . where a is defined as follows:

ai =

√
(n− 1 + 1)(n+ 1)

n(n− 1 + 2)
. (2.16)

The most pertinent point of this simplex is any uniform simplex can be made if U is scaled by a
unit vector by a factor of m. Moreover, U can also be scaled by a n × n matrix M and still be
a uniform simplex centered at the origin. In fact, the authors introduce a rotation of U towards a
general direction d where ‖d‖2 = 1 by a Householder rotation. Given identity matrix I and unit
vector d, a Householder matrixH is defined the following way:

H = I − 2dd>. (2.17)

where the new rotated simplex U′ is calculated as follows:

U′ = HU. (2.18)

Clearly, U is a positive spanning basis, meaning that it is affine independent. Note that for each
vertex, the coordinates of each component is within the interval [−1, 1].

Although the uniform simplex has not been proposed specifically as an initialization method
for the Nelder-Mead, it is a valid simplex that is equipped with properties that guarantees its non-
degeneracy. Therefore, we consider the uniform simplex to be a suitable method to build an initial
simplex for the NM.
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Chapter 3

A Deterministic Adaptive Decision
Variable Matrix Decision Variable
Selection Scheme for Swarm Intelligence
Algorithms

Artificial Bee Colony (ABC) is a swarm intelligence (SI) heuristic for optimization problems in-
spired by the foraging behavior of honey bees. Following its conception, improvements to the
search capabilities of the original ABC were proposed by many researchers. The great majority of
these propositions centered around changes to the initialization of solutions in the solution space,
update procedure of the first two phases and selection method in the onlooker phase [6]. Despite
differences between each variant, they all share a common trait: the solution update rule chooses
one to n decision variables with equal probability under a random uniform distribution. This may
allow for a better exploration of the search space and prevent solutions to collapse in the same sub-
space at later iterations. However, issues to the consistency and convergence of the algorithm may
arise due to this design choice.

Besides the uniformity of choice of decision variables, it has been observed that most ABC
variants handle poorly problems whose objective functions are multimodal. Adaptations of the ABC
to solve problems from this family include changes to the main update equation; adoption of a self-
adaptive solution set growth/shrink scheme; and adaptations to the re-sampling step of stagnated
solutions [6]. Despite efforts, the ABC still lacks a way to understand how the solutions are fitted
and how apart they are in the objective function landscape.

Taking into account the deficiencies observed in the ABC mentioned above, we propose the
Adaptive Decision Variable Matrix (A-DVM), a self-adaptive decision variable selection procedure
that is an extension of a deterministic solution variable scheme developed in Mollinetti et al. [47].
A-DVM builds an augmented binary matrix that automatically balances deterministic and random
decision variable selection to maintain a healthy amount of exploration in the early iterations while
emphasizing exploitation in later stages. Levels of exploration and exploitation are monitored by
an indicator of how many solutions cover the search space. The chosen estimator is the ∆ value,
a measure proposed by Morrison [48], which provides a reliable assessment of the shape of the
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distribution of the solutions along the main and peripheral axes of search. To validate the proposed
approach, A-DVM is incorporated into the original ABC and several state-of-the-art variants and
evaluated in a test set that features 15 multimodal unconstrained problems. Results are compared to
the original counterparts of the ABCs, as well as to some well-established optimization algorithms
such as the Particle Swarm Optimization (PSO) and Differential Evolution (DE).

The contributions that the A-DVM brings is twofold. First, a selection scheme that attempts
to establish a balance between the global and local search along with the iterations so that the
search can be conducted more efficiently. Naturally, it can be incorporated into any version of the
ABC without interfering with any other mechanism. Second, a mean to assess how solutions of the
solution set are spread throughout the search space and how well they fit the objective function value
landscape. Such information is very beneficial in guiding solutions out of deceptive local optima
when considering multimodal problems.

This chapter is organized as follows: Section 3.1 discusses the main issues behind the fully
randomized selection. Section 3.2 explains the idea behind the A-DVM. Section 3.3 reports the
experiments. Lastly, Section 3.4 outlines the conclusion of the chapter and points future directions.

3.1 Issues of Randomization

Population-based optimization methods usually employ randomization. By choosing step sizes,
decision variables or even target solutions at random during the update steps, population-based op-
timization methods can ”cover more ground” in the search space effortlessly. This is a key element
to the success of population-based heuristics, but not without some unintended side effects.

For the sake of clarity, we refer in accordance to [49] to a neighborhoodN (·) as the classical
definition of a Euclidean ball centered at a point xk,

N (xk) = {x ∈ Rn :
∥∥x− xk∥∥

2
≤ ε}, (3.1)

where ‖·‖2 is the `2 norm and ε ≥ 0. Assume that a stochastic heuristic, such as the Artificial
Bee Colony (ABC), runs infinitely on a problem (f, S) ∈ P , where f is the objective function,
S is the feasible set, and P is a problem family. Moreover, borrowing some concepts explained
in [39], let Xf,S(ω) = {f(ωk) | k = 1, 2, . . .} denote the infinite sequence of iterates generated
by the heuristic where ω = {ωk | k = 1, 2, . . .} is a sequence of random numbers distributed
independently from (f, S). LetX ′f,S and X̄f,S denote the set of accumulation points and the closure
of the sequence Xf,S(ω). Lastly, let X∗f,S denote the set of global optima. Clearly no X∗ can be
”seen” if X̄f,S ∩X∗f,S = ∅ or X̄ ′f,S ∩X∗f,S = ∅.

In the following section, we will see how randomization affects the performance of the ABC.

3.1.1 An Analysis of the ABC decision variable selection

Often overlooked, a common aspect of the ABC variants is that decision variable xij is chosen
according to the same uniform distribution with for all j = 1, 2 . . . , n during the Onlooker and
Employed bees steps.

Let Pr(xij) be the probability that xij is chosen in (2.3). For each situation below, we as-
sume that (f, S) ∈ P, X̄f,S

⋂
X∗f,S 6= ∅ and Xf,S(ω) is monotonically decreasing, i.e., f(ω1) ≥
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f(ω2) ≥ . . .. The original ABC chooses a single xij each time it calls (2.3) during the Onlooker and
Employed bees step. We need to notice the following issues brought by the process of selecting j
randomly.

1. Failed update steps cause solutions to be trapped in basins of attraction: Choosing the
same wrong decision variable many times fails to move solutions out of basins of attraction,
contributing to wasteful iterations, premature convergence and needless flagging of solutions
at the scout bees step. Let xw

∗ ∈ X ′f,S ,x
k∗ ∈ X ′f,S ,x

s∗ ∈ X ′f,S . Suppose that xw ∈
N (xw

∗
) and xk ∈ N (xk

∗
). Also suppose f(xw) = f(xw

∗
), f(xw) ≈ f(xs

∗
), f(xw) >

f(xk
∗
), and N (xk

∗
) and N (xs

∗
) are adjacent to N (xw

∗
).

Lastly, let xwj be a component of xw such that a successful update moves xw toN (xk
∗
) while

an update to xwq for any q 6= j moves xw toN (xs
∗
). xw is moved in (2.3) one axis at a time,

if xwj is chosen, then (2.4) accepts xw
′

and lw = 0. Otherwise, lw is incremented by 1 every
time xw

′
is rejected by (2.4). If each component is chosen in (2.3) with equal probability,

then the probability of xwj to be chosen is Pr(xwj ) = 1/n. Therefore, xw has a probability of
1 − 1/n to move to a basin of attraction N (xs

∗
) similar to N (xw

∗
), and probability 1/n to

move to a more promising region N (xk
∗
).

2. Decision variables may never be chosen: If the problem is of high dimensional (n > 100) or
the evaluation function f(x) is so expensive that only a limited number of objective function
calls are allowed, there will be at least a component xij that may never be chosen in (2.3). Let
Pr(∼xij) = 1−1/n be the probability of xij not to be chosen at (2.3). Then the probability of
xij not to be chosen be at the end ofMCN iterations is PrMCN (∼xij) =

∏2MCN
n=1 (1− 1/n).

It is clear that PrMCN (∼xij) converges to 0 as the number of iterations goes to infinity. If
n > 100 and ABC runs t ≈ n iterations, then PrMCN (∼xij) � 1, so xij is not chosen in
(2.3).

At first glance, there would be two ways to resolve these issues. Either assign a non-equal probabil-
ity to choose the decision variable or choose more than one xij at (2.3) to be updated simultaneously.
We disprove the effectiveness of these ”quick fixes” through following arguments.

• Changing the choice probabilities of decision variables to be unequal would not solve issue
# in high dimensional problems because PrMCN (∼xj) still converges to 0. A sufficient
measure, in this case, would to keep previously chosen components in memory. This only
increases the complexity of the Onlooker and Employed bees phase fromO(n) toO(n log n)
if non-visited components are kept in a separate list for each solution in X in an efficient way

• Changing (2.3) to choose multiple components from xi would not improve issue #. Let
J ⊂ {1, . . . , n} and suppose that xij is chosen for each j ∈ J to update. Update rule (2.3)
is an affine transformation in the j-th axis along the line segment between xij and xkj , i 6= k.
If |J | > 1, then |J | simultaneous affine transformations in the |J | dimensional subspace
between xi and xk would be performed. In terms of complexity, there would be no burden if
j decision variables are updated at once by means of a matrix product operation. However, in
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terms of performance, there is no improvement because of two reasons. Firstly, moving along
many axes at once does not reduce the possibility of xi to remain in N (x∗) if xk ∈ N (x∗).
Secondly, setting |J | > 1 in (2.3) has been shown to be not as good as |J | = 1 in later
iterations due to the coarseness of the search when most of the solutions have converged to a
single accumulation point [6].

In the following section, we present a method that provides a solution to the issues stated
above, the Adaptive Decision Variable Matrix (A-DVM). The A-DVM can be integrated to any
optimization technique that uses a set of solution. However, we limit the A-DVM to the Artificial
Bee Colony so that we can limit the scope to one algorithm in particular.

3.2 A novel Decision variable mechanism

We propose a method for selecting decision variables efficiently without any additional memory nor
simultaneous update of multiple components. The Adaptive Decision Variable Matrix (A-DVM)
is an extension of the decision variable selection procedure of Mollinetti et al. [47]. It exploits
the same modular nature as the Artificial Bee Colony (ABC), and thereby it can be integrated to
the employed and/or onlooker bees phase without interfering with any additional steps of the orig-
inal or any variant. To emphasize the difference between the A-DVM and Mollinetti et al. [47]
deterministic selection, we briefly explain their proposition as follows.

3.2.1 Fully deterministic decision variable selection

The selection scheme proposed by Mollinetti et al. [47] is inspired by Cantor’s Diagonalization
argument used to prove the non-existence of bijection from the set of natural numbers to the set
of real numbers [50, 51]. Cantor’s argument state that, any binary square matrix T does not have
the same column as the vector consisting of the complements of the diagonal elements of T . The
authors extended this notion to generate new solutions xi in the solution set X . For any given
problem, the deterministic decision variable selection arranges the solution set X into a Rn×SN
matrix:

A = [x1 x2 · · · xSN ].

IfA is a square matrix, the entries on the main diagonal are stored in anm-vector c = (a11, a22, . . . , amn)>

and undergo the update step. In general, the higher the number of solutions, the better the explo-
ration of the search, and so SN > n holds. If A is wide, then vector c consists of entries on the
main diagonal and the superdiagonals of A offset n units to the right. For instance, if A is a 2× 6
matrix, then c will be:

A =

[
a11 a12 a13 a14 a15 a16
a21 a22 a23 a24 a25 a26

]
c = (a11, a22, a13, a24, a15, a26)

>.

The vector c allows (2.3) to be performed simultaneously for all columns ofA by means of a simple
vector multiplication:

c′ = ψ(c+ Φ� (c− z)), (3.2)
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where � is the Hadamard product, Φ is a SN column vector of values sampled from U(−1, 1),
z = (z1, . . . , zSN )> 6= c, and ψ(·) is a function similar to (2.4) defined as:

ψ(c′i) =

{
c′i, lci = 0 if f(xi + (c′i − xij)ej) ≤ f(xi)

ci, lci = lci+1 otherwise.
(3.3)

Suppose in the matrix A of the above example, that if f(x1 + (c′1 − x11)e1) ≤ f(x1) and f(x2 +
(c′2−x22)e2) ≤ f(x2), then c′ = (c′1, c

′
2, a13, a24, a15, a26)

>. Thus, entries a11 and a22 are replaced
with c′1, c

′
2 inA, and the corresponding values of f are updated.

Lastly, a safeguard step is performed so that every decision variable of each candidate solution
can be updated at least once before the algorithm termination. The last column xSN ofA is moved
to the first position and the remaining columns are shifted one position to the right. Referring back
to the example, the matrixA is now:

A =

[
c′1 a12 a13 a14 a15 a16
a21 c′2 a23 a24 a25 a26

]
−→

[
a16 c′1 a12 a13 a14 a15
a26 a21 c′2 a23 a24 a25

]
This step ensures that every decision variable is updated by (3.2) every d iterations.

The results in Mollinetti et al. [47] indicate that eliminating the randomness in the choice of
the decision variable in (2.3) boosted the performance of the original ABC in multimodal problems
of up to 30 decision variables. However, it is observed that the diversity of solutions was compro-
mised because local search was more emphasized over global search. From this result, we suppose
that the bias towards local search brought by the fully deterministic parameter selection has yet not
solved issue #. In fact, if anything, the fully deterministic selection made it worse. Therefore,
reintroducing a small degree of randomness while guaranteeing that every solution is chosen at
some iteration is a step in the right direction to refocus global search.

3.2.2 A self-adaptive decision variable selection procedure (A-DVM)

Let us change the focus to a partially deterministic selection, and reintroduce an adaptive degree
of randomness to the selection process based on the ”spread” of solutions throughout the search
space. The variables xij are chosen via a binary decision matrix. The goal of the A-DVM is not only
to provide an acceptable solution to the issues discussed in section 3.1, but to improve the overall
performance of the state-of-the-art of ABC for the multimodal and high dimensional problem of the
form of (2.1).

The main piece of the A-DVM is the n×SN binary matrixPam, that represents which xij has
been chosen to be updated by (2.3) or (3.2). The matrix Pam is a composition of two matrices, Pr,
a binary matrix with a single 1 in each column, whose row is determined randomly according to a
uniform distribution; and Pd, a matrix with 0 or 2 in each entry generated by the fully deterministic
scheme of Mollinetti et al. [47]. For example, Pr and Pd are matrices of the form:
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Pr =


0 0 0 . . . 1 0 . . . 0
0 0 1 . . . 0 0 . . . 0
1 0 0 . . . 0 1 . . . 0
...

...
...

. . .
...

...
. . . 1

0 1 0 . . . 0 0 . . . 0

 , Pd =


2 0 0 . . . 0 2 . . . 0
0 2 0 . . . 0 0 . . . 0
0 0 2 . . . 0 0 . . . 0
...

...
...

. . .
...

...
. . .

...
0 0 0 . . . 2 0 . . . 2

 .

The matrix Pam is the result of a composition of Pr into Pd. That means some solutions xi ∈ X
have their j-th component randomly selected when updated by (2.3) or (3.2) while the rest have
their j-th component chosen by the fully deterministic scheme. We write Pam = βPr⊕αPd when
β% of the columns of Pam are from Pr and the remaining α = (1−β)% are from Pd. An example
of Pam based on the above example is as follows:

Pam = βPr ⊕ αPd =


0 0 0 . . . 0 0 . . . 0
0 2 0 . . . 0 0 . . . 0
1 0 2 . . . 0 1 . . . 0
...

...
...

. . . 0
...

. . . 0
0 0 0 . . . 2 0 . . . 2

 .

The degree of how much Pr is favored over Pd is represented by the coefficient α to maintain a
healthy diversity of solutions while balancing between local search and local search. α is iteratively
adjusted as follows,

α = (1−∆)K1 +∆K2, (3.4)

where ∆ ∈ [0, 1] is the measure of the dispersion of the population at the current iteration and K1

and K2 are scaling parameters set to 0.3 and 0.7 in accordance to McGinley et al. [52]. Values of α
close to 1 signify high population diversity and activate local search by the deterministic selection.
On the other hand, values close to 0 boost exploration using random selection. Because solutions
in population-based algorithms tend to concentrate around accumulation points x′ ∈ X ′f,S after a
considerable amount of iterations [49], α is increased by a growth function ρ defined as follows, to
intensify local search around x′ after t′ iterations:

ρ(·) =

{
α = αeγt if t > t′,

α otherwise,
(3.5)

where γ is set to 0.01. The value of t′ is given by:

t′ = min

(
n · d

λt · tmax
, λttmax

)
, (3.6)

where an acceptable value for λt was empirically verified to be 0.1.
To ensure that every decision variable is chosen in at least every n iterations, we introduce a

history H ∈ {0, 1}n that stores which columns of Pd were put into Pam. This is done to allow
the remaining columns of Pd that were not chosen in the previous iteration to be included Pam at
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Algorithm 3: Steps of the A-DVM

1 ∆← ComputeDelta(X)
2 α← ρ ((1−∆)K1 +∆K2)
3 β ← 1− α
4 Pr ← BuildRandomMatrix(β)
5 Pd ← BuildDeterministicMatrix(α,H)
6 ifH = (1, . . . , 1) then
7 H ← (0, . . . , 0)
8 H ← UpdateHistory(H,Pd,Pam) . Index of columns of Pd in Pam are 1 inH
9 Pam ← βPr ⊕ αPd

10 c← ChooseVariables(X,Pam)
11 c′ ← UpdateStep(c) . Use either (2.3) or (3.2)
12 X ← UpdateSolutions(X, c′)
13 X ← SafeguardStep(X)

the next iteration. We enforce a bound on the number of iterations that solutions are chosen by the
fully deterministic selection to be no more than 3

5K1 and no less than 1
2K2 (refer to (3.4)). When

the entries inH are all ones,H is reinitialized and the whole process runs again. The overall steps
of the A-DVM are outlined in Algorithm 3.

3.2.3 The ∆ Dispersion Estimate

Estimating the dispersion of the solutions in the search space is specifically effective for population-
based algorithms to deal with multimodal or high dimensional problems. Measuring how far apart
solutions inX are from each other is very helpful to guide them towards accumulation points or free
them from local optima. Significant contributions related to this subject can be found in Ursem [53]
and Back et al. [54] which introduced the Sparse Population Diversity (SPD) metric, a method for
estimating the variation of the solution set by measuring the distance from each solution in relation
to the centroid. McGinley et al. [52] proposed the Healthy Population Diversity (HPD), an extension
of the SPD that introduces the concept of individual contribution to the computation of the centroid.

Metrics like SPD and HPD may accurately and inexpensively identify differences between the
solutions inX by measuring the distances to each xi. However, this kind of measurement does not
take into account how the solutions are distributed in the search space, which is problematic since
the same measurement values from SPD and HPD may indicate different search-space coverage of
solution ofX . Because of that, we employ the ∆ dispersion measure introduced in Morrisson [48],
initially proposed for Evolutionary Algorithms with binary solution encoding, and adapt it for the
continuous problem (2.1). Computation of ∆ is as follows:

∆ = ∆1 +∆2 =
1.75− S
1.75

, (3.7)

where ∆1 = 0.75 − S1, ∆2 = 1 − S2 and S = S1 + S2. The values of S1 and S2 are obtained
by measuring the moment of inertia of the solution centroid in relation to each solution. We denote
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as P = |X| as the number of solutions xi ∈ X . The centroid crj of the jth components and the
moment of inertia Ij of centroid crj are

crj =

∑P
i=1 x

i
j

P
, Ij =

P∑
i=1

(xij − crj)2, j = 1, . . . , n. (3.8)

The first measure S1 involves a quantitative assessment of the solutions around the distribution
centroid. Assuming the distribution around the centroid to be uniform, S1 is

S1 = max
j

[∣∣IUo − Ij + Pcr2j
∣∣]

P
, (3.9)

where IUo represents the inertia of an uniform distribution:

IUo =
P∑
i=1

(
i

P + 1

)2

. (3.10)

Measure ∆2 indicates how much the calculation of ∆1 is misleading when the distribution is not
uniform in the search-space, since ∆1 only verifies non-uniformity along the principal diagonal of
the search space. The second measure S2 is

S2 = max


∣∣∣∑P χc+ −

⌈(∏
j(1−crj)∏

j φj

)
P
⌉∣∣∣

P
,

∣∣∣∑P χc− −
⌈(∏

j(crj)∏
j φj

)
P
⌉∣∣∣

P

 . (3.11)

where c− = {xij ∈ X|xij ≤ crj}, c+ = {xij ∈ X|xij ≥ crj}, χ is the characteristic function that
returns either 0 or 1 whether a solution belongs to c− or c+, respectively, and φj is in the range
between [lj , uj ], so that

∏n
j=1 φj = 1 for an N -dimensional unit volume.

3.2.4 Remarks on complexity

As for the complexity, SN function evaluations are done in each employed and onlooker bees
phase, so the addition of A-DVM preserves the same 2n+1 function evaluations per iteration as the
classical ABC. The effort to compute the sum of moments of inertia and∆ dispersion is proportional
to the solution set size SN [48]. Updates of solutions (2.3) during the employed or onlooker bees is
done one by one in a loop require O(n) time for the size SN of solution setX . On the other hand,
offline update (3.2) can be done in a linear time due to the vector multiplication. We recommend
(3.2) for parallel versions of the ABC, when MCN is large or the evaluation of f(x) is expensive.

Regarding lookup tableH , it is verified in O(n) time which columns of Pd were not chosen
to be a part of Pam. Lastly, about binary matrix Pd, because the deterministic parameter selection
extracts the diagonal of solution set X , it is recommended to set SN ≥ n to ensure that every
decision variable of each solution is chosen in at most n iterations.
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Table 3.1: Definition of Benchmark functions.

Name Dim Range Opt. Name Dim Range Opt.

Bukin06 10 [-10, 0] 0.0 Rosenbrock 30 [-30, 30] 0.0
Cola 17 [-4, 4] 11.7464 Schwefel06 30 [-500,500] 0.0
CrossLegTable 2 [-10,10] -1.0 SineEnvelope 20 [-500, 500] 0.0
CrownedCross 2 [-10,10] 0.0001 Trefethen 2 [-10,10] -3.0
Damavandi 2 [0,14] 0.0 Whitley 2 [-10.24, 10.24] 0.0
DeVilliersGlasser02 5 [1, 60] 0.0 XinSheYang03 20 [-500, 500] 0.0
Griewank 30 [-100, 100] 0.0 Zimmerman 2 [0, 100] 0.0
Rastrigin 30 [-5.12, 5.12] 0.0 – – – –

Table 3.2: Properties of the benchmark functions.

Name Property Name Property
Bukin06 CNdNsNscMm Rosenbrock CDNsScMm
Cola CDNsNscMm Schwefel06 CDSNscMm
CrossLegTable CNsNscMm SineEnvelope CDNsScMm
CrownedCross CNsNscMm Trefethen CDNsNscMm
Damavandi CDNsNscMm Whitley CDNsScMm
DeVilliersGlasser02 CDNsNscMm XinSheYang03 CNdNsNscMm
Griewank CDNsScMm Zimmerman CNdNsScMm
Rastrigin CNdNsScMm -

3.3 Numerical Experiments

We carry several numerical experiments to answer the following research questions: ”Does the
incorporation of the Adaptive Decision Variable Matrix (A-DVM) to any version of the Artificial
Bee Colony (ABC) incur in improvements in the overall performance to solve multimodal opti-
mization problems?”; ”Does the A-DVM scales well on instances where n > 100?”; and ”Can
an A-DVM based ABC variant obtain competitive results in the same instances when compared to
other derivative-free methods?”. We seek to answer these three questions with three distinct exper-
iments using 15 unconstrained functions in the form of (2.1), each of which is designed to validate
the capability of derivative-free algorithms to handle multimodal and non-smooth objective func-
tions. The instances are ranked in the top 30 hardest continuous optimization functions in the Global
Optimization Benchmarks suite [55]. The number of variables, the box constraint range [lj , uj ] and
the global optimum of each instance are listed in Table 3.1.

The classification of the properties of each function is shown below according to the classi-
fication of Jamil [56], Molga and Smutinicki [57] and [58]. We classify each function as: Differ-
entiable (D) or non-differentiable (Nd); continuous (C) or non-continuous (Nc); Separable (S) or
Non-separable (Ns); Scalable (Sc) or Non-scalable (Nsc); Multimodal (Mm) or Unimodal (Um).

The experiments were conducted in a machine with the following hardware configuration:
Intel core i7-6700 ”Skylake” 3.4 GHz CPU; 16 GB RAM DDR4 3200 clocked at 3000 MHz. The
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running operating system (OS) is UbuntuOS 18.04. All algorithms were written in the python 3
programming language. Floating point operations were handled by the numpy package, version
1.19.1.

3.3.1 Testing the A-DVM in the Artificial Bee Colony algorithm

The answer for the first question is backed up by an experiment incorporating the A-DVM to the
onlooker and employed bees phase of the following versions of the ABC: the original ABC from
Karaboga [59] (ABC+A-DVM), two versions of the global best guided ABC (gbestABC) from Gao
et al. [60] (GBESTABC+A-DVM, GBESTABC2+A-DVM) and two versions of the ABC-X from
[6] for multimodal problems (ABC-XM1+A-DVM, ABC-XM2+A-DVM). The original counter-
parts were also used for the baseline (ABC, GBESTABC, GBESTABC2, ABC-XM1, ABC-XM5)
together with the modified ABC for multidimensional functions (MABC) from Akay and Karaboga
[8] and its version with the A-DVM (MABC+A-DVM). We also included three well-known pop-
ulation heuristics as baselines of comparison, the Particle Swarm Optimization from Kennedy and
Eberhart [61], Evolutionary Particle Swarm Optimization by Miranda and Fonseca [62] and Differ-
ential Evolution (DE) [63].

The Stopping criteria for each algorithm was set to 105 function evaluations (FE’s) or if the
difference between the best value found so far and the global optimum f(x∗) is less than 10−8. The
population size was common to all algorithms and fixed at 30. For PSO, the inertia factor (w1) was
set to 0.6 and both cognitive and social parameters (w2, w3) to 1.8. For Differential Evolution (DE)
[63] with best1bin strategy, F value was 0.5 and CR 0.9. For each version of the ABC:Lit = SN ·n.
For MABC, MR, SF and m were 0.5, 0.7, and 2.5% of maximum FE’s, respectively. ABC-X
parameters were Lit = 1.06 · n, maximum population of 66 and minimum of 15 for ABC-Xm1
and Lit = 0.83 · n, while for ABC-Xm5, maximum population of 78 and minimum of 17. Lastly,
parameters γ and λt of the A-DVM were set to 0.1. Each algorithm is executed 30 times with the
same seed interchangeably in a random fashion to avoid bias in the machine load. Figure 3.1 show
the percentage of the best mean of the runs for each algorithm and the rank of each algorithm for
each family. In this categorization, the worst rank that an algorithm can have is the 6th, while the
best is the 1st.

Tables 3.7 and 3.8 show the computational results obtained from this experiment. The statis-
tics used for comparison are the mean, standard deviation, median, and best-worst results obtained
from 30 runs with distinct random seeds. Statistical significance between pairs is verified by the
Mann-Whitney U test for non-parametric data, with confidence interval α set to 0.95. For better
legibility, the precision of decimals is set to 5 digits and values lower than 10−6 are rounded to 0.
Plots of the behavior of each algorithm are shown in Figure 3.2, 3.3 and 3.4. Each line represents
the mean of the best solution of all executions for each function evaluation call. All plots were
log-scaled for better legibility.

Statistical analysis is performed using the Mann-Whitney U-test for non-parametric data. For
the sake of brevity, we supplement the p-value tables for each instance in the Appendix section
(Table 3.9 to 3.12). If the performance of any algorithm for a particular instance is statistically
significant, it means that its p-value in the U test is less than 0.05 in the pairwise comparison against
all other algorithms. The bold numbers in the tables indicate the least value for that particular
statistic and instance.
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Figure 3.1: Percentage of the best overall mean and radar plot of the ranking of each technique
according to family.

Firstly, we discuss the Rosenbrock, Whitley and Zimmerman function instances where the
A-DVM resulted in overall worse performance than all of their original counterparts. The A-DVM
was indeed able to guide the functions towards a valley, but a thorough local search mechanism
was lacking due to the parabolic surface of the Rosenbrock function [57]. The same behavior is
observed in the Whitley and Zimmerman functions, which share the same property as Rosenbrock
instance. The poor results in these functions imply a failure of the A-DVM to properly address
issues #1 and #2 discussed in section 3.1. Additionally, we can relate this case to the no-free-
lunch theorem of Wolpert [64], saying that no algorithm can be strictly better than the others in
every problem instance. The inferior results of the A-DVM are also seen for the Rastrigin function
in the ABC-X variants. The cause of such behavior could be due to intensification of the local
search mechanism that forced solutions to stay far from the local attractors of the surface of the
functions. Overall, it was observed that the A-DVM based algorithms did not perform well in
Non-differentiable instances.

On the other hand, it was possible to observe a strong evidence of the robustness of the
A-DVM in Differentiable, Non-separable and such as the Damavandi, DeVilliersGlasser02 and
CrossLegTable instances, ranked as the three hardest functions in the benchmark suite [55]. Both
functions feature large basins of attraction for bad local optima, the number of which is directly
proportional to the problem dimensionality. There are two possible causes explaining why the A-
DVM versions were not superior to all other versions in these particular instances. First, a small
number of dimensions means that a square matrix can be built, providing a thorough exploration
of the search space. Second, exploration in the early stages allowed solutions to escape from the
basins of attraction.

Evidence that the A-DVM improved the search process in comparison to their counterparts
without the search can be seen in the Bukin06, SineEnvelope, CrownedCross and Schwefel06. Al-
though the ABCs with the A-DVM were not the best solvers, their robustness was statistically
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Figure 3.2: Behavior of the Mean of all executions for Bukin06 to DeVilliersGlasser02 instances.
24



Figure 3.3: Behavior of the Mean of all executions for Griewank to Trefethen instances.25



Figure 3.4: Behavior of the Mean of all executions for Whitley to Zimmerman instances.
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significant in comparison to the versions without the A-DVM. Lastly, in the Cola, Griewank, Xin-
SheYang03 and Trefethen, no statistical significance that corroborated that the incorporation of the
A-DVM improved or worsened the performance of the original algorithm was found, once again
pointing to the weakness of the A-DVM in non differentiable family of problems.

3.3.2 Testing the A-DVM in large scale instances

In order to answer whether the A-DVM is able to improve the robustness of the base ABC algorithms
in large multimodal instances, another numerical experiment is carried out. We chose a subset
comprised of the scalable functions of Table 3.1, and set their dimension to 100, as shown in Table
3.3.

Table 3.3: Subset of scalable functions.

Name Dim Range Opt Property

Griewank 100 [-10, 0] 0.0 CDNsScMm
Rastrigin 100 [-4, 4] 11.7464 CNdNsScMm
Rosenbrock 100 [-10,10] -1.0 CDNsScMm
Sine Envelope 100 [-10,10] 0.0001 CDNsScMm
Whitley 100 [0,14] 0.0 CDNsScMm
Zimmerman 100 [1, 60] 0.0 CNdNsScMm

As in section 3.3.1, we use the the original ABC, GBESTABC, GBESTABC2 and two ver-
sions of the ABC-X (ABCX-m1, ABCX-m5). The original counterparts were also used for the
baseline (ABC, GBESTABC, GBESTABC2, ABCX-m1, ABCX-m5) together with the modified
ABC for multidimensional functions (MABC) from Akay and Karaboga [8] and its version with the
A-DVM (MABC+A-DVM). In this experiment, we limit the comparison to ABC-based algorithms
only for a fairer and more in-depth analysis. The parameters defined in this experiment is the same
as in Section 3.3.1 with the difference that the Stopping criteria for each algorithm was set to 104

function evaluations (FE’s). Figure 3.5 show the percentage of the best mean of the runs for each
algorithm and the rank of each algorithm for each family in the same fashion as the previous section.

The same statistics from the last section (Mean, Median, Standard Deviation, Best and Worst
execution) are chosen to show the results. Overall statistical differences are ascertained by the
Friedman test while pairwise differences are verified by the Mann-Whitney U test, both with their
confidence α set to 95%. The statistics of the six instances are shown in Table 3.4 and 3.5, Friedman
test and Mann-whitney U-test p-values are displayed in Tables 3.6, 3.13 and 3.14. Log-scaled mean
of the 30 executions for each instance throughout the iterations are recorded in Figure 3.6.

Overall statistical difference was observed in every problem since the p-values of table 3.6
were lower than 0.05, therefore each instance will be analyzed individually. We begin stating that
with exception of the Zimmerman function, the ABCX-m1 and its A-DVM version were observed
to be better suited to large-scaled problem by a large margin, since pairwise differences against all
others were seen to be relevant (p < 0.05). As for the Zimmerman function, curiously the classical
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Figure 3.5: Percentage of the best overall mean and radar plot of the ranking of each technique
according to family for the second experiment.
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Table 3.4: Results of the Griewank, Rastrigin and Rosenbrock instances.

Problem Algorithm Mean Median Std. Dev Best Worst

Griewank

GBESTABC2 22.2549 22.078 1.24253 20.209 24.8705
GBESTABC 19.1578 19.2894 1.41349 15.8547 22.2885
GBESTABC+A-DVM 19.165 19.46 1.40259 15.2549 21.2983
ABC+A-DVM 33.0033 32.5923 3.00956 27.7354 39.3985
ABC 33.6735 34.2599 3.37994 25.0454 39.5429
ABCX-m1+A-DVM 2.35473 2.37487 0.141961 2.09558 2.5906
ABCX-m5+A-DVM 35.7663 36.0063 1.59183 30.9719 39.6456
MABC+A-DVM 49.0362 49.5908 3.86792 40.5036 56.2519
GBESTABC2+A-DVM 22.604 22.5136 1.46622 19.5191 25.5375
MABC 49.0362 49.5908 3.86792 40.5036 56.2519
ABCx-m1 2.36628 2.36703 0.202239 2.04665 2.81848
ABCx-m5 35.7127 35.6153 1.88481 31.8163 39.3963
ABC-ES 33.1001 28.9053 17.5708 10.4031 63.0538

Rastrigin

GBESTABC2 927.908 927.712 35.9572 860.483 1000.53
GBESTABC 882.214 879.961 21.3248 848.565 942.571
GBESTABC+A-DVM 877.636 882.174 28.3145 833.021 923.515
ABC+A-DVM 992.844 997.666 42.586 848.59 1070.25
ABC 989.606 984.591 44.6942 863.339 1065.21
ABCX-m1+A-DVM 370.099 368.148 30.2616 310.793 450.279
ABCX-m5+A-DVM 1082.16 1085.06 34.4644 1004.84 1137.48
MABC+A-DVM 1238.44 1243.78 44.9048 1151.41 1308.85
GBESTABC2+A-DVM 939.86 944.664 31.6091 871.653 990.464
MABC 1238.44 1243.78 44.9048 1151.41 1308.85
ABCx-m1 363.668 358.431 24.1683 326.521 419.939
ABCx-m5 1098.85 1099.48 25.7644 1044.91 1145.22
ABC-ES 972.865 923.329 226.278 653.649 1323.36

Rosenbrock

GBESTABC2 1.86248e+08 1.83617e+08 3.62851e+07 1.13022e+08 2.68372e+08
GBESTABC 1.50072e+08 1.47095e+08 3.02568e+07 8.64117e+07 2.13212e+08
GBESTABC+A-DVM 1.45601e+08 1.38338e+08 3.83353e+07 6.05437e+07 2.29965e+08
ABC+A-DVM 3.86399e+08 3.82692e+08 8.56451e+07 1.74091e+08 5.44036e+08
ABC 3.95541e+08 4.1348e+08 7.97546e+07 1.50902e+08 5.27773e+08
ABCX-m1+A-DVM 743141 700600 164629 415046 1.08762e+06
ABCX-m5+A-DVM 4.58306e+08 4.60116e+08 5.75986e+07 3.36762e+08 5.62055e+08
MABC+A-DVM 7.1178e+08 7.00777e+08 8.8605e+07 5.13154e+08 8.99771e+08
GBESTABC2+A-DVM 1.87117e+08 1.98131e+08 3.23815e+07 1.29873e+08 2.38375e+08
MABC 7.1178e+08 7.00777e+08 8.8605e+07 5.13154e+08 8.99771e+08
ABCx-m1 840767 842535 201859 488427 1.31484e+06
ABCx-m5 4.59397e+08 4.58344e+08 4.27048e+07 3.62077e+08 5.52818e+08
ABC-ES 4.36908e+08 3.17419e+08 3.34933e+08 4.53576e+07 1.06358e+09
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Table 3.5: Results of the Sine Envelope, Whitley and Zimmerman instances.

Problem Algorithm Mean Median Std. Dev Best Worst

SineEnvelope

GBESTABC2 44.3438 44.3044 0.376315 43.4559 45.0189
GBESTABC 43.9496 44.0291 0.543202 42.8189 44.9741
GBESTABC+A-DVM 43.8262 43.8863 0.49638 42.7754 44.7082
ABC+A-DVM 44.367 44.4289 0.555319 42.7661 45.3687
ABC 44.425 44.5275 0.537809 42.9573 45.447
ABCX-m1+A-DVM 30.0062 29.8985 1.15081 27.6261 32.6375
ABCX-m5+A-DVM 45.1242 45.1754 0.421989 44.1659 45.8359
MABC+A-DVM 45.9901 46.0908 0.44163 44.7613 46.6727
GBESTABC2+A-DVM 44.2829 44.2682 0.536358 43.2124 45.2068
MABC 45.9901 46.0908 0.44163 44.7613 46.6727
ABCx-m1 30.3508 30.3807 0.911687 28.1017 31.8109
ABCx-m5 45.0936 45.1811 0.415104 44.3154 45.835
ABC-ES 43.7584 44.3359 2.09874 39.3983 46.4233

Whitley

GBESTABC2 6.84694e+06 7.07747e+06 1.2699e+06 4.10342e+06 9.48787e+06
GBESTABC 5.61494e+06 5.69385e+06 1.01168e+06 3.44293e+06 8.1876e+06
GBESTABC+A-DVM 5.50949e+06 5.52107e+06 953260 2.96255e+06 7.06721e+06
ABC+A-DVM 1.38938e+07 1.39201e+07 2.70429e+06 7.15176e+06 1.94246e+07
ABC 1.37228e+07 1.40827e+07 2.96759e+06 5.29784e+06 1.98931e+07
ABCX-m1+A-DVM 49545.3 48046.6 5931.77 40889.9 64243
ABCX-m5+A-DVM 1.65758e+07 1.69092e+07 1.39608e+06 1.39002e+07 1.93659e+07
MABC+A-DVM 2.44575e+07 2.43207e+07 3.23327e+06 1.8017e+07 3.14924e+07
GBESTABC2+A-DVM 7.01378e+06 7.00248e+06 1.01941e+06 4.61244e+06 8.99792e+06
MABC 2.44575e+07 2.43207e+07 3.23327e+06 1.8017e+07 3.14924e+07
ABCx-m1 53358.1 55848.9 6581.91 37192.5 64768.1
ABCx-m5 1.60252e+07 1.59958e+07 1.58795e+06 1.28247e+07 1.8947e+07
ABC-ES 1.54652e+07 1.16363e+07 1.19375e+07 1.76703e+06 3.63311e+07

Zimmerman

GBESTABC2 0.395896 0.698584 0.34618 1.4e-07 0.698955
GBESTABC 0.349291 0.349291 0.349291 0 0.698581
GBESTABC+A-DVM 0.326005 0 0.348514 0 0.698581
ABC+A-DVM 0.0153467 0.00966524 0.0144522 0.00065971 0.0558293
ABC 0.0154458 0.0132182 0.00876252 0.00162515 0.0411998
ABCX-m1+A-DVM 0.326094 0.00041285 0.348528 1e-06 0.698947
ABCX-m5+A-DVM 0.233216 0.00030032 0.329297 8.85e-06 0.6997
MABC+A-DVM 3.4315 0.094002 12.1792 0.023764 57.0393
GBESTABC2+A-DVM 0.302766 9.989e-05 0.346171 3.2e-07 0.698866
MABC 3.4315 0.094002 12.1792 0.023764 57.0393
ABCx-m1 0.256183 5.474e-05 0.336645 3.22e-06 0.698711
ABCx-m5 0.235636 0.00021179 0.327997 7.47e-06 0.699713
ABC-ES 2.35559 0.0157106 8.83164 0.00202546 40.1071
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Figure 3.6: Behavior of the Mean of all executions of the scalable instances.
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Table 3.6: p-values of the Friedman Test for each instance.

Griewank Rosenbrock Rastrigin SineEnvelope Whitley Zimmerman

4.514277e-59 2.078677e-58 7.743842e-59 1.791833e-50 3.497370e-58 0.000003
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Table 3.7: Results of the experiment for all problem instances

Problem Algorithm Mean Median Std. Dev Best Worst Problem Algorithm Mean Median Std. Dev Best Worst Problem Algorithm Mean Median Std. Dev Best Worst

Bukin06 DE 0.97893 0.91922 0.52393 0.33 2.60682 DeVilliersGlasser02 DE 352.642 64.37420 767.121 0.39534 3182.44 SineEnvelope DE 0.47414 0.47354 0.09202 0.3289 0.69363
PSO 0.03759 0.04883 0.01611 0.00431 0.05000 PSO 7108.73 9377.49 4258.06 0.00000 10647.4 PSO 7.09257 7.26654 0.57119 6.09679 7.86571
EPSO 0.00901 0.00715 0.00690 0.00057 0.02419 EPSO 799.059 6.52004 2538.22 0.00000 10467.8 EPSO 4.74872 4.8902 0.89428 3.04664 6.09835
ABC 0.06535 0.05000 0.03345 0.01909 0.15020 ABC 5.71168 3.20875 6.02096 0.34329 21.70150 ABC 0.25965 0.22372 0.07091 0.18175 0.39453
MABC 0.05800 0.05000 0.046600 0.01611 0.21930 MABC 4.12467 2.74194 4.63619 0.24565 15.8204 MABC 3.01514 3.09304 0.30318 2.47955 3.57755
MABC+ADVM 0.099097 0.071473 0.059937 0.013819 0.261345 MABC+ADVM 3.54775 2.48224 3.45717 0.432356 17.9148 MABC+ADVM 1.99107 1.99038 0.332486 1.22778 2.5769
GBESTABC 0.18781 0.18014 0.07922 0.05044 0.34700 GBESTABC 8.13107 4.71285 11.61610 0.84988 53.06630 GBESTABC 0.25933 0.23034 0.06796 0.16192 0.38841
GBESTABC2 0.35783 0.33525 0.17333 0.12420 0.63954 GBESTABC2 5.56375 4.42650 4.64582 0.65744 21.59900 GBESTABC2 0.30696 0.30139 0.07077 0.19638 0.43203
ABC+A-DVM 0.05949 0.04990 0.04087 0.00340 0.15985 ABC+A-DVM 2.53581 1.93048 2.00250 0.05803 7.09280 ABC+A-DVM 0.30694 0.29637 0.09403 0.19931 0.56087
GBESTABC+A-DVM 0.17330 0.13761 0.08993 0.04872 0.33291 GBESTABC+A-DVM 6.89254 4.77318 5.30292 1.06621 23.2227 GBESTABC+A-DVM 0.26499 0.25378 0.05339 0.18960 0.37096
GBESTABC2+A-DVM 0.32394 0.34000 0.17225 0.09892 0.69858 GBESTABC2+A-DVM 8.36485 7.13058 8.01541 0.40725 32.1687 GBESTABC2+A-DVM 0.29561 0.29025 0.05581 0.19367 0.39693
ABCXm1 0.027548 0.023434 0.017643 0.00241 0.050081 ABCXm1 3.8484 0.338253 11.4397 5.2e-05 59.3269 ABCXm1 1.06673 1.02163 0.344164 0.475796 1.80824
ABCXm1+A-DVM 0.026575 0.026393 0.018326 0.000473 0.050066 ABCXm1+A-DVM 2.12372 0.338253 3.37561 4.4e-05 12.0782 ABCXm1+A-DVM 1.1684 1.06626 0.366067 0.514902 1.91655
ABCXm5 0.029684 0.028866 0.014425 0.002358 0.053062 ABCXm5 3.39312 2.46051 2.57071 0.478018 10.445 ABCXm5 1.03955 1.02833 0.16000 0.691504 1.48731
ABCXm5+A-DVM 0.029074 0.028134 0.016507 0.00326 0.052951 ABCXm5+A-DVM 3.70145 3.39775 2.66626 0.598359 10.0822 ABCXm5+A-DVM 1.04225 1.06835 0.156475 0.760775 1.33566

Cola DE 12.44390 12.39020 0.502836 11.77570 13.82660 Griewank DE 0.00000 0.00000 0.00000 0.00000 0.00000 Trefethen DE -3.29379 -3.30687 0.04156 -3.30687 -3.14408
PSO 16.13410 15.30270 2.44014 12.9697 22.06270 PSO 1.34282 1.30004 0.17168 1.10178 1.80049 PSO -3.08315 -3.17611 0.21692 -3.30687 -2.64262
EPSO 13.42210 13.60100 1.06166 11.7481 15.48070 EPSO 0.00910 0.00000 0.01379 0.00000 0.04426 EPSO -3.27985 -3.30687 0.06253 -3.30687 -3.06263
ABC 12.05440 11.95500 0.22993 11.75370 12.54730 ABC 0.00000 0.00000 0.00000 0.00000 0.00000 ABC -3.30687 -3.30687 0.00000 -3.30687 -3.30687
MABC 12.83970 12.84790 0.443416 12.11390 13.61120 MABC 0.00000 0.00000 0.00000 0.00000 0.00000 MABC -3.30687 -3.30687 0.00000 -3.30687 -3.30687
MABC+ADVM 12.2932 12.3446 0.327254 11.8035 12.9642 MABC+ADVM 0.002013 0.000020 0.00483 0.00000 0.022877 MABC+ADVM -3.30687 -3.30687 0.00000 -3.30687 -3.30687
GBESTABC 12.22790 12.15260 0.30889 11.79990 13.08850 GBESTABC 0.00000 0.00000 0.00000 0.00000 0.00000 GBESTABC -3.30687 -3.30687 0.00000 -3.30687 -3.30687
GBESTABC2 12.23520 12.25250 0.28235 11.80430 12.76960 GBESTABC2 0.00000 0.00000 0.00000 0.00000 0.00000 GBESTABC2 -3.30687 -3.30687 0.00000 -3.30687 -3.30687
ABC+A-DVM 12.15250 12.08500 0.232509 11.84320 12.65390 ABC+A-DVM 0.00041 0.00000 0.00186 0.00000 0.00834 ABC+A-DVM -3.30687 -3.30687 0.00000 -3.30687 -3.30687
GBESTABC+A-DVM 12.28230 12.18300 0.32599 11.81830 13.12510 GBESTABC+A-DVM 0.00000 0.00000 0.00000 0.00000 0.00000 GBESTABC+A-DVM -3.30682 -3.30687 0.00022 -3.30687 -3.30588
GBESTBBC2+A-DVM 12.23630 12.21250 0.29413 11.82890 12.96570 GBESTABC2+A-DVM 0.00000 0.00000 0.00000 0.00000 1.43E-05 GBESTABC2+A-DVM -3.30687 -3.30687 0.00000 -3.30687 -3.30687
ABCXm1 12.7074 12.5568 0.759207 11.7718 14.6546 ABCXm1 0.013916 0.013824 0.01168 4.2e-05 0.047391 ABCXm1 -3.24238 -3.20814 0.070179 -3.30687 -3.06263
ABCXm1+A-DVM 12.8568 13.0618 0.570437 11.8139 14.1411 ABCXm1+A-DVM 0.012559 0.012324 0.010067 1.5e-05 0.037476 ABCXm1+A-DVM -3.26056 -3.30687 0.079556 -3.30687 -3.06263
ABCXm5 12.1119 11.9955 0.262208 11.77 12.7076 ABCXm5 0.000775 0.000684 0.000403 0.000213 0.002204 ABCXm5 -3.26755 -3.30687 0.068596 -3.30687 -3.06263
ABCXm5+A-DVM 12.0595 12.0312 0.195371 11.7971 12.5531 ABCXm5+A-DVM 0.000751 0.000633 0.000424 0.000207 0.002318 ABCXm5+A-DVM -3.297 -3.30687 0.029619 -3.30687 -3.20814

CrossLegTable DE -0.26326 -0.08477 0.37832 -1.00000 -0.00611 Rastrigin DE 0.54722 0.49748 0.60175 0.00000 1.98992 XinSheYang03 DE 0.00000 0.00000 0.00000 0.00000 0.00000
PSO -0.09723 -0.08283 0.21626 -1.00000 -0.00255 PSO 125.84700 126.20500 21.16520 88.1972 160.206 PSO 0.00000 0.00000 0.00000 0.00000 0.00000
EPSO -0.17534 -0.08477 0.28203 -1.00000 -0.07959 EPSO 45.76950 51.25510 23.05110 6.96471 99.49550 EPSO 0.00000 0.00000 0.00000 0.00000 0.00000
ABC -0.13062 -0.08493 0.20463 -1.00000 -0.08477 ABC 0.00000 0.00000 0.00000 0.00000 0.00000 ABC 0.00000 0.00000 0.00000 0.00000 0.00000
MABC -0.10630 -0.08477 0.09595 -0.51398 -0.08477 MABC 74.55290 75.18170 8.78129 50.39630 87.9141 MABC 0.00000 0.00000 0.00000 0.00000 0.00000
MABC+ADVM -0.084594 -0.084778 0.000587 -0.084933 -0.082837 MABC+ADVM 6.29867 6.04595 1.80949 2.15974 10.3941 MABC+ADVM 0.00000 0.00000 0.00000 0.00000 0.00000
GBESTABC -0.12994 -0.08477 0.20479 -1.00000 -0.07981 GBESTABC 0.00000 0.00000 0.00000 0.00000 0.00000 GBESTABC 0.00000 0.00000 0.00000 0.00000 0.00000
GBESTABC2 -0.08448 -0.08477 0.00071 -0.08477 -0.08283 GBESTABC2 0.00000 0.00000 0.00000 0.00000 0.00000 GBESTABC2 0.00000 0.00000 0.00000 0.00000 0.00000
ABC+A-DVM -0.13061 -0.08493 0.20463 -1.00000 -0.08477 ABC+A-DVM 0.00000 0.00000 0.00000 0.00000 0.00000 ABC+A-DVM 0.00000 0.00000 0.00000 0.00000 0.00000
GBESTABC+A-DVM -0.12355 -0.08477 0.20728 -1.00000 -0.00656 GBESTABC+A-DVM 0.00000 0.00000 0.00000 0.00000 0.00000 GBESTABC2+A-DVM 0.00000 0.00000 0.00000 0.00000 0.00000
GBESTABC2+A-DVM -0.13044 -0.08477 0.20467 -1.00000 -0.08283 GBESTABC2+A-DVM 0.00000 0.00000 0.00000 0.00000 0.00000 GBESTABC+A-DVM 0.00000 0.00000 0.00000 0.00000 0.00000
ABCXm1 -0.032665 -0.039932 0.022017 -0.063706 -0.004235 ABCXm1 0.598405 0.171957 0.709102 0.002089 2.10224 ABCXm1 0.00000 0.00000 0.00000 0.00000 0.00000
ABCXm1+A-DVM -0.028716 -0.041177 0.019874 -0.055539 -0.003221 ABCXm1+A-DVM 0.833917 0.824083 0.842761 0.004411 3.21893 ABCXm1+A-DVM 0.00000 0.00000 0.00000 0.00000 0.00000
ABCXm5 -0.049196 -0.006641 0.178485 -1.00000 -0.001788 ABCXm5 0.029805 0.028714 0.009302 0.014585 0.05643 ABCXm5 0.00000 0.00000 0.00000 0.00000 0.00000
ABCXm5+A-DVM -0.020866 -0.007002 0.031149 -0.084778 -0.000575 ABCXm5+A-DVM 0.034629 0.029712 0.017951 0.01176 0.091563 ABCXm5+A-DVM 0.00000 0.00000 0.00000 0.00000 0.00000
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Table 3.8: Results of the experiment for all problem instances

Problem Algorithm Mean Median Std. Dev Best Worst Problem Algorithm Mean Median Std. Dev Best Worst Problem Algorithm Mean Median Std. Dev Best Worst

CrownedCross DE 0.00173 0.00117 0.00347 0.00010 0.01635 Rosenbrock DE 32.86880 25.58250 24.11440 7.49392 86.07950 Whitley DE 0.01388 1.20E-05 0.01925 0.00000 0.03945
PSO 0.01609 0.00120 0.01884 0.00010 0.03909 PSO 163741 122694 107137 31992.8 449777 PSO 0.03286 0.03945 0.04100 0.00000 0.15783
EPSO 0.00108 0.00117 0.00033 0.00010 0.00125 EPSO 8.20397 8.59076 2.84563 3.16795 13.15980 EPSO 0.00591 0.00000 0.01445 0.00000 0.03945
ABC 0.00117 0.00010 0.00000 0.00117 0.00117 ABC 0.91220 0.15323 1.44928 0.01712 4.69119 ABC 0.00003 0.00000 0.00011 0.00000 0.00050
MABC 0.00113 0.00010 0.0002 0.00027 0.00117 MABC 44.68880 27.22880 29.94650 23.93810 112.734 MABC 0.00203 0.00000 0.00881 0.00000 0.03945
MABC+ADVM 0.001186 0.00118 3.1e-05 0.001177 0.001349 MABC+ADVM 13.5615 5.57401 21.179 0.055279 78.1312 MABC+ADVM 38.1889 20.0484 44.4305 1.03001 182.301
GBESTABC 0.00108 0.00010 0.00033 0.00010 0.00120 GBESTABC 1.70578 1.09851 1.85263 0.08547 6.11791 GBESTABC 0.00757 1.37E-05 0.01276 0.00000 0.03945
GBESTABC2 0.00118 0.00010 1.13E-05 0.00117 0.00120 GBESTABC2 3.18224 2.5852 2.93224 0.35930 13.16040 GBESTABC2 0.00236 0.00015 0.00852 0.00000 0.03845
ABC+A-DVM 0.00105 0.00010 0.00032 0.00010 0.00117 ABC+A-DVM 2.55989 1.04791 4.37552 0.02863 19.18300 ABC+A-DVM 0.00064 0.00000 0.00226 0.00000 0.01009
GBESTABC+A-DVM 0.00113 0.00010 0.00024 0.00010 0.00125 GBESTABC+A-DVM 3.46204 1.48614 4.40623 0.04360 13.87970 GBESTABC+A-DVM 0.00618 0.00000 0.01435 0.00000 0.03945
GBESTABC2+A-DVM 0.00118 0.00010 0.00000 0.00117 0.00120 GBESTABC2+A-DVM 4.55452 3.8697 3.73467 0.11879 14.8367 GBESTABC2+A-DVM 0.00062 0.00022 0.00095 0.00000 0.00379
ABCXm1 0.011439 0.002754 0.010681 0.001389 0.028141 ABCXm1 72.0576 82.1424 28.3858 7.44934 109.364 ABCXm1 85.0402 57.9288 67.5181 26.3005 270.85
ABCXm1+A-DVM 0.008005 0.002100 0.00942 0.001622 0.030850 ABCXm1+A-DVM 64.3322 77.9291 32.1162 2.19893 106.097 ABCXm1+A-DVM 62.608 44.1697 51.6055 15.8966 269.044
ABCXm5 0.018339 0.015057 0.01484 0.0001 0.055938 ABCXm5 22.21 19.2556 9.54515 9.69884 47.4673 ABCXm5 59.9045 58.6329 14.0889 38.66390 102.5700
ABCXm5+A-DVM 0.025878 0.014298 0.032853 0.00118 0.173876 ABCXm5+A-DVM 18.6672 14.0424 15.1627 5.32653 82.7050 ABCXm5+A-DVM 61.429 59.2038 15.6881 37.0757 100.947

Damavandi DE 2.00000 2.00000 0.00000 2.00000 2.00000 Schwefel06 DE 0.00000 0.00000 0.00000 0.00000 0.00000 Zimmerman DE 0.38522 0.69869 0.35633 0.00000 0.70133
PSO 2.00000 2.00000 0.00000 2.00000 2.00000 PSO 0.00000 0.00000 0.00000 0.00000 0.00000 PSO 715.1750 1300 663.34500 0.00000 1300.000
EPSO 1.90000 2.00000 0.44721 0.00000 2.00000 EPSO 0.00000 0.00000 0.00000 0.00000 0.00000 EPSO 0.17464 0.00000 0.31035 0.00000 0.69858
ABC 2.00000 2.00000 0.00000 2.00000 2.00000 ABC 0.17159 0.10386 0.17989 0.00056 0.59950 ABC 0.00037 0.00000 0.00126 0.00000 0.00569
MABC 2.00000 2.00000 0.00000 2.00000 2.00000 MABC 0.00000 0.00000 0.00000 0.00000 0.00000 MABC 0.00000 0.00000 0.00000 0.00000 0.00000
MABC+ADVM 1.61113 2.00000 0.778219 0.001555 2.00000 MABC+ADVM 0.123341 0.076095 0.180687 0.002949 0.767581 MABC+ADVM 0.000315 1.7e-05 0.001023 0.000000 0.005673
GBESTABC 1.76059 2.00000 0.60220 0.00611 2.00000 GBESTABC 0.13196 0.11892 0.08783 0.01193 0.28331 GBESTABC 0.10626 0.00053 0.25554 0.00000 0.69923
GBESTABC2 1.82772 2.00000 0.53654 0.02502 2.00000 GBESTABC2 0.13886 0.12197 0.10182 0.01223 0.42978 GBESTABC2 0.07062 0.00050 0.21487 5.96E-05 0.69904
ABC+A-DVM 1.80056 2.00000 0.61387 0.00258 2.00000 ABC+A-DVM 0.11728 0.04898 0.17793 0.00272 0.72679 ABC+A-DVM 0.00041 3.27E-05 0.00097 0.00000 0.00325
GBESTABC+A-DVM 1.81787 2.00000 0.56099 0.11335 2.00000 GBESTABC+A-DVM 0.09749 0.10197 0.04416 0.02492 0.16431 GBESTABC+A-DVM 0.10543 0.00035 0.25582 0.00000 0.69921
GBESTABC2+A-DVM 1.74073 2.00000 0.63782 0.00028 2.00000 GBESTABC2+A-DVM 0.14695 0.09799 0.12129 0.02657 0.46299 GBESTABC2+A-DVM 0.03531 0.00020 0.15612 1.40E-05 0.69862
ABCXm5 2.00000 2.00000 0.00000 2.00000 2.00000 ABCXm5 0.00000 0.00000 0.00000 0.00000 0.00000 ABCXm5 0.232862 0.00000 0.329315 0.00000 0.698586
ABCXm5+A-DVM 2.00000 2.00000 0.00000 2.00000 2.00000 ABCXm5+A-DVM 0.00000 0.00000 0.00000 0.00000 0.00000 ABCXm5+A-DVM 0.349292 0.349292 0.349292 0.00000 0.698586
ABCXm1 2.00000 2.00000 0.00000 2.00000 2.00000 ABCXm1 0.00000 0.00000 0.00000 0.00000 0.00000 ABCXm1 0.256146 0.00000 0.336642 0.00000 0.698581
ABCXm1+A-DVM 1.93333 2.00000 0.35901 0.00000 2.00000 ABCXm1+A-DVM 0.00000 0.00000 0.00000 0.00000 0.00000 ABCXm1+A-DVM 0.326004 0.00000 0.348513 0.00000 0.698581
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Bukin06 ABC-ES ABCx+A-DVM-m5 MABC ABC+A-DVM ABCx-m5 GBESTABC+A-DVM EPSO ABC ABCx-m1 GBESTABC GBESTABC2+A-DVM GBESTABC2 ABCx+A-DVM-m1 MABC+A-DVM

PSO 1.4323e-11 0.209922 1.48463e-08 0.000219796 0.128748 1.82244e-10 0.168608 0.000463291 0.173632 5.37741e-10 1.4323e-11 1.4323e-11 0.138314 1.48463e-08
ABC-ES - 1.50993e-11 5.13867e-07 3.87146e-10 1.50993e-11 6.23853e-05 1.47713e-11 4.0485e-10 1.50993e-11 2.22121e-07 0.0424998 0.018891 1.50993e-11 5.13867e-07
ABCx+A-DVM-m5 - - 2.76643e-08 0.000340655 0.449998 1.30493e-10 0.444124 4.89476e-05 0.214482 9.27889e-10 1.50993e-11 1.50993e-11 0.181611 2.76643e-08
MABC - - - 0.00251642 3.25914e-09 0.0328356 4.17254e-09 0.0025418 4.63014e-09 0.255296 2.5461e-08 1.00761e-08 2.28629e-09 0.18406
ABC+A-DVM - - - - 5.42735e-05 2.85674e-06 3.23538e-05 0.444024 0.000117432 4.43709e-05 2.66077e-10 8.46204e-11 0.000124434 0.00251642
ABCx-m5 - - - - - 9.7839e-11 0.46758 2.31892e-05 0.294726 3.05885e-10 1.50993e-11 1.50993e-11 0.255299 3.25914e-09
GBESTABC+A-DVM - - - - - - 1.05577e-10 3.14047e-06 1.18573e-10 0.135349 3.1414e-06 4.42055e-07 8.88454e-11 0.0328356
EPSO - - - - - - - 3.52994e-05 0.479356 3.2109e-10 1.47713e-11 1.47713e-11 0.392179 4.17254e-09
ABC - - - - - - - - 2.04147e-05 7.01841e-05 1.73612e-10 9.77827e-11 1.38593e-05 0.0025418
ABCx-m1 - - - - - - - - - 4.44312e-10 1.50993e-11 1.50993e-11 0.378099 4.63014e-09
GBESTABC - - - - - - - - - - 2.15438e-08 2.09022e-09 4.87515e-10 0.255296
GBESTABC2+A-DVM - - - - - - - - - - - 0.353086 1.50993e-11 2.5461e-08
GBESTABC2 - - - - - - - - - - - - 1.50993e-11 1.00761e-08
ABCx+A-DVM-m1 - - - - - - - - - - - - - 2.28629e-09

Cola ABC-ES ABCx+A-DVM-m5 MABC ABC+A-DVM ABCx-m5 GBESTABC+A-DVM EPSO ABC ABCx-m1 GBESTABC GBESTABC2+A-DVM GBESTABC2 ABCx+A-DVM-m1 MABC+A-DVM

PSO 1.50993e-11 1.50993e-11 1.50993e-11 1.50993e-11 1.50993e-11 1.50993e-11 1.50898e-11 1.50993e-11 1.50993e-11 1.50993e-11 1.50993e-11 1.50993e-11 1.50993e-11 1.50993e-11
ABC-ES - 0.264891 0.00278497 0.342161 0.19355 0.0481314 0.00348583 0.205955 0.000557128 0.0175683 0.185539 0.0511631 3.79957e-07 0.00278497
ABCx+A-DVM-m5 - - 0.00473413 0.467596 0.380914 0.066727 0.00515681 0.310202 0.00102617 0.0362228 0.432497 0.0481314 5.9684e-07 0.00473413
MABC - - - 0.0103404 0.0217918 0.218821 0.028728 0.0111801 0.038636 0.255299 0.0317663 0.185539 6.23853e-05 0.18406
ABC+A-DVM - - - - 0.38656 0.148636 0.00473364 0.432497 0.00151697 0.0789878 0.358594 0.103103 8.64516e-07 0.0103404
ABCx-m5 - - - - - 0.181611 0.00636544 0.432497 0.00201649 0.0789878 0.491154 0.155594 1.24566e-06 0.0217918
GBESTABC+A-DVM - - - - - - 0.0120775 0.103103 0.0103404 0.461721 0.201769 0.420901 2.98528e-05 0.218821
EPSO - - - - - - - 0.00538076 0.380913 0.0188897 0.00955536 0.00814166 0.409372 0.028728
ABC - - - - - - - - 0.00102617 0.0648351 0.497051 0.111286 1.24566e-06 0.0111801
ABCx-m1 - - - - - - - - - 0.0242067 0.00291408 0.00720609 0.181611 0.038636
GBESTABC - - - - - - - - - - 0.0978954 0.438317 7.03343e-05 0.255299
GBESTABC2+A-DVM - - - - - - - - - - - 0.170144 5.09384e-06 0.0317663
GBESTABC2 - - - - - - - - - - - - 1.13901e-05 0.185539
ABCx+A-DVM-m1 - - - - - - - - - - - - - 6.23853e-05

CrossLegTable ABC-ES ABCx+A-DVM-m5 MABC ABC+A-DVM ABCx-m5 GBESTABC+A-DVM EPSO ABC ABCx-m1 GBESTABC GBESTABC2+A-DVM GBESTABC2 ABCx+A-DVM-m1 MABC+A-DVM

PSO 1.88668e-10 6.15459e-05 0.00988418 8.29814e-06 0.000401945 0.0738762 0.125063 4.85361e-07 0.000186338 0.181179 0.0507516 0.055547 0.000186338 0.00988418
ABC-ES - 7.0328e-10 2.59815e-12 9.38541e-12 2.78175e-10 1.19757e-11 1.37041e-11 1.10665e-11 6.43181e-10 1.17704e-11 6.81594e-12 8.24062e-12 8.46924e-10 2.59815e-12
ABCx+A-DVM-m5 - - 6.66123e-11 3.34893e-11 0.432483 2.41841e-09 8.32168e-09 2.57089e-11 0.0611635 4.60855e-09 5.24118e-10 7.24385e-10 0.0768193 6.66123e-11
MABC - - - 2.00663e-05 8.45378e-10 0.175828 0.153162 2.20242e-07 2.60004e-12 0.0467708 0.146779 0.154137 2.60004e-12 0.18406
ABC+A-DVM - - - - 5.55389e-10 0.00258024 0.00551008 0.0612246 9.39154e-12 0.00014159 2.62516e-05 5.04706e-05 9.39154e-12 2.00663e-05
ABCx-m5 - - - - - 5.96732e-09 1.26859e-08 4.07016e-10 0.119918 9.61915e-09 2.85227e-09 3.41938e-09 0.132156 8.45378e-10
GBESTABC+A-DVM - - - - - - 0.308042 0.000411954 1.19833e-11 0.253375 0.396563 0.421904 1.19833e-11 0.175828
EPSO - - - - - - - 0.0012239 5.50656e-11 0.48183 0.276969 0.288925 4.10246e-11 0.153162
ABC - - - - - - - - 1.10736e-11 1.06775e-05 8.00576e-07 1.62891e-06 1.10736e-11 2.20242e-07
ABCx-m1 - - - - - - - - - 1.1778e-11 6.82052e-12 8.24607e-12 0.159152 2.60004e-12
GBESTABC - - - - - - - - - - 0.160971 0.176564 1.1778e-11 0.0467708
GBESTABC2+A-DVM - - - - - - - - - - - 0.4831 6.82052e-12 0.146779
GBESTABC2 - - - - - - - - - - - - 8.24607e-12 0.154137
ABCx+A-DVM-m1 - - - - - - - - - - - - - 2.60004e-12

CrownedCross ABC-ES ABCx+A-DVM-m5 MABC ABC+A-DVM ABCx-m5 GBESTABC+A-DVM EPSO ABC ABCx-m1 GBESTABC GBESTABC2+A-DVM GBESTABC2 ABCx+A-DVM-m1 MABC+A-DVM

PSO 1.88774e-10 6.15459e-05 0.00313874 2.16704e-05 0.000401945 0.0308299 0.125063 1.24881e-05 0.000186338 0.225414 0.0131181 0.156157 0.000186267 0.00313874
ABC-ES - 7.03648e-10 3.88432e-12 8.46104e-12 2.78328e-10 1.2895e-11 1.37128e-11 9.49637e-12 1.74856e-09 1.19987e-11 1.01877e-11 7.7844e-12 3.68616e-10 3.88432e-12
ABCx+A-DVM-m5 - - 7.59201e-11 3.5606e-11 0.432483 1.76096e-09 8.32168e-09 3.66889e-11 0.135336 5.53236e-09 5.39866e-10 1.61048e-09 0.0225627 7.59201e-11
MABC - - - 0.00272637 1.01263e-09 0.391053 0.108087 0.00110036 3.88432e-12 0.0149546 0.414888 0.00657923 3.87885e-12 0.18406
ABC+A-DVM - - - - 5.93316e-10 0.0257818 0.00865908 0.338518 8.46104e-12 8.60446e-05 0.0107089 7.74196e-06 8.44989e-12 0.00272637
ABCx-m5 - - - - - 7.12191e-09 1.26859e-08 6.34878e-10 0.27961 1.49781e-08 3.31439e-09 6.25234e-09 0.0374054 1.01263e-09
GBESTABC+A-DVM - - - - - - 0.273051 0.0170544 1.2895e-11 0.119454 0.432415 0.141106 1.28786e-11 0.391053
EPSO - - - - - - - 0.0072814 6.07163e-11 0.375122 0.173769 0.5 8.94474e-11 0.108087
ABC - - - - - - - - 9.49637e-12 4.65081e-05 0.00577667 3.90672e-06 9.48398e-12 0.00110036
ABCx-m1 - - - - - - - - - 1.19987e-11 1.01877e-11 7.7844e-12 0.00636482 3.88432e-12
GBESTABC - - - - - - - - - - 0.0472774 0.351055 1.19833e-11 0.0149546
GBESTABC2+A-DVM - - - - - - - - - - - 0.0482569 1.01745e-11 0.414888
GBESTABC2 - - - - - - - - - - - - 7.77407e-12 0.00657923
ABCx+A-DVM-m1 - - - - - - - - - - - - - 3.87885e-12

Table 3.9: Pairwise U-test analysis from Bukin06 to Crowned Cross functions
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Damavandi ABC-ES ABCx+A-DVM-m5 MABC ABC+A-DVM ABCx-m5 GBESTABC+A-DVM EPSO ABC ABCx-m1 GBESTABC GBESTABC2+A-DVM GBESTABC2 ABCx+A-DVM-m1 MABC+A-DVM

PSO 5.82529e-14 0.18406 0.00551754 0.00551754 0.18406 0.0804011 0.0054458 0.0804011 0.18406 0.166855 0.0407615 0.0407615 0.166855 0.00551754
ABC-ES - 5.82529e-14 7.92983e-13 7.92983e-13 5.82529e-14 1.63123e-13 1.23252e-09 1.63123e-13 5.82529e-14 9.97923e-14 2.55617e-13 2.55617e-13 4.01815e-13 7.92983e-13
ABCx+A-DVM-m5 - - 0.00551754 0.00551754 0.18406 0.0804011 0.0054458 0.0804011 0.18406 0.166855 0.0407615 0.0407615 0.166855 0.00551754
MABC - - - 0.453671 0.00551754 0.0903332 0.355428 0.0682646 0.00551754 0.0289726 0.119396 0.199101 0.0289726 0.18406
ABC+A-DVM - - - - 0.00551754 0.0903332 0.355428 0.0650302 0.00551754 0.0289726 0.119396 0.199101 0.0289726 0.453671
ABCx-m5 - - - - - 0.0804011 0.0054458 0.0804011 0.18406 0.166855 0.0407615 0.0407615 0.166855 0.00551754
GBESTABC+A-DVM - - - - - - 0.0503713 0.47955 0.0804011 0.298595 0.361414 0.29469 0.298595 0.0903332
EPSO - - - - - - - 0.0503713 0.0054458 0.0197735 0.101188 0.101188 0.0238162 0.355428
ABC - - - - - - - - 0.0804011 0.298595 0.349924 0.29469 0.298595 0.0682646
ABCx-m1 - - - - - - - - - 0.166855 0.0407615 0.0407615 0.166855 0.00551754
GBESTABC - - - - - - - - - - 0.169209 0.152523 0.5 0.0289726
GBESTABC2+A-DVM - - - - - - - - - - - 0.454781 0.169209 0.119396
GBESTABC2 - - - - - - - - - - - - 0.169209 0.199101
ABCx+A-DVM-m1 - - - - - - - - - - - - - 0.0289726

DeVilliersGlasser02 ABC-ES ABCx+A-DVM-m5 MABC ABC+A-DVM ABCx-m5 GBESTABC+A-DVM EPSO ABC ABCx-m1 GBESTABC GBESTABC2+A-DVM GBESTABC2 ABCx+A-DVM-m1 MABC+A-DVM

PSO 1.50993e-11 1.50993e-11 1.50993e-11 6.0589e-13 1.50993e-11 8.60126e-13 1.66919e-11 6.0589e-13 1.50993e-11 6.0589e-13 6.0589e-13 6.0589e-13 1.50993e-11 1.50993e-11
ABC-ES - 4.87775e-10 1.50993e-11 6.0589e-13 2.09984e-10 8.60126e-13 1.50993e-11 6.0589e-13 0.0151587 6.0589e-13 6.0589e-13 6.0589e-13 0.152088 1.50993e-11
ABCx+A-DVM-m5 - - 1.50993e-11 6.0589e-13 0.245891 8.60126e-13 1.50993e-11 6.0589e-13 3.82939e-05 6.0589e-13 6.0589e-13 6.0589e-13 2.05888e-06 1.50993e-11
MABC - - - 6.0589e-13 1.50993e-11 8.60126e-13 5.46835e-11 6.0589e-13 1.50993e-11 6.0589e-13 6.0589e-13 6.0589e-13 2.48758e-11 0.18406
ABC+A-DVM - - - - 6.0589e-13 0.166855 6.0589e-13 0.18406 6.0589e-13 0.18406 0.18406 0.18406 6.0589e-13 6.0589e-13
ABCx-m5 - - - - - 8.60126e-13 1.50993e-11 6.0589e-13 2.6325e-05 6.0589e-13 6.0589e-13 6.0589e-13 1.66208e-06 1.50993e-11
GBESTABC+A-DVM - - - - - - 8.60126e-13 0.166855 1.2055e-12 0.166855 0.166855 0.166855 1.07747e-12 8.60126e-13
EPSO - - - - - - - 6.0589e-13 1.50993e-11 6.0589e-13 6.0589e-13 6.0589e-13 1.50993e-11 5.46835e-11
ABC - - - - - - - - 6.0589e-13 0.18406 0.18406 0.18406 6.0589e-13 6.0589e-13
ABCx-m1 - - - - - - - - - 6.0589e-13 6.0589e-13 6.0589e-13 0.189518 1.50993e-11
GBESTABC - - - - - - - - - - 0.18406 0.18406 6.0589e-13 6.0589e-13
GBESTABC2+A-DVM - - - - - - - - - - - 0.18406 6.0589e-13 6.0589e-13
GBESTABC2 - - - - - - - - - - - - 6.0589e-13 6.0589e-13
ABCx+A-DVM-m1 - - - - - - - - - - - - - 2.48758e-11

Griewank ABC-ES ABCx+A-DVM-m5 MABC ABC+A-DVM ABCx-m5 GBESTABC+A-DVM EPSO ABC ABCx-m1 GBESTABC GBESTABC2+A-DVM GBESTABC2 ABCx+A-DVM-m1 MABC+A-DVM

PSO 1.19833e-11 1.50993e-11 1.50709e-11 6.0589e-13 1.50898e-11 6.0589e-13 1.18284e-12 8.60126e-13 1.50993e-11 8.60126e-13 6.0589e-13 1.18192e-12 1.50898e-11 1.50709e-11
ABC-ES - 5.81883e-10 0.00772719 1.10591e-06 4.39882e-10 1.10591e-06 0.000100603 1.25899e-05 1.05827e-10 3.93803e-06 1.10591e-06 7.56738e-06 2.50191e-10 0.00772719
ABCx+A-DVM-m5 - - 0.000601919 6.0589e-13 0.41801 6.0589e-13 6.19215e-10 2.28091e-11 1.73883e-05 8.60126e-13 6.0589e-13 1.18192e-12 5.4519e-06 0.000601919
MABC - - - 8.27367e-12 0.000528437 8.27367e-12 5.04433e-09 2.27682e-10 1.38985e-07 3.32294e-11 8.27367e-12 2.55281e-11 3.01539e-07 0.18406
ABC+A-DVM - - - - 6.05396e-13 0.18406 0.0804011 0.166855 6.0589e-13 0.166855 0.18406 0.080371 6.05396e-13 8.27367e-12
ABCx-m5 - - - - - 6.05396e-13 6.18852e-10 2.27933e-11 2.89174e-05 8.59442e-13 6.05396e-13 1.181e-12 7.14526e-06 0.000528437
GBESTABC+A-DVM - - - - - - 0.0804011 0.166855 6.0589e-13 0.166855 0.18406 0.080371 6.05396e-13 8.27367e-12
EPSO - - - - - - - 0.272013 3.44112e-10 0.272013 0.0804011 0.479548 3.79508e-10 5.04433e-09
ABC - - - - - - - - 3.27579e-12 0.5 0.166855 0.298577 4.54799e-12 2.27682e-10
ABCx-m1 - - - - - - - - - 8.60126e-13 6.0589e-13 1.18192e-12 0.353084 1.38985e-07
GBESTABC - - - - - - - - - - 0.166855 0.298577 8.59442e-13 3.32294e-11
GBESTABC2+A-DVM - - - - - - - - - - - 0.080371 6.05396e-13 8.27367e-12
GBESTABC2 - - - - - - - - - - - - 1.181e-12 2.55281e-11
ABCx+A-DVM-m1 - - - - - - - - - - - - - 3.01539e-07

Rastrigin ABC-ES ABCx+A-DVM-m5 MABC ABC+A-DVM ABCx-m5 GBESTABC+A-DVM EPSO ABC ABCx-m1 GBESTABC GBESTABC2+A-DVM GBESTABC2 ABCx+A-DVM-m1 MABC+A-DVM

PSO 1.50993e-11 1.50993e-11 1.50993e-11 6.0589e-13 1.50993e-11 8.60126e-13 1.66919e-11 6.0589e-13 1.50993e-11 6.0589e-13 6.0589e-13 6.0589e-13 1.50993e-11 1.50993e-11
ABC-ES - 4.87775e-10 1.50993e-11 6.0589e-13 2.09984e-10 8.60126e-13 1.50993e-11 6.0589e-13 0.0151587 6.0589e-13 6.0589e-13 6.0589e-13 0.152088 1.50993e-11
ABCx+A-DVM-m5 - - 1.50993e-11 6.0589e-13 0.245891 8.60126e-13 1.50993e-11 6.0589e-13 3.82939e-05 6.0589e-13 6.0589e-13 6.0589e-13 2.05888e-06 1.50993e-11
MABC - - - 6.0589e-13 1.50993e-11 8.60126e-13 5.46835e-11 6.0589e-13 1.50993e-11 6.0589e-13 6.0589e-13 6.0589e-13 2.48758e-11 0.18406
ABC+A-DVM - - - - 6.0589e-13 0.166855 6.0589e-13 0.18406 6.0589e-13 0.18406 0.18406 0.18406 6.0589e-13 6.0589e-13
ABCx-m5 - - - - - 8.60126e-13 1.50993e-11 6.0589e-13 2.6325e-05 6.0589e-13 6.0589e-13 6.0589e-13 1.66208e-06 1.50993e-11
GBESTABC+A-DVM - - - - - - 8.60126e-13 0.166855 1.2055e-12 0.166855 0.166855 0.166855 1.07747e-12 8.60126e-13
EPSO - - - - - - - 6.0589e-13 1.50993e-11 6.0589e-13 6.0589e-13 6.0589e-13 1.50993e-11 5.46835e-11
ABC - - - - - - - - 6.0589e-13 0.18406 0.18406 0.18406 6.0589e-13 6.0589e-13
ABCx-m1 - - - - - - - - - 6.0589e-13 6.0589e-13 6.0589e-13 0.189518 1.50993e-11
GBESTABC - - - - - - - - - - 0.18406 0.18406 6.0589e-13 6.0589e-13
GBESTABC2+A-DVM - - - - - - - - - - - 0.18406 6.0589e-13 6.0589e-13
GBESTABC2 - - - - - - - - - - - - 6.0589e-13 6.0589e-13
ABCx+A-DVM-m1 - - - - - - - - - - - - - 2.48758e-11

Table 3.10: Pairwise U-test analysis from Damavandi to Rastrigin functions
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Rosenbrock ABC-ES ABCx+A-DVM-m5 MABC ABC+A-DVM ABCx-m5 GBESTABC+A-DVM EPSO ABC ABCx-m1 GBESTABC GBESTABC2+A-DVM GBESTABC2 ABCx+A-DVM-m1 MABC+A-DVM

PSO 1.50993e-11 1.50993e-11 1.50993e-11 6.0589e-13 1.50993e-11 8.60126e-13 1.66919e-11 6.0589e-13 1.50993e-11 6.0589e-13 6.0589e-13 6.0589e-13 1.50993e-11 1.50993e-11
ABC-ES - 4.87775e-10 1.50993e-11 6.0589e-13 2.09984e-10 8.60126e-13 1.50993e-11 6.0589e-13 0.0151587 6.0589e-13 6.0589e-13 6.0589e-13 0.152088 1.50993e-11
ABCx+A-DVM-m5 - - 1.50993e-11 6.0589e-13 0.245891 8.60126e-13 1.50993e-11 6.0589e-13 3.82939e-05 6.0589e-13 6.0589e-13 6.0589e-13 2.05888e-06 1.50993e-11
MABC - - - 6.0589e-13 1.50993e-11 8.60126e-13 5.46835e-11 6.0589e-13 1.50993e-11 6.0589e-13 6.0589e-13 6.0589e-13 2.48758e-11 0.18406
ABC+A-DVM - - - - 6.0589e-13 0.166855 6.0589e-13 0.18406 6.0589e-13 0.18406 0.18406 0.18406 6.0589e-13 6.0589e-13
ABCx-m5 - - - - - 8.60126e-13 1.50993e-11 6.0589e-13 2.6325e-05 6.0589e-13 6.0589e-13 6.0589e-13 1.66208e-06 1.50993e-11
GBESTABC+A-DVM - - - - - - 8.60126e-13 0.166855 1.2055e-12 0.166855 0.166855 0.166855 1.07747e-12 8.60126e-13
EPSO - - - - - - - 6.0589e-13 1.50993e-11 6.0589e-13 6.0589e-13 6.0589e-13 1.50993e-11 5.46835e-11
ABC - - - - - - - - 6.0589e-13 0.18406 0.18406 0.18406 6.0589e-13 6.0589e-13
ABCx-m1 - - - - - - - - - 6.0589e-13 6.0589e-13 6.0589e-13 0.189518 1.50993e-11
GBESTABC - - - - - - - - - - 0.18406 0.18406 6.0589e-13 6.0589e-13
GBESTABC2+A-DVM - - - - - - - - - - - 0.18406 6.0589e-13 6.0589e-13
GBESTABC2 - - - - - - - - - - - - 6.0589e-13 6.0589e-13
ABCx+A-DVM-m1 - - - - - - - - - - - - - 2.48758e-11

Schwefel06 ABC-ES ABCx+A-DVM-m5 MABC ABC+A-DVM ABCx-m5 GBESTABC+A-DVM EPSO ABC ABCx-m1 GBESTABC GBESTABC2+A-DVM GBESTABC2 ABCx+A-DVM-m1 MABC+A-DVM

PSO 0.0013875 6.90317e-12 6.0589e-13 6.0589e-13 2.1558e-11 8.27367e-12 0.18406 6.0589e-13 0.18406 9.6525e-11 6.05396e-13 6.0589e-13 0.18406 6.0589e-13
ABC-ES - 1.46217e-07 4.66114e-12 4.66114e-12 1.83084e-06 1.75567e-10 0.0013875 4.66114e-12 0.0013875 7.12005e-09 4.65791e-12 4.66114e-12 0.0013875 4.66114e-12
ABCx+A-DVM-m5 - - 1.29772e-11 1.29772e-11 0.120463 8.41872e-08 6.90317e-12 1.29772e-11 6.90317e-12 1.50954e-05 1.2969e-11 1.29772e-11 6.90317e-12 1.29772e-11
MABC - - - 0.100474 1.17328e-11 1.50709e-11 6.0589e-13 0.0496288 6.0589e-13 1.49767e-11 3.05885e-10 1.59837e-09 6.0589e-13 0.18406
ABC+A-DVM - - - - 1.17328e-11 1.50709e-11 6.0589e-13 0.294726 6.0589e-13 1.6557e-11 1.53985e-08 5.78327e-08 6.0589e-13 0.100474
ABCx-m5 - - - - - 1.57018e-08 2.1558e-11 1.17328e-11 2.1558e-11 3.47585e-06 1.17253e-11 1.17328e-11 2.1558e-11 1.17328e-11
GBESTABC+A-DVM - - - - - - 8.27367e-12 1.84143e-11 8.27367e-12 0.160786 2.41277e-10 2.248e-11 8.27367e-12 1.50709e-11
EPSO - - - - - - - 6.0589e-13 0.18406 9.6525e-11 6.05396e-13 6.0589e-13 0.18406 6.0589e-13
ABC - - - - - - - - 6.0589e-13 2.7253e-11 1.01375e-07 7.45902e-07 6.0589e-13 0.0496288
ABCx-m1 - - - - - - - - - 9.6525e-11 6.05396e-13 6.0589e-13 0.18406 6.0589e-13
GBESTABC - - - - - - - - - - 5.82549e-10 1.0692e-10 9.6525e-11 1.49767e-11
GBESTABC2+A-DVM - - - - - - - - - - - 0.17966 6.05396e-13 3.05885e-10
GBESTABC2 - - - - - - - - - - - - 6.0589e-13 1.59837e-09
ABCx+A-DVM-m1 - - - - - - - - - - - - - 6.0589e-13

SineEnvelope ABC-ES ABCx+A-DVM-m5 MABC ABC+A-DVM ABCx-m5 GBESTABC+A-DVM EPSO ABC ABCx-m1 GBESTABC GBESTABC2+A-DVM GBESTABC2 ABCx+A-DVM-m1 MABC+A-DVM

PSO 1.50993e-11 1.50993e-11 1.50993e-11 1.50993e-11 1.50993e-11 1.50993e-11 3.69454e-11 1.50993e-11 1.50993e-11 1.50993e-11 1.50993e-11 1.50993e-11 1.50993e-11 1.50993e-11
ABC-ES - 3.06052e-10 1.07702e-06 1.66919e-11 3.06052e-10 1.50993e-11 1.50993e-11 1.50993e-11 3.26307e-07 1.50993e-11 1.50993e-11 1.50993e-11 2.4713e-05 1.07702e-06
ABCx+A-DVM-m5 - - 2.03858e-11 1.09737e-08 0.380914 5.46835e-11 1.50993e-11 1.11363e-09 0.461721 8.06613e-11 4.07637e-11 1.30493e-10 0.12594 2.03858e-11
MABC - - - 1.50993e-11 2.48758e-11 1.50993e-11 1.50993e-11 1.50993e-11 1.57944e-10 1.50993e-11 1.50993e-11 1.50993e-11 1.91245e-09 0.18406
ABC+A-DVM - - - - 7.79038e-09 0.00348622 1.50993e-11 0.369699 5.45343e-06 0.00131214 0.210193 0.173914 1.09794e-07 1.50993e-11
ABCx-m5 - - - - - 4.95931e-11 1.50993e-11 9.28367e-10 0.479366 5.46835e-11 5.46835e-11 1.57944e-10 0.132163 2.48758e-11
GBESTABC+A-DVM - - - - - - 1.50993e-11 0.00434219 2.34282e-08 0.467596 0.00348622 0.0362228 4.87775e-10 1.50993e-11
EPSO - - - - - - - 1.50993e-11 1.50993e-11 1.50993e-11 1.50993e-11 1.50993e-11 1.50993e-11 1.50993e-11
ABC - - - - - - - - 3.36811e-06 0.00211296 0.342161 0.274663 2.5461e-08 1.50993e-11
ABCx-m1 - - - - - - - - - 1.19487e-08 5.13867e-07 3.52149e-07 0.159152 1.57944e-10
GBESTABC - - - - - - - - - - 0.00159148 0.0146027 5.35089e-10 1.50993e-11
GBESTABC2+A-DVM - - - - - - - - - - - 0.420901 3.25914e-09 1.50993e-11
GBESTABC2 - - - - - - - - - - - - 6.55552e-09 1.50993e-11
ABCx+A-DVM-m1 - - - - - - - - - - - - - 1.91245e-09

Trefethen ABC-ES ABCx+A-DVM-m5 MABC ABC+A-DVM ABCx-m5 GBESTABC+A-DVM EPSO ABC ABCx-m1 GBESTABC GBESTABC2+A-DVM GBESTABC2 ABCx+A-DVM-m1 MABC+A-DVM

PSO 1.68597e-07 4.4196e-06 1.68597e-07 1.68597e-07 0.000911263 0.0473405 0.000372173 1.68597e-07 0.0207284 0.0280822 1.68597e-07 1.68597e-07 0.00163145 1.68597e-07
ABC-ES - 0.0407021 0.18406 0.18406 0.000669594 3.19329e-05 0.00136379 0.18406 2.23578e-06 3.17451e-05 0.18406 0.18406 0.000678539 0.18406
ABCx+A-DVM-m5 - - 0.0407021 0.0407021 0.0246025 0.00104272 0.0471179 0.0407021 0.000149753 0.00135916 0.0407021 0.0407021 0.0213792 0.0407021
MABC - - - 0.18406 0.000669594 3.19329e-05 0.00136379 0.18406 2.23578e-06 3.17451e-05 0.18406 0.18406 0.000678539 0.18406
ABC+A-DVM - - - - 0.000669594 3.19329e-05 0.00136379 0.18406 2.23578e-06 3.17451e-05 0.18406 0.18406 0.000678539 0.18406
ABCx-m5 - - - - - 0.0749114 0.374724 0.000669594 0.0438242 0.109604 0.000669594 0.000669594 0.445246 0.000669594
GBESTABC+A-DVM - - - - - - 0.0450536 3.19329e-05 0.474152 0.411891 3.19329e-05 3.19329e-05 0.0982305 3.19329e-05
EPSO - - - - - - - 0.00136379 0.0184559 0.0623302 0.00136379 0.00136379 0.326643 0.00136379
ABC - - - - - - - - 2.23578e-06 3.17451e-05 0.18406 0.18406 0.000678539 0.18406
ABCx-m1 - - - - - - - - - 0.375015 2.23578e-06 2.23578e-06 0.0753994 2.23578e-06
GBESTABC - - - - - - - - - - 3.17451e-05 3.17451e-05 0.144437 3.17451e-05
GBESTABC2+A-DVM - - - - - - - - - - - 0.18406 0.000678539 0.18406
GBESTABC2 - - - - - - - - - - - - 0.000678539 0.18406
ABCx+A-DVM-m1 - - - - - - - - - - - - - 0.000678539

Table 3.11: Pairwise U-test analysis from Rosenbrock to Trefethen functions
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Whitley ABC-ES ABCx+A-DVM-m5 MABC ABC+A-DVM ABCx-m5 GBESTABC+A-DVM EPSO ABC ABCx-m1 GBESTABC GBESTABC2+A-DVM GBESTABC2 ABCx+A-DVM-m1 MABC+A-DVM

PSO 1.50993e-11 1.50993e-11 1.50993e-11 1.50993e-11 1.50993e-11 1.50993e-11 1.50993e-11 1.50993e-11 1.50993e-11 1.50993e-11 1.50993e-11 1.50993e-11 1.50993e-11 1.50993e-11
ABC-ES - 7.14708e-09 2.34282e-08 4.24239e-09 2.09125e-09 2.04198e-05 1.50993e-11 2.53616e-10 0.000405999 1.59837e-09 3.88627e-09 4.42055e-07 3.1414e-06 2.34282e-08
ABCx+A-DVM-m5 - - 2.98528e-05 4.60563e-05 0.397923 0.000199405 1.50993e-11 2.17654e-05 0.467596 2.21025e-06 1.90263e-07 0.000119424 0.00720609 2.98528e-05
MABC - - - 0.299845 2.4713e-05 0.205955 1.50993e-11 0.331367 7.92305e-05 0.105781 0.201769 0.116994 0.00515734 0.18406
ABC+A-DVM - - - - 6.62476e-05 0.369699 1.50993e-11 0.485258 1.68407e-05 0.205955 0.497051 0.210193 0.000249091 0.299845
ABCx-m5 - - - - - 0.000199405 1.50993e-11 3.17802e-05 0.409373 2.73102e-06 1.62777e-07 0.000126529 0.00538131 2.4713e-05
GBESTABC+A-DVM - - - - - - 1.50993e-11 0.39223 4.89586e-05 0.315438 0.218821 0.245891 0.000168395 0.205955
EPSO - - - - - - - 1.50993e-11 1.50993e-11 1.50993e-11 1.50993e-11 1.50993e-11 1.50993e-11 1.50993e-11
ABC - - - - - - - - 1.68407e-05 0.22321 0.485258 0.236673 0.000883282 0.331367
ABCx-m1 - - - - - - - - - 2.21025e-06 2.59284e-07 1.29868e-05 0.0328356 7.92305e-05
GBESTABC - - - - - - - - - - 0.145236 0.479366 2.98528e-05 0.105781
GBESTABC2+A-DVM - - - - - - - - - - - 0.0953652 7.14918e-06 0.201769
GBESTABC2 - - - - - - - - - - - - 3.59939e-05 0.116994
ABCx+A-DVM-m1 - - - - - - - - - - - - - 0.00515734

XinSheYang06 ABC-ES ABCx+A-DVM-m5 MABC ABC+A-DVM ABCx-m5 GBESTABC+A-DVM EPSO ABC ABCx-m1 GBESTABC GBESTABC2+A-DVM GBESTABC2 ABCx+A-DVM-m1 MABC+A-DVM

PSO 0.0407021 0.18406 0.18406 0.18406 0.18406 0.18406 0.18406 0.18406 0.18406 0.18406 0.18406 0.18406 0.18406 0.18406
ABC-ES - 0.0407021 0.0407021 0.0407021 0.0407021 0.0407021 0.0407021 0.0407021 0.0407021 0.0407021 0.0407021 0.0407021 0.0407021 0.0407021
ABCx+A-DVM-m5 - - 0.18406 0.18406 0.18406 0.18406 0.18406 0.18406 0.18406 0.18406 0.18406 0.18406 0.18406 0.18406
MABC - - - 0.18406 0.18406 0.18406 0.18406 0.18406 0.18406 0.18406 0.18406 0.18406 0.18406 0.18406
ABC+A-DVM - - - - 0.18406 0.18406 0.18406 0.18406 0.18406 0.18406 0.18406 0.18406 0.18406 0.18406
ABCx-m5 - - - - - 0.18406 0.18406 0.18406 0.18406 0.18406 0.18406 0.18406 0.18406 0.18406
GBESTABC+A-DVM - - - - - - 0.18406 0.18406 0.18406 0.18406 0.18406 0.18406 0.18406 0.18406
EPSO - - - - - - - 0.18406 0.18406 0.18406 0.18406 0.18406 0.18406 0.18406
ABC - - - - - - - - 0.18406 0.18406 0.18406 0.18406 0.18406 0.18406
ABCx-m1 - - - - - - - - - 0.18406 0.18406 0.18406 0.18406 0.18406
GBESTABC - - - - - - - - - - 0.18406 0.18406 0.18406 0.18406
GBESTABC2+A-DVM - - - - - - - - - - - 0.18406 0.18406 0.18406
GBESTABC2 - - - - - - - - - - - - 0.18406 0.18406
ABCx+A-DVM-m1 - - - - - - - - - - - - - 0.18406

Zimmerman ABC-ES ABCx+A-DVM-m5 MABC ABC+A-DVM ABCx-m5 GBESTABC+A-DVM EPSO ABC ABCx-m1 GBESTABC GBESTABC2+A-DVM GBESTABC2 ABCx+A-DVM-m1 MABC+A-DVM

PSO 4.56246e-06 0.00191853 0.00145742 0.000903768 0.000513593 0.00646495 0.000540484 0.000903629 3.68175e-05 0.00340867 0.00765646 0.00866069 0.000138162 0.00145742
ABC-ES - 0.000804015 0.000273693 0.000898623 0.0053294 4.97132e-06 0.0314519 0.000898472 0.218961 3.50841e-05 1.51208e-06 9.64117e-07 0.0840264 0.000273693
ABCx+A-DVM-m5 - - 0.267523 0.204729 0.252784 0.0178275 0.0427109 0.211192 0.00320394 0.0260143 0.0955879 0.063022 0.0120503 0.267523
MABC - - - 0.34173 0.104913 0.0273778 0.192421 0.389072 0.106618 0.0348831 0.0217261 0.00258444 0.490923 0.18406
ABC+A-DVM - - - - 0.152641 0.0291895 0.138743 0.467464 0.167898 0.0351092 0.0833004 0.00778878 0.394688 0.34173
ABCx-m5 - - - - - 0.00192754 0.367506 0.142265 0.0583064 0.00441018 0.00110716 0.000649672 0.179864 0.104913
GBESTABC+A-DVM - - - - - - 0.0183738 0.0296956 0.000427548 0.400006 0.40357 0.426642 0.00336902 0.0273778
EPSO - - - - - - - 0.138739 0.0863635 0.0369074 0.186093 0.131925 0.268265 0.192421
ABC - - - - - - - - 0.167895 0.0351072 0.0756454 0.00633942 0.394687 0.389072
ABCx-m1 - - - - - - - - - 0.00162872 0.00258724 0.00152962 0.220545 0.106618
GBESTABC - - - - - - - - - - 0.423662 0.449913 0.00883817 0.0348831
GBESTABC2+A-DVM - - - - - - - - - - - 0.107119 0.0440778 0.0217261
GBESTABC2 - - - - - - - - - - - - 0.0277135 0.00258444
ABCx+A-DVM-m1 - - - - - - - - - - - - - 0.490923

Table 3.12: Pairwise U-test analysis from Whitley to Zimmerman functions
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Griewank GBESTABC GBESTABC+A-DVM ABC+A-DVM ABC ABCX-m1+A-DVM ABCX-m5+A-DVM MABC+A-DVM GBESTABC2+A-DVM MABC ABCx-m1 ABCx-m5 ABC-ES

GBESTABC2 3.69014e-10 1.0772e-10 1.50993e-11 1.50993e-11 1.50993e-11 1.50993e-11 1.50993e-11 0.170144 1.50993e-11 1.50993e-11 1.50993e-11 0.0811875
GBESTABC - 0.409373 1.50993e-11 1.50993e-11 1.50993e-11 1.50993e-11 1.50993e-11 6.43519e-10 1.50993e-11 1.50993e-11 1.50993e-11 0.0169371
GBESTABC+A-DVM - - 1.50993e-11 1.50993e-11 1.50993e-11 1.50993e-11 1.50993e-11 4.05068e-10 1.50993e-11 1.50993e-11 1.50993e-11 0.0233779
ABC+A-DVM - - - 0.122907 1.50993e-11 5.52886e-05 1.50993e-11 1.50993e-11 1.50993e-11 1.50993e-11 7.92305e-05 0.236673
ABC - - - - 1.50993e-11 0.00254211 1.50993e-11 1.84486e-11 1.50993e-11 1.50993e-11 0.00610597 0.210193
ABCX-m1+A-DVM - - - - - 1.50993e-11 1.50993e-11 1.50993e-11 1.50993e-11 0.497051 1.50993e-11 1.50993e-11
ABCX-m5+A-DVM - - - - - - 1.50993e-11 1.50993e-11 1.50993e-11 1.50993e-11 0.39223 0.122907
MABC+A-DVM - - - - - - - 1.50993e-11 0.18406 1.50993e-11 1.50993e-11 0.00201649
GBESTABC2+A-DVM - - - - - - - - 1.50993e-11 1.50993e-11 1.50993e-11 0.0928834
MABC - - - - - - - - - 1.50993e-11 1.50993e-11 0.00201649
ABCx-m1 - - - - - - - - - - 1.50993e-11 1.50993e-11
ABCx-m5 - - - - - - - - - - - 0.132163

Rastrigin GBESTABC GBESTABC+A-DVM ABC+A-DVM ABC ABCX-m1+A-DVM ABCX-m5+A-DVM MABC+A-DVM GBESTABC2+A-DVM MABC ABCx-m1 ABCx-m5 ABC-ES

GBESTABC2 8.64516e-07 1.24566e-06 2.22202e-07 8.64516e-07 1.50993e-11 1.50993e-11 1.50993e-11 0.085725 1.50993e-11 1.50993e-11 1.50993e-11 0.491154
GBESTABC - 0.38656 3.36098e-10 2.30796e-10 1.50993e-11 1.50993e-11 1.50993e-11 7.79038e-09 1.50993e-11 1.50993e-11 1.50993e-11 0.426691
GBESTABC+A-DVM - - 1.43579e-10 1.0772e-10 1.50993e-11 1.50993e-11 1.50993e-11 7.79038e-09 1.50993e-11 1.50993e-11 1.50993e-11 0.38656
ABC+A-DVM - - - 0.241258 1.50993e-11 4.4455e-10 1.50993e-11 5.5386e-07 1.50993e-11 1.50993e-11 2.48758e-11 0.250572
ABC - - - - 1.50993e-11 1.11363e-09 1.50993e-11 5.45343e-06 1.50993e-11 1.50993e-11 3.34776e-11 0.260072
ABCX-m1+A-DVM - - - - - 1.50993e-11 1.50993e-11 1.50993e-11 1.50993e-11 0.19355 1.50993e-11 1.50993e-11
ABCX-m5+A-DVM - - - - - - 1.50993e-11 1.50993e-11 1.50993e-11 1.50993e-11 0.0362228 0.0481314
MABC+A-DVM - - - - - - - 1.50993e-11 0.18406 1.50993e-11 1.50993e-11 1.79617e-05
GBESTABC2+A-DVM - - - - - - - - 1.50993e-11 1.50993e-11 1.50993e-11 0.479366
MABC - - - - - - - - - 1.50993e-11 1.50993e-11 1.79617e-05
ABCx-m1 - - - - - - - - - - 1.50993e-11 1.50993e-11
ABCx-m5 - - - - - - - - - - - 0.0374135

Rosenbrock GBESTABC GBESTABC+A-DVM ABC+A-DVM ABC ABCX-m1+A-DVM ABCX-m5+A-DVM MABC+A-DVM GBESTABC2+A-DVM MABC ABCx-m1 ABCx-m5 ABC-ES

GBESTABC2 0.000126529 0.000119424 4.87775e-10 2.09984e-10 1.50993e-11 1.50993e-11 1.50993e-11 0.369699 1.50993e-11 1.50993e-11 1.50993e-11 0.0225731
GBESTABC - 0.264891 4.07637e-11 6.02834e-11 1.50993e-11 1.50993e-11 1.50993e-11 9.4581e-05 1.50993e-11 1.50993e-11 1.50993e-11 0.000976338
GBESTABC+A-DVM - - 4.07637e-11 4.95931e-11 1.50993e-11 1.50993e-11 1.50993e-11 5.8736e-05 1.50993e-11 1.50993e-11 1.50993e-11 0.000758898
ABC+A-DVM - - - 0.353086 1.50993e-11 0.000384864 1.84486e-11 5.35089e-10 1.84486e-11 1.50993e-11 0.000150294 0.250572
ABC - - - - 1.50993e-11 0.000839878 1.84486e-11 1.43579e-10 1.84486e-11 1.50993e-11 0.000405999 0.255299
ABCX-m1+A-DVM - - - - - 1.50993e-11 1.50993e-11 1.50993e-11 1.50993e-11 0.030726 1.50993e-11 1.50993e-11
ABCX-m5+A-DVM - - - - - - 2.74703e-11 1.50993e-11 2.74703e-11 1.50993e-11 0.449998 0.135353
MABC+A-DVM - - - - - - - 1.50993e-11 0.18406 1.50993e-11 2.25216e-11 0.00183545
GBESTABC2+A-DVM - - - - - - - - 1.50993e-11 1.50993e-11 1.50993e-11 0.0225731
MABC - - - - - - - - - 1.50993e-11 2.25216e-11 0.00183545
ABCx-m1 - - - - - - - - - - 1.50993e-11 1.50993e-11
ABCx-m5 - - - - - - - - - - - 0.122907

SineEnvelope GBESTABC GBESTABC+A-DVM ABC+A-DVM ABC ABCX-m1+A-DVM ABCX-m5+A-DVM MABC+A-DVM GBESTABC2+A-DVM MABC ABCx-m1 ABCx-m5 ABC-ES

GBESTABC2 0.00211296 5.20328e-05 0.369699 0.152088 1.50993e-11 1.54053e-08 2.25216e-11 0.364133 2.25216e-11 1.50993e-11 4.176e-08 0.444151
GBESTABC - 0.19355 0.00201649 0.000451535 1.50993e-11 4.05068e-10 1.84486e-11 0.0125506 1.84486e-11 1.50993e-11 5.86868e-10 0.409373
GBESTABC+A-DVM - - 0.000119424 3.17802e-05 1.50993e-11 1.0772e-10 1.50993e-11 0.00092874 1.50993e-11 1.50993e-11 1.0772e-10 0.353086
ABC+A-DVM - - - 0.28461 1.50993e-11 5.9684e-07 3.69454e-11 0.264891 3.69454e-11 1.50993e-11 9.30424e-07 0.426691
ABC - - - - 1.50993e-11 1.33921e-06 4.07637e-11 0.138595 4.07637e-11 1.50993e-11 4.75697e-06 0.364133
ABCX-m1+A-DVM - - - - - 1.50993e-11 1.50993e-11 1.50993e-11 1.50993e-11 0.0726596 1.50993e-11 1.50993e-11
ABCX-m5+A-DVM - - - - - - 1.82295e-08 9.36549e-08 1.82295e-08 1.50993e-11 0.449998 0.0648351
MABC+A-DVM - - - - - - - 2.74703e-11 0.18406 1.50993e-11 5.5117e-09 3.36811e-06
GBESTABC2+A-DVM - - - - - - - - 2.74703e-11 1.50993e-11 2.79995e-07 0.444151
MABC - - - - - - - - - 1.50993e-11 5.5117e-09 3.36811e-06
ABCx-m1 - - - - - - - - - - 1.50993e-11 1.50993e-11
ABCx-m5 - - - - - - - - - - - 0.0629851

Table 3.13: Pairwise U-test analysis of the Griewank, Rosenbrock, Rastrigin and SineEnvelope functions
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GBESTABC GBESTABC+A-DVM ABC+A-DVM ABC ABCX-m1+A-DVM ABCX-m5+A-DVM MABC+A-DVM GBESTABC2+A-DVM MABC ABCx-m1 ABCx-m5 ABC-ES

GBESTABC2 0.000126529 3.59939e-05 2.78633e-10 2.09984e-10 1.50993e-11 1.50993e-11 1.50993e-11 0.38656 1.50993e-11 1.50993e-11 1.50993e-11 0.0250601
GBESTABC - 0.342161 2.25216e-11 1.0772e-10 1.50993e-11 1.50993e-11 1.50993e-11 5.83718e-06 1.50993e-11 1.50993e-11 1.50993e-11 0.00750707
GBESTABC+A-DVM - - 1.50993e-11 8.88454e-11 1.50993e-11 1.50993e-11 1.50993e-11 1.00115e-06 1.50993e-11 1.50993e-11 1.50993e-11 0.00561388
ABC+A-DVM - - - 0.364133 1.50993e-11 6.24662e-06 1.66919e-11 2.53616e-10 1.66919e-11 1.50993e-11 0.000345626 0.22321
ABC - - - - 1.50993e-11 1.91533e-05 2.03858e-11 3.36098e-10 2.03858e-11 1.50993e-11 0.000428206 0.289647
ABCX-m1+A-DVM - - - - - 1.50993e-11 1.50993e-11 1.50993e-11 1.50993e-11 0.00847744 1.50993e-11 1.50993e-11
ABCX-m5+A-DVM - - - - - - 2.48758e-11 1.50993e-11 2.48758e-11 1.50993e-11 0.108508 0.114115
MABC+A-DVM - - - - - - - 1.50993e-11 0.18406 1.50993e-11 2.03858e-11 0.00561388
GBESTABC2+A-DVM - - - - - - - - 1.50993e-11 1.50993e-11 1.50993e-11 0.029714
MABC - - - - - - - - - 1.50993e-11 2.03858e-11 0.00561388
ABCx-m1 - - - - - - - - - - 1.50993e-11 1.50993e-11
ABCx-m5 - - - - - - - - - - - 0.122907

Zimmerman GBESTABC GBESTABC+A-DVM ABC+A-DVM ABC ABCX-m1+A-DVM ABCX-m5+A-DVM MABC+A-DVM GBESTABC2+A-DVM MABC ABCx-m1 ABCx-m5 ABC-ES

GBESTABC2 6.89549e-05 2.92589e-05 0.189518 0.189518 0.181611 0.129026 0.132163 0.299845 0.132163 0.326022 0.132163 0.353086
GBESTABC - 0.315678 0.497012 0.497012 0.000850874 0.0125714 0.0367378 0.00178867 0.0367378 0.00687226 0.0125714 0.329299
GBESTABC+A-DVM - - 0.328816 0.328816 0.000352362 0.00544148 0.0167606 0.000742985 0.0167606 0.00291886 0.00544148 0.193839
ABC+A-DVM - - - 0.0904498 0.331367 0.0157328 8.88454e-11 0.189518 8.88454e-11 0.038636 0.0398908 0.0629851
ABC - - - - 0.331367 0.0140643 3.03288e-11 0.189518 3.03288e-11 0.038636 0.038636 0.279615
ABCX-m1+A-DVM - - - - - 0.0953652 0.0182194 0.135353 0.0182194 0.111286 0.085725 0.197634
ABCX-m5+A-DVM - - - - - - 0.000345626 0.0210334 0.000345626 0.0049417 0.485258 0.00691581
MABC+A-DVM - - - - - - - 0.00781906 0.18406 0.00107832 0.000618092 9.36549e-08
GBESTABC2+A-DVM - - - - - - - - 0.00781906 0.409373 0.0175683 0.103103
MABC - - - - - - - - - 0.00107832 0.000618092 9.36549e-08
ABCx-m1 - - - - - - - - - - 0.00380853 0.0182194
ABCx-m5 - - - - - - - - - - - 0.0169371

Table 3.14: Pairwise U-test analysis of the Whitley and Zimmerman functions
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ABC algorithm was observed have better results, holding statistical significance against all but the
ABCX-m1+A-DVM algorithm.

First, in the Griewank instance, there was no statistical relevance between the original and
the A-DVM counterparts, where it can be understood that although the ABCX-m1 was more robust,
i.e., lower mean, than the original, it was not substantially better. The same cannot be said about the
Rosenbrock instance. A trend was observed in the improvement of the MABC+A-DVM compared
to the MABC (p < 0.1) while the ABCx-m1+ADVM held statistical difference compared to its
non A-DVM version, corroborating the evidence of its underperformance. On the other hand, the
inclusion of the A-DVM in the ABCX-m1 incurred in a substantial improvement backed up by
statistical significance (p < 0.05).

For the three last instances, once again, there is a minor statistical evidence that the robustness
of the ABCX-m1+A-DVM is tighter than the ABCX-m1 (0.05 < p ≤ 0.1). In the Whitley function,
the inclusion of the A-DVM brought an improvement to the performance of the ABCX-m1 and at the
same time, worsened the robustness of the ABCX-m5, both assertions are backed up by statistical
relevance (p < 0.05). Lastly, in the Zimmerman instance where the ABC and the ABC+A-DVM
had the best performance, there is little statistical evidence whether the addition of the A-DVM
contributed to the improvement of the results (0.05 < p < 0.1).

Summarizing, it was observed that a slight improvement with the inclusion of the A-DVM
to the improvement of the robustness of the algorithms in the large-scale instances. It is important
to highlight some few cases where the A-DVM was able to take advantage of the features of the
base algorithm and even improve its robustness. One possible reason would be that since only one
decision variable is changed at a time via the A-DVM, convergence of solutions to accumulation
points is delayed or even fully compromised. A possible direction to further investigate would be the
generalization of the A-DVM mechanism to select multiple solutions variables at a time, specifically
for large-scale instances such as the ones in this experiment.

3.3.3 Testing the A-DVM against other derivative-free algorithms

The A-DVM based algorithms are now tested against other derivative free algorithms following
the guidelines of Gavana [55]. We chose the same 15 hardest instances from the global optimiza-
tion benchmark using a strenuous amount of iterations to test the speed of convergence of the A-
DVM based algorithms. The ABC+A-DVM, ABCX-M1+A-DVM, GBESTABC2+A-DVM and
MABC+A-DVM were chosen to based on the results of Sections 3.3.1 and 3.3.2. The derivative-
free techniques which the A-DVM algorithms are compared against are the following: the Adaptive
memory Programming for Global Optimization (AMPGO) [55]; Basin Hopping (BH) [65]; Co-
variance Matrix Adaptation Evolution Algorithm (CMA-ES)[66]; Controlled Random Search with
Local Mutation (CRS2) [67]; Differential Evolution (DE) [63]; Diving Rectangles Procedures (DI-
RECT) [68]; Firefly Algorithm [69]; Genetic Algorithm (GA) [70]; Multi-Level Single Linkage
ALgorithm (MLSL) [71]; Particle Swarm Optimization (PSO) [72]; Shuffle Complex Evolution
(SCE) [73]; and Simmulated Annealing (SA) [74].

Each algorithm was executed 100 times with distinct seeds and starting points. The stopping
criteria was set to 2000 function evaluations or if the difference between the best solution found so
far and the known global optimum is less than 10−6. Table 3.15 shows the percentage of successful
executions for algorithm in the 15 instances.
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Table 3.15: Percentage of Successful execution of each algorithm.

Name ABC+A-DVM ABCX-m1+A-DVM GBESTABC+A-DVM MABC+A-DVM AMPGO ASA BH CMA-ES CRS2 DE DIRECT FireFly GA MLSL PSO SCE SA
Bukin06 0 0 0 0 94 0 0 0 0 0 0 0 0 0 0 0 0
Cola 0 0 0 0 58 0 0 0 0 0 0 0 0 0 0 0 0
CrossLegTable 0 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 9
CrownedCross 0 0 8 0 3 0 0 0 0 0 0 0 0 0 0 0 0
Damavandi 0 0 0 0 18 0 0 0 1 0 0 0 0 0 0 0 0
DeVilliersGlasser02 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
Griewank 0 0 0 0 3 17 0 0 60 0 0 3 0 0 1 0 0
Rastrigin 0 0 0 0 97 73 81 6 88 0 0 49 0 0 31 48 0
Rosenbrock 0 0 0 0 100 0 0 100 67 0 100 51 0 100 0 100 0
Schewefel06 0 4 100 0 100 0 0 100 70 0 100 0 0 0 4 100 0
SineEnvelope 0 0 0 0 9 6 1 0 6 0 0 3 0 0 1 0 0
Trefethen 40 76 44 0 1 4 8 5 9 0 0 1 0 0 4 0 0
Whitley 0 0 0 0 5 2 28 3 24 0 0 0 0 0 2 0 0
XinSheYang03 0 0 3 0 5 3 0 0 0 0 0 5 0 0 0 0 0
Zimmerman 0 34 51 0 1 5 0 37 14 0 0 0 0 0 0 47 0

From the overall point of view, it can be understood that ABC based algorithms are slow to
converge to the optimum. They failed to reach the optimum in instances where most of the others
had no trouble, such as the Rastrigin and Rosenbrock instances. A possible reason would be that
the ABC converges slowly in function whose landscape resembles a valley with ridges in the region
close to the global optima.

On the other hand, the two ABC variants which biases the convergence the most (which
could be seen as a good feature or not), was more successful than all other algorithms in four
cases, CrossLegTable, CrownedCross, Trefethen and Zimmerman. Where, the first two are the
third and fourth, respectively, most difficult functions in the entire benchmark suite. A possible
hypothesis for the success in these cases could be due to the fact that both variants rely heavily on
information from the overall best solution of the solution set in their position update steps, so the
A-DVM guaranteed that every component of every solution would move towards the that solution
in particular, speeding up the convergence of the solutions towards a local optima even further.
Naturally, another explanation could might as well be attributed to the ’no-free lunch’ [64] nature
of the algorithms by themselves.

3.4 Concluding Remarks

In this chapter, a decision variable selection scheme named Adaptive Decision Variable Matrix (A-
DVM) was proposed to be incorporated in the Artificial Bee Colony (ABC) algorithm. A-DVM
was incorporated in both employed and or onlooker bees phases and can be used with any variant
of the ABC, as well as other derivative-free algorithms that uses a solution set in its optimization
process. A-DVM attempts to balance exploration and exploitation throughout the execution of the
algorithm by constructing an augmented binary matrix that represents the choice of components
of solutions in the solution set. The binary matrix is composed of a deterministic selection binary
matrix that chooses matrix diagonals according to the proposal in [47] and another binary matrix
whose components were selected by a random uniform distribution. The number of columns to be
used from the deterministic matrix is determined by a self-adaptive parameter that is based on the
∆ value, a measure of the sparsity of the actual solution set in the search space. Moreover, we also
introduce a vector that stores the chosen solutions of Pd guarantees that every solution is a part of
Pam in the upcoming update step at least once before termination.

Influence of the A-DVM to the performance of the ABC when solving different families of
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multimodal unconstrained problems is verified by several numerical experiments where the A-DVM
was incorporated to the original ABC as well as several variants. For all experiments, the 15 hardest
instances from the Global Optimization Benchmark Suite [55] or a subset of those where chosen to
be used.

The first numerical experiment had the objective to verify whether the A-DVM brought any
improvement to ABC-based algorithms. A large budget of 105 function evaluation was assigned to
each algorithm to be executed 30 times with distinct initial points. The A-DVM based algorithms
were compared against their non A-DVM counterparts, and some representative heuristics such as
the Particle Swarm Optimization (PSO), Evolutionary Particle Swarm Optimization (EPSO) and
Differential Evolution (DE) to provide a baseline for the results. The results indicate that the A-
DVM enhances the ability of the ABC to adapt to highly multimodal functions. However, the
elimination of the full global search of the stochastic selection resulted in solutions not converging
towards accumulation points that are located in basins, as seen in some instances where the A-DVM
performed poorly.

The second numerical experiment consisted in testing the A-DVM in larger scale instances.
The functions used in this experiment was a subset of 6 scalable instances of the 15 functions where
their dimension was set to 100. We restrict the comparison to A-DVM and ABC algorithms only.
A budget of 104 function evaluation was assigned to each algorithm to be executed 30 times with
distinct initial points in the same fashion as the first experiment. The results suggested a small
improvement in a restrict number of the 6 functions, pointing to the need of the A-DVM to be
scalable as well, adapting itself to choose multiple decision variables instead of only one at a time.

Lastly, the third experiment aimed at testing A-DVM algorithms against a larger range of
Derivative-Free Algorithms. The experiment used all 15 functions but with a more stringent budget
of 2000 function evaluations and executed 100 times with distinct starting points. The results shown
that although the A-DVM algorithms have slower convergence compared to some of the tailor-made
algorithms, two versions that exploits the global best solution had much more successful execution
than the others in four cases. This can be either attributed to the fact that the A-DVM biased the
search even further, or simply to the no-free lunch theorem [64].
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Chapter 4

A Nelder-Mead Direct Search with
Simplex Gradients for Multimodal
Optimization Problems

4.1 Introduction

Simplex gradients play a very important role in model based derivative-free methods, which ap-
proximates the objective function with a model function and then utilizes it to command the op-
timization process [75]. Simplex gradients, vastly used in the aforementioned methods, deter-
mine a descent direction of the actual objective function and can be defined even when f is non-
smooth. Assuming any real-valued function objective function f in the same form of (2.1) where
f : Rn → R, let solution set Y = [y1, y2, . . . , yk] where yi ∈ Y is ordered in ascending or-
der based on f(yi), and the matrix L of `1 length between solutions be defined as L = L(Y) :=[
y1 − y0 y2 − y0 · · · yk − y0

]
∈ Rn×k for k arbitrary number of solutions in Y . Moreover, let

matrix δf (or column vector) of the difference of objective function values be defined as,

δf = δf (Y) :=


(
f(y1)− f(y0)

)
...(

f(yk)− f(y0)
)
 . (4.1)

Where we assume that the columns Y are ordered. If L is a n × n invertible matrix, the simplex
gradient of f with respect to Y falls into the determined case and is defined as,

∇sf(Y ) = (L>)−1δf . (4.2)

If the number of columns of L is greater than the rows, i.e., k > n and k + 1 columns are affinely
independent, then the simplex gradient of f with respect to Y falls into the overdetermined case
and it is calculated as the least squares solution of g,

∇sf(Y ) = argmin

{∥∥∥L>g − δf∥∥∥2} . (4.3)
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Custodio and Vicente [76] showed that the simplex gradient is a good enough approximation of
the real gradient if and only if the solution set in question is well poised. A set Y is well-poised
if L has full rank. Since well-poisedness of a solution set is not easy to be guaranteed, the same
authors introduced the concept of Λ-poisedness, an approximation of the well-poisedness. A set Y
is Λ-poised if for an arbitrary value of Λ, Y can be decomposed in the following way,

Y >

∆
= UΣV >, ‖Σ‖2 ≤ Λ. (4.4)

where ∆ = max1≤i≤n
∥∥yi − y0∥∥ is the radius of the closed ball centered at y0 and ‖ · ‖2 is the

Spectral norm.
Although it has been shown that the Nelder-Mead performs well in multimodal optimization

problems [77, 19, 31], its performance is directly tied to the initial point where it was initialized,
or restarted. In an attempt to improve the robustness of the algorithm by trying to force it to con-
verge to local optima regardless of the choice of starting point, we incorporate a more deterministic
procedure, the estimation and calculation of simplex gradients, to the Nelder-Mead. We propose an
adaptation of the simplex gradient to be integrated to the Nelder-Mead algorithm in the form of a
polling step that is executed if the NM satisfies any termination test or if all geometric transforma-
tion steps fail to find a better point.

The inclusion of simplex gradients to a direct search method such as the Nelder-Mead has
never been done before. We now denominate the modified Nelder-Mead algorithm, as the gradient-
based Nelder-Mead (g-NM). A numerical experiment is performed to confirm our hypothesis, using
the Moré, Garbow and Hillstrom [78], a suite of representative unconstrained optimization bench-
mark functions which features a vast class of optimization problems. The g-NM is compared against
the classical Nelder-Mead, as well as against several representative population-based heuristics al-
gorithms.

The chapter is structured in the following way, Section 4.2 details the finer steps of the g-
NM. Section 4.3 explains the numerical experiments to assess the performance of the g-nm, while
Section 4.4 discusses the results. Lastly Section 4.5 delineates some conclusions from the results
obtained in the experiment.

4.2 A polling step to the Nelder-Mead

The polling process consists of constructing a set of points Pk, named polling set, in which f is
evaluated for each point. A typical way of constructing Pk is as follows,

Pk = {xk + αkb : b ∈ B} (4.5)

where xk is the current iterate (or incumbent solution), αk the step size for the current iteration and
b a direction vector from a positive spanning basis. Point in Pk are sampled following a specified
order in order to find a point that decreases the objective function value in respect to the current
iterate f(xk). Understanding of positive spanning bases are paramount to the explanation of the
polling procedure in the Nelder-mead, therefore we provide a brief foundation in the notion of
positive span, positive spanning set and positive basis as follows.
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Definition 4.2.1. Positive span [2, 79].
The positive span of a set of vectors (v1, . . . , vn)> ∈ Rn is the convex cone:

pspan(S) = {v ∈ Rn : v = α1v1 + · · ·+ αrvr, αi ≥ 0, i = 1, . . . , r}. (4.6)

Definition 4.2.2. Positive spanning set.
A positive spanning set in Rn is a set of vectors whose positive span is Rn. A set S is positively
dependent if one a vector vi ∈ S is in the convex cone pspan(S) spanned by the remaining vectors,
i.e., vi is a positive combination of the others; otherwise the set is positively independent.

Consequently, we have the following theorem:

Theorem 4.2.1. If set S spans Rn positively, then a subset S − vi spans Rn linearly
Proof. Proofs of this theorem can be found in [2, 79, 80, 34].

Definition 4.2.3. Positive basis.
A positive basis B in Rn is a positively independent set whose positive span is Rn. The number of
vectors inB can range from any number between n+ 1 and 2n [81]. A basis is called minimal if it
has n+ 1 vectors. On the other hand, it is called maximal if it is composed of 2n vectors.

Custodio and Vicente [76] showed that if the initial solution set is well-poised, ensuring that
∇sf(Y ) is a good enough approximation, then subsequent solution sets are also well-poised. This
way, we must guarantee that in the Nelder-Mead the well-poisedness of the initial sampling set
Y0, and by extension, the well-poisedness of Yk at any iteration k by including a record R of all
previously sampled points since Y0. Since heuristics to initialize Y0 in the context of the Nelder-
Mead are diverse, and most of them provide no basis as to why it works, we suggest the construction
of the initial solution set Y0 by matrixW as follows,

W = ZB−, B− =

[
e1 e2 · · · en −

n∑
i=1

ei

]
. (4.7)

where B− is a n × n + 1 minimal positive spanning set and Zn×n is a diagonal matrix where the
main diagonal is z0 = U(l,u), i.e., a point uniformly sampled within the lower and upper bound, l
and u, respectively, of the search space of f . Since W is still a positive spanning basis, it has full
row rank and presents another very useful property of positive spanning bases that has been shown
by Regis [79], W is guaranteed to have a column wi such that w>g < 0 where g is ∇sf(Y ), so
wi is a descent direction. Equipped with an initial solution set that is well-poised, we define the
record of previous solutionsR as a n× (n+ 1) + k matrix as follows,

R := [W |Y ?
k ] Y ?

k =
[
y′1, y

′
2, . . . ,y

′
k

]
. (4.8)

Where, Y ?
k is a matrix that stores the point that was accepted by means of any of the geometric

transformation steps (reflection, expansion or contraction) from the first until the k-th iteration.
R is assumed to be ordered by objective function values in descending order so that (4.2) can be
properly computed. The adapted polling step for the Nelder-Mead constructs a polling set Pk in the
same fashion as in (4.5) with a few differences as follows,

Pk = {yk + αkr
′ : r′ ∈ R}. (4.9)
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Where yk is y0 ∈ Yk and descent direction r′ is obtained from R by finding a direction ri such
that (ri)>g < 0 where g is ∇sf(Y ) and normalizing it such that r′ = ri

‖ri‖ . The line search that is
used to build the polling set Pk sets step size α initial value as 10−4 and decreases it by a factor of
τ = 0.5 for each time f(yk) < f(yp), yp ∈ Pk. We define as a sufficient descent condition to halt
the line search if a point y? is found where f(y?) < f(y)− ε for a small enough ε. For the sake of
completion, we include Proposition 4.2.1 to endorse the well-poisedness ofR.

Proposition 4.2.1. Record setR is well-poised.
Proof. Since R is composed of W which is a minimal positive spanning basis with full row

rank,R has full row rank, therefore it is well-poised.
After the construction of Pk, if no point whose objective function is lower than yk is found,

yk is considered to be a local minimizer in the neighborhood around yk with radius ε. If so, a new
solution set Yk+1 should be initialized in any other point of the search space. Otherwise, if a y?

where f(y?) < f(yk) is found, then yk is not a local minimizer and a new solution set should
be constructed centered at y?. For the first case, we suggest the use of any heuristic to construct
an initial solution set, from a new point uniformly sampled from the search space. In the second
case, solution set Yk+1 is constructed by initializing a simplex Y? using y? as starting point using
any starting simplex heuristic and performing a merge operation between Yk+1 and Y?. Given two
arbitrary n×n+ 1 matrices Y1 and Y2 that represents a Nelder-Mead simplex, we define the merge
operation from simplex Y1 resulting in a new simplex Yn as,

Yn = {y01,y11 + γm(y02 − y11),y21 + γm(y01 − y22),yn1 + γm(yn−12 − yn1 )}. (4.10)

Where γm is a step length parameter empirically suggested to be 0.8. Additional evidence that
shows some properties of the merge operation regarding the preservation of the volume of the sim-
plex is given in Chapter 5.

In the new implementation of the Nelder-Mead, the polling step is used to verify two critical
scenarios. The first, whether solution set Yk has converged to a local optima y?, i.e., ‖f(yi)‖∞ ≤
ε, i = 1, . . . , n + 1, such that f(y?) < f(y0k) and y? /∈ R so that points in the closed ball
B = {x ∈ Rn : ‖x − y?‖2 ≤ ε} with y? as center, can be explored by the line search in the
polling step. The second, is to confirm whether the solution set Yk converged to a point y′ such
that f(y′) > argmin({f(y) : y ∈ R}), y′ /∈ R or simply y′ ∈ R. If so, that means that either
the current solution set is stuck in a basin of attraction or that it converged to an already known
accumulation point so that the Yk+1 may be restarted away from y′ in a smart manner. Naturally,
the polling step replaces the shrink operation and is executed if a condition of any termination test
is satisfied indicating that the simplex has converged to a point or has collapsed to a subspace. The
polling step in here differs from the former in the sense that, if a point y? is found then it replaces
yn and the current iteration is terminated with Yk = {y0, y1, . . . , y?}. The g-NM is described
step-by-step in Algorithm 4.

4.3 Numerical Experiments

A numerical experiment is set to verify the performance and robustness of the g-NM for a range of
multimodal functions. The main objective of this experiment is to answer the following research
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Algorithm 4: Gradient-Based Nelder-Mead (g-NM) algorithm
Input: f(·), x0, t, t′, δic, δoc, δr, δe, z0, α
Output: Yt =

{
y0,y1, · · · ,yn

}
where y0 = argmin f(y), y ∈ Yt

Initialization: Initialize Y0 = W using z0,R←W
1 for i← 1 to t do
2 if Yi fails termination test then
3 Pk ← PollingStep(Yi, α)
4 y? ← argmin(f(y) : y ∈ Pk)
5 if f(y?) < f(y0) and y? /∈ R then
6 Y? ← Initialization heuristic with x0 = y?

7 Yi ← MergeSimplex(Yi,Y?)

8 else
9 Restart Yi using a initialization heuristic with x0 = U(l,u)

10 else
11 Yi ← Yi−1
12 Yi ← Order (Yi)
13 c← ComputeCentroid (Yi)
14 ynew ← Reflection (Yi, c, δ

r)
15 ynew ← Expansion (Yi, c, δ

e)
16 ynew ← OutsideContraction (Yi, c, δ

oc)
17 ynew ← InsideContraction

(
Yi, c, δ

ic
)

18 if no ynew is accepted then
19 Pk ← PollingStep(Yi, α)
20 y? ← argmin(f(y) : y ∈ Pk)
21 if f(y?) < f(y0) and y? /∈ R then
22 ynew ← y?

23 Yi ← (Yi ∪ y?)− yn
24 R← R ∪ y?
25 else
26 Restart Yi using a initialization heuristic with x0 = U(l,u)
27 R← R ∪ argmin({f(y) : y ∈ Yi})
28 else
29 R← R ∪ ynew
30 end
31 return Yt
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question: ”Does using simplex gradients as a polling step procedure in the Nelder-Mead result
in an improvement of the search capabilities of the algorithm, for multimodal instances of small
dimensionality?”. As a testbed, the Moré, Garbow and Hillstrom [78] benchmark suite was chosen
because it covers a large class of multimodal problems. We chose instances with no more than 30
dimensions due to the known fact that the performance of Nelder-Mead based algorithms greatly
deteriorates in instances where n > 100.

We divide the 40 functions into three subgroups of families of problems in accordance to
Moré, Garbow and Hillstrom [78]: nonlinear systems of inequations, problems that involve polyno-
mial systems of inequalities; nonlinear least squares, problems that resemble the classical minimiza-
tion of the difference of squares; and unconstrained minimization, nonlinear problems characteristic
of unconstrained minimization problems. The details of each are described in Tables 4.1, 4.2 and
4.3, each column denotes the name, number of decision variables, number of system of inequations
and the global optima, if known, respectively. We establish the boundary of all problems to fall in
the range [−100, 100].

Table 4.1: Systems of nonlinear equation instances of the Moré-Garbow-Hillstrom suite.

Name n m Opt
Rosenbrock 2 2 0
Powell singular 16 16 0
Powell badly scaled 2 2 0
Wood 4 4 0
Helical valley 3 3 0
Chebyquad 9 5 0
Brown almost-linear 30 30 0
Discrete boundary 30 30 0
Discrete Integral 30 30 0
Trigonometric 10 10 0
Variably dimensioned 10 10 0
Broyden tridiagonal 10 10 0
Broyden banded 10 10 0

We test the performance of the g-nm against the original Nelder-Mead, as well as against a se-
lection of representative Population-based heuristics. We limit our scope solely against population-
based heuristics for two main reasons. The first is to do a direct comparison of a direct search
method against a population heuristics. Second, because literature on model-based or direct search
derivative-free techniques which tested their propositions using the entire benchmark is nonexistent,
limited only to population based heuristics. The chosen algorithms are some of the most representa-
tive of the family, as well as some famous variants of them. Of the chosen heuristics, the canonical
and variants of the ABC from Chapter 3: ABC, ABC-ES, ABCX-m1 and ABCX-m5 as well as their
A-DVM counterparts were included in the experiment. Moreover, we include the Particle Swarm
Optimization from Kennedy and Eberhart [61] and some of its variants, such as the Evolutionary
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Table 4.2: Nonlinear Least Squares instances of the Moré-Garbow-Hillstrom suite.

Name n m Opt
Linear full rank 5 4 m− n
Linear rank 1 5 4 m(m−1)

2(2m+1)

Linear rank 1 zero 10 9 m2+3m−6
2(2m−3)

Freudstein and Roth 2 2 0, 48.9842
Bard 3 15 8.21487 . . . 10−3

Kowalik and Osborne 4 11 3.07505 . . . 10−4

Meyer 3 16 87.9458
Watson 9 31 1.39976 . . . 10−6

Box three-dimensional 3 5 0
Jennrich and Sampson 2 2 126.362
Brown and Dennis 4 4 85822.2
Osborne 1 5 33 5.46489 . . . 10−5

Osborne 2 11 65 3.01377 . . . 10−2

Quadratic 10 10 0

Table 4.3: Unconstrained optimization instances of the Moré-Garbow-Hillstrom suite.

Name n m Opt
Biggs EXP6 6 6 0
Gaussian 3 15 1.12793 . . . 10−8

Penalty I 10 9 7.08765 . . . 10−5

Penalty II 10 20 9.37629 . . . 10−4

Brown badly scaled 2 3 0
Gulf R&D 3 20 0
Extended Rosenbrock 10 10 0
Extended Powell 16 16 0
Beale 2 3 0
Dixon 5 5 0
GaoHanAlmostQuadratic 2 2 0
McKinnon 2 1 -2.5
OrenPower 2 1 0
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Particle Swarm Optimization by Miranda and Fonseca [62], Maximum Search Limitation Evolu-
tionary Particle Swarm Optimization by Neto et al. [82] (MS-EPSO) and the Quantum behaved
Particle Swarm Optimization (QPSO) by Sun et al. [83]. The Differential Evolution (DE) [63], Ge-
netic Algorithm from Holland [70] (GA) and Covariance-Matrix Evolutionary Strategy (CMA-ES)
from Hansem et. al [66] are also part of the numerical experiment.

The experiment was conducted in a machine with the following hardware configuration: Intel
core i7-6700 ”Skylake” 3.4 GHz CPU; 16 GB RAM DDR4 3200 clocked at 3000 MHz. The
running operating system (OS) is UbuntuOS 18.04. All algorithms were written in the python 3
programming language. Floating point operations were handled by the numpy package, version
1.19.1.

Each algorithm is executed 30 times. The stopping criteria was set to 105 function evaluations
(FE’s) or if the difference between the best value found so far and the global optimum f(x∗) is less
than 10−6. The solution set size was fixed for all population based heuristics at 50. For PSO and
QPSO, the inertia factor (w1) was set to 0.6 and both cognitive and social parameters (w2, w3) to
1.8. For EPSO, the number of replicas is set to 1, communication and mutation ratio to 0.8. For
Differential Evolution (DE) [63] with best1bin strategy, F value was 0.5 and CR 0.9. The Genetic
Algorithm uses two-point crossover with crossover rate of 0.8 and mutation rate of 0.2 while keeping
10% of the best solutions at each generation. The CMA-ES uses the (µ + λ) strategy and uses a
Rank-one update to its covariance matrix. Every ABC uses the same set of parameters from Chapter
3. Both NM and g-NM use the set of adaptive parameters from Gao and Liu [26] where δr = 1,
δe = 1 + 2

d , δoc = 0.75− 1
2d and γs = 1− 1

d .

4.4 Computational Results

Due to the sheer size of the experiment, we summarize the results in the following way, Table
4.4 shows the top 5 algorithms which had the lowest mean in descending order for each instance.
Empty entries represent instances where the majority of the algorithms (more than 80%) achieved
the same mean for all 30 runs. We also summarized the statistical relevance of the data in Table 4.5
by running a pairwise Wilcoxon signed ranked test with significance set to 95% using the g-NM
against all other algorithms. Entries with a ’+’ sign mean that statistical significance was found
(p ≤ 0.05) while entries with a ’−’ sign mean that no significance was found (p > 0.05). Figure 4.1
show the percentage of the best mean of the runs for each algorithm and the rank of each algorithm
for each class of problem.

Firstly, it is possible to observe that in 16 instances, all algorithms achieved the same mean,
i.e., that they were able to reach the optimum for all 30 executions. From those 16 problems, 3
are from the family of nonlinear system of equations, 5 are from the nonlinear least-squares and 7
are from the unconstrained optimization family. We conclude that this subgroup of problems are
”entryways”, that is, a mean to verify whether a derivative-free algorithm can at least solve these
problems and have the same performance of the rest.

Secondly, we point out that for four problems in particular: Brown Almost linear; Jennrich
and Sampson; Kowalik and Osborne; and Osborne I the g-NM achieved the lowest mean together
with the majority of the algorithms. On the other hand the g-NM mean value was lower in relation to
the original Nelder-Mead, which is corroborated by the statistical significance from the differences
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Table 4.4: Top five algorithm ranking by mean for each problem.

Function First Second Third Fourth Fifth
Bard - - - - -
Beale - - - - -
BiggsEXP6 CMA-ES ABCX-m1 g-NM EPSO QPSO
Box3D - - - - -
BrownAlmostLinear g-NM* CMA-ES* MS-EPSO* DE* GA
BrownAndDennis g-NM CMA-ES ABCX-m5 ABCX-m1 ABC
BrownBadlyScaled ABCX-m1+A-DVM ABCX-m5+A-DVM EPSO DE GA
BroydenBanded - - - - -
BroydenTridiagonal ABCX-m1 g-NM DE GA CMA-ES
Chebyquad EPSO QPSO ABCX-m1+A-DVM ABCX-m1 MS-EPSO
DiscreteBoundary - - - - -
DiscreteIntegral - - - - -
Dixon - - - - -
ExtendedPowellSingular g-NM NM GA CMA-ES ABCX-m5
ExtendedRosenbrock g-NM NM CMA-ES ABCX-m5 ABCX-m1
FreudsteinAndRoth - - - - -
GaoHanAlmostQuadratic - - - - -
Gaussian - - - - -
GulfR&D - - - - -
HelicalValley g-NM NM CMA-ES GA QPSO
JennrichAndSampson g-NM* PSO* EPSO* DE* MS-EPSO*
KowalikAndOsborne g-NM* DE* CMA-ES* EPSO* QPSO*
LinearFullRank g-NM NM ABCX-m5 GA EPSO
LinearRank1 - - - - -
LinearRank1ZeroColumnsAndRows - - - - -
McKinnon g-NM* NM* CMA-ES* QPSO PSO
Meyer MS-EPSO EPSO QPSO ABCX-m1 ABC
OrenPower - - - - -
Osborne1 g-NM* EPSO* PSO* ABCX-m1* ABCX-m5*
Osborne2 ABC+ES ABCX-m1+A-DVM ABCX-m1 DE g-NM
Penalty1 g-NM* NM* MS-EPSO* QPSO* ABC*
Penalty2 - - - - -
PowellBadlyScaled - - - - -
PowellSingular CMA-ES ABCX-m1 g-NM NM PSO
Quadratic g-NM CMA-ES NM ABCX-m5 ABCX-m1
Rosenbrock g-NM NM CMA-ES ABCX-m1 ABCX-m5
Trigonometric EPSO* g-NM* MS-EPSO* PSO* CMA-ES*
VariablyDimensioned EPSO* CMA-ES* g-NM* GA* MS-EPSO*
Watson MS-EPSO g-NM ABCX-m1 EPSO DE
Wood g-NM ABCX-m5+A-DVM DE ABCX-m1+A-DVM MS-EPSO
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Figure 4.1: Percentage of the best overall mean and radar plot of the ranking of each technique
according to the class of problem.

Table 4.5: Pairwise Wilcoxon sign-rank test of the g-NM against all other algorithms.

Function NM ABC ABC-ES ABCX-m1 ABCX-m5 ABC+A-DVM ABCX-m1+A-DVM ABCX-m5+A-DVM PSO EPSO MS-EPSO QPSO DE GA CMA-ES
F1 - - - - - - - - - - - - - - -
F2 - - - - - - - - - - - - - - -
F3 + + + + + + - - + - - + + - +
F4 - - - - - - - - - - - - - - -
F5 + + + + - + + + + + - + - + -
F6 + + + + + + + + + + + + + + +
F7 - + + - - - + + - + + + + + +
F8 - - - - - - - - - - - - - - -
F9 + + + - + + + + + + + + + - +
F10 - - - + + + + + - + + + - - +
F11 - - - - - - - - - - - - - - -
F12 - - - - - - - - - - - - - - -
F13 - - - - - - - - - - - - - - -
F14 + + + + + + + + + + + + + + +
F15 - + + + + + + + + + + + + + +
F16 - - - - - - - - - - - - - - -
F17 - - - - - - - - - - - - - - -
F18 - - - - - - - - - - - - - - -
F19 - - - - - - - - - - - - - - -
F20 + + + + + + + + + + + + + + +
F21 + + + + + + + + - - - - - + +
F22 + + + + + + + + + - - - - - -
F23 + + + + + + + + + + + + + + +
F24 - - - - - - - - - - - - - - -
F25 - - - - - - - - - - - - - - -
F26 + + + + + + + + + + + + + + +
F27 - - - + + + + + + + + + - - +
F28 - - - - - - - - - - - - - - -
F29 + + + - - + + + - - - + + - -
F30 + - + + + + + + + + + + - - -
F31 - - + + - - + - + - - - - - -
F32 - - - - - - - - - - - - - - -
F33 - - - - - - - - - - - - - - -
F34 - + + - + + + + - + + - + + -
F35 + + + + + + + + + + + + + + +
F36 + + + + + + + + + + + + + + +
F37 + + + + + + + + - - - - + + -
F38 + + + + + + + + + + - - - + -
F39 + + + - + + - + - - - + - + +
F40 + + + + + + + + + + + + + + +
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of the means (p < 0.05). Out of the five instances, three are from the Nonlinear least-squares,
and one from the nonlinear system of equation families. From this observation, it is possible to
assert that the inclusion of polling improved the robustness of the NM, at least in problems from the
multimodal nonlinear-least squares minimization instances.

We now change our focus to the 10 cases where the g-NM was more robust in relation to all
other algorithms backed up by statistical evidence: Brown and Dennis, Extended Powell Singular;
Extended Rosenbrock; Helical Valley; Linear full rank; McKinnon; Quadratic; Rosenbrock; and
Wood. Out of the nine instances, three belong to the first, second and third classes of problems.
There are two possible causes that explain the reason why the g-NM was more robust than the other
algorithms. The first, is that since most of the problems where the g-NM was better featured low
dimensionality (n < 5), the NM itself can properly adapt the simplex to the contour lines of the
objective function landscape, as pointed by Lagarias [19]. Therefore the simplex gradient itself
contributed very little to the robustness of the g-NM. This behavior can be seen in the Brown and
Dennis, Extended Powell, Extended Rosenbrock, Helical Valley, Quadratic and Rosenbrock. The
same can be said for the well-known McKinnon instance, a strictly convex function. The second
cause is that indeed finding a descent direction has enabled the solutions of the g-NM to displace
themselves farther from deceptive local optima, as seen in the Wood and Linear full rank instances.

The last 10 cases are separated into two categories, where the g-NM was in the top five but
not necessarily in the first place, and where the g-NM was not in the top five. The first category
is comprised of 7 instances: Biggs exponential; Broyden tridiagonal; Osborne 2; Powell singular;
Trigonometric; Variably dimensional and Watson. Four from the first class, two from the second and
one from the third. The second class consists of three functions: Brown Badly scaled, Chebyquad
and Meyer. Two from the first class and one from the second class. We limit our explanation to
the second group because any explanation regarding the first group can be reduced to the ”no free
lunch” theorem. The most plausible reason to justify the performance of the g-NM regarding the
second group is that the three problems consist of solving a system of polynomial inequations on a
nonconvex search space where the objective function landscape has ridges around its critical region,
which could have possibly resulted in the g-NM computing descent directions towards deceptive
local optima.

4.5 Concluding Remarks

This chapter introduced a new version of the Nelder-Mead direct search method that computes an
approximation of simplex gradients to to be used in the polling step in order to thoroughly explore
the region around local accumulation points. The polling step replaces the shrink step and is also
called if the solution set is flagged to be restarted. In the polling, a polling set Pk is constructed by a a
line search using as descent direction, a unit vector from record setR that is found by the calculation
of simplex gradients. To guarantee that the simplex gradient is a good enoguh approximation of the
true gradient, well poisedness of the sampling set R is guaranteed by initializing the first solution
set Y0 with a Positive spanning basis W . After points of Pk are evaluated, if a point y? is found
that is better than the current best iterate, the current solution set Yk is shifted by creating another
solution set Y? centered at y? and performing a merging operation between the two set. If no point
is found the current best is flagged as a local attractor and a solution set Yk+1 is constructed from
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another point sampled from a uniform distribution which is not part ofR.
A numerical experiment was performed to answer the research question posed earlier in this

chapter, if including polling procedures by computing simplex gradients to Nelder-Mead algorithm
would result in a new algorithm that is more robust than the original in at least a subgroup of mul-
timodal functions. The experiment consisted of testing the g-NM against the original Nelder-Mead
as well as several representative population based heuristics using the Moré-Garbow-Hillstron [78]
suite of 40 benchmark functions. These functions were separated into three subgroups in accordance
to the same authors: systems of linear inequations; nonlinear least squares; and unconstrained non-
linear optimization. Results and statistical evidence indicated that the novel approach was more
reliable than the base algorithm in all instances, achieved the best results in 10 instances, and had
the worst performance in the system of linear inequation class of problems. Therefore, it can be
said that the g-NM is indeed robust for small scale nonlinear least squares and unconstrained opti-
mization problems in comparison to some well-known heuristics. However, this assertion cannot be
made to larger problems (n > 100) since it was not in the scope of this experiments. Consequently,
further adaptation and testing in such problems is a promising direction for future works.
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Chapter 5

Deterministic Derivative-Free
algorithms for Constrained
Optimization Problems

5.1 Introduction

Problems featuring equality and inequality constraints are mathematical models which better ap-
proximates real life scenarios. Naturally, the more constraints a problem has, the more stringent is
the feasible region, whether linear or nonlinear. Assuming f is nonlinear and the search space is C0,
i.e., nondifferentiable and non Lipschitz continuous, the standard form of a nonlinear optimization
problem with constraints is,

minimize
x∈Rn

f (x)

subject to gi(x) ≤ 0, i = 1, . . . , p

hi(x) = 0, i = 1, . . . ,m

lj ≤ xj ≤ uj , j = 1, . . . , n,

(5.1)

where f : Rn → R, g : Rn → Rp, h : Rn → Rm. A typical example of (5.1) are engineering
design optimization problems. Engineering design is a challenging class of problem that consists of
optimizing the shape of the design of a device/part while keeping its standards. These problems are
modeled as unconstrained nonlinear optimization problems. Moreover, the constraints that appear
in these problems are typically nonlinear [1].

Because of the nature of those problems, algorithms that rely on a model constructed from
the first or second derivative cannot be used at any instance, leaving way for derivative-free al-
gorithms to tackle these problems firsthand. However, the majority of derivative-free algorithms
were intended for unconstrained optimization, so modifications are required so that they can handle
problems from that family.

In this chapter, we propose several modifications to two derivative-free algorithms, the Nelder-
Mead direct search, seen in Chapter 4 and the A-DVM based Artificial Bee Colony (ABC) algorithm
from Chapter ??. The modifications not only allow these algorithms to solve constrained nonlinear
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problems, but they are also an attempt to introduce deterministic procedures to two derivative-free
algorithms that rely on randomness so that they can be invariant of starting point or random seeds.
Our contributions are threefold: (1) Development of an augmented Lagrangian penalty method for
algorithms that feature solution sets along with a penalty barrier method to be able to handle equal-
ity and inequality constraints where the Lagrange multipliers as well as the barrier multipliers are
updated every iteration; (2) A new version of the Nelder-Mead to solve constrained problems (c-
NM) that guarantees that a nondegenerate simplex is built in the early stages of the algorithm, and
if it ever degenerates, it is equipped with safeguards so that the nondegeneracy property is main-
tained; (3) An extension of the A-DVM technique to be used with the ABC algorithm that employs
additional to choose decision variables according to the degree of satisfiability.

A numerical experiment is carried out to measure the performance of the proposed algo-
rithms. Eight constrained functions from the field of Engineering Design are chosen as a base of
comparison. The algorithms are tested against several representative derivative-free algorithms and
their variants and are compared to the most prominent results found in the literature. results suggests
a favorable outcome to both algorithms in the majority of the cases.

This chapter structure is divided as follows. Section 5.2 explains the adapted augmented la-
grangian barrier method for derivative-free algorithms. Section 5.3 discusses the changed to the
A-DVM based Artificial Bee colony for constrained problems, while Section 5.4 details the mod-
ified Nelder-Mead algorithm to handle constrained problems. Details and configurations of the
numerical experiment, as well as the formulation of each optimization problem is shown in Section
5.5. Section 5.6 discusses the results and statistical analysis. Lastly, Section 5.7 draws conclusions
and highlights future directions.

5.2 Adapting the Augmented Lagrangian for Solution Sets of Derivative-
Free Algorithms

Most Derivative-Free algorithms are ill-equipped to handle problems of the form of (5.1) as they
are and even more for nonlinear constraints are nonlinear due to the fact that they do not incorporate
any information about feasible regions to the solution set. One way to correct this is including
a penalty or barrier function to penalize infeasible solutions [41]. Penalty methods to derivative-
free algorithms is a very developed topic thoroughly studied by researchers. Literature on penalty
methods is very rich, the reader is encouraged to read the survey of Mezura-Montes [84] which
summarizes constraint methods for evolutionary computation algorithms that are also commonplace
to other families of derivative-free algorithms.

One of the simplest approach is to enforce the decision variables to stay within their feasible
bounds using a forcing function φ,

φ(yi) =

ui if yi > ui

li if yi < li
(5.2)

although incorporating a barrier method such as (5.2) to any Derivative-Free method to solve prob-
lems in the form of (5.1) is a simple and straightforward way to remedy the situation, it would bring
several problems to the performance of any algorithm. Consequences of using (5.2) to population
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heuristics such as the Artificial Bee Colony and a direct search method such as the Nelder-Mead are
discussed in Section 5.4 and Section 5.3, respectively.

Rather than (5.2), a better alternative is to use methods that allow solutions to be updated
with a relative freedom but that penalize the objective function value of infeasible solutions. We
highlight the usage of one such method, the augmented lagrangian with dislocated penalties [41, 85]
to reformulate (5.1) to an unconstrained problem which penalizes infeasible solutions according to
weights that are updated iteratively. Equality and non-equality constraints are moved to the objective
function to be penalized by multipliers in the following formulation at any iteration k as follows,

minimize f (x) +
ρk

2

[∥∥∥∥h(x) +
λ̄k

ρk

∥∥∥∥2 +

∥∥∥∥g(x) +
µ̄k

ρk

∥∥∥∥2
+

]
subject to lj ≤ xj ≤ uj , j = 1, . . . , n.

(5.3)

Where ρk is the Lagrange multiplier, λ̄ and µ̄ are the equalities and inequalities multipliers, re-
spectively. Assuming that the family of problems in the form of (5.1) are C0 an the constraints are
nonlinear, calculation or approximations of ∇h or ∇g are not available, therefore it is not viable to
check for constraint qualification conditions (e.g. KKT, Mangasarian-Fromovitz) [85]. The multi-
pliers ρk, λ̄ and µ̄ start from an initial value and are updated each iteration so that the penalties may
be increased or decreased according to the feasibility of solutions. The update step is as follows,
firstly, compute vector V k of the inequalities dislocation,

V k
i = max

{
gi(xk),−

µ̄ki
ρk

}
, i = 1, . . . , p. (5.4)

If max
{∥∥h(xk)

∥∥
∞ ,
∥∥V k

∥∥
∞

}
≤ τ max

{∥∥h(xk−1)
∥∥
∞ ,
∥∥V k−1∥∥

∞

}
, set ρk+1 = ρk, oth-

erwise set ρk+1 = γρk. It is advisable to set rules for the increase of multiplier ρk, either establish-
ing a limit ρmax, or resetting ρk to a more acceptable value once it reaches a threshold value. We
opted for the last in our formulation. After updating ρk, suitable values for λ̄k and µ̄k are computed,

λ̄k+1
i = min

{
λmax,max{λmin, λ̄ki + ρkhi(x

k)}
}
, i = 1, . . . ,m

µ̄k+1
i = min

{
µmax,max{0, µ̄ki + ρkgi(x

k)}
}
, i = 1, . . . , p

(5.5)

where λmin, λmax and µmin are user defined parameters sensitive to each problem instance. Be-
cause the Lagrangian multipliers are more suited to methods that use only one incumbent solution
at a time, multipliers ρ, µ, λ and β are reset to their starting values if the solution set had their values
restarted. We extend the augmented lagrangian form of (5.3) to account for solutions that are out
of their box constraints, so that it can properly penalize solutions that satisfies constraints g(x) and
h(x) but are out of their bounds, resulting in the following formulation,

minimize
x∈Rn

f (x) +
ρk

2

[∥∥∥∥h(x) +
λ̄k

ρk

∥∥∥∥2 +

∥∥∥∥g(x) +
µ̄k

ρk

∥∥∥∥2
+

]
+ ‖z(x)‖2 . (5.6)

Where penalty function z(x) relies on a weight factor βk = [βmin, βmax] that acts as a multiplier
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like λk and µk going by the following rule,

z(x) = χ(βk) + βk
n∑
i=1

z(xi) =


li + xi if xi < li,

xi − ui if xi > ui, for i = 1, . . . , n.

0, otherwise,

χ(βk) =

βk if
∑n

i=1 z(xi) > 0,

0, otherwise,

(5.7)

Multiplier βk is updated similarly to ρk: the condition
∥∥z(xk)∥∥∞ ≤ ∥∥z(xk−1)∥∥∞ is verified, if

it is satisfied then βk+1 = βk, otherwise βk+1 = γbβk, γ
b > 1. This way, formulation (5.6)

not only penalizes solutions that breaks constraint feasibility, but also solutions that are out of the
boundary of the search space. We now describe further modifications to the A-DVM based Artificial
Bee colony and the Nelder-Mead algorithm using (5.6) for constrained nonlinear problems with
nonlinear constraints.

5.3 A-DVM based Artificial Bee Colony algorithm for constrained op-
timization

One of the most interesting point of population heuristics is that they can be employed for a mul-
titude of problems without the need of a single modification. That said, the Artificial Bee Colony
using the A-DVM could might as well be used as it is to solve problems in the likes of (5.1) with
the simple addition of a barrier function like (5.2). We disprove this hypothesis with an assertion
found in many books on global optimization when speaking about constrained optimization prob-
lems [41, 1, 44]: ”Local optima are generally found from solutions that started from the infeasible
region which iteratively moved to the feasible region”. Furthermore, in [1] and [84], the authors
state that local optima of problems of the form of (5.1) usually lie in the boundary of the feasible
region.

In light of these affirmations, additional deterministic rules are added to the A-DVM to take
full advantage of these properties together with changing the problem formulation from (5.1) to (5.6)
to penalize infeasible solutions. The new rules are applied to the construction of deterministic matrix
Pd and take precedence over the standard procedure of selecting diagonals. They take advantage of
the formulation of some constraints so that feasible solutions can be found easily and are as follows,

1. Rule 1: If a constraint gj or hj depend on only one component xj of x. Furthermore, xj
violates gj , then xj is chosen to be updated. Otherwise, if gj or hj depend on multiple
variables and is the only constraint that was not satisfied, a variable xj′ associated to gj is
chosen.

2. Rule 2: In order to intensify the local search in the vicinity of the feasible bounds, a compo-
nent xj of x whose euclidean distance are less than a predetermined value ε to either uj or
lj is chosen. ε is seen as the radius of an euclidean ball B = {y ∈ Rn : ‖y − x‖2 ≤ ε},
centered at x.
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Final calculation of Pam follows the same steps as in Algorithm 3. The step-by-step of the
A-DVM for constrained problems is detailed in Algorithm 5.

Algorithm 5: Adapted A-DVM for constrained problems

1 ∆← ComputeDelta(X);
2 α← ρ ((1−∆)K1 +∆K2);
3 β ← 1− α;
4 Pr ← BuildRandomMatrix(β);
5 Pd ← BuildDeterministicMatrix(α,H);
6 Pd ← FindSingleViolatedConstraint(g, h);
7 Pd ← CheckBoundaryDistance(l, u, ε);
8 ifH = (1, . . . , 1) then
9 H ← (0, . . . , 0);

10 H ← UpdateHistory(H,Pd,Pam) . Index of columns of Pd in Pam are 1 inH;
11 Pam ← βPr ⊕ αPd;
12 c← ChooseVariables(X,Pam);
13 c′ ← UpdateStep(c) . Use any update function;
14 X ← UpdateSolutions(X, c′);
15 X ← SafeguardStep(X);

5.4 A Nelder-Mead for constrained optimization

The original implementation of the Nelder-Mead algorithm is ill equipped to handle problems like
(5.1). We now refer to the solution simplex as the n + 1 simplex represented by the solution set
Yk. Excluding the fact that it was made for unconstrained optimization, it also lacks several things:
proper termination tests to verify whether the solution set has converged to a point that lies in
infeasible regions; restart procedures that takes into account the feasibility of the points of the
solutions set; fitting the simplex to the feasible region of the problem when at least one point of
the solution set lies in the feasible region; preventing unnecessary shrink steps that degenerate the
volume of the simplex.

We begin by arguing that using a hard barrier function like (5.2) when evaluating the solution
set of the Nelder-Mead violates Definition 2.2.1 except in the unidimensional case. Proposition
5.4.1 provides a strong argument against methods that force solutions to stay in their bounds.

Proposition 5.4.1. Consider a problem in the form of (5.1) where f : Rn → R, n > 1. Then any
nonshrink iteration using barrier method (5.2) that ends up with any yi > ui or yi < li, i = 1, . . . , n,
changes the volume of the simplex to |κ|vol(Y ) < |τ |vol(Y ).

Proof. Without loss of generality, for any nonshrink transformation τ where the new trans-
formed point y∗ was accepted, let yi be a component of y∗ where yi > ui or yi < li and yi′ = φ(yi).
Let ψ < τ be the number such that φ(yi) = ci + ψ(ci − yn), then following Lagarias et al. [19],
point y∗ can be written in the following way,

60



y∗ = Mkw, where:

w =

(
1 + τ

n
, . . . ,

1 + ψ

n
. . . ,

1 + τ

n

)>
Mk = [y0 − yn y1 − yn · · · yn−1 − yn]

(5.8)

assuming invariance of simplex ordering to the calculation of (2.11), for the volume of the new
simplex Yk+1 usingMk+1 instead of L(Yk+1) we have the following computation,

|det(Mk+1)| = |det(Mk −Mkwe
>)| = |det(Mk)| · |det(I −we>)|. (5.9)

where e = (1, . . . , 1)>. Let ψ be written as a difference of τ such that ψ = τ − r. Matrix I −we>
has n − 1 unitary eigenvalues and one which will be 1 −w>e = −(τ − r

n) < −τ , contradicting
Lemma 2.2.1.

Along with the incorporation of (5.6) in the formulation of the problem, additional procedures
to monitor the geometry of the solution simplex in a deterministic manner are presented in the hopes
to make the algorithm invariant of starting point. In what follows, we propose three new procedures
to the Nelder-Mead to solve nonlinear problems in the form of (5.1). The inclusion of the procedures
result in a novel algorithm called the constrained Nelder Mead (c-NM). The procedures are: a
uniform centered translated simplex for termination tests and efficient simplex restarts; a reinforced
internal contraction step with safeguards that preserves volume to prevent shrinks; and a modified
shrink step to merge two solution simplexes establishing an upper bound on the volume of the
original simplex before the operation. We assume that the proposed alterations have access to a
record R of the points that had the best objective function value f of each iteration where feasible
solutions are always preferred over infeasible solutions. Algorithm 6 describes the steps of the
constrained Nelder-Mead (c-NM).

5.4.1 The Uniform Translated Simplex Initialization

The uniform simplex Un introduced in Section 2.2.2 can be a viable method to initialize a nonde-
generate simplex in Rn due to the bounds on the simplex volume derived by the authors [42] and
due to the fact that Un retains its properties if it is scaled by any nonsingular n×n matrix T . How-
ever, U cannot be freely re-scaled to an arbitrary interval [a, b] because U would lose its properties if
translated. This way, the starting simplex will always be centered in the origin and the vertices will
either range between [−1, a] or [−b, 1]. That would result in several problematic scenarios such as
if the interior (int(Y )) of the simplex is infeasible, so any geometric transformation would yield an
infeasible point; or if an entire orthant is infeasible.

We argue that if it is possible to somehow translate Un, then it is possible to center the simplex
at any arbitrary centroid c and re-scale each row of Un so that they can lie within problem bounds
and consequently have a chance to be in the feasible region. We define the translation operation of
the canonical uniform simplex Un as a multiplication by a transformation matrix as follows,
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Algorithm 6: Constrained Nelder-Mead (c-NM) algorithm
Input: f(·), x0, t, t′, δic, δoc, δr, δe

Output: Yt = {y,y, · · · ,yn} where y = argmin f(y), y ∈ Yt
Initialization: Initialize scaled uniform simplex Y0 = Us

1 for i← 1 to t do
2 if Yi fails termination test then
3 if y0 is feasible then
4 if 1

t′
∑n

i=t′ r
i = y0 r ∈ R then

5 Restart Yi building Ut from r′ = {r ∈ R | h(r) + g(r) = 0}
6 else
7 Restart Yi building Ut from

r∗ = {r ∈ R | min f(r) and h(r) + g(r) = 0}
8 else
9 Restart Yi building Ut from x = U(l, u)

10 else
11 Yi ← Yi−1
12 Yi ← Order (Yi)
13 c← ComputeCentroid (Yi)
14 yr ← Reflection (Yi, c, δ

r)
15 Expansion (Yi, c, δ

e)
16 OutsideContraction (Yi, c, δ

oc)
17 InsideContraction

(
Yi, c, δ

ic
)

18 if yc fails internal contraction then
19 yin ← safeguardContraction(yi, c,y

r)
20 if f(yin) > f(yc) then
21 Yi ← merge(Yi, ∆)

22 end
23 return Yt
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Ut = TU′n

where T =



1 0 0 · · · 0 c1

0 1 0 · · · 0 c2

0 0 1 · · · 0 c3
...

...
...

. . .
...

...
0 0 0 · · · 1 cn

0 0 0 . . . 0 1


and U′n =

[
U
1

]
(5.10)

Where the last column of Ut is disregarded. Although properties (iv), (v) and (vi) explained in
Section 2.2.2 are lost, Ut is still a nondegenerate simplex, as shown in Proposition 5.4.2.

Proposition 5.4.2. Translated uniform simplex Ut is a nondegenerate simplex.
Proof. Let Ut = [Mt|y0t ] and Un = [M |y0]. After the translation, diag(Mt) = diag(M) +

c, where each component of diag(Mt) is distinct from each other. Since y0t 6= yit i = 1, . . . , n then
diag(L(Ut)) 6= 0. From the definition (2.11) of simplex volume, |det(L(Ut))| 6= 0, characterizing
Ut as a nondegenerate simplex.

Uniform simplex Un can now be rescaled to be within any feasible interval [c, d] by a transla-
tion operation in the form of (5.10) followed by a scaling operation, i.e., multiplying by a diagonal
matrix Z. Given that Un is within the [a, b] interval, a scaled translated simplex Us can be achieved
in the following way:

Us = ZUt

where T =



1 0 0 · · · 0 t1

0 1 0 · · · 0 t2

0 0 1 · · · 0 t3
...

...
...

. . .
...

...
0 0 0 · · · 1 tn

0 0 0 . . . 0 1


and Z =


z1 0 0 0 0

0 z2 0 0 0

0 0 z3 0 0
...

...
...

. . .
...

0 0 0 . . . zn


ti = ci(bi − 2ai)− aidi, zi =

di − ci
bi − ai

i = 1, . . . , n

(5.11)

Clearly, evidence that Us is a nondegenerate simplex, i.e., vol(Us) follows from Proposition 5.4.2.
Furthermore, Us may be scaled by a scalar number, column-wise by a vector or by a n× n matrix.

We suggest initialization with Us instead of Ut because Us is roughly located in the middle
of the search space, and if properly scaled results in a simplex that covers a large region, which
according to Wessing [40] increases the possibility of the solution set to converge towards an ac-
cumulation point. On the other hand, we use Ut to restart the NM if it fails any termination test,
choosing a new centering point c depending on the outcome of the three following cases:

1. No feasible solution has been found so far.

2. A feasible solution has been found but the simplex terminated because the simplex has de-
generated or converged to a point.
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3. A feasible solution has been found but the simplex collapsed into a subspace.

For case 1, a new centering location c for a new simplex Ut can either be obtained by a
point sampled under any random distribution, or chosen from the best infeasible point in the record
R. In case 2, the point can be chosen from the best feasible point found so far. Lastly, in case 3,
any feasible point may be chosen, preferably one that has euclidean distance less than ε to the best
feasible point so far.

5.4.2 Safeguards for internal contractions and enhanced shrinks

Various works, e.g., [19, 30] have assessed the efficacy of the shrink operation, and how often it
occurs. Torczon [30] showed that not only shrinks are extremely rare, reporting only 33 instances
of shrink in 2.9 million iterations, but they also deteriorate the volume of the simplex [31, 33]. This
way, it is common to find implementations where the shrink step is omitted in favor of stronger
descent condition or termination test that relies on simplex volume.

The aforementioned works provided a good foundation to the understanding of the algorithm,
but it was only validated for unconstrained convex functions. An empirical investigation was con-
ducted to assess the frequency of the shrinks steps in constrained C0 functions. As a pilot study,
we ran the Nelder-Mead 1000 times using the augmented lagrangian penalty method (5.6) and the
Us as starting simplex to solve the Himmelblau nonlinear function [86], a well-known nonlinear
benchmark function, and recorded the number of the geometrical transformation steps that were
accepted at each run. The Himmelblau nonlinear function has the following formulation,

minimize
x∈S

f(x) = 5.3578547x23 + 0.8356891x1x5

subject to g1(x) = 85.334407 + 0.0056858x2x5 + V x1x4 − 0.0022053x3x5,

g2(x) = 80.51249 + 0.0071317x2x5 + 0.0029955x1x2 − 0.0021813x23,

g3(x) = 9.300961 + 0.0047026x3x5 + 0.0012547x1x3 − 0.0019085x3x4,

V = 0.0006262
(5.12)

Each constraint is bounded by the following intervals: 0 ≤ g1(x) ≤ 92; 90 ≤ g2(x) ≤ 110; 20 ≤
g3(x) ≤ 25. Decision variables {x1, x2, x3, x4, x5} feature the following bounds: 78 ≤ x1 ≤
102; 33 ≤ x2 ≤ 45; 27 ≤ {x3, x4, x5} ≤ 45. Table 5.1 shows the mean number of each accepted
step of transformations for the 1000 runs.

Operation Mean
Reflection 2184
Expansion 220
Contraction 2837
Shrink 132

Table 5.1: Mean number of accepted steps of 1000 runs of the Himmelblau nonlinear function

The results of the experiment corroborates that shrinks are indeed rare (2% of the time) but
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they cannot be considered to be negligible and therefore must be stay in the implementation of the
Nelder-Mead.

Another important point is that we have observed that around 95% of all contraction steps
were inside contractions, due to either a large initial simplex or to the interior of the simplex be
inside an infeasible region. Therefore, we propose an inclusion of a safeguard for the failed internal
contraction case. If an internal contraction fails, then a simple test is carried to verify if a point
further to the interior of the simplex is feasible and/or better than the contracted point. The test
consists of doing another internal contraction from the contracted point and the worst vertex,

yin = yic + δic(yic − yn). (5.13)

If yic is infeasible while yin is feasible then we can claim that simplex Yk is still able to converge
to a feasible accumulation point in its interior. The step is accepted, yin is accepted and the iteration
terminates with Yk+1 = [y0 y1 · · · yin]. Otherwise, if f(yic) < f(yin), we assume that simplex
Yk+1 is better off moved elsewhere rather than being shrunk. In this situation, a merging of simplex
is performed in which Yk merges with simplex Ys, where Ys ∈ int(Yk) so that vol(Yk+1) =
τvol(Yk), τ < 1. Construction of Ys can be made using translated uniform simplex Us centering
at the centroid of Yk, enforcing that the maximum distance from vertices to c to be smaller than the
oriented length σ+ of Yk. Given two arbitrary simplices Y1 and Y2, we define the merge operation
from simplex Y1 resulting in a new simplex Yn as,

Yn = {y01,y11 + γm(y02 − y11),y21 + γm(y01 − y22),yn1 + γm(yn−12 − yn1 )}. (5.14)

Where γm is a step length parameter empirically suggested to be 0.8. Proposition 5.4.3 shows that
the simplex Yn made by the merging operation is a nondegenerate simplex.

Proposition 5.4.3. Merged simplex Yn is a nondegenerate simplex, i.e., vol(Yn) > 0.
Proof. If Y1 = Y2, then det(|L(Yn)|) = det(|L(Y1)|) 6= 0, so vol(Yn)) > 0. Otherwise, let

L(Yn) = |L(Y1) +D| where D = [γm(y02 − y11) · · · γm(yn−12 − yn1 )]>. So, L(Y1)i +Di 6= 0
for i = 1, . . . , n− 1. Suppose there is a L(Yn)k such that L(Y1)k +Dk = 0, then sgn(L(Y1)k) 6=
sgn(Dk). However, for that to happen, sgn(yi1) in L(Y1)k has to be the opposite of sgn(yi1) in Dk

which is not possible.
Ratio of the volume of the new merged simplex in relation to the first is defined in Proposition

5.4.4.

Proposition 5.4.4. The volume of merged simplexYn is κvol(Y1) where κ = ((γm)n
∏n
i=1(y

i−1
2 −

yi1))
n.

Proof. Without loss of generality, f(y01) < f(y02) − ε1 and ‖c − c‖ ≤ ε2. Let L(Yn) =
[y11−y10 +γm(y02−y11) · · · yn1 −y10 +γm(yn−12 −yn1 )]. L(Yn) can be rearranged in the following
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way,
L(Yn) = γm[(y02 − y11) · · · (yn−12 − yn1 )][(y11 − y01) · · · (yn1 − y01)],

= (γm)n
n∏
i=1

(yi−12 − yi1))[(y11 − y01) · · · (yn1 − y01)],

= (γm)n
n∏
i=1

(yi−12 − yi1))L(Y1),

= κL(Y1).

(5.15)

Since |det(κL(Y1))| = κn|det(L(Y1))|. From the definition of volume (2.11), we have that vol(Yn) =
κnvol(Y1).

This way, we determine simplex Y2 to be either Y2 ⊂ Y1 or Y1 ∩ Y2 6= ∅. Regardless if the
simplex was moved elsewhere or merged, the iteration is terminated.

5.5 Numerical Experiment

A numerical experiment is conducted on 8 real life cases of constrained problems from the field of
engineering to assess the robustness and performance of the proposed approach to the algorithms.
The intent of this experiment is to answer the following research question: ”Can the integration of
the augmented Lagrangian to heuristics that uses a solution sets result in an improvement to their
performance to solve constrained multimodal optimization problems?”. Moreover, two more minor
hypothesis follow the research question: ”Given adjustments, can a reasonably simple direct descent
method such as the Nelder-Mead be competitive against complex population based heuristics that
are best suited to handle constrained engineering design problems?” and ”Given sufficient adjust-
ments, is the A-DVM capable of improving the search capabilities of ABC-based algorithms to a
competitive degree?”.

Chosen baseline of comparison were population based heuristics due to them hp;ding one of
the best results in these instances, as seen in the literature. On a later moment, we compare the per-
formance of the best algorithms of each approach against the best results found in the literature from
a vast range of derivative-free algorithms. In the first moment, the proposed algorithms are com-
pared against several well-known population based heuristics and their respective improved variants.
The methods in question are: the original ABC from Karaboga [59]; a hybridization of the ABC
with evolution strategies by Mollinetti et al. [87] (ABC+ES); a modification of the ABC from [6]
for multimodal problems (ABC-Xm1 and ABC-Xm5); Particle Swarm Optimization from Kennedy
and Eberhart [61]; Evolutionary Particle Swarm Optimization by Miranda and Fonseca [62]; Maxi-
mum Search Limitation Evolutionary Particle Swarm Optimization by Neto et al. [82] (MS-EPSO);
Differential Evolution (DE) [63]; Quantum behaved Particle Swarm Optimization (QPSO) by Sun
et al. [83].

The budget of function evaluations for each algorithm was set to 105 function evaluations
(FE’s). The population size to all population heuristics is fixed at 50. For PSO and QPSO, the
inertia factor (w1) was set to 0.6 and both cognitive and social parameters (w2, w3) to 1.8. For
EPSO, the number of replicas is set to 1, communication and mutation ratio to 0.8. For Differential
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Evolution (DE) [63] with best1bin strategy, F value was 0.5 and CR 0.9. For each version of the
ABC: Lit = SN · n. ABC-X parameters were Lit = 1.06 · n, maximum population of 66 and
minimum of 15 for ABC-Xm1 and Lit = 0.83 · n. With exception of the Nelder-Mead, the rest use
a barrier method in the form of (5.7) and a quadratic penalty function. The population size of all
heuristics was set to 50.

The c-NM was initialized using the scaled centralized simplex Un, where each time the so-
lution set is flagged to be restarted, it can only be restart if at least more than 5% of the maximum
budget has been spent. We define the termination tests for restarting the solution set as the following:

1.
1

t′

n∑
i=t′

ri ≤ ε1 ri ∈ R

2. 2 ·
∣∣f(yn)− f(y0)

∣∣
‖f(yn)‖+ ‖f(y0)‖

≤ ε2

3. max
j 6=l

∣∣yj − yl∣∣
1

max{1, |yl|1}
≤ ε3.

(5.16)

Where t′ = 50, records in R are ε1 = 10−4; ε2 and ε3 are set to 10−7. Test 1 checks if the solution
set has converged to a local minimizer by verifying the entries in the record R, test 2 verifies if the
size of the simplex that represents the solution set is small enough, and test 3 verifies if the simplex
collapsed to a subspace.

The experiment was conducted in a machine with the following hardware configuration: Intel
core i7-6700 ”Skylake” 3.4 GHz CPU; 16 GB RAM DDR4 3200 clocked at 3000 MHz. The
running operating system (OS) is UbuntuOS 18.04. All algorithms were written in the python 3
programming language. Floating point operations were handled by the numpy package, version
1.19.1.

Every problem instance is a problem in the form of (5.1) and each is explained in detail in the
following sections.

5.5.1 Three Bar Truss Design Problem: TBT

The optimization of a two-dimensional function (xj = {x1, x2}) which represents the volume
subject to stress constraints on each side of the lattice [88, 89, 90] is given as follow:

minimize
x∈S

f(x) =
(

2
√

2x1 + x2

)
× l.

subject to g1(x) =

√
2x1 + x2√

2x21 + 2x1x2
P− σ ≤ 0,

g2(x) =
x2√

2x21 + 2x1x2
P− σ ≤ 0,

g3(x) =
1

x1 +
√

2x2
P− σ ≤ 0

(5.17)

The following box constraints: 0 ≤ {x1, x2} ≤ 1 are then employed to bound the decision variables
{x1, x2}, where l = 100 cm, P = 2 KN/cm2, σ = 2 KN/cm2.
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5.5.2 Design of a Pressure Vessel Problem (Variants 1 and 2): DPV1, DPV2

DPV1 and DPV2 features constraints and four design variables [91, 92, 93, 94, 95]. Which are:
pressure vessel thickness (Ts = x1), pressure vessel lid thickness (Th = x2), internal radius of the
vessel (R = x3) length of the vessel without the lid (L = x4). Finally, the decision variables are:
xj = {x1, x2, x3, x4}.

minimize
x∈S

f(x) = 0.6224x1x3x4 + 1.7781x2x
2
3 + 3.1661x21x4 + 19.84x21x3.

subject to g1(x) = −x1 + 0.0193x3 ≤ 0,

g2(x) = −x2 + 0.00954x3 ≤ 0,

g3(x) = −x23x4 −
4

3
πx33 + 1296000 ≤ 0,

g4(x) = x4 − 240 ≤ 0.

(5.18)

Where the bounds of the design variables {x1, x2, x3, x4} of DPV1 are 1 × 0.0625 ≤ {x1, x2} ≤
99× 0.0625; 10 ≤ {x3, x4} ≤ 200.

The upper bound of x4 is expanded to 240 for the DPV2. Then, the bounds related to the
design variables of DPV2 are set to 1 × 0.0625 ≤ {x1, x2} ≤ 99 × 0.0625; 10 ≤ x3 ≤ 200; 10 ≤
x4 ≤ 240.

5.5.3 Speed Reducer Design with 11 Constraints: SRD-11

The SRD-11 was proposed by Golinski [96] and has as a primary objective the minimization of
f(x) subject to a speed reducer system [88].

This problem formulation consists of 11 constraints and 7 decision variables. Face width
(b = x1); teeth modulus (m = x2); number of teeth in the pinion (z = x3); length of first axis
between bearing (l1 = x4); length of second axis between bearing (l2 = x5); diameter of the first
axis (d1 = x6); diameter of the second (d2 = x7).

68



minimize
x∈S

f(x) = 0.785x1x
2
2(3.3333x23 + 14.9334x3 − 43.0934)

− 1.508x1(x
2
6 + x27) + 7.477(x36 + x37) + 0.7854

(
x4x

2
6 + x5x

2
7

)
subject to g1(x) =

27

x1x22x3
− 1 ≤ 0

g2(x) =
397.5

x1x22x
2
3

− 1 ≤ 0

g3(x) =
1.93x34
x2x3x46

− 1 ≤ 0,

g4(x) =
1.93x35
x2x3x47

− 1 ≤ 0,

g5(x) =

√(
745x4
x2x3

)2
+ 1.69× 106

110x36
− 1 ≤ 0,

g6(x) =

√(
745x5
x2x3

)2
+ 157.5× 106

85x37
− 1 ≤ 0,

g7(x) =
x2x3
40
− 1 ≤ 0,

g8(x) =
5x2
x1
− 1 ≤ 0,

g9(x) =
x1

12x2
− 1 ≤ 0,

g10(x) =
1.5x6 + 1.9

x4
− 1 ≤ 0,

g11(x) =
1.1x7 + 1.9

x5
− 1 ≤ 0.

(5.19)

The bounds of the decision variables {x1, x2, x3, x4, x5, x6, x7} of the SRD11 are, 2.6 ≤ x1 ≤
3.6; 0.7 ≤ x2 ≤ 0.8; 17 ≤ x3 ≤ 28; 7.3 ≤ x4 ≤ 8.3; 7.8 ≤ x5 ≤ 8.3; 2.9 ≤ x6 ≤ 3.9;
5.0 ≤ x7 ≤ 5.5, respectively.

5.5.4 Minimization of the Weight of Tension/Compression Spring - MWTCS

This problem is reported by Arora [97] and Belegundu [98] and consists of minimizing the weight
of a tension/compression spring. The problem features four constraints representing the minimal
deflection, shearing tension, surge frequency and external diameter limits. The design variables are
the average spool diameter (x1), yarn diameter (x2), and active spool number (x3).
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minimize
x∈S

f(x) = (x3 + 2)x2x
2
1

subject to g1(x) = 1− x32x3
71785x41

≤ 0,

g2(x) =
4x22 − x1x2

12566
(
x2x31 − x41

) +
1

5108x21
− 1 ≤ 0,

g3(x) = 1− 140.45x1
x22x3

≤ 0,

g4(x) =
x1 + x2

1.5
− 1 ≤ 0.

(5.20)

The bounds of the design variables {x1, x2, x3} for MWTCS are 0.05 ≤ x1 ≤ 2; 0.25 ≤ x2 ≤
1.3; 2 ≤ x3 ≤ 15.

5.5.5 Welded Beam Design (Versions 1 and 2): WBD1, WBD2

The WBD problem describes the task of computing the minimum cost of building a welded beam,
which is subject to shear stress conditions (τ ), bending stress on the beam (θ), bar buckling load
(Pc), final beam deflection (δ), and side constraints. This problem consists of four design variables
(xj = {x1, x2, x3, x4}): Weld thickness (h = x1), weld joint length (l = x2); beam width
(t = x3); beam thickness b = x4. In this work, we use two variants of the WBD, the first (WBD1)
presents six constraints while the second (WBD2) adds a seventh constraint followed by changes in
deflection (δ(x)), buckling calculations (Pc(x)) and polar moment of inertia (J(x)).

minimize
x∈S

f(x) = 1.10471x21x2 + 0.04811x3x4(14 + x2).

subject to g1(x) = τ(x)− τmax ≤ 0,

g2(x) = σ(x)− σmax ≤ 0,

g3(x) = x1 − x4 ≤ 0,

g4(x) = 0.125− x1 ≤ 0,

g5(x) = δ(x)− 0.25 ≤ 0,

g6(x) = P − Pc(x) ≤ 0.

(5.21)

Constraint g7(x) is added to the WBD2:

g7(x) = 0.10471x21 + 0.04811x3x4 (14 + x2)− 5 ≤ 0. (5.22)

Finally, we apply the following constraints to WBD1 and WBD2: Maximum allowable weld shear
stress (τmax = 13600psi); Maximum normal allowable stress for beam material (σmax = 30000psi);
system load (P = 6000lb); substrate distance (L = 14in); Shear modulus of the beam material
(G = 12× 106psi); Young’s module (E = 30× 106psi).

The constraints of the WBD1/WBD2 are described as follows:

• Primary tension (τ1):

τ1 = P×
(√

2x1x2

)−1
. (5.23)
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• Secondary tension (τ2):

τ2 = [R(x) (P (L + (0.5x2)))]× J(x)−1. (5.24)

• Weld shearing tension (τ(x)):

τ(x) =
√
τ21 (x) + 2τ1(x)τ2(x) (x2 × (2R(x))−1) + τ22 (x). (5.25)

• Polar inertia moment (J(x)):

J(x) =


2
{

x1x2√
2

[
x2
2

12 +
(
x1+x3

2

)2]}
if WBD1,

2
{√

2x1x2
[
x2
2

4 +
(
x1+x3

2

)2]}
if WBD2.

(5.26)

• Moment over weld configuration center of gravity (R):

R(x) =

√
0.25x22 + [0.5(x1 + x3)]

2. (5.27)

• Beam normal tension(σ(x)):

σ(x) = 6PL×
(
x4x

4
3

)−1
. (5.28)

• Beam end Deflection (δ(x)):

δ(x) =


4PL3 ×

(
Ex33x4

)−1 if WBD1,

6PL3 ×
(
Ex33x4

)−1 if WBD2.
(5.29)

• Bar buckling load (Pc):

Pc(x) =


4.013

√
EGx2

3x6
4

36

L2

(
1− x3

2L

√
E
4G

)
if WBD1,

4.013E

√
x2
3x6

4
36

L2

(
1− x3

2L

√
E
4G

)
if WBD2.

(5.30)

WBD1 and WBD2 present the following decision variables {x1, x2, x3, x4} and their bounds are
as follows: 0.1 ≤ x1 ≤ 2; 0.1 ≤ x2 ≤ 10; 0.1 ≤ x3 ≤ 10; 0.1 ≤ x4 ≤ 2.
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5.5.6 Gear Train Design - GTD

Originally introduced by Sandgren [91], the problem consists of finding the optimal number of teeth
of the gearwheel such that it minimizes the gear ratio cost. The formulation is as follows,

minimize
x∈S

f(x) =

(
1

6.931
− x1x2
x3x4

)2

.

subject to 12 ≤ x ≥ 60,
x1x2
x3x4

∈ Z+.

(5.31)

5.6 Computational Results and Discussion

Results of the numerical experiment are shown in Tables 5.2. Statistics for the comparison are the
mean, standard deviation, median, and best-worst results obtained from 30 runs with distinct random
seeds. For each problem instance, the row in boldface indicates the algorithm whose mean was the
lowest among the others. Verification of statistical relevance between data is performed using two
distinct tests, Friedman test as a omnibus test to verify overall differences and the Mann-Whitney
U test to assess pairwise differences. Confidence level α for both tests is set to 0.95. Results of the
statistical tests are displayed in Tables 5.3, 5.4 and 5.5 where values in boldface indicate whose the
p-value was lower than 0.05. Lower bound of the precision of decimals is set to 12 digits, where
anything below the bound is rounded to 0.

Log scaled plots of the mean of the best solutions of each algorithm throughout the iterations
are shown in Figures 5.2 to 5.5. Fluctuations in the objective values such as in Figure 5.4a are
frequently seen in the case c-NM due to the initial solution set be in infeasible regions that yield
lower objective function values than its feasible counterparts. Figure 5.1 show the percentage of the
best mean of the runs for each algorithm and the rank of each algorithm for each problem.

We begin by discussing the first four groups of problems. In the TBT problem, statistical
difference has been observed between the c-NM and all the other algorithms with exception of the
ABCX-m1+A-DVM and vice-versa(p < 0.05). Performance of the c-NM and the A-DVM based
algorithms was better than most ABC-based algorithms, except the ABCX-m1. Statistical evidence
showed that the proposed algorithms fared worse than the PSO-based algorithms, albeit by a small
margin (0.003 from the best solution and 0.015 from the mean of solutions) compared to the best
algorithm in this instance (PSO). Concerning the DPV1 instance, no statistical relevance is found in
the pairwise comparison of the c-NM against the EPSO, MS-EPSO, ABCx-m1, ABCx-m5, QPSO
and ABC-ES (p > 0.05). For the rest, it has performed better than the ABC but worse than the
ABC and the PSO. We attribute the drop in performance due to the fact that a direct search method
such as the c-NM is sensitive to the choice of starting point and the randomness of the choice
behind it. On the other hand, we can observe the influence of a good enough starting point in the
DPV2 instance, where the c-NM obtained strictly better mean and best values compared to the
others, although the pairwise comparison point to no statistical difference against the EPSO, ABC
and QPSO (p > 0.05), where the first two performed almost as good as the c-NM is this instance.
Lastly, in the SRD11 instance, a harder problem with more decision variables and constraints, the
c-NM performed strictly worse than the EPSO, MS-EPSO, ABC, ABCx-m1 and the ABCx-m5,
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Figure 5.1: Percentage of the best overall mean and radar plot of the ranking of each technique
according to the problem.

corroborated by the statistical evidence (p < 0.05). The poor performance can be attributed to
two facts about the problem: The higher number of decision variables may have contributed to the
deterioration of the performance; and the small interval of the decision variables may have hindered
the construction of a initial simplex where at least one of its vertices is feasible. On the other hand,
the A-DVM based approached achieved the lowest mean compared to all other approaches, backed
by statistical evidence.

Now we focus into the last four problem sets. In the MWTCS, the c-NM instance was worse
in comparison to the ABC, ABC+A-DVM, MABC+A-DVM and the MS-EPSO (p < 0.05) in
terms of robustness. Although the mean value of the c-NM is higher than the two, it has achieved
the lowest of the best values between them, what can again be explained by the algorithm sensitivity
to starting points. In this instance, the algorithm with the lowest reported mean was the ABC+A-
DVM. However, there statistical evidence does not support the assertion that the ABC+A-DVM had
better performance than the second best algorithm, the MS-EPSO (p > 0.05).

In the next two instances, the WBD1 and WBD2 we can observe a similar trend from the
MWTCS which reinforces the idea that the c-NM is indeed dependent on a starting point for the
construction of an initial simplex. In the two instances, the robustness of the c-NM was not the best,
but it has achieved the lowest best objective function value by a large margin compared to all other
methods. Lastly, no statistical difference has been observed against all (p > 0.05) but the ABC-ES,
whose values was close to 0 just like the rest. In the case of the A-DVM approaches, for the WBD1,
the ABCX-m5+A-DVM had the second best mean among all other techniques, being worse than the
MS-EPSO only (p < 0.05). In WBD2, we can observe the same thing, where the ABCX-m1+A-
DVM holds the fourth best mean, bested by three PSO-based algorithms (p < 0.05). We can state
that PSO-based algorithms perform better in instances in the likelihood of the WBD1 and WBD2.
The GTD purpose in this experiment is to verify whether the c-NM and the A-DVM approaches
were at least able to achieve the same performance as the others since the problem is not considered
to be very problematic to solve compared to the rest, even with mixed integer constraints.
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(a) TBT (b) DPV1

Figure 5.2: Plots of the objective function of the TBT and DPV1 along the iterations

In summary, it was observed that the c-NM and the A-DVM based algorithms achieved com-
petitive results in the DGT, MWTCS, TBT and WBD1 and WBD1 instances while achieving the
best overall performance and robustness in the DPV2. Result of the experiment clearly indicates
that the method is still highly dependent of a initial point to construct a simplex that is able to shrink
towards a good accumulation point.

We now compare the best solution found by the c-NM and the A-DVM based algorithms
against the best results found in the literature. The methods highlighted in the following tables are
range from model-based derivative-free algorithms to parallel population heuristics.

5.7 Concluding Remarks

This chapter introduced several novel approaches for derivative-free methods to handle nonlinear
constrained problems with nonlinear constraints focused on bringing deterministic features to al-
gorithms that rely on randomness. First, we proposed an adaptation to the augmented lagrangian
method to act as a penalty method to derivative-free algorithms that use a solution set in their op-
timization process. Then, using the augmented lagrangian, we presented a modified Nelder-Mead
direct search (c-NM) and an A-DVM based Artificial Bee Colony to solve engineering design prob-
lems, a class of constrained optimization problems.

Several mechanisms were integrated to the c-NM so that the algorithm could handle con-
strained optimization problems while maintaining nondegeneracy of the geometry of the solution
set: an extension of the uniform simplex initialization method that translates and scales the simplex
freely so it can be used as a initialization and a restart method; safeguard steps for the internal step
to avoid unnecessary shrinks towards infeasible regions; lastly, a merge step that replaces the shrink
step in order to preserve a fraction of the volume of the original simplex. In the case of the A-DVM
based ABC, along with the use of the augmented lagrangian, two new rules were added to the con-
struction of the deterministic decision variable matrix Pd. The rules take advantage of the problem
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Problem Algorithm Mean Median Std. Dev Best Worst Problem Mean Median Std. Dev Best Worst

TBT

EPSO 263.902 263.897 0.0185902 263.896 263.999

DPV1

6258.62 6074.99 470.554 5804.39 7319
GBESTABC+A-DVM 263.924 263.914 0.0225929 263.9 263.984 5996.02 5968.83 130.14 5838.33 6478.85
ABC+A-DVM 263.929 263.921 0.0305446 263.898 264.026 6095.41 6080.28 133.858 5874.93 6338.14
MS-EPSO 263.905 263.898 0.0147853 263.896 263.957 6297.57 6088.67 482.851 5804.76 7328.93
ABC 263.934 263.92 0.0336655 263.898 264.009 6117.5 6094.12 144.908 5878.75 6557.77
ABCX-m1+A-DVM 263.912 263.907 0.013249 263.897 263.942 6287.9 6280.41 239.269 5847.45 7047.52
c-NM 263.911 263.91 0.0100473 263.899 263.941 6263.62 6203.62 325.158 5915.96 7580.9
DE 264.44 264.407 0.352103 263.979 265.548 6581.98 6545.34 275.642 6049.94 7163.35
ABCX-m5+A-DVM 263.956 263.93 0.0650091 263.898 264.187 6191.44 6169.7 152.145 5916.73 6591.66
MABC+A-DVM 263.961 263.943 0.054714 263.897 264.137 6199.44 6184.74 158.393 5954.25 6565.34
PSO 263.896 263.896 0 263.896 263.896 6111.65 5957.74 401.024 5804.38 7319
GBESTABC2+A-DVM 263.956 263.95 0.0435331 263.903 264.071 6061.47 6062.03 100.085 5863.75 6345.44
ABCx-m1 263.906 263.905 0.00571219 263.896 263.917 6333.65 6230.21 339.529 5880.05 7198.2
QPSO 263.898 263.896 0.00496225 263.896 263.915 6311.08 6233.95 368.377 5804.64 6984.61
ABCx-m5 264.019 263.995 0.10362 263.9 264.353 6185.45 6156.7 137.32 5987.34 6619.38
ABC-ES 264.237 264.084 0.391611 263.903 265.669 6482.81 6327.1 616.308 5957.13 8803.45

DPV2

EPSO 6293.21 6191.67 386.574 5885.33 7299.97

SRD11

2894.7 2894.38 1.69866 2894.38 2903.85
GBESTABC+A-DVM 6113.5 6050.65 182.972 5919.27 6827.4 2894.39 2894.38 0.00725378 2894.38 2894.42
ABC+A-DVM 6174.99 6141.61 144.884 5975.5 6656.55 2894.72 2894.62 0.326239 2894.41 2895.7
MS-EPSO 6562.06 6510.42 502.333 5885.39 7319.26 2897.02 2894.4 4.97084 2894.38 2907.35
ABC 6163.48 6151.27 123.422 5981.01 6463.47 2894.66 2894.55 0.255201 2894.42 2895.41
ABCX-m1+A-DVM 6442.1 6433.74 249.129 6002.93 6953.12 2895.35 2895.31 0.537323 2894.59 2896.55
c-NM 6155.07 6074.56 278.569 5822.05 7004.11 5493.69 3450.62 4056.27 3085.42 14992.5
DE 6672.46 6644.77 252.526 6254.69 7223.92 3.00288e+06 2903.5 4.58253e+06 2898.31 1.00028e+07
ABCX-m5+A-DVM 6279.9 6261.19 148.558 6016.02 6578.2 2897.5 2897.3 1.6656 2895.13 2902.44
MABC+A-DVM 6273.58 6281.43 150.672 6036.95 6711.52 3.00287e+06 2895.27 4.58253e+06 2894.4 1.00028e+07
PSO 6191.57 5942.33 468.719 5885.33 7319 2.66955e+06 2907.8 4.42212e+06 2894.38 1.00028e+07
GBESTABC2+A-DVM 6170.67 6136.46 129.76 5975.77 6520.31 2894.76 2894.68 0.303282 2894.44 2895.65
ABCx-m1 6407.7 6369.1 364.241 5948.33 7251.69 2895.39 2895.32 0.63144 2894.54 2897.16
QPSO 6361.7 6338.12 377.213 5901.42 7316.22 1.33622e+06 2894.39 3.39932e+06 2894.38 1.00028e+07
ABCx-m5 6273.04 6242.29 173.368 6033.64 6710.54 2898.09 2897.67 1.80686 2895.35 2902.91
ABC-ES 6610.37 6397.1 877.584 5984.53 11050.6 1.3363e+06 3019.2 3.39925e+06 2897.54 1.00027e+07

MWTCS

EPSO 1e+06 0.0134979 3e+06 0.0126962 1e+07

WBD1

2.41427 2.39666 0.0506303 2.38209 2.64702
GBESTABC+A-DVM 1.33333e+06 0.013327 3.39935e+06 0.0128604 1e+07 2.6024 2.54558 0.16534 2.39355 2.9097
ABC+A-DVM 0.0137128 0.0134881 0.00090146 0.0129082 0.016592 2.65941 2.62598 0.151932 2.44017 3.01794
MS-EPSO 0.0142919 0.0135306 0.00181443 0.0126947 0.0178255 2.40767 2.39981 0.0279734 2.38108 2.49301
ABC 0.0140586 0.0138035 0.00114824 0.0128934 0.0183524 2.73917 2.70998 0.206092 2.42926 3.43969
ABCX-m1+A-DVM 2.66667e+06 0.0153538 4.42217e+06 0.0127314 1e+07 2.57514 2.52168 0.144333 2.39898 2.95884
NM 0.0253572 0.0126886 0.0459053 0.0126665 0.236589 2.66087 2.51524 0.427917 2.33394 4.36388
DE 666667 0.0162031 2.49444e+06 0.0135812 1e+07 2.87199 2.87147 0.23828 2.49377 3.63494
ABCX-m5+A-DVM 1e+06 0.0134809 3e+06 0.0127627 1e+07 2.63372 2.58517 0.130541 2.45812 2.89238
MABC+A-DVM 0.0144215 0.0138394 0.00154204 0.0129177 0.0198077 2.86376 2.79578 0.249814 2.45722 3.4028
PSO 5e+06 5e+06 5e+06 0.0126652 1e+07 2.43888 2.4004 0.0656665 2.381 2.66988
GBESTABC2+A-DVM 1e+06 0.0132133 3e+06 0.012677 1e+07 2.58832 2.55166 0.140864 2.41664 3.07058
ABCx-m1 1e+06 0.0143452 3e+06 0.0128131 1e+07 2.57701 2.54986 0.13701 2.41927 2.90046
QPSO 3.66667e+06 0.0144453 4.81894e+06 0.0126652 1e+07 2.74965 2.63239 0.430884 2.38112 4.10117
ABCx-m5 1.33333e+06 0.014431 3.39935e+06 0.0129064 1e+07 2.65598 2.63346 0.14254 2.44803 3.00644
ABC-ES 1.66667e+06 0.0175164 3.72678e+06 0.0128713 1e+07 2.79867 2.81571 0.208077 2.43841 3.26427

WBD2

EPSO 2.39752 2.39124 0.0191024 2.38106 2.45111

DGT

0 0 0 0 0
GBESTABC+A-DVM 2.59167 2.525 0.181293 2.40472 3.05628 0 0 0 0 0
ABC+A-DVM 2.72329 2.66188 0.241642 2.42432 3.30128 0 0 0 0 0
MS-EPSO 2.43637 2.41441 0.0565839 2.38097 2.60242 0 0 0 0 0
ABC 2.71395 2.68453 0.161994 2.41298 3.20774 0 0 0 0 0
ABCX-m1+A-DVM 2.53591 2.51429 0.110458 2.41082 2.87406 0 0 0 0 0
NM 3.4216 3.4927 1.62804 1.66504 8.62822 0 0 0 0 0
DE 2.97089 2.91116 0.32575 2.46245 3.94647 0 0 0 0 0
ABCX-m5+A-DVM 2.72949 2.6859 0.213448 2.44488 3.39382 0 0 0 0 0
MABC+A-DVM 2.93744 2.95778 0.299431 2.42063 3.43781 0 0 0 0 0
PSO 2.41396 2.39122 0.0437111 2.38096 2.55952 0 0 0 0 0
GBESTABC2+A-DVM 2.65416 2.60279 0.164443 2.45798 3.18699 0 0 0 0 0
ABCx-m1 2.60966 2.51004 0.242982 2.40439 3.31542 0 0 0 0 0
QPSO 2.86493 2.5815 0.697748 2.38115 4.86203 0 0 0 0 0
ABCx-m5 2.6785 2.66348 0.137934 2.4205 3.03166 0 0 0 0 0
ABC-ES 2.86854 2.71453 0.344784 2.45195 3.65891 0 0 0 0 0

Table 5.2: Statistical results of all problems
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TBT GBESTABC+A-DVM ABC+A-DVM MS-EPSO ABC ABCX-m1+A-DVM c-NM DE ABCX-m5+A-DVM MABC+A-DVM PSO GBESTABC2+A-DVM ABCx-m1 QPSO ABCx-m5 ABC-ES

EPSO 1.41572e-08 1.82295e-08 0.141889 8.48976e-09 9.30424e-07 1.62777e-07 1.66919e-11 6.01163e-09 1.59837e-09 6.0589e-13 7.05489e-10 1.79617e-05 0.0095562 1.57944e-10 6.02834e-11
GBESTABC+A-DVM - 0.38656 1.06636e-05 0.181611 0.0146027 0.0135432 1.66919e-11 0.0287298 0.00118998 6.0589e-13 0.000650832 0.000327432 8.47362e-10 1.43949e-06 1.67598e-08
ABC+A-DVM - - 9.34084e-06 0.315438 0.0130387 0.00750707 2.25216e-11 0.0686614 0.00364418 6.0589e-13 0.00175058 8.91778e-05 1.0169e-09 5.09384e-06 3.54406e-08
MS-EPSO - - - 3.36811e-06 0.00166931 0.000586879 1.50993e-11 5.9684e-07 3.00519e-08 6.0589e-13 1.09737e-08 0.0169371 0.00515734 8.47362e-10 1.7371e-10
ABC - - - - 0.00364418 0.00266104 2.48758e-11 0.138595 0.0169371 6.0589e-13 0.0130387 6.23853e-05 6.43519e-10 2.80364e-05 1.62777e-07
ABCX-m1+A-DVM - - - - - 0.479366 1.50993e-11 0.000476037 1.54695e-06 6.0589e-13 2.59284e-07 0.0928834 1.98238e-08 7.79038e-09 4.87775e-10
c-NM - - - - - - 1.50993e-11 0.000428206 6.4302e-07 6.0589e-13 2.79995e-07 0.0202975 7.79038e-09 2.98365e-09 4.05068e-10
DE - - - - - - - 1.91008e-10 1.57944e-10 6.0589e-13 8.06613e-11 1.50993e-11 1.50993e-11 1.54053e-08 0.00242801
ABCX-m5+A-DVM - - - - - - - - 0.210193 6.0589e-13 0.245891 4.44144e-06 3.36098e-10 0.00159148 7.64584e-06
MABC+A-DVM - - - - - - - - - 6.0589e-13 0.491154 2.34282e-08 8.06613e-11 0.0081424 2.6325e-05
PSO - - - - - - - - - - 6.0589e-13 6.0589e-13 6.0589e-13 6.0589e-13 6.0589e-13
GBESTABC2+A-DVM - - - - - - - - - - - 1.00761e-08 4.07637e-11 0.00882451 3.17802e-05
ABCx-m1 - - - - - - - - - - - - 1.90263e-07 4.4455e-10 1.18573e-10
QPSO - - - - - - - - - - - - - 3.03288e-11 1.84486e-11
ABCx-m5 - - - - - - - - - - - - - - 0.00561388

DPV1 GBESTABC+A-DVM ABC+A-DVM MS-EPSO ABC ABCX-m1+A-DVM NM DE ABCX-m5+A-DVM MABC+A-DVM PSO GBESTABC2+A-DVM ABCx-m1 QPSO ABCx-m5 ABC-ES

EPSO 0.114115 0.461721 0.28461 0.497051 0.0726596 0.159152 0.00092874 0.218821 0.245891 0.0686614 0.364133 0.0726596 0.159152 0.227648 0.0210334
GBESTABC+A-DVM - 0.00231856 0.0339344 0.000178192 3.02297e-07 1.33921e-06 1.43579e-10 2.21025e-06 5.5386e-07 0.315438 0.00333444 1.24566e-06 0.000249091 4.42055e-07 2.34282e-08
ABC+A-DVM - - 0.260072 0.336748 0.000310133 0.0125506 1.74856e-09 0.00918398 0.00882451 0.0611765 0.189518 0.00102617 0.0250601 0.0107531 1.79617e-05
MS-EPSO - - - 0.409373 0.141889 0.232136 0.00159148 0.353086 0.289647 0.0202975 0.185539 0.114115 0.260072 0.353086 0.0350633
ABC - - - - 0.000476037 0.0225731 5.5117e-09 0.0195835 0.0217918 0.030726 0.0768336 0.00231856 0.0374135 0.0225731 0.000119424
ABCX-m1+A-DVM - - - - - 0.138595 4.33172e-05 0.0543449 0.0559934 0.00102617 4.14597e-06 0.473478 0.420901 0.0287298 0.236673
NM - - - - - - 1.91533e-05 0.409373 0.39223 0.00380853 0.00107832 0.201769 0.397923 0.39223 0.0543449
DE - - - - - - - 1.18841e-07 2.79995e-07 2.37225e-06 3.69014e-10 0.000586879 0.00192403 5.33284e-08 0.0039795
ABCX-m5+A-DVM - - - - - - - - 0.485258 0.00585534 0.000150294 0.0978954 0.201769 0.353086 0.0140643
MABC+A-DVM - - - - - - - - - 0.00364418 0.000345626 0.105781 0.241258 0.39223 0.0259386
PSO - - - - - - - - - - 0.0747244 0.00113289 0.00636606 0.00515734 0.000134029
GBESTABC2+A-DVM - - - - - - - - - - - 3.59939e-05 0.0095562 0.000134029 4.09875e-07
ABCx-m1 - - - - - - - - - - - - 0.403637 0.0768336 0.227648
QPSO - - - - - - - - - - - - - 0.210193 0.218821
ABCx-m5 - - - - - - - - - - - - - - 0.00561388

DPV2 GBESTABC+A-DVM ABC+A-DVM MS-EPSO ABC ABCX-m1+A-DVM NM DE ABCX-m5+A-DVM MABC+A-DVM PSO GBESTABC2+A-DVM ABCx-m1 QPSO ABCx-m5 ABC-ES

EPSO 0.122907 0.420901 0.0202975 0.380914 0.0157328 0.170144 4.33172e-05 0.159152 0.155594 0.0225731 0.479366 0.0811875 0.155594 0.19355 0.00847744
GBESTABC+A-DVM - 0.0125506 0.000451535 0.0146027 5.13867e-07 0.336748 4.4455e-10 1.29868e-05 2.31948e-05 0.0339344 0.0130387 0.000345626 0.00538131 5.52886e-05 5.13867e-07
ABC+A-DVM - - 0.0049417 0.467596 2.04198e-05 0.0747244 5.35089e-10 0.00348622 0.00291408 0.00561388 0.479366 0.0130387 0.0811875 0.00847744 1.68407e-05
MS-EPSO - - - 0.00434219 0.255299 0.00137742 0.189518 0.0496288 0.0424998 0.000839878 0.00333444 0.19355 0.0768336 0.0452452 0.397923
ABC - - - - 8.73957e-06 0.0789878 1.43579e-10 0.00242801 0.00254211 0.00847744 0.444151 0.00720609 0.0726596 0.00847744 6.68338e-06
ABCX-m1+A-DVM - - - - - 1.68407e-05 0.0012497 0.00515734 0.00364418 0.000100291 1.38629e-05 0.185539 0.0811875 0.00473413 0.461721
NM - - - - - - 1.54053e-08 0.000501766 0.000476037 0.0880638 0.0559934 0.00242801 0.0225731 0.00102617 1.06636e-05
DE - - - - - - - 3.26387e-08 1.54053e-08 5.45343e-06 1.7371e-10 0.0012497 0.000327432 4.91645e-08 0.00473413
ABCX-m5+A-DVM - - - - - - - - 0.420901 0.000618092 0.00211296 0.210193 0.485258 0.364133 0.0095562
MABC+A-DVM - - - - - - - - - 0.000721164 0.00291408 0.173914 0.409373 0.39223 0.0049417
PSO - - - - - - - - - - 0.00585534 0.000798443 0.00192403 0.00102617 7.92305e-05
GBESTABC2+A-DVM - - - - - - - - - - - 0.0103404 0.0747244 0.00847744 9.34084e-06
ABCx-m1 - - - - - - - - - - - - 0.279615 0.162763 0.159152
QPSO - - - - - - - - - - - - - 0.420901 0.066727
ABCx-m5 - - - - - - - - - - - - - - 0.00434219

SRD11 GBESTABC+A-DVM ABC+A-DVM MS-EPSO ABC ABCX-m1+A-DVM NM DE ABCX-m5+A-DVM MABC+A-DVM PSO GBESTABC2+A-DVM ABCx-m1 QPSO ABCx-m5 ABC-ES

EPSO 1.78429e-06 5.86249e-10 3.00266e-08 1.01586e-09 2.78328e-10 1.50804e-11 7.31299e-11 2.78328e-10 1.18438e-10 3.04554e-10 4.44074e-10 2.78328e-10 1.43857e-06 2.78328e-10 1.80289e-11
GBESTABC+A-DVM - 1.84486e-11 0.000883282 1.66919e-11 1.50993e-11 1.50993e-11 1.50993e-11 1.50993e-11 1.84486e-11 7.70451e-10 1.50993e-11 1.50993e-11 0.181611 1.50993e-11 1.47713e-11
ABC+A-DVM - - 0.00515734 0.145236 4.7666e-07 1.50993e-11 1.50993e-11 3.03288e-11 2.17654e-05 7.63126e-06 0.138595 1.54695e-06 0.000345626 1.84486e-11 1.47713e-11
MS-EPSO - - - 0.0130387 0.000428206 1.50993e-11 1.39144e-07 7.46578e-05 1.21636e-05 7.4341e-07 0.00231856 0.000476037 0.105781 5.52886e-05 7.90352e-11
ABC - - - - 9.36549e-08 1.50993e-11 1.50993e-11 1.66919e-11 3.86934e-06 3.13489e-06 0.0250601 2.05635e-07 0.000501766 1.66919e-11 1.47713e-11
ABCX-m1+A-DVM - - - - - 1.50993e-11 1.50993e-11 2.49898e-09 0.274663 4.59839e-05 2.21025e-06 0.491154 1.21636e-05 7.05489e-10 1.47713e-11
NM - - - - - - 0.0039795 1.50993e-11 0.0039795 0.000975346 1.50993e-11 1.50993e-11 5.5386e-07 1.50993e-11 1.32433e-06
DE - - - - - - - 4.87775e-10 0.00211296 0.269735 1.50993e-11 1.50993e-11 9.30424e-07 1.54053e-08 0.0296521
ABCX-m5+A-DVM - - - - - - - - 0.0268426 0.000150091 2.74703e-11 1.30076e-08 3.86934e-06 0.111286 5.90517e-11
MABC+A-DVM - - - - - - - - - 0.0789676 0.000112695 0.264891 9.34084e-06 0.0202975 0.00689275
PSO - - - - - - - - - - 1.68111e-05 4.59839e-05 6.23448e-06 0.000177956 0.0233138
GBESTABC2+A-DVM - - - - - - - - - - - 9.34084e-06 0.000210875 1.84486e-11 1.47713e-11
ABCx-m1 - - - - - - - - - - - - 1.57864e-05 1.11363e-09 1.47713e-11
QPSO - - - - - - - - - - - - - 3.86934e-06 5.89761e-07
ABCx-m5 - - - - - - - - - - - - - - 7.17327e-11

Table 5.3: p-values of pairwise Mann-Whitney U test of the TBT, DPV1, DPV2 and SRD11 in-
stances.
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MWTCS GBESTABC+A-DVM ABC+A-DVM MS-EPSO ABC ABCX-m1+A-DVM NM DE ABCX-m5+A-DVM MABC+A-DVM PSO GBESTABC2+A-DVM ABCx-m1 QPSO ABCx-m5 ABC-ES

EPSO 0.325893 0.415122 0.432492 0.173897 0.012328 5.84547e-07 0.000149684 0.170127 0.0953498 0.103994 0.412205 0.0844666 0.0952078 0.0306232 8.01682e-05
GBESTABC+A-DVM - 0.358576 0.397909 0.0593831 0.0178487 1.58786e-07 1.14537e-06 0.392215 0.0135325 0.237695 0.320582 0.0494973 0.143346 0.0348998 1.85896e-05
ABC+A-DVM - - 0.497051 0.0768336 0.00808009 5.43319e-07 2.49776e-09 0.245891 0.0146027 0.0911392 0.375287 0.0452362 0.0720438 0.0195699 1.88855e-07
MS-EPSO - - - 0.201769 0.00361014 1.51985e-06 9.33834e-06 0.111286 0.108508 0.0505757 0.386554 0.0559835 0.0642484 0.0233627 5.06505e-06
ABC - - - - 0.0240758 5.0403e-07 4.52975e-08 0.415128 0.236673 0.0986877 0.116981 0.236661 0.154852 0.0834036 1.90564e-06
ABCX-m1+A-DVM - - - - - 5.03742e-08 0.105256 0.0372439 0.0684319 0.460596 0.0149064 0.131431 0.296891 0.283839 0.0638636
NM - - - - - - 1.25833e-07 2.01421e-07 4.33495e-07 1.69381e-06 8.47505e-07 2.17354e-07 5.04282e-06 1.07027e-07 4.39232e-08
DE - - - - - - - 0.000210836 2.54482e-06 0.211803 2.30823e-05 0.000118948 0.112934 0.00689275 0.158964
ABCX-m5+A-DVM - - - - - - - - 0.197634 0.133449 0.218808 0.227636 0.116278 0.103071 0.000277068
MABC+A-DVM - - - - - - - - - 0.0986877 0.0411701 0.444148 0.259432 0.227617 1.57066e-05
PSO - - - - - - - - - - 0.124214 0.200623 0.35847 0.281463 0.440117
GBESTABC2+A-DVM - - - - - - - - - - - 0.073588 0.0878732 0.030625 5.94352e-05
ABCx-m1 - - - - - - - - - - - - 0.354958 0.25991 0.000238631
QPSO - - - - - - - - - - - - - 0.449606 0.0970456
ABCx-m5 - - - - - - - - - - - - - - 0.00712474

WBD1 GBESTABC+A-DVM ABC+A-DVM MS-EPSO ABC ABCX-m1+A-DVM NM DE ABCX-m5+A-DVM MABC+A-DVM PSO GBESTABC2+A-DVM ABCx-m1 QPSO ABCx-m5 ABC-ES

EPSO 3.00519e-08 1.57944e-10 0.473478 8.06613e-11 2.73087e-09 8.40307e-05 2.74703e-11 1.30493e-10 3.34776e-11 0.10044 8.47362e-10 6.55552e-09 0.000134029 1.18573e-10 7.32153e-11
GBESTABC+A-DVM - 0.0611765 7.79038e-09 0.00453438 0.409373 0.23213 7.14918e-06 0.108508 3.3825e-05 1.29499e-05 0.491154 0.380914 0.289647 0.0686614 0.000278055
ABC+A-DVM - - 3.03288e-11 0.0594087 0.00691581 0.0120765 0.000150294 0.28461 0.000476037 4.22032e-09 0.0242067 0.0151587 0.403637 0.497051 0.00348622
MS-EPSO - - - 3.03288e-11 7.73261e-10 2.98387e-05 1.50993e-11 2.74703e-11 2.03858e-11 0.114079 1.57944e-10 7.73261e-10 6.62476e-05 2.74703e-11 3.69454e-11
ABC - - - - 0.00022296 0.00131178 0.00882451 0.0163255 0.0350633 4.0268e-10 0.000528777 0.000345626 0.12594 0.0543449 0.0904498
ABCX-m1+A-DVM - - - - - 0.289642 3.26307e-07 0.0268426 8.64516e-07 2.53715e-06 0.320712 0.449998 0.152088 0.0081424 2.6325e-05
NM - - - - - - 4.60356e-05 0.0202947 3.38093e-05 0.00560654 0.173907 0.304999 0.100468 0.0130367 0.000405862
DE - - - - - - - 1.91533e-05 0.426691 3.67013e-11 9.30424e-07 6.92626e-07 0.00333444 0.000106323 0.141889
ABCX-m5+A-DVM - - - - - - - - 7.03343e-05 5.02625e-09 0.052735 0.029714 0.403637 0.28461 0.000650832
MABC+A-DVM - - - - - - - - - 9.72208e-11 1.7854e-06 1.91747e-06 0.00720609 0.000428206 0.232136
PSO - - - - - - - - - - 8.61376e-07 8.15097e-06 0.000248596 5.98099e-09 1.1074e-09
GBESTABC2+A-DVM - - - - - - - - - - - 0.358594 0.170144 0.0195835 3.59939e-05
ABCx-m1 - - - - - - - - - - - - 0.166427 0.0120784 2.31948e-05
QPSO - - - - - - - - - - - - - 0.426691 0.0217918
ABCx-m5 - - - - - - - - - - - - - - 0.0039795

WBD2 GBESTABC+A-DVM ABC+A-DVM MS-EPSO ABC ABCX-m1+A-DVM NM DE ABCX-m5+A-DVM MABC+A-DVM PSO GBESTABC2+A-DVM ABCx-m1 QPSO ABCx-m5 ABC-ES

EPSO 2.09984e-10 2.48758e-11 0.000428206 2.74703e-11 1.30493e-10 0.0928834 1.50993e-11 2.25216e-11 2.25216e-11 0.269755 1.50993e-11 4.05068e-10 8.40658e-05 2.25216e-11 1.50993e-11
GBESTABC+A-DVM - 0.00882451 3.36811e-06 0.00131214 0.241258 0.12594 7.45902e-07 0.00166931 5.83718e-06 5.33284e-08 0.0151587 0.38656 0.455854 0.00434219 0.000112695
ABC+A-DVM - - 3.88627e-09 0.342161 0.000557128 0.166427 0.00092874 0.315438 0.00348622 4.05068e-10 0.236673 0.00882451 0.132163 0.491154 0.0611765
MS-EPSO - - - 3.06052e-10 7.14918e-06 0.0928834 6.64426e-11 3.06052e-10 2.09984e-10 0.0125506 1.21931e-09 1.38629e-05 0.00882451 4.87775e-10 3.06052e-10
ABC - - - - 5.09384e-06 0.170144 0.000249091 0.420901 0.00380853 6.64426e-11 0.0268426 0.00113289 0.0904498 0.218821 0.152088
ABCX-m1+A-DVM - - - - - 0.108508 1.41572e-08 1.06636e-05 2.22202e-07 8.64705e-08 0.000384864 0.426691 0.260072 2.17654e-05 5.09384e-06
NM - - - - - - 0.294726 0.166427 0.241258 0.0928834 0.135353 0.132163 0.320712 0.166427 0.205955
DE - - - - - - - 0.000528777 0.473478 3.34776e-11 2.04198e-05 5.83718e-06 0.00333444 3.59939e-05 0.0928834
ABCX-m5+A-DVM - - - - - - - - 0.00847744 8.88454e-11 0.0339344 0.00092874 0.0928834 0.331367 0.197634
MABC+A-DVM - - - - - - - - - 4.95931e-11 0.000451535 1.57864e-05 0.00585534 0.00092874 0.177736
PSO - - - - - - - - - - 9.7839e-11 1.18841e-07 0.000178192 8.06613e-11 6.64426e-11
GBESTABC2+A-DVM - - - - - - - - - - - 0.0103404 0.245891 0.114115 0.0095562
ABCx-m1 - - - - - - - - - - - - 0.444151 0.0039795 0.000134029
QPSO - - - - - - - - - - - - - 0.155594 0.0259386
ABCx-m5 - - - - - - - - - - - - - - 0.0629851

GTD GBESTABC+A-DVM ABC+A-DVM MS-EPSO ABC ABCX-m1+A-DVM NM DE ABCX-m5+A-DVM MABC+A-DVM PSO GBESTABC2+A-DVM ABCx-m1 QPSO ABCx-m5 ABC-ES

EPSO 0.18406 0.18406 0.18406 0.18406 0.18406 0.18406 0.18406 0.18406 0.18406 0.18406 0.18406 0.18406 0.18406 0.18406 0.00550727
GBESTABC+A-DVM - 0.18406 0.18406 0.18406 0.18406 0.18406 0.18406 0.18406 0.18406 0.18406 0.18406 0.18406 0.18406 0.18406 0.00550727
ABC+A-DVM - - 0.18406 0.18406 0.18406 0.18406 0.18406 0.18406 0.18406 0.18406 0.18406 0.18406 0.18406 0.18406 0.00550727
MS-EPSO - - - 0.18406 0.18406 0.18406 0.18406 0.18406 0.18406 0.18406 0.18406 0.18406 0.18406 0.18406 0.00550727
ABC - - - - 0.18406 0.18406 0.18406 0.18406 0.18406 0.18406 0.18406 0.18406 0.18406 0.18406 0.00550727
ABCX-m1+A-DVM - - - - - 0.18406 0.18406 0.18406 0.18406 0.18406 0.18406 0.18406 0.18406 0.18406 0.00550727
NM - - - - - - 0.18406 0.18406 0.18406 0.18406 0.18406 0.18406 0.18406 0.18406 0.00550727
DE - - - - - - - 0.18406 0.18406 0.18406 0.18406 0.18406 0.18406 0.18406 0.00550727
ABCX-m5+A-DVM - - - - - - - - 0.18406 0.18406 0.18406 0.18406 0.18406 0.18406 0.00550727
MABC+A-DVM - - - - - - - - - 0.18406 0.18406 0.18406 0.18406 0.18406 0.00550727
PSO - - - - - - - - - - 0.18406 0.18406 0.18406 0.18406 0.00550727
GBESTABC2+A-DVM - - - - - - - - - - - 0.18406 0.18406 0.18406 0.00550727
ABCx-m1 - - - - - - - - - - - - 0.18406 0.18406 0.00550727
QPSO - - - - - - - - - - - - - 0.18406 0.00550727
ABCx-m5 - - - - - - - - - - - - - - 0.00550727

Table 5.4: p-values of pairwise Mann-Whitney U test of the MWTCS, WBD1, WBD2 and GTD
instances

TBT DPV1 DPV2 SRD11 MWTCS WBD1 WBD2 GTD

1.168365e-43 9.029975e-08 1.899573e-10 4.398067e-37 3.643795e-13 6.313696e-26 3.411428e-22 1.887828e-08

Table 5.5: p-values of Friedman test for all instances

Method Best Mean Worst Std.Dev Median
Ray and Liew[99] 263.8958466 263.9033 263.96975 1.26× 10−2 263.8989
Zhang et al.[100] 263.8958434 263.8958436 263.8958498 9.72× 10−7 263.8958434
Garg[90] 263.8958433 263.8958437 263.8958459 5.34× 10−7 263.8958436
c-NM 263.899 263.911 263.941 0.0100473 263.91
ABCX-m1+A-DVM 263.897 263.912 263.942 0.013249 263.942

Table 5.6: Results of the TBT throughout the literature
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(a) DPV2 (b) SRD11

Figure 5.3: Plots of the objective function of the DPV2 and SRD11 along the iterations

(a) MWTCS (b) WBD1

Figure 5.4: Plots of the objective function of the MWTCS and WBD1 along the iterations
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(a) WBD2 (b) DTG

Figure 5.5: Plots of the objective function of the WBD2 and GTD along the iterations

Region Method Best Mean Worst Std.Dev Median

I

Sandgren[101] 8129.1036 - - - -
Kannan and Kramer[92] 7198.0428 - - - -
Coello[102] 6288.7445 6293.8432 6308.1497 7.4133 -
Coello and Montes[103] 6059.9463 6177.2533 6469.3220 130.9297 -
He and Wang[104] 6061.0777 6147.1332 6363.8041 86.4545 -
Montes and Coello[105] 6059.7456 6850.0049 7332.8798 426.0000 -
Kaveh and Talatahari[106] 6059.7258 6081.7812 6150.1289 67.2418 -
Kaveh and Talatahari[107] 6059.0925 6075.2567 6135.3336 41.6825 -
Garg[90] 6059.714 6447.7360 6495.3470 502.693 -
Cagnina et al.[93] 6059.714335 6092.0498 - 12.1725 -
Coelho[108] 6059.7208 6440.3786 7544.4925 448.4711
He et al. [109] 6059.7143 6289.92881 - 305.78 -
Akay and Karaboga[12] 6059.714339 6245.308144 - 205 -
Garg[90] 5885.3853363 5884.24637 5884.462541 0.50281 5884.58128
c-NM 5915.96 6263.62 7580.9 325.158 6203.62
GBESTABC+A-DVM 5838.33 5996.02 6478.85 130.14 5968.83

II

Dimopoulos[110] 5850.38306 - - - -
Mahdavi et al.[111] 5849.7617 - - - -
Garg[90] 5850.38306 5937.33790 5811.977127 264.54747 -
Garg[90] 5804.4048008 5806.596206 5808.16968 1.028072 5806.7764199
c-NM 5822.05 6155.07 7004.11 278.569 6074.56
GBESTABC+A-DVM 5919.27 6113.5 6827.4 182.972 6050.65

Table 5.7: Results of the DPVI and II throughout the literature
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Method Best Mean Worst Std Dev Median
Kuang et al.[112] 2876.117623 - - - -
Ray and Saini[113] 2732.9006 2741.5642 2757.8581 - -
Akhtar et al.[114] 3008.08 3012.12 3028 - -
Montes et al.[115] 3025.005 3088.7778 3078.5918 - -
Ray and Liew[99] 2994.744241 3001.7582264 3009.964736 4.0091423 3001.758264
Montes et al.[116] 2996.356689 2996.367220 - 8.2× 10−3 -
Akay and Karaboga[12] 2996.348165 2996.3482 - 0 -
Zhang et al.[100] 2994.471066 2994.471066 2994.471066 3.58× 10−12 2994.471066
Garg[90] 3000.9810 3007.1997 - 4.9634 -
Garg[90] 2894.73832 2894.71248 2895.03219 4.96× 10−4 2894.97128
c-NM 3450.62 5493.69 14992.5 4056.27 3450.62
GBESTABC+A-DVM 2894.42 2894.39 2894.42 0.007253 2894.38

Table 5.8: Results of the SRD11 throughout the literature

Method Best Mean Worst Std.Dev Median
Belegundu[98] 0.0128334 - - - -
Coello [102] 0.01270478 0.01276920 0.01282208 3.9390× 10−5 0.01275576
Ray and Saini[113] 0.0130600 0.015526 0.018992 - -
Coello and Montes[103] 0.0126810 0.0126810 0.012973 5.9000× 10−5 -
Ray and Liew[99] 0.01266924934 0.012922669 0.012709 5.92× 10−4 0.012922669
He et. al[109] 0.012922669 0.01270233 - 4.12439× 10−5 -
He and Wang[104] 0.0126747 0.012730 0.012924 5.1985× 10−5 -
Zhang et al.[100] 0.012665233 0.012669366 0.012738262 1.25× 10−5 -
Montes et al.[116] 0.0126747 0.012666 - 2.0× 10−6 -
Montes and Coello[105] 0.012698 0.013461 0.164850 9.6600× 10−4 -
Akay and Karaboga[12] 0.012665 0.0131 - 4.1× 10−4 -
Kaveh and Talatahari[107] 0.0126432 0.012720 0.012884 3.4888× 10−5 -
Coelho[108] 0.012665 0.013524 0.017759 0.001268 0.012957
Akay and Karaboga[12] 0.012665 0.012709 - 0.012813 -
Garg[90] 0.01266523278 0.01266523278 0.012668306480 8.6519× 10−7 0.01266555276
c-NM 0.0126665 0.0253572 0.236589 0.0459053 0.0126886
ABC+A-DVM 0.0129082 0.0137128 0.016592 0.00090146 0.0134881

Table 5.9: Results of the MWTCS throughout the literature
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Region Method Best Mean Worst Std.Dev Median

I

Ragsdell and Phillips[117] 2.385937 - - - -
Rao[118] 2.3860 - - - -
Deb[119] 2.38119 - - -
Ray and Liew[99] 2.3854347 3.2551371 6.3996785 0.9590780 3.0025883
Hwang and He[120] 2.25 2.26 2.28 - -
Mehta and Dasgupta[121] 2.381134 2.3811786 2.3812614 - 2.3811641
Garg[90] 2.38099617 2.38108932 2.38146999 1.182265× 10−4 2.3786824
c-NM 2.33394 2.66087 4.36388 0.427917 2.51524
ABCX-m5+A-DVM 2.45812 2.63372 2.89238 0.130541 2.58517

II

Coello [102] 1.748309 1.771973 1.785835 0.011220 -
Coello and Montes[103] 1.728226 1.792654 1.993408 0.07471 -
Dimopoulos[110] 1.731186 - - - -
He and Wang[104] 1.728024 1.748831 1.782143 0.012926 -
Montes et al.[116] 1.724852 1.725 - 0 -
Montes and Coello[105] 1.737300 1.813290 1.994651 0.07050 -
Akay and Karaboga[12] 1.724852 1.729752 - 0.21545 -
Kaveh and Talatahari[106] 1.724918 1.727564 1.775961 0.0092 -
Kaveh and Talatahari[107] 1.724849 1.8786560 1.759522 0.008254 -
Mehta and Dasgupta[121] 1.724855 2.0574 1.72489 - 1.724861
Akay and Karaboga[12] 1.724852 1.741913 - 0.031 -
Garg[90] 1.69524738 1.6952473 1.6952473 1.978× 10−8 1.6952473
c-NM 1.66504 3.4216 8.62822 1.62804 3.4927
ABCX-m1+A-DVM 2.41082 2.53591 2,87406 0.110458 2.51429

Table 5.10: Results of the WBDI and II throughout the literature

Method Best Mean Worst Std Dev Median
Gandomi et al.[88] 2.7009× 10−12 1.9841× 10−9 2.3576× 10−9 3.5546× 10−9 -
Garg[90] 2.7008571× 10−9 1.2149276× 10−9 3.2999231× 10−9 8.77× 10−10 9.9215795× 10−10

c-NM 0 0 0 0 0
GBESTABC+A-DVM 0 0 0 0 0

Table 5.11: Results of the GTD throughout the literature
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formulation in which specifically focuses the search around the feasible boundary of the problem.
Naturally, they take precedence over the standard construction procedure.

Numerical experiments were conducted on eight instances of constrained engineering design
problems in order to provide a suitable answer to the research question. The c-NM and A-DVM
based ABC variants with the new rules are compared against several population based heuristics in
order to assess its performance as a standalone method. The algorithms are firstly compared against
a smaller pool of population heuristics as baseline, and then against a larger selection found in the
literature. Results show that the augmented A-DVM was indeed able to reach competitive results
in some instances, comparable to complex parallel methods. A similar thing can be said about
the c-NM, albeit its performance was not as good compared to the A-DVM based algorithms. A
deterioration of the robustness of the c-NM has been observed due to the sensitivity of the method
to the choice of initial search point. Therefore, implementation of methods to choose initial points
that are ”good enough” would yield much better results.

From the results, we can conclude that our objective has been achieved, that is, to come up
with derivative-free techniques that rely more on deterministic procedures which are able to hold
their ground against more complex algorithms. We can highlight two possible directions for the
c-NM. First, to explore more on the property of the faces of the simplex rather than the vertices
itself, so that it can better adapt itself to the landscape of the problem. Second, to capitulate that the
algorithm needs a good starting point and employ the proposed approach as a subroutine to global
search algorithms or even to the population based heuristics that were used in the experiment. After
the integration, it would be fruitful to test the method to optimization problems with constraints that
are so difficult which regular solvers lack the capability to solve. An example of such are problems
from the family of mathematical programming with equilibrium constraints [122]. Lastly, for the
A-DVM, a further understanding of the constraint rules would be a promising due to its competitive
results. Furthermore, using a larger pool of engineering problem instances and compared against
the state-of-the-art would prove to be ideal.
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Chapter 6

Conclusion

The main point of this thesis was the proposal of several modifications based on deterministic meth-
ods to two derivative-free algorithms in order to improve their robustness to solve some families of
optimization problems pertaining to the class of multimodal problems. The algorithms in question
are the Artificial Bee Colony, a population heuristic from the family of swarm intelligence algo-
rithms, and the Nelder-Mead algorithm, a direct search algorithm. Each modification resulted in
novel algorithms that exploited the problem formulation by overcoming some of its deficiencies
brought by employing randomization in their core structure. We restrict the numerical experiments
used to validate the research question for each case to instances with relatively low dimensionality
(n < 100) for two reasons. First, because very large scale are out of scope of this work, since one
of our main focus is to try to keep the changes as simple as possible, it would be unfair to com-
pare our techniques against the very complex algorithms for these families that are prominent in
the literature. Second, simply due to the causality of the ”no-free lunch” theorem of Wolpert [64]
in asserts the idea that the ideas presented in this work would be good at every kind of problem.
We can affirm that we achieved our objective in Chapter 3, since the A-DVM based ABC algorithm
was strictly better than the standard ABC for almost every case. Not only that, but the A-DVM
approach has seen to be very robust to the hardest instances of problems, also faring well against
other derivative-free techniques when restricting the budget to a very small number. On a last note,
it was possible to observe that the A-DVM failed to obtain a competitive result for large scale cases,
leaving room for future improvement in the deterministic selection process.

The same can be said for chapter 4, which dealt with an integration of a procedure that is
commonplace in model-based algorithms to a direct search derivative-free algorithm. Although
the use of polling steps to a direct search algorithm has resulted in some well-known algorithm
such as the Multidirectional Direct Search (MADS), the inclusion of a polling step to reinforce the
restarting mechanism of the solution set seemed a natural idea since it is common knowledge that
the Nelder-Mead is extremely reliant on the starting point to construct the initial solution set.

Lastly, Chapter 5 held mixed results. On one hand, the augmented Lagrangian together with
the additional rules for the deterministic selection of the A-DVM provided a substantial improve-
ment to the ABC algorithm. On the other hand, the new mechanism proposed to the Nelder-Mead
tied with the Lagrangian penalty method was not able to provide an improvement that was up to the
expectations. Surely, we can conclude that for the inclusion of the A-DVM is a promising direction

83



towards obtaining robust results, especially compared against the state-of-the-art. Nevertheless, the
c-NM cannot be seen as a complete failure, since the results strongly suggest that it would perform
much better if it would be implemented as a subroutine of another global optimization algorithm.
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Paul van Mulbregt, and SciPy 1. 0 Contributors. SciPy 1.0: Fundamental Algorithms for
Scientific Computing in Python. Nature Methods, Vol. 17, pp. 261–272, 2020.

[46] MA El-Gebeily* and YA Fiagbedzi. On certain properties of the regular n-simplex. Inter-
national Journal of Mathematical Education in Science and Technology, Vol. 35, No. 4, pp.
617–629, 2004.

[47] Marco Antonio Florenzano Mollinetti, Mario Tasso Ribeiro Serra Neto, and Takahito Kuno.
Deterministic parameter selection of artificial bee colony based on diagonalization. In Inter-
national Conference on Hybrid Intelligent Systems, 2018.

[48] Ronald W Morrison. Designing evolutionary algorithms for dynamic environments. Springer
Science & Business Media, 2013.

[49] Marco Locatelli and Fabio Schoen. Global optimization: theory, algorithms, and applica-
tions, Vol. 15. Siam, 2013.

[50] Eric W Weisstein. CRC concise encyclopedia of mathematics. Chapman and Hall/CRC,
2002.

[51] Elias Zakon. Mathematical analysis. The Trillia Group, 2004.

[52] Brian Mc Ginley, John Maher, Colm O’Riordan, and Fearghal Morgan. Maintaining healthy
population diversity using adaptive crossover, mutation, and selection. IEEE Transactions on
Evolutionary Computation, Vol. 15, No. 5, pp. 692–714, 2011.

[53] Rasmus K Ursem. Diversity-guided evolutionary algorithms. In International Conference on
Parallel Problem Solving from Nature, pp. 462–471. Springer, 2002.
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