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Abstract

Subspace representation has been successfully applied to the classification of image sets and
acoustic signals. Subspaces can model compactly gaussian-like noise caused by various factors,
such as an object’s appearance, effectively representing the variations such as the change in pose
and illumination condition. Subspaces exist on a Riemannian manifold called Grassmannian, and as
such, subspace processing is performed on this space. Various conventional classification methods
have been constructed on the Grassmannian, ranging from simple 1-nearest neighbor to more
discriminant ones using a kernel trick. However, there is still potential for improvement of the
discriminant ability of subspace representation. This thesis develops learning algorithms to classify
subspace-valued data, with applications in signal processing and computer vision. First, we introduce
general-purpose, straightforward methods that generalize the Fisher discriminant analysis: enhanced
Grassmann discriminant analysis (eGDA) to enhance the discriminant ability in motion recognition;
and Grassmann singular spectrum analysis (GSSA) and tangent SSA (TSSA) for acoustic signal
classification. Then, we introduce the Grassmann log model, an end-to-end learnable method,
integrating subspace representation with deep learning (DL) to enhance the discriminant ability
of subspace representation in several computer vision tasks. We demonstrate the validity of the
proposed method and its extensions through comprehensive experiments on face identification, face
expression, static and dynamic hand gesture classification, and human body action recognition.
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Chapter 1

Introduction

This thesis proposes subspace-based methods for applications in computer vision and signal pro-
cessing. The linear subspace, meaning a subset of vector space closed under linear combinations,
is an essential concept in mathematics and physics. Here, we use the subspace as an approach to
represent data in engineering problems, specifically the fields of pattern recognition and machine
learning.

We seek to exploit subspaces’ useful properties for classifying data accurately. To reach this
goal, we propose four methods to classify image sets and acoustic signals represented as subspaces.
To establish the motivation and position this work in the field, we first overview the subspace-based
methods.

1.1 Overview of subspace-based methods

Subspaces have an extensive history in pattern recognition and statistics. We briefly describe
subspace methods used for data representation and classification while referring to the diagram in
Figure 1.1. The methods illustrated by gray boxes indicate conventional methods, while red boxes
indicate methods proposed in this thesis. The arrows show that some method is an extension/
generalization of a previous method.

Subspaces were arguably first used in statistics for representing a data distribution in Principal
component analysis (PCA), invented by Hotelling [51]. It can be seen as a discrete form of the
Karhunen-Loève expansion (KL expansion), which was independently invented by Karhunen [62]
and Loève [75]. KL expansion was also independently introduced by Iĳima [58] and Watanabe
(Watanabe, 1965) [117] in pattern recognition.

The subspace-based methods started from the central problem of pattern recognition: matching
two patterns. A similarity score to compare objects can be defined in numerous ways, but a reasonable
similarity should capture the regularities in data and ignore the “noise”. This noise can come from
measurement devices, quantization processes, but most important, from the fact that no two objects
are identical in the real world, even if they belong to the same category [79].

One way to define a similarity is by the correlation between two patterns, i.e., the angle between
them as vectors. This similarity applied to pattern matching became known as the correlation
method [60], indicated at the top of Figure 1.1. However, when applied to image patterns, such a

1



Grassmann discriminant 
analysis (GDA)

Correlation method

Subspace method (SM)

Mutual subspace method 
(MSM)

Constrained MSM 
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Figure 1.1: Diagram of the algorithms proposed in this thesis (in red boxes) and the relationship
with several conventional algorithms (in gray boxes).

simple matching method has a problem caused by a change of shape or position of the patterns. Even
though the amount of change is small, the correlation can change drastically. The subspace-based
methods were invented to allow similarities that were more stable against pattern variations and
more discriminative against similar classes [79].

The subspace method (SM) is a pattern matching method where a matching more sophisticated
than correlation is employed. SM is the second method in Figure 1.1. The key idea is that the
dictionary or the reference pattern is represented not with a single pattern but a subspace. The
similarity is then defined as the angle from an input pattern to its projection onto the reference
subspace. SM employs a variant of principal component analysis (PCA) without centering to
generate the subspace.

Iĳima’s method was originally called the multiple similarity method [56, 57], and corresponding
Watanabe’s method was called CLAFIC [118]. They are slightly different in dealing with the
variances of data, but the process is almost the same: given a set of class training patterns, apply
PCA on them to make a class subspace. Then, calculate similarities for all classes to classify an
unknown pattern.

The subspace methods have also been investigated by many researchers, such as Kittler and
Young [67], Kohonen [68] and Fu and Yu [25]. Several subspace methods have been proposed,
e.g., the learning subspace methods [69, 85] and orthogonal subspace method [63]. For a detailed
treatment, refer to a textbook by Oja [84].

An important generalization of SM is the mutual subspace method (MSM), the third method in
Figure 1.1. SM improved the stability of similarity against the changes of pattern positions or shapes.
MSM was created from the idea that if both the input and reference patterns are represented with
subspaces, we may expect even more stability against the changes. This new idea required similarity
between two subspaces, constructed from the mathematical concept of canonical angles between
subspaces. The original MSM used the minimum angle (i.e., the first canonical angle) between
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subspaces as a similarity. MSM was employed successfully in hand-printed Chinese character
(Kanji) recognition, where there are many classes, and each class has countless variations. In a
paper by Maeda et al. [80], MSM was employed for 3D face recognition, and multiple canonical
angles were used to compute similarity. The reason for introducing more angles is that as faces
have far more complicated 3D shape than that of 2D characters, more canonical angles are needed
to capture information to differentiate two faces’ representative landmarks.

A limitation of MSM is that it does not exploit any discriminative mechanism, i.e., it does not
try to separate subspaces from different classes. Various methods were proposed to add discrimina-
tion, such as the Grassmann discriminant analysis (GDA) [41], constrained MSM (CMSM) [122],
orthogonal mutual subspace method (OMSM) [29], projective metric learning (PML) [54] and dis-
criminative canonical correlation (DCC) [64]. Other extensions of MSM include the kernel MSM
(KMSM) [93] and Grassmann Dictionary Learning (GDL) [43]. In the following paragraphs, we
discuss CMSM and GDA, two methods marked in Figure 1.1 that are foundational for this thesis.

CMSM (leftmost in Figure 1.1) corresponds to MSM conducted on a generalized difference
subspace (GDS) [27]. GDS was invented as a straightforward and elegant solution to tackle pattern-
set related problems such as face and hand shape recognition. A GDS is a discriminative subspace
containing the peculiar components that differentiate one class from another. It is obtained by
computing a common subspace from all classes’ patterns and then removing the first components,
containing landmarks typical to all classes. All reference and input subspaces are projected onto
the GDS, producing discriminative subspaces. The constraint subspace’s effect depends on the
application and may have interesting properties, such as nearly orthogonalizing subspaces of different
classes and removing common features between them.

For most of its history, subspace-based methods were formulated mostly by using linear algebra
and numerical analysis. However, the set of all subspaces forms a space with a natural Riemannian
structure. This space is named Grassmann manifold (or Grassmannian) and has been well studied
in mathematics and physics [1, 12, 26]. Therefore, subspace methods for engineering can also be
developed from the perspective of Riemannian geometry. From this viewpoint, (dis)similarities can
be thought of as geodesic distances in the Grassmannian, and MSM can be regarded as the nearest
neighbor (1NN) between subspaces on this manifold.

Grassmann discriminant analysis (GDA) [41] (center in Figure 1.1) is one popular discriminative
extension of MSM that exploits the Grassmannian structure. GDA is a generalization of the Fisher
discriminant analysis (FDA) [23, 95] to the Grassmann manifold. It computes a discriminant analysis
through a kernel trick from the Grassmannian to a Euclidean space.

In computer vision, subspace-based methods have been employed in several tasks, e.g., face [63,
93, 127], hand gesture recognition [83, 123, 38, 32, 112], and robot vision [28, 13]. It has been the
most popular with the task of image set recognition, where multiple images are used to model an
object, rather than a single image.

While so far we have focused on pattern recognition, subspaces also have been used in signal
processing. Singular spectrum analysis (SSA) [47] has been used for tasks such as signal denoising
and source separation [39]. It has recently been combined with MSM for signal classification,
resulting in a method called mutual SSA (MSSA) [31]. MSSA is an elegant method for comparing
signals in terms of their frequency information, offering low storage, consistent compactness ratio
selection, and invariance to signal length.

Finally, subspaces have recently appeared as tools in the field of machine learning. Recent
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advances in deep neural networks (DNN) [98, 72, 16] made them into powerful feature extractors.
Some researchers started to explore the direction of combining subspaces and DNNs for achieving
better stability in classification of image sets. Among the works using subspaces and DNNs, we
can cite Gatto et al.s work [35, 37, 33], which uses subspaces as filters of convolution in shallow
networks, and Sogi et al. [100], which performs subspace classification with subspaces of fine-tuned
DNN features. However, it is not easy to integrate subspace representation and DNNs to exploit
subspace’s invariance and DNN’s expressivity. Therefore, subspace representation in the paradigm
of end-to-end gradient-based learning DNNs is mostly unexplored.

1.2 Motivations

The motivation to use subspace representation is that 1) it arises naturally in many types of data, and
2) it is both practical, robust to noise, and invariant to some types of change.

Image data (e.g., MRI tractography, movie clips), signal data (e.g., machine vibrations, bioa-
coustic records), text data (e.g., medical reports, tweets), biological data (e.g., gene expression
levels, metabolomic profile) often come in the form of a set of feature vectors. We can arrange
these vectors conveniently as columns of a matrix (e.g., frame matrices of grayscale values, signal
trajectory matrices, gene-microarray matrices of gene expression levels, term-document matrices of
term-frequency inverse document-frequencies). In modern applications, one will often encounter a
prohibitively large sample size and a massive amount of independent variables (high-dimensional
problem).

Such raw data in this matrix form is not so informative as it is massive and contains considerable
noise. Instead, its eigenspace, i.e., the columns’ subspace, is much more interesting. Moreover,
the raw data matrix can usually be well approximated by a low-dimensional subspace with basis
vectors corresponding to the matrix’s largest eigenvalues. We call data in such form by the term
Grassmann-valued data.

Grassmann-valued data are robust to noise and invariant to changes in some data factors often
seen as noise in applications. Let us consider, for example, an image application such as face
recognition. Images with changes in illumination settings can be modeled into an illumination
subspace. This illumination subspace can be invariant to the illumination changes under a fixed
pose of an object. Another situation is to have images containing changes in pattern position and
shape of an object. A subspace can model the appearance of such an object compactly containing
some pose variations due to subspaces’ invariance to linear transformations. Note that a subspace
cannot be invariant to all shape and position changes. Furthermore, it can be generated from a
small amount of data while keeping this invariance, using principal component analysis (PCA). PCA
captures regularities in data, getting as much variance as possible in a small number of dimensions,
represented by principal components. By this process of PCA, the illumination variations are
captured as linear combinations of the principal components.

Similarly, background sounds are seen as noise in an acoustic signal. Besides, a signal’s volume
or length should not affect classification. A subspace computed through singular spectrum analysis
(SSA) [39] can model a signal’s frequency information compactly while maintaining invariance to
the signal’s volume and length. Since SSA works as a low-pass filter, a subspace can also filter out
high-frequency background noise.
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Grassmann-valued data emerge in a wide range of applications: computer vision, signal process-
ing, natural language processing, bioinformatics, machine learning, communication, coding theory,
statistical classification, and system identification [124]. With such a considerable potential for
applications, it is essential to develop Grassmann-valued data processing algorithms, such as feature
extraction, classification, and regression.

The open problem in Grassmann-valued data that is the central motivation of this thesis is: the
tools to process Grassmann-valued data are still underdeveloped despite their useful and practical
nature. First, the Grassmann manifold is not a Euclidean space, so that standard machine learning
methods cannot be promptly utilized to process Grassmann-valued data. Most methods specialized
in subspaces are extensions of linear methods in vector space, with nonlinearity added only through
a kernel with little learning feedback. As such, their evolution has not yet reached the final stage;
they can still be extended to obtain better classification performance in their current applications
or enable their use in more complicated unconstrained applications. For example, GDA maps data
to a Euclidean space through a kernel trick, a limited representation of the manifold that may not
generalize its distance structure well when not enough data is given. Another example is MSSA,
which has no discriminant mechanism and works just as the nearest neighbor algorithm for signals.
Finally, tools for processing Grassmann-valued data within deep neural networks are lacking.

1.3 Objectives

This thesis aims to provide learning algorithms to classify Grassmann-valued data that can be
employed in signal processing and computer vision applications. We propose learning methods
to represent the image sets and acoustic signals discriminatively. We also propose different ap-
proaches to adequately classify these representations. The goal is to develop general-purpose and
straightforward algorithms that achieve high classification performance.

1.4 Contributions

Based on the open problems discussed, we enumerate the contributions of this thesis as follows:

1. We propose an algorithm to enhance the discrimination ability of GDA, named enhanced
Grassmann discriminant analysis (eGDA) (Chapter 3). The proposed algorithm can be re-
garded as a generalization of FDA from Euclidean space to the Grassmann manifold. Our
eGDA projects subspaces onto a GDS, which works as a feature extraction on the Grassman-
nian. It then uses a kernel trick to reproduce the manifold and compute a discriminant. By
combining GDS and GDA ideas, we constructed a method that achieves better discrimination
ability than both separately. We further combined eGDA with a feature extraction called
randomized time warping (RTW) [105] to classify ordered image data. We demonstrate the
discriminative ability of this method to the classification of motion images.

2. We propose two algorithms to classify signals, which are extensions of MSSA and Fisher
discriminant analysis from Euclidean to Grassmannian (Chapter 4). First, we propose Grass-
mann singular spectrum analysis (GSSA), a method that uses singular spectrum analysis to
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represent signals by subspaces, and then a Grassmann kernel trick just as GDA and eGDA, to
map the subspaces onto a discriminant space. Then, we propose the tangent singular spectrum
analysis (TSSA). In this method, we exploit the mathematical structure of the Grassmannian
as a Riemannian manifold to compute a discriminant directly without a kernel trick, leading
to a different mechanism from that of GDA. We compute the discriminant in the tangent space
of the data Karcher mean. We demonstrate the application of these methods to the task of
bioacoustic signal classification.

3. We attempt to integrate the paradigm of DNNs and subspace representation by introducing
a new interface between them, which is called the Grassmann log model, an end-to-end
learnable neural network layer (Chapter 5). We aim to integrate subspace representation
with deep learning (DL) techniques for more powerful learned representations of Grassmann-
valued data. The Grassmann log model maps Grassmann-valued data to vectors by learning a
tangent space. This layer can be seamlessly connected to conventional neural network layers.
We employ the proposed log model to image set recognition tasks, such as face identification,
facial expression recognition, and hand shape recognition.

In summary, this thesis contributes to the line of research of subspace-based methods by intro-
ducing new ideas from a differential geometric perspective, focusing on the Grassmannian. Case
studies in a wide range of applications are offered, particularly advancing the use of subspace-based
methods in signal processing, where its use for classification is relatively unexplored. And finally,
we evolve subspace representation by integrating it as a layer of a deep learning framework.

1.5 Thesis organization

The rest of this thesis is organized as follows.

• Chapter 2 provides the mathematical background of the subspace representation and the
Grassmannian.

• Chapter 3 introduces enhanced Grassmann discriminant analysis (eGDA).

• Chapter 4 introduces Grassmann singular spectrum analysis (GSSA) and tangent singular
spectrum analysis (TSSA).

• Chapter 5 describes the Grassmann log model.

• Chapter 6 concludes the thesis by providing summaries and future works.

• Appendix A demonstrates that a subspace computed through PCA without centering minimizes
reconstruction error of a set of patterns.

• Appendix B provides the gradient computation of the Grassmann log map in Chapter 6.
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Chapter 2

Theoretical background

In this section, we review the basics of subspace representation, the mathematical structure of the
Grassmann manifold and operations we can perform on it. The following notation is used: plain
letters for scalars and functions, lowercase bold for vectors, uppercase bold for matrices, lowercase
bold greek for Grassmann manifold points and blackboard bold typefaces for sets/spaces such as
manifolds and number fields.

2.1 Assumption of subspace representation

First, we discuss the basic idea of representing a set of patterns/ feature vectors by a subspace. The
primary assumption of subspace representation is that a low-dimensional subspace can approximate
the underlying pattern distribution in a high-dimensional vector space. This assumption’s intuition
is that the distribution should be more “elliptical” rather than “spherical”. Note that the data does
not need to be entirely contained by the subspace; one needs only the variance to be considerably
larger in a few directions so that we have a unique low-dimensional subspace that fits the data well
enough.

2.2 Constructing a subspace

Now we consider the problem of how to compute the 𝑚-dimensional subspace 𝜷, i.e. how to find
the orthonormal basis {𝒃 𝑗 ∈ R𝑑}𝑚𝑗=1 of the subspace 𝜷 given sample vectors from the distribution.
Let {𝒙𝑖 ∈ R𝑑}𝑛𝑖=1 be a set of sample patterns from the underlying data distribution, with a sample
size 𝑛 and number of variables (dimension) 𝑑. Note that usually 𝑚 is selected as a hyperparameter,
often much smaller than 𝑑.

Throughout this thesis, we utilize the principal component analysis (PCA) without centering to
compute a subspace. The objective of this procedure is minimizing the reconstruction error between
the sample patterns {𝒙𝑖}𝑛𝑖=1 and a subspace 𝜷 spanned by the principal component vectors {𝒃 𝑗}𝑚𝑗=1.
This objective can be defined as follows:

min
𝜷⊂R𝑑

dim 𝜷=𝑚

𝑛∑
𝑖=1
‖𝒙𝑖 − 𝑷𝒙𝑖 ‖22 , (2.1)
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where 𝑷 : R𝑑 → R𝑑 is the projection operator onto 𝜷.
We compute the solution to the problem above as follows. Let 𝑿 = [𝒙1, 𝒙2, · · · , 𝒙𝑛] ∈ R𝑑×𝑛 be

the matrix where each column is a sample pattern and 𝑩 = [𝒃1, 𝒃2, · · · , 𝒃𝑚] ∈ R𝑑×𝑚 be the matrix
of basis vectors of 𝜷. We refer to 𝑩 as basis matrix. We can write:

𝑷 = 𝑩𝑩>. (2.2)

The choice of low-dimensional subspace 𝜷 that minimizes reconstruction error between all patterns
{𝒙𝑖}𝑛𝑖=1 is the 𝜷 = span(𝑩) such that the columns of 𝑩 correspond to the 𝑚 leading eigenvectors of
the autocorrelation matrix:

𝑨 = 𝑿𝑿> =
𝑛∑
𝑖=1

𝒙𝒙>. (2.3)

Note that different from the conventional PCA, we do not utilize the covariance matrix 𝑪 =
∑𝑛

𝑖=1(𝒙−
𝝁) (𝒙 − 𝝁)>, i.e., we do not remove the mean 𝜇 from each sample pattern. We also do not assume
that the mean is zero.

The autocorrelation matrix 𝑨 is symmetric positive semidefinite and hence has eigenvectors
𝒖1, . . . , 𝒖𝑟 , and corresponding real eigenvalues 𝜆1, . . . , 𝜆𝑟 , where 𝑟 = rank 𝑨 and 𝑚 ≤ 𝑟 . Without
loss of generality we can assume 𝜆1 ≥ 𝜆2 · · · ≥ 𝜆𝑟 . Then, let𝑼 = [𝒖1, 𝒖2, · · · , 𝒖𝑟 ] ∈ S(𝑑, 𝑟) ⊆ R𝑑×𝑟
be the matrix of eigenvectors, where S(𝑑, 𝑟) denotes the manifold of tall orthogonal matrices, called
compact Stiefel manifold. Also let 𝚲 ∈ R𝑟×𝑟 be a diagonal matrix where each 𝑘-th diagonal entry
is an eigenvalue 𝜆𝑘 . Then, the matrix 𝑼 diagonalizes 𝑨 so that:

𝑨 = 𝑼𝚲𝑼−1 = 𝑼𝚲𝑼>. (2.4)

We obtain the basis matrix 𝑩 as the 𝑚 leading eigenvectors, which we write as:

𝑩 = 𝑼1:𝑚, (2.5)

where𝑼1:𝑚 denotes the leftmost𝑚 columns of𝑼. We show the details of the derivation of a subspace
that minimizes the reconstruction error in the Appendix A.

2.3 Canonical angles and similarity

In this subsection, we explain the idea of canonical angles between subspaces. Let 𝝌 and 𝝊 be
subspaces spanned by basis matrices 𝑿 ∈ S(𝑑, 𝑚) and 𝒀 ∈ S(𝑑, 𝑝) respectively. In this thesis, these
subspace bases are usually computed from PCA as described in the previous section. The canonical
angles {0 ≤ 𝜃1, · · · , 𝜃𝑟 ≤ 𝜋

2 } between 𝝌 and 𝝊, where 𝑟 = min(𝑝, 𝑚), are recursively defined as
follows [52, 4]:

cos 𝜃𝑖 =max
u∈𝝌

max
v∈𝝊

uTv = uT
𝑖 v𝑖 (2.6)

𝑠.𝑡. ‖u𝑖 ‖2 = ‖v𝑖 ‖2 = 1, uT
𝑖 u 𝑗 = vT

𝑖 v 𝑗 = 0, 𝑖 ≠ 𝑗 ,

where u𝑖 and v𝑖 are the canonical vectors forming the 𝑖-th smallest canonical angle 𝜃𝑖 between 𝝌
and 𝝊. The 𝑗-th canonical angle 𝜃 𝑗 is the smallest angle in the direction orthogonal to the canonical
angles {𝜃𝑘 } 𝑗−1

𝑘=1.
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This optimization problem can be solved from the orthogonal basis matrices of subspaces 𝝌 and
𝝊, i.e., cos2 𝜃𝑖 can be obtained as the 𝑖-th largest singular value of 𝑿>𝒀 [52, 4]:

𝑿>𝒀 = 𝑼𝚺𝑽>. (2.7)

Here, the columns of 𝑼,𝑽 ∈ S(𝑑, 𝑟) are called canonical vectors, a basis for 𝝌 and 𝝊 that is the
closest to the opposing subspace. The matrix 𝚺 ∈ R𝑟×𝑟 is a diagonal matrix where each element
corresponds to a singular value 𝜎𝑖 = cos2 𝜃𝑖 .

The similarity between two subspaces used throughout this thesis is defined as the sum of the
squared cosines of the canonical angles 𝜃𝑖 between 𝝌 and 𝝊:

𝑠(𝝌, 𝝊) =
𝑟∑
𝑖=1

cos2 𝜃𝑖 =
𝑟∑
𝑖=1

𝜎𝑖 = tr 𝚺. (2.8)

2.4 Grassmann manifold

The Grassmann manifold G(𝑑, 𝑚) is defined as the set of 𝑚-dimensional linear subspaces of R𝑑 . It
is an 𝑚(𝑑 −𝑚)-dimensional compact manifold and can be written as a quotient space of orthogonal
groupsG(𝑑, 𝑚) = O(𝑑)/O(𝑚) ×O(𝑑−𝑚), whereO(𝑚) is the group of 𝑚×𝑚 orthonormal matrices.

A point 𝝌 ∈ G(𝑑, 𝑚), i.e., a 𝑚-dimensional subspace of R𝑑 , can be represented extrinsically by
an orthogonal basis matrix 𝑿 ∈ S(𝑑, 𝑚), where the columns of the matrix form a basis such that 𝝌
is the set of all their linear combinations.

2.5 Tangent spaces

A tangent space 𝑇𝜿G at 𝜿 ∈ G(𝑑, 𝑚) can be seen intuitively as a subspace of R𝑑×𝑚, since 𝑇𝜿G can
be derived as a horizontal space. Given a point 𝑲 ∈ S(𝑑, 𝑚), such that span(𝑲) = 𝜿, a horizontal
space H is a subspace of the tangent space 𝑇𝑲S (a copy of R𝑑×𝑚) which contains the directions of
infinitesimal variation of 𝑲 that modify its span. In this work we always work with orthogonal bases
for subspaces, so it is intuitive to imagine a tangent space from the derivative of the orthogonal
property 𝑲>𝑲 = 𝑰, given by 𝑲> ¤𝑲 + ¤𝑲>𝑲 = 0. Any tangent vector ¤𝑲 to a subspace 𝜿 must satisfy
this constraint for some 𝑲 that spans 𝜿. The tangent bundle 𝑇G = {(𝝌,𝑽) |𝝌 ∈ G,𝑽 ∈ 𝑇𝝌G} is the
set of all tangent vectors of G, paired with their respective points.

2.6 Riemannian metric

The Grassmann manifold is Riemannian when endowed with a Riemannian metric 𝑔. G(𝑑, 𝑚) is a
quotient manifold of S(𝑑, 𝑚) (an embedded submanifold of R𝑑×𝑚), so the Euclidean metric induces
the Grassmannian canonical metric 𝑔 : 𝑼1 ×𝑼2 → tr𝑼>1 𝑼2, 𝑼1,𝑼2 ∈ 𝑇𝜿G. 𝑔 can be intuitively
seen as the restriction of the Euclidean metric to a Grassmann tangent space (a horizontal space H).
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2.7 Exponential map

The exponential map Exp : 𝑇G × R → G can be used to calculate an specific point on a geodesic
𝛾(𝑡), parameterized by arc length, given a point 𝛾(0), a normalized direction ¤𝛾(𝑡) and a length 𝑡. It
is denoted by 𝛾(𝑡) = Exp𝜿 𝑯, meaning the point 𝛾(𝑡) in the geodesic emanating from 𝜿 = 𝛾(0) in
the direction of 𝑯 = 𝑡 ¤𝛾(0) ∈ 𝑇𝜅G. In this thesis, we utilize the following extrinsic function derived
by [1], written in terms of orthonormal matrix representation. Given the basis matrix 𝑲 ∈ R𝑑×𝑚,
and given a tangent vector 𝑯 ∈ R𝑑×𝑚:

Exp𝑲 𝜆𝑯 = orth(𝑲𝑸(cos𝚺𝜆)𝑸> + 𝑱(sin𝚺𝜆)𝑸>), (2.9)

where 𝑱𝚺𝑸> = 𝑯 is the compact singular value decomposition (SVD) of the tangent vector 𝑯. Note
that 𝑯 is written in upper case as it is a matrix; yet it is still is a vector in the sense that is a member
of a tangent vector space. Here, 𝑱, 𝑲,𝑸 and Exp𝑲 𝜆𝑯 are orthogonal matrices, and 𝚺 is a diagonal
matrix. 𝜆 is the geodesic parameter, and can be seen as a step value to control the magnitude of the
movement towards the direction 𝑯.

2.8 Logarithmic map

The inverse of the exponential map is the logarithmic map (or log map) Log : G×G→ 𝑇G, denoted
by 𝑯 = Log𝜿 𝝌. Given two points on the manifold 𝝌 and 𝜿, one wants to find the tangent vector 𝑯
at 𝜿 pointing towards 𝝌. In other words, the log outputs a tangent vector to the shortest path curve
between 𝜿 and 𝝌. Note that Log𝝌 𝜿 ≠ Log𝜿 𝝌. In this thesis, given two basis matrices 𝑿 and 𝑲 for
input subspace 𝝌 and anchor 𝜿, we utilize the following three equations to calculate the log map [2]:

𝑩 = (𝑲>𝑿)−1(𝑲> − 𝑲>𝑿𝑿>), (2.10)

𝑾𝚯𝒁> = 𝑩>, (2.11)

Log𝑲 𝑿 = 𝑯 = 𝑾∗ arctan(𝚯∗)𝒁∗>, (2.12)

where 𝑾∗,𝚯∗, 𝒁∗ represent the matrices with the first 𝑚 columns of 𝑾,𝚯 and 𝒁 respectively.

2.9 Sample mean and variance in the Grassmann manifold

Since a manifold is not necessarily a vector space, additive mean may not be valid. Instead, inspired
by the approach to statistics on manifolds of previous works [24, 110], the Karcher mean is utilized,
which can be computed through algorithm 1. Likewise, sample variance is defined as the expected
value of the squared Riemannian distance from the mean, i.e. 𝐸 [‖ Log𝜿 𝝌‖2], where 𝜿 is the Karcher
mean, 𝝌 is a random point, and ‖ · ‖ is the norm for the Riemannian metric.

2.10 Orthogonal projection in matrix space

We use the notation 𝑃𝑨(𝑿) : 𝑿 → ∑𝑛
𝑗=1 𝑨 𝑗 tr 𝑨>𝑗 𝑿 to denote the projection of 𝑿 onto a 𝑛-

dimensional subspace spanned by the matrix space basis {𝑨 𝑗}, ( 𝑗 = 1, . . . , 𝑛), with the canonical
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Algorithm 1: Computation of the Karcher mean
input : subspaces {𝒙𝑖} ∈ G , where 𝑖 = 1, . . . , 𝑁; a step 𝜏; and a patience 𝜖 .

𝒌0 = 𝒙1 // 1: initialise the mean with a sample
do

Δ𝒌 = 𝜏
𝑁

∑𝑁
𝑖=1 Log𝒌 𝑗

𝒙𝑖 // 2: log-map points to 𝑇𝒌 𝑗M

𝒌 𝑗+1 = Exp𝒌 𝑗
Δ𝒌 // 3: exp-map velocities to the manifold

while ‖𝒌‖ > 𝜖 // 4: stop when the candidate become small

output
:

𝒌 ∈ G, the Karcher mean

metric. Note that this does not refer to subspaces of the Grassmannian of data, but refers to projection
onto subspaces of the tangent space.
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Chapter 3

Enhanced Grassmann discriminant
analysis

In this chapter, we propose a method that generalizes the classical Fisher discriminant analysis
(FDA) from Euclidean space to the Grassmann manifold, named enhanced Grassmann discriminant
analysis (eGDA). This chapter is organized as follows. The background of the proposed method is
discussed in Section 3.1. The basic idea of the proposed method is elaborated in Section 3.2. The
details of the proposed method are then described in Section 3.3. Experimental results are presented
in Section 3.4. Finally, the summary is given in Section 3.5.

3.1 Background

The main goal of the proposed method is to characterize and classify motion image sequences,
focusing on hand gestures and human actions. We extend the framework of Grassmann discrimi-
nant analysis (GDA) [41] to work more effectively in the application of motion recognition. The
problem of GDA that we address in this chapter is that GDA’s discriminant space is not necessarily
optimal. This limitation becomes even more prominent when representing motion sequences by the
randomized time warping (RTW) [105] subspace representation.

Randomized time warping (RTW) is an effective generalization of dynamic time warping
(DTW) [19], which is one of the most widely used methods for motion analysis. The core idea
of DTW is to compare two sequences by searching for the best alignment of their sequential pat-
terns; this is performed by optimizing a warping function with dynamic programming. In contrast to
DTW, RTW has a compact representation and does not need dynamic programming, thus providing
a fast and light algorithm. It converts the problem of comparing two sequences to comparing two
low-dimensional subspaces, called sequence hypothesis (hypo) subspaces.

This problem can in turn be solved by measuring the canonical angles between them. The
mutual subspace method (MSM) [121] is well known as a fundamental classification method using
canonical angles, which has been used along with RTW. In this framework, a subspace-based method
is regarded as a simple classification method on a Grassmann manifold, where each single subspace
is treated as a point, and thereby, each motion video is represented by a point in the manifold.

Other types of classification methods have been constructed on a Grassmann manifold, such as
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Grassmann discriminant analysis (GDA) [41], Bayesian classifier on the Grassmann manifold [111],
or learning on the manifold [99]. Among them, in particular, RTW formulation has been used along
with GDA [105], which has been known as one of the useful tools for image set classification [5, 108].
GDA can be easily conducted as a kernel discriminant analysis (KDA) through the kernel trick with
a Grassmann kernel [40, 46].

Although it has been useful to combine RTW with GDA, some issues arise from this represen-
tation:

• same-class actions may have vary large variations, while semantically different actions may
have similar movements, making different action subspaces closer to each other, causing
overlap among them in the worst case;

• although GDA is capable of finding the most discriminant directions in a reproducing ker-
nel Hilbert space (RKHS), it cannot operate the corresponding original subspaces in the
Grassmann manifold. Hence, if subspaces were not well separated in the manifold, the corre-
sponding data points on the induced RKHS are also not adequately separated, in such a way
that GDA may not be able to separate them.

To address those problems, the key idea proposed in this chapter is to project hypo subspaces
onto a generalized difference subspace (GDS) [27], before mapping each subspace onto the RKHS.
GDS is a general concept that represents difference among multiple class subspaces, which forms a
discriminative space. GDS projection works effectively as a powerful feature extraction for subspace-
based methods such as subspace method [84] and mutual subspace method (MSM) [121], as it can
enlarge the angles among class subspaces toward the orthogonal status. These subspace methods
conduct the classification by using the canonical angles between an input vector/subspace and each
reference class subspace. A MSM with GDS projection is called constrained MSM (CMSM) [28].
GDS has also been extended recently, such as by adding regularization [107], working with tensor
data [34] and for different applications, i.e. high-dimensional spectral data [126].

It is worth mentioning that other methods have extended the MSM formulation to produce dis-
criminative features. A remarkable example is the discriminative canonical correlation (DCC) [65].
The main motivation of DCC is that the structural similarity between class subspaces is measured
by the canonical angles between them. Different from CMSM, DCC iteratively computes a discrim-
inative subspace using the Fisher discriminant analysis (FDA) as an objective function to further
improve its class separability. Although its exceptional results, DCC’s computational time is usually
costly. GDS, on the other hand, requires only an SVD computation, which is very efficient in modern
implementations.

Figure 3.1 shows the conceptual diagram of the proposed method. A set of RTW’s time elastic
(TE) features is extracted by randomly sampling images from an image sequence. Next, a hypo
subspace is generated by applying PCA to the set. For each image sequence, a hypo subspace
is generated in this way. Finally, the relationship among hypo subspaces comes close to the
orthogonal status by projecting them onto the GDS, and then the projected subspaces are mapped
onto the RKHS. The reason for performing GDS projections before mapping each subspace with
the Grassmann kernel is that GDS can operate the hypo subspaces directly in the vector space.
Concretely, when some data overlaps among multiple classes, GDA’s vector representation cannot
necessarily distinguish these data, even if they are projected onto the optimal discriminant space
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Figure 3.1: Conceptual diagram of the proposed method. A set of TE features is extracted by
randomly sampling images from an image sequence. Next, a subspace is generated by applying PCA
to the set. For each image sequence, a subspace is generated in this way. Finally, the subspaces are
orthogonalized by projecting them onto the GDS, and then are projected onto the RKHS using the
Grassmann kernel trick.

found by GDA. In contrast, GDS can remove overlapping components of the subspaces in the vector
space, nearly orthogonalizing them, and as a result creating more discriminant data points for GDA.

As GDS has the function of removing common features among class subspaces, providing more
discriminative sample for GDA, it is expected that GDS projection can solve the overlap problem
and further enhance the representation of the RTW hypo subspaces on the Grassmann manifold. The
validity of our proposed method is demonstrated through experiments with the Cambridge gesture
[64], KTH action [96] and UCF sports [91, 102] datasets.

In summary, the main contribution of our method is to provide a simple and practical means
for further enhancing the performance of GDA, which has been widely used in various applications.
In particular, we introduce GDS projection to the GDA formulation to enhance RTW+GDA by
alleviating the problems regarding TE feature generation for RTW.

3.2 Basic Idea for enhancing GDA

Our key idea for enhancing Grassmann discriminant analysis (GDA) with hypo subspaces is to
project hypo subspaces onto a generalized difference subspace (GDS) before applying GDA to them.
In the following, we describe more deeply the problem mentioned in Section 3.1 and the mechanism
which induces the effective function to address it.

First, we discuss the intuition of RTW and the advantage of utilizing hypo subspaces as a
representation for sequences. The core idea of RTW is to generate a set of time warped patterns,
called time elastic (TE) features, through repeated random subsampling, while preserving the original
temporal order. This mechanism can be regarded as a simultaneous search for the most similar
warped patterns from a number of randomly obtained candidates, in contrast to the inefficient search
performed by DTW. As the cost of comparing two sets of TE features increases dramatically as the
number of features increase, the comparison is conducted using a subspace based method, in which
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Figure 3.2: Conceptual diagram of the detailed intuition behind RTW. Two sequences of images
of different hand gesture classes (e.g. moving hand left and right) are processed through RTW:
the frames are vectorized, and a set of TE features is generated by randomly sampling frames and
concatenating. In the middle, two examples of TE feature are examined, one vector from each set,
which are very close to each other.

each set of TE features is represented as a hypo subspace. In summary, a hypo subspace is a compact
representation for sequences as it is independent of sequence length, while the canonical angles offer
a simple tool to calculate the most similar warped patterns between two sequences.

In the following we elaborate on the problem of overlapping hypo subspaces. The reason for
proximity in the TE feature space is that some frames lead to similar variables. In practice this
may have various reasons: 1) some sampled frames may be motionless and composed of similar
texture; 2) or their movement is similar in direction; 3) or important moving parts are occluded.
Figure 3.2 shows a conceptual diagram of the detailed intuition behind RTW. Two sequences of
images of different hand gesture classes (e.g. moving hand left and right) are processed through
RTW: each frame 𝒙𝑙 corresponds to a vectorized image. In this simple example, a set of TE features
is generated by repeating 𝑍 times the process of sampling 2 frames from 5 frames and concatenating
the 2 frames. A TE feature is denoted as 𝒉𝑧 , where 𝑧 = 1, . . . , 𝑍 . The center of Figure 3.2 shows the
case 1), where two examples of TE features are very close to each other. As a result, when the hypo
subspaces of the two sets are generated by applying PCA to each set, they are more likely to overlap.

In applications with real unconstrained data, the probability that concatenated frames present a
significative amount of correlation becomes high given various conditions, such as: slow motion
speed, specially when the action contains moments of idleness or interruptions; and small appearance
changes, specially when the moving target object is far from camera, or some parts are occluded. In
many cases, more than one of these factors cause TE features to be close to each other.

To solve this problem, one could think a naive approach of calculating the similarities between
frames and then removing similar frames between sets; however, the random sampling of RTW is by
itself a statistical technique to avoid the need to compare individual frames, as this is not a scalable
operation in terms of complexity. In this sense, a desirable solution needs to consider a subspace
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representation, rather than analyzing the individual TE features or their frames.
Now, we explain the definition and mechanism of GDS and how GDS projection can be har-

nessed for solving the aforementioned problem. GDS is defined as a subspace, which represents a
“difference” among multiple class subspaces [27]. GDS is a further extension of difference subspace
(DS) for two class subspaces, which is a natural generalization of a difference vector of two vectors.

Given𝐶 (≥2) 𝑚-dimensional class subspaces, {𝝎𝑐}𝐶𝑐=1, a generalized difference subspace (GDS)
𝝍, can be defined as the subspace produced by removing the principal component subspace (PCS)
of all the class subspaces from the sum subspace of those subspaces. This definition of GDS leads
GDS projection to the function of automatically removing overlap among class subspaces, which can
alleviate the problem. It is worth noting here that we consider removing the overlapping components
of the data, not the data themselves. The details of the process of GDS projection will be explained
in Sec. 3.3.3. On the other hand, we should note that GDA cannot necessarily distinguish data
belonging to overlap region, even by projecting them onto its optimal discriminant space.

Besides, GDS projection has the function of orthogonalizing class subspaces by enlarging the
canonical angles among class subspaces. Although GDA also has a similar function, the mechanisms
of both are quite different. GDA works on a RKHS, while GDS projection works in the original
high dimensional vector space. Based on this difference, we expect different effects from GDS and
GDA to learn a discriminant space where the classes are as separated as possible.

3.3 Algorithm of the proposed method

We first describe the representation by RTW to generate a hypo subspace; then we explain how
to generate a GDS and use its projection to enhance GDA. The step-by-step training and testing
algorithms of the proposed method are shown in Algorithms 2 and 3, respectively.

3.3.1 Motion sequence representation by RTW

In our method, an image with the size 𝑤 × ℎ is represented by a 𝑑-dimensional vector 𝒙 ∈ R𝑑 , either
by using the pixels themselves, in which case 𝑑 = 𝑤×ℎ, or by extracting handcrafted or convolutional
neural network features. A video is then an ordered sequence of 𝐿 input vectors 𝑋 = {𝒙𝑙}𝐿𝑙=1, where
𝑙 denotes frame number. For example, a sequence represents a body motion or hand gesture captured
by video. Then, a training set {(𝑋𝑖 , 𝑦𝑖)}𝑁𝑖=1 consists of a video sample 𝑋𝑖 coupled with a respective
label 𝑦𝑖 .

An 𝑑 × 𝑘 dimensional TE feature vector 𝒉 = [𝒙>1 𝒙>2 . . . 𝒙>𝑘 ]> is created by randomly selecting 𝑘
images from a sequence 𝑋 , such that 𝑡 (𝒙1) < . . . < 𝑡 (𝒙𝑘), where 𝑡 (·) denotes the original order of
the image.

Let this procedure of random selection be repeated 𝑍 times, such that we obtain 𝒉1, . . . , 𝒉𝑍 .
Subsequently, an auto-correlation matrix 𝑹, which corresponds to the set of the TE feature vectors
of 𝑋 , can be computed as:

𝑹 =
1
𝑍

𝑍∑
𝑧=1

𝒉𝑧𝒉
>
𝑧 . (3.1)

This procedure corresponds to steps 1 and 2 in Algorithms 2 and 3.
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Algorithm 2: Learning algorithm of the proposed method
input
:

training ordered sequences and their labels {(𝑋𝑖 , 𝑦𝑖)}𝑁𝑖=1

for 𝑐 = 1, . . . , 𝐶 do
for 𝑖 = 1, . . . , 𝑁𝑐 do
{𝒉𝑧}𝑍𝑧=1 ← TE(𝑋𝑖) // 1: obtain TE features

𝑹𝑖 ← 1
𝑍

∑𝑍
𝑧=1 𝒉𝑧𝒉

>
𝑧 // 2: calculate set covariance matrix

𝑿𝑖 ← EVD(𝑹𝑖) // 3: apply eigendecomposition

end
𝑹𝑐 ← 1

𝑁𝑐

∑
𝑖 |𝑦𝑖=𝑐 𝑹𝑖 // 4: calculate class covariance matrix

𝑴𝑐 ← EVD(𝑹𝑐) // 5: apply eigendecomposition

end
𝑮 ← EVD(

∑𝐶
𝑐=1 𝑴𝑐𝑴

>
𝑐 ) // 6: obtain GDS

foreach 𝑖 do �̃�𝑖 ← 𝑮>𝑿𝑖 // 7: project all subspaces onto the GDS
for 𝑖 = 1, . . . , 𝑁 do

for 𝑗 = 1, . . . , 𝑁 do
[𝑲]𝑖𝑗 ← 𝑘 𝑝 ( �̃�𝑖 , �̃� 𝑗) // 8: generate similarity matrix

end
end
{𝒖∗} ← max𝒖 𝐽 (𝒖; 𝑲) // 9: solve KDA problem

𝑭tr ← 𝒖∗
>
𝑲 // 10: compute training coefficients

return 𝑭tr,𝑮, 𝒖∗ // return dictionary, GDS and GDA projection
operators

3.3.2 Subspace representation

We utilize the principal component analysis (PCA) by computing the eigenvectors of a matrix 𝑹𝑖 to
construct a 𝑚-dimensional subspace 𝝌𝑖 . The orthonormal basis of 𝝌𝑖 is obtained as the eigenvectors
corresponding to the 𝑚 largest eigenvalues. In the following, each 𝑚-dimensional subspace 𝝌𝑖 is
represented by the matrix 𝑿𝑖 ∈ R𝑘𝑑×𝑚, which has the corresponding orthonormal basis as its column
vectors. A set of TE features generated from a sequence contains various possible warped patterns
in time, each of which corresponds to one hypothesis. In this sense, the subspace generated from
a set of TE features is called a sequence hypothesis (hypo) subspace. In Algorithms 2 and 3, the
generation of hypo subspaces corresponds to step 3.

3.3.3 Projection onto generalized difference subspace

In order to utilize the feature extraction function of GDS effectively, we introduce the global class
subspaces 𝝎𝑐 , which is spanned by a matrix 𝑴𝑐 ∈ R𝑘𝑑×𝑑𝑚 . The subspace 𝝎𝑐 represents compactly
all the subspaces belonging to the same class 𝑐. The orthogonal basis of 𝝎𝑐 can be obtained as the
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Algorithm 3: Input evaluation algorithm of the proposed method
input
:

ordered sequences 𝑋 in

{𝒉𝑧}𝑍𝑧=1 ← TE(𝑋 in) // 1: obtain TE features

𝑹𝑖𝑛 ← 1
𝑍

∑𝑍
𝑧=1 𝒉𝑧𝒉

>
𝑧 // 2: calculate set covariance matrix

𝑿 in ← EVD(𝑹 in) // 3: apply eigendecomposition
�̃� in ← 𝑮>𝑿 in // 4: project subspace onto the GDS
for 𝑖 = 1, . . . , 𝑁 do
[𝑲 in]𝑖 ← 𝑘 𝑝 ( �̃�𝑖 , �̃� in) // 5: generate similarity matrix

end
𝑭 in ← 𝒖∗

>
𝑲 in // 6: compute test coefficients

pred(𝑋 in) ← NN(𝑭tr,𝑭 in) // 7: perform 1-NN classification
return pred(𝑋 in) // return a class prediction

eigenvectors corresponding to the 𝑑𝑚 largest eigenvalues of the auto-correlation matrix:

𝑹𝑐 =
1
𝑁𝑐

∑
𝑖 |𝑦𝑖=𝑐

𝑹𝑖 . (3.2)

Here 𝑁𝑐 denotes the number of samples labeled as class 𝑐. Note that 𝑑𝑚 is a hyperparameter in our
framework.

Next, to generate a GDS 𝝍, we calculate the total sum matrix, 𝑺, which is defined as:

𝑺 =
𝐶∑
𝑐=1

𝑴𝑐𝑴𝑐
>. (3.3)

The orthogonal basis of the GDS 𝝍 can be obtained as 𝑑ℎ eigenvectors, {𝒅𝑖}𝑑ℎ𝑖=1 corresponding to
the 𝑑ℎ smallest eigenvalues of the sum matrix 𝑺. We set these basis vectors as columns of a matrix
𝑮 ∈ R𝑑×𝑑ℎ . A subspace 𝝌𝑖 is projected onto the GDS by �̃�𝑖 = 𝑮>𝑿𝑖 ∈ R𝑑ℎ×𝑚 and the projected
subspace is denoted by �̃� = span( �̃�). An input subspace 𝝌in is also projected onto the GDS and
its projection is denoted by �̃�in. In Algorithm 2 the generation of class subspaces and the GDS
corresponds to steps 4 to 6, while projection of subspaces is step 7. In Algorithm 3, only projection
is performed, corresponding to step 4.

3.3.4 Enhancing Grassmann discriminant analysis

Then, we embed the Grassmann manifold of the projected subspaces, G(𝑑ℎ, 𝑚), in a reproducing
kernel Hilbert space by the use of a Grassmann kernel. In our framework, we use the projection
kernel 𝑘 𝑝, which can be defined from the subspace canonical angles as:

𝑘 𝑝 ( �̃�1, �̃�2) =
𝑚∑
𝑖=1

cos2 𝜃𝑖 . (3.4)
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Here, 𝜃𝑖 refers to the 𝑖-th canonical angle between two subspaces �̃�1 and �̃�2. We can measure the
distance between two points on a Grassmann manifold by using this projection kernel [40].

Basically, GDA is conducted as kernel discriminant analysis (KDA) with a Grassmann kernel.
KDA [95, 9] can be formulated by using the kernel trick as follows. Let Γ : G → F be a non-
linear map from the Grassmannian G to a Hilbert space F, and 𝚪 = [Γ( �̃�1), . . . , Γ( �̃�𝑁 )] be the
feature matrix of the mapped training points. Assuming a discriminant direction 𝒘 ∈ F is a linear
combination of those feature vectors, 𝒘 = 𝚪𝒖, we can use the kernel trick and write the KDA
problem in terms of 𝒖, without accessing vectors on F:

max
𝒖

𝐽 (𝒖; 𝑲) = max
𝒖

𝒖>𝚪>𝑺𝑏𝚪𝒖

𝒖>𝚪>𝑺𝑤𝚪𝒖
= max

𝒖

𝒖>𝑲 (𝑽 − 𝒆𝑁 𝒆>𝑁 /𝑁)𝑲𝒖
𝒖>(𝑲 (𝑰𝑁 − 𝑽)𝑲 + 𝜎2𝑰𝑁 )𝒖

= max
𝒖

𝒖>𝚺𝑏𝒖

𝒖>(𝚺𝑤 + 𝜎2𝑰𝑁 )𝒖
,

(3.5)
where 𝑺𝑏 is a between-class scatter matrix, 𝑺𝑤 is a within-class scatter matrix, 𝑲 is the kernel
matrix, 𝒆𝑁 is a vector of ones that has length 𝑁 , 𝑽 is a block-diagonal matrix whose 𝑐-th block is
the matrix 𝒆𝑁𝑐 𝒆

>
𝑁𝑐
/𝑁𝑐 , and 𝚺𝑏 = 𝑲 (𝑽 − 𝒆𝑁 𝒆>𝑁 /𝑁)𝑲.

In our framework, the kernel matrix, 𝑲, is calculated as the similarity matrix between training
subspaces, where each element can be written in terms of the projection kernel as 𝑘 𝑝 ( �̃�𝑞, �̃�𝑤), where
𝑞 is a row and 𝑤 is a column of 𝑲. The term 𝜎2𝑰𝑁 is used for regularizing the covariance matrix
𝚺𝑤 = 𝑲 (𝑰𝑁 − 𝑽)𝑲. It is composed of the covariance shrinkage factor 𝜎2 > 0, and the identity
matrix 𝑰𝑁 of size 𝑁 . The set of optimal vectors {𝒖∗} are obtained as the first 𝐶 − 1 eigenvectors
of (𝚺𝑤 + 𝜎2𝑰𝑁 )−1𝚺𝑏. We apply the GDA algorithm to the projected subspaces �̃�𝑖 . The GDA
corresponds to steps 8 to 10 in Algorithm 2, and steps 5 to 7 in Algorithm 3.

3.4 Experiments

In this section, we discuss the validity of the proposed method through hand gesture and human
action recognition tasks.

3.4.1 Experiment with Cambridge hand dataset

We conducted two types of experiments with the Cambridge hand gesture dataset [64]. This dataset
contains 9 classes of hand gesture videos, each in 5 illumination scenarios, and 20 sample videos
for each of the scenarios and classes. The number of frames of each video ranges from 37 to 119.
In addition, in the experiments, all the images were resized to 12 × 16 pixels, and the grayscale
pixel values compose the image features. As a result, an original feature vector 𝒙𝑖,𝑐𝑙 had dimension
12 × 16 (𝑑 = 192). The number of selected frames 𝑘 to build one TE feature is fixed at 𝑘 = 15, and
as a result the dimension of a TE feature vector 𝒔𝑖,𝑐𝑧 is 𝑑 × 𝑘 = 192 × 15 = 2880. The number of TE
features for each set is fixed to be 𝑍 = 100. Figure 3.3 shows examples of this dataset.

In the first experiment, we performed a qualitative experiment to aid in the visualization of
the proposed method mechanism. We utilized three classes of hand gestures from the Cambridge
dataset: flat/contract (C), spread/right (E) and spread/contract (F). The normal illumination setting
(set 5) was used for training, and the illumination setting of set 1 was used for testing. The parameters
were set up in the following manner: dimension of hypo subspaces 𝑚 was set to 7; dimension of
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Tag Class Example

A flat/left

B flat/right

C flat/contract

D spread/left

E spread/right

F spread/contract

G v-shape/left

H v-shape/right

I v-shape/contract

Figure 3.3: Examples of Cambridge hand ges-
tures.

Class Example

boxing

handclapping

handwaving

jogging

running

walking

Figure 3.4: Examples of KTH actions.

class subspaces 𝑑𝑚 was set to 50 ; and dimension of principal subspace 𝑑𝑝 to 5.
In the second experiment, following the same setup as [105], we quantitatively compared our

RTW+eGDA with the conventional methods: RTW+GDA, Kim and Cipolla [65], Lui [77] and
Hankel [71]. These methods were selected as baselines due to their applications in motion represen-
tation and recognition. In Kim and Cipolla [65], the image sets of motions are described as linear
subspaces, where a discriminative subspace is created in order to improve the feature extraction
ability of the method. Lui [77] represents the image-sets of motions as a factorized tensor, where
the geometry of the tensor space is extracted and compactly represented. Finally, in Hankel [71],
image-sets of motions are described as autocorrelation matrices computed from Hankel trajectory
matrices. In this approach, a discriminative subspace similar to [65] is employed to extract more
useful features.

We used the 20 sequences in the normal illumination setting (Set 5) for training, and the remaining
sequences in other illumination settings (Sets 1 to 4) for testing. The parameters were varied in
the following manner: dimension of hypo subspaces 𝑚 was varied from 5 to 7; dimension of class
subspaces 𝑑𝑚 was varied from 30 to 90 in increments of 20; and dimension of principal subspace
𝑑𝑝 was varied from 5 to 30 in increments of 5. The results reported here are the best among the
parameter settings.

Figure 3.5 shows the qualitative results: scatter plots of the generated points corresponding to
the test subspaces, which were generated from the 20 test sequences in each class. In this figure,
(a) depicts the result of the combination of RTW and conventional GDA (RTW+GDA), and (b)
shows the proposed method, RTW and the enhanced GDA (RTW+eGDA). The figure suggests that
by using the proposed method, reduction of the distance between subspaces of the same class can
be achieved. The scatter plots given by the Cambridge gesture dataset classes C (flat/contract), E
(spread/right) and F (spread/contract) reveals visually that RTW+eGDA is able to produce higher
discriminative features than RTW+GDA.
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Figure 3.5: Scatter points of three Cambridge hand gesture classes by using RTW combined with
(a) conventional GDA and (b) eGDA.

The results of the quantitative evaluation can be seen in Figure 3.6. The vertical axis refers
to the average accuracy of all sets. The error bars represent the method’s standard deviation. We
also conducted a t-test between RTW+eGDA and RTW+GDA with 4 samples and significance level
𝛼 = 0.05. From the test results, we can conclude with more than 95% confidence (𝑝 = 0.0377) that
the proposed method performed better than the conventional method by using GDA.

3.4.2 Experiment with KTH action dataset

We also conducted experiments using the KTH action dataset [96]. Figure 3.4 shows examples of
this database’s 6 classes of actions, namely: boxing, hand clapping, hand waving, running, jogging,
and walking. The dataset contains actions performed by 25 subjects in videos, filmed under 4
different shooting conditions: outdoors, outdoors with variation of zooming, outdoors with different
clothes, and indoors.There are 4 sample videos for each of the conditions and classes. The number
of frames of each video ranges from 37 to 119. In addition, in the experiments, all the images were
resized to 16 × 16 pixels. In total there are 2391 sequences of actions.

In the first experiment, we performed a qualitative assessment. For each of the 6 classes, 10
subjects were randomly selected for training, and 15 for testing. The parameters were set up in the
following manner: dimension of hypo subspaces 𝑚 was set to 19; dimension of class subspaces 𝑑𝑚
was set to 50 ; dimension of principal subspace 𝑑𝑝 to 20; the number of selected frames 𝑘 to build
one TE feature is fixed at 𝑘 = 5, and the number of TE features for each set is fixed to be 𝑍 = 500.

Figure 3.7 shows the results of the KTH Action Dataset Experiment. To quantitatively confirm
the effectiveness of the orthogonalization of RTW class subspaces by GDS projection, we measured
the Fisher criterion (class separability degree) among all the classes. The performance is higher as
the separability degree approaches 1.0. Table 3.1 shows the experimental results. We can see that
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Figure 3.6: Results of the Cambridge Hand Dataset Experiment. The vertical axis refers to the
average accuracy of all sets, for each of the methods in the horizontal axis. An error bar represents
a method’s standard deviation.

the separability degree of GDA is further improved by GDS projection.

Table 3.1: Separability of RTW+GDA and RTW+eGDA in the first experiment using the KTH
dataset.

Method Separability
RTW+GDA 0.23
RTW+eGDA 0.45

Figure 3.8 shows scatter plots of the generated points corresponding to the test subspaces of
two classes: handwaving and running, as an example where two classes are comparatively well
separated even by a two-dimensional discriminant space. In this figure, (a) depicts the result of the
combination of RTW and conventional GDA (RTW+GDA), and (b) shows the proposed method,
RTW and the enhanced GDA (RTW+eGDA).

In KTH dataset, the chosen classes for this plot have high overlap. We can observe that both
RTW+GDA and RTW+eGDA produced very similar patterns. One observation regarding both
investigated datasets is that in the Cambridge dataset temporal information plays an important role.
On the other hand, in KTH dataset, temporal information seems to play a weaker role, since some
classes (e.g. boxing, handclapping and hand waving) consist of iterations of the same action unit.

We graphically demonstrate that RTW+GDA and RTW+eGDA are well-suited for motion rep-
resentation, even when dealing with complicated datasets containing cluttered and non-uniform
backgrounds. These results encourage us to make another experiment and show the importance of
combining RTW and eGDA for motion representation.

Figure 3.9 shows the confusion matrix of RTW+GDA (a) and RTW+eGDA (c). The vertical
classes refer to predictions, while the horizontal classes refer to the ground truth. Each number
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Figure 3.7: Results of the KTH Action dataset experiment. The vertical axis refers to the average
accuracy of all 10 folds, for each of the methods in the horizontal axis. An error bar represents a
method’s standard deviation.

represents the percentage of predictions attributed to a class in relation to their true class. The
percentages between parenthesis in each matrix label refer to the average accuracy of the method.

Both RTW+GDA and RTW+eGDA provided efficient results at separating difficult classes in
Cambridge dataset. For instance, the methods demonstrated high accuracy in overlapping classes
such as A (flat/left), B (flat/right), D (spread/left) and E (spread/right). In the case of employing
linear subspaces, where the intrinsic low dimension representation has high level of similarity, such
results may weaken. When employing RTW, the temporal coherence between the ordered patterns
is efficiently attained, producing very competitive results.

The class with the worst result was F (spread/contract). One of the reasons that can cause such
a class to have a low accuracy compared to other classes is that this gesture has a very large number
of structures in common with the other classes. Besides, when GDS is employed, such common
structures could be removed automatically.

In the second experiment, we quantitatively compared the methods by a 10-fold cross validation
scheme, where in each fold, 10 subjects from the 25 were randomly selected for training. For each
sequence, we used the bounding box from [61] to do segmentation between actions and resize each
original frame to a 16 × 16 pixels grayscale image. We used the raw pixel values with additional
information of the height and width of the bounding box of the subject, resulting in a 258-dimensional
vector for each frame.

We compared the combination of RTW and conventional GDA (RTW+GDA) with RTW and the
enhanced GDA (RTW+eGDA). The number of selected frames 𝑘 to build one TE feature is fixed at
𝑘 = 5, and the number of TE features for each set is fixed to be 𝑍 = 500. The parameters were varied
in the following manner: dimension of hypo subspaces 𝑚 was varied from 5 to 20 in increments of
2; dimension of class subspaces 𝑑𝑚 was varied from 30 to 90 in increments of 20; and dimension of
principal subspace 𝑑𝑝 was varied from 5 to 30 in increments of 5. Figure 3.10 shows the parameter

23



Figure 3.8: Scatter points of two KTH action classes by using RTW combined with (a) conventional
GDA and (b) eGDA.

behavior of RTW+eGDA on the KTH action dataset.
The results can be seen in Figure 3.7. The vertical axis refers to the average accuracy of all

10 folds, for each method in the horizontal axis. The error bars represent the method’s standard
deviation. We again conducted a t-test between RTW+eGDA and RTW+GDA, this time with 10
samples and significance level 𝛼 = 0.05. From the test results, we can conclude with more than 95%
confidence (𝑝 = 0.007) that the proposed method performed better than the conventional method by
using GDA.

Figure 3.9 shows the confusion matrix of RTW+GDA (b), and RTW+eGDA (d). The vertical
classes refer to predictions, while the horizontal classes refer to the ground truth. Each number
represents the percentage of predictions attributed to a class in relation to their true class. The
percentages between parenthesis in each matrix label refer to the average accuracy of the method.

From the confusion matrix of KTH dataset, we can observe that RTW+GDA and RTW+eGDA
achieved competitive results, where RTW+eGDA substantially outperforms RTW+GDA in boxing,
clapping and walking classes and achieved similar results in the remaining classes. In overall,
RTW+eGDA outperforms RTW+GDA, justifying the applications of the proposed method.

The results obtained by RTW+eGDA for the classes running and jogging did not outperform
RTW+GDA. This may be due to the limitations of representation based on linear subspaces. Specif-
ically, the cause could be that the overlap rate between the two classes’ distributions is very large, as
linear subspaces are insufficient to represent the complicated boundary between these classes. In this
particular case, the principal subspace may contain a substantial amount of data from both classes
and when it is removed from the sum subspace, most of the representative information from both
classes is also removed, leading to a degradation of both subspace classes, where its projections no
longer can represent its semantics. We expect that the introduction of nonlinear kernels composited
with Grassmann kernels would largely suppress misclassification due to this severe model overlap.
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Figure 3.9: Confusion matrices of the (a) RTW+GDA in the Cambridge hand gesture experiment
and (b) RTW+GDA in the KTH action experiment; (c) RTW+eGDA in the Cambridge hand gesture
experiment and (d) RTW+eGDA in the KTH action experiment. The percentage in parentheses
refers to the average accuracy of each method.

To elucidate on the effect of the introduced parameters on the proposed method’s performance,
we have performed an additional evaluation. Figure 3.10 shows a bar plot of accuracy of the
proposed RTW+eGDA, when fixing the dimension of principal subspace 𝑑𝑝 to 5, and varying both
the dimension of hypo subspaces 𝑚 and dimension of class subspaces 𝑑𝑚. In this dataset, 11
dimensional models have performed better, and small dimension 𝑚 tends to induce a performance
degradation due to a poor model representation. According to Figure 3.10, the class subspace
dimension 𝑑𝑚 seems to depend on the dimension of hypo subspaces 𝑚. However, when 𝑚 = 11, 𝑑𝑚
is more invariant to small changes, so that no much emphasis needs to be put in searching an optimal
value. Regarding dimension of the principal subspace, small values are usually best, to avoid losing
substantial information that may be contained on the removed principal components.
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Figure 3.10: Parameter behavior of RTW+eGDA on the KTH action dataset.

3.4.3 Experiment with UCF sports dataset

We also conducted an experiment using the UCF sports dataset [91, 102]. The purpose of this
experiment is twofold: to shed light on RTW+eGDA’s potential with more challenging data; and to
anticipate its behavior when using more sophisticated features. This experiment contrasts with the
previous ones, which focused on assessing RTW+eGDA under the simplest scenario, by using raw
images, elucidating its usefulness as a simple and practical means for further enhancing RTW+GDA.

The UCF sports dataset contains a total of 150 sequences of subjects performing sports, with 10
classes, namely: diving, golf swing, kicking, lifting, riding horse, running, skateboarding, swing-
bench, swing-side, and walking. The number of frames of each video ranges from 50 to 70. The
action bounding box has been extracted, using annotations provided. Then, each cropped image was
resized to a 38 × 24 pixels grayscale image, resulting in a 912-dimensional vector for each frame.

We quantitatively compared the methods by a leave-one-out cross-validation scheme (LOOCV),
a standard experiment setting for this data. That means 150 repetitions of learning, with one video
as query and the remaining 149 videos as reference data.

To anticipate RTW+eGDA’s potential when combined with feature extractors, we utilized pre-
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processing of each video frame by two features: a histogram of gradients (HOG), the combinations
with which are named as HOG+RTW+GDA and HOG+RTW+eGDA; and convolutional neural
network (CNN) features extracted from the last fully-connected layer of the AlexNet [70], the
combinations with which we refer to as AlexNet+RTW+GDA/eGDA. The AlexNet was pre-trained
on more than a million images from the ImageNet database [20], and has not been fine-tuned or
equipped with mechanisms to represent the time components of the video data. We compared the
above frameworks with RTW+GDA and RTW+eGDA.

In addition, we compare RTW+eGDA to a number of conventional methods that are relevant
to the approach taken in the proposed method: 1) Motion extraction methods: robust non-linear
knowledge transfer model (R-NKTM) and dense trajectory based method (DT), that have been
recently proposed [90]. Namely, we compare 4 variants: trajectory DT, trajectory R-NKTM,
HOG+HOF+MBH+Traj. DT and HOG+HOF+MBH+Traj. R-NKTM. Note that these methods are
more elaborate in their feature extraction, especially the latter two that use an intricate combination
of video descriptors HOG+HOF+MBH+Traj [114]. In contrast, our proposed method here uses
only HOG and no feature fusion. 2) Methods for classification of image sets: Grassmann/subspace
learning methods include discriminative canonical correlations (DCC) [65], constrained mutual sub-
space method (CMSM) [28], Grassmannian graph-Embedding discriminant analysis (GGDA) [45]
and projection metric learning (PML) [54]. We also compare a covariance-based method named co-
variance discriminant learning (CDL) [115]. We evaluate the performance of each method utilizing
raw images, HOG and AlexNet features.

Regarding RTW parameters, the number of selected frames 𝑘 to build one TE feature is fixed at
𝑘 = 3, and the number of TE features for each set is fixed to be 𝑍 = 60. The HOG parameters were
set as follows: number of bins is fixed at 9, the cell size at 5, and the block size at 3. The GDA and
eGDA parameters were varied in the following manner: dimension of hypo subspaces 𝑚 was varied
from 8 to 14 in increments of 2; dimension of class subspaces 𝑑𝑚 was varied either 40 or 50; and
dimension of principal subspace 𝑑𝑝 was varied from 1 to 8.

The results can be seen in Table 3.2. Both GDA and eGDA perform better with HOG and CNN
features, indicating that using more discriminative features instead of raw images can improve them.
It also can be noted that the performance gap between RTW+eGDA and RTW+GDA increased
when using HOG. When compared to the conventional methods in this experiment, our method
is competitive, with HOG+RTW+eGDA and AlexNet+RTW+eGDA achieving better results than
methods using trajectory features and the baseline subspace-based based methods. These results
demonstrate a potential for extensions and broad utility of the proposed method independent on the
type of feature. In addition, our method would benefit from pre-trained deep neural networks, such as
DenseNet and ResNet50. This potential is corroborated by the results shown by [100], which indicate
that a subspace of deep features can be useful to represent image sets. Although the two methods
based on a complicated combination of four types of features (HOG, HOF, MBH and trajectories)
over-performed the proposed method, this result was expected to some extent, since these methods
combine various types of motion analysis features intricately to obtain high performances.

RTW+eGDA overperforms CDL when using HOG features while the reverse happens when
using AlexNet features. To verify if either method is overperforming the other meaningfully, we
conducted a paired two-sample t-test between the results of RTW+eGDA and CDL with significance
level 0.05 . From the test results (𝑝 = 0.6187), we cannot conclude with more than 95% confidence
that both methods perform statistically significantly differently in this experiment. The reason for
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their comparable level may be that, as said in the CDL original paper, the covariance matrix is able
to capture ordering in a set of patterns, which may work as a mechanism for representing the time
structure like RTW. It also utilizes an LDA based classifier to predict categories. In the following
we would like to discuss their differences further.

To demonstrate a situation where our proposed method should be considered as a good choice,
we performed another experiment comparing the two best performing image-set based methods CDL
and RTW+eGDA. Utilizing the AlexNet deep features we evaluate both frameworks in a situation of
small sample size (SSS). Concretely, we have purposefully limited the number of frames available
in an image sequence by a percentage of the total number of frames, from 20% to 50%. That is,
for 20%, in a video with 100 frames, 20 frames would be used, selected by keeping one frame,
skipping the next few frames, and then repeating that process until the sequence ends. The results
can be seen in Table 3.3. As shown, the performance of CDL falls significantly as fewer frames
are available. The reason is most likely that the rank of the covariance matrix tends to decrease
causing instabilities when measuring distances, while subspaces in that context may offer a more
robust model. Therefore, RTW+eGDA may be the method of choice in systems where the incoming
stream of image data may have the drop of capture speed, or simply data is corrupted or few frames
are available.

Another aspect of RTW+eGDA and CDL that is worth discussing is the necessary memory
requirements to run the methods. RTW+eGDA requires memory of 𝑑𝑘 × 𝑚 elements to store a
subspace corresponding to one motion sequence. CDL utilizes 𝑑×𝑑 covariance matrices, which can
be orders of magnitude higher than the memory required by the proposed method. For example, in the
current experiment with HOG features, 𝑑𝑘𝑚 = 1458×3×8 = 34992, while 𝑑2 = 14582 = 2125764,
meaning that RTW+eGDA uses only 1.6% of the memory used by CDL. Even if one exploits the
symmetry of the matrices and reconstructs them from their upper/lower triangles at each time they
are accessed in memory, one would still need 𝑑 (𝑑 + 1)/2 = 1063611 elements. Still RTW+eGDA
uses only 3.3% of the memory used by CDL in this case, without the need to reconstruct the
representation for storage. Therefore, RTW+eGDA can be one effective choice in mobile phones,
car navigation, and embedded systems where memory is a limited resource.

3.5 Summary

In this chapter we have proposed a combination of randomized time warping and eGDA, to address
more effectively the classification of motion sequences. Our method may be used for various types
of applications with continuous sequences, but we focused on the applications of hand gestures and
human action classification. The key idea of our enhanced Grassmann manifold is to project class
subspaces onto a generalized difference subspace before mapping them onto a RKHS through a
Grassmann kernel. The GDS projection can extract the differences between classes and generate
data points with optimized between-class separability on the manifold, which are more desirable
for GDA. The validity of our enhanced Grassmann discriminant analysis was demonstrated through
classification experiments with the Cambridge hand gesture, KTH action, and UCF sports datasets,
where it outperformed its GDA counterpart and showed competitiveness with state-of-art methods.

From the experiments we have also demonstrated that the proposed method can be a good choice
in applications with small sample problems and those which require lower memory.
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Table 3.2: Results of the UCF sports experiment. Results from DT and R-NKTM are reported
in [90].

Methods Accuracy (%)
trajectory DT [90] 75.20
trajectory R-NKTM [90] 76.70
HOG+HOF+MBH+Traj. DT [90] 88.20
HOG+HOF+MBH+Traj. R-NKTM [90] 88.20

Raw HOG AlexNet
DCC [65] 59.33 68.97 72.00
CMSM [28] 68.97 65.33 82.67
GGDA [45] 47.33 49.33 57.33
PML [54] 72.67 73.33 76.67
CDL [115] 70.00 76.00 86.00
RTW+GDA [105] 63.33 70.00 80.00
RTW+eGDA (proposed method) 70.00 78.00 84.67

Table 3.3: Performances in UCF sports when a small sample size (SSS) of videos frames is available.

Frames remaining (%) 20% 30% 40% 50% 100%
AlexNet+RTW+eGDA 76.67 78.00 80.67 80.00 84.67
AlexNet+CDL 57.33 67.33 76.67 82.67 86
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Chapter 4

Singular spectrum-based methods

This chapter introduces two generalizations of the classical Fisher discriminant analysis to the
Grassmannian, called Grassmann singular spectrum analysis (GSSA) and Tangent singular spectrum
analysis (TSSA). The background of the proposed method is discussed in Section 4.1. The proposed
methods are elaborated in Section 4.2. Experimental results are presented in Section 4.3. Finally,
the summary is given in Section 4.4.
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Figure 4.1: Conceptual diagram of the proposed GSSA.
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Figure 4.2: Conceptual diagram of the proposed TSSA.

4.1 Background

Bioacoustic signal classification (e.g., animal calls) plays an important role in environmental moni-
toring as it gives experts the means to efficiently acquire information from areas where it is hard to
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access and collect data. It also assists by providing clues about the evolution and categorization of
animals from the perspective of similarity of their bioacoustic mechanisms, which may be useful in
new species discovery.

Remote monitoring of areas of difficult access, e.g. dense forests or depths of the sea, allows
the gathering of critical information in order to predict changes in the population of species and
correlated phenomena, e.g. the quality of the sea, air, soil and other natural elements.

An efficient bioacoustic signal classification framework needs to work reliably and within some
practical restrictions. Such frameworks need to run on low-cost computational resources, not only
to avoid using prohibitively expensive hardware, but to use small-scale devices, deployable on
the environment. Likewise, such an algorithm needs to produce reliable predictions from a small
dictionary of data, mainly for two reasons: first, gathering and labeling data for an initial dictionary
can be expensive and time-consuming for biologists. Second, some species are extremely rare or
under risk of extinction, and only a few samples will be available in a practical setting.

Various of the recently proposed bioacoustic signal classification frameworks [7, 18, 17, 120]
are comprised of multiples elements, including noise [6] and dimensionality reduction [92], feature
selection [94], model training [88] and classification [89].

Motivated by the constraint on computational cost, mutual singular spectrum analysis (MSSA) [31]
was introduced as a novel bioacoustic signal representation based on subspaces. Its model is compact
and requires no cost-intensive preprocessing techniques common in bioacoustic frameworks such as
segmentation, noise reduction, or syllable extraction. The input signals are represented within the
singular spectrum analysis (SSA) paradigm, by a set of leftmost eigenvectors extracted based on the
signals’ accumulated energy. This set forms an orthonormal basis for a subspace in the functional
space [27, 37]. Then, canonical angles [50, 3] between the different bioacoustic subspaces are used to
measure their similarity, and 1-NN classification is performed. The 1-NN approach to classification
of subspaces corresponds to MSM [27, 121].

Although MSSA has efficiently addressed these bioacoustics challenges, its representation has
issues that decrease its reliability as a monitoring instrument. One problem is that it has no
discriminant mechanism to separate classes (e.g. species of animals). Another is that it assumes a
class is composed of linear combinations of the reference signals, which in practice is unlikely, and
impairs study of the individuals’ signals among the same species.

To tackle these issues, we propose two new algorithms. First, we propose Grassmann singular
spectrum analysis (GSSA), which is depicted as a conceptual illustration in the Figure 4.1. We
introduce a Grassmann manifold formulation, which simplifies the complicated procedure of the
subspace based method using canonical angles. In this framework, a subspace-based method is
regarded as a simple classification method on a reproducing kernel Hilbert space (RKHS) of a
Grassmann manifold, where each single subspace is treated as a point, and thereby, each bioacoustic
signal is represented by a point in the RKHS. Various types of classification methods have been
constructed on a Grassmann manifold [41, 111, 103, 104]. In particular, as explained in Chapter 3,
GDA has been one of the popular tools for image set classification, being conducted as a kernel
discriminant analysis (KDA) through the kernel trick with a Grassmann kernel. In GSSA, we
are introducing a straightforward but effective discriminatory mechanism to the bioacoustic signal
classification by utilizing GDA.

We also propose an algorithm named Tangent singular spectrum analysis (TSSA). The motivation
for this second algorithm is to offer a different discrimination mechanism than that of GSSA. More
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specifically, GSSA applies a kernel trick with a Grassmann kernel; it does not perform discriminant
analysis on extrinsic matrix variables, but instead it creates a low-dimensional parameterization of
the Grassmannian as a RKHS. Although this can work well in many classification tasks, a possible
problem with this premise in the setting of bioacoustic signal classification is that we have a constraint
on available data as discussed above, and the Grassmann kernel’s parameterization is intrinsically
dependent on the amount of training data. Using such a kernel with a small data may impair the
classification ability, as the kernel may not be able to capture the signals’ complexity.

To tackle the problem of bioacoustic signal classification with a constraint on the number of
available samples, we formulate TSSA, which is depicted as a conceptual illustration in the Figure 4.2.
Instead of relying on a kernel parameterization of the Grassmannian, we utilize the extrinsic matrix
structure of the manifold; the subspaces are mapped through the logarithmic map onto a tangent
space at the sample mean of the data, called Karcher mean; then discriminant analysis in matrix
space is performed.

We summarize our contributions as follows: (1) We propose two bioacoustic classification
algorithms assuming that a class may be composed of a set of subspaces, and we consider the
bioacoustic signal representation from the perspective of each signal being a point in the Grassmann
manifold; (2) We introduce a discriminant algorithm to discriminate signals by the use of GDA; (3)
We propose another discriminant bioacoustics classification algorithm called TSSA which performs
discriminant analysis on the manifold extrinsic variables. (3) Our methods are extensions of MSSA,
and preserve its advantages, namely: less storage requirements than most conventional methods; has
a straightforward formulation to select compactness ratio; can handle arbitrary signal lengths; and
does not need costly preprocessing techniques, such as segmentation or syllable extraction.

4.2 Proposed methods

In this section, we formulate the classification problem based on the bioacoustic signals. Then, we
describe the representation by SSA subspaces, and the algorithms of GSSA and TSSA.

4.2.1 Problem formulation

Let 𝑋 (𝑡) be a bioacoustic signal. The index 𝑡 = 1, . . . , 𝐿 indicates the signal’s ordering in time up
to its length 𝐿. For a given unknown input bioacoustic signal 𝑋 in(𝑡) of length 𝐿 in, the task is to
predict its corresponding bioacoustic class (e.g. species). Consider 𝑁𝑐 reference bioacoustic signals
for each 𝑐-th class (𝑐 = 1, . . . , 𝐶), adding to a total of 𝑁 reference signals {(𝑋𝑖 (𝑡), 𝑦𝑖)}, where
𝑖 = 1, . . . , 𝑁 .

This framework assumes that each signal 𝑋 (𝑡) can be represented by a linear mapping in terms
of its autocorrelation. Note that this differs from MSSA in that the assumption has been reduced to
the autocorrelation of each single signal, rather than the original assumption of a linear mapping in
terms of the average correlation of a whole class of signals. As such, each signal can be represented
by the first𝑚 orthonormal vectors ordered by the signal’s accumulated energy, where𝑚 � 𝐿𝑖 . These
vectors span a subspace 𝝌𝑖; thus a class of signals is effectively represented by a set of subspaces
{𝝌𝑖}𝑖 |𝑦𝑖=𝑐 , a relaxation similar to a Gaussian mixture rather than a single Gaussian distribution.

This representation provides more flexibility for a class with non-gaussian noise, and also scales
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well with an increasing number of signals per class. That implies mainly two points: a signal can be
modeled independently and added to the class as another subspace, without needing to recalculate a
single model for the whole class; and the trade-off problem of compactness ratio and representativity
is slightly alleviated. The dimension of subspaces 𝑚, corresponding to the signal’s compactness
ratio, is selected empirically during the training. For a given unknown input bioacoustic signal 𝑋 in(𝑡)
of length 𝐿 in, the task is to compute a subspace 𝝌 in and predict its corresponding bioacoustic class
(e.g. species) based on the nearest subspace.

4.2.2 Representation by SSA subspaces

Now we review the representation by an SSA subspace; for that, consider a single signal 𝑋 (𝑡). First,
we apply a sliding window over 𝑋 (𝑡) to turn the 1−dimensional signal of length 𝐿 in a sequence of
𝑛 lagged vectors of length 𝑑 arranged in a Hankel matrix 𝑯 ∈ R𝑑×𝑛, i.e. the vectors form blocks of
a matrix: (𝑯)𝑖, 𝑗 = 𝑋 (𝑖 + 𝑗 − 1),

𝑯 =


𝑋 (1) 𝑋 (2) · · · 𝑋 (𝑛)
𝑋 (2) 𝑋 (3) · · · 𝑋 (𝑛 + 1)
...

. . .
...

𝑋 (𝑑) 𝑋 (𝑑 + 1) · · · 𝑋 (𝑑 + 𝑛 − 1)


, (4.1)

where the number of columns 𝑛 is the number of desired oscillatory components (or principal
components), which has a direct correspondence with the maximum delay of the autocorrelation.
Therefore, the total number of columns in matrix 𝑯 is given by relationship 𝑛 = 𝐿 − 𝑑 + 1. Note that
the anti-diagonal elements in 𝑯 are equal.

The eigenvalue decomposition of the autocorrelation matrix 𝑯>𝑯 is performed to find the
directions of maximum variance of the Hankel matrix 𝑯; that is, for this case:

𝑼𝚲𝑼> = 𝑯>𝑯, (4.2)

where the columns of 𝑼 ∈ R𝑛×𝑛 corresponds to the eigenvectors of 𝑯>𝑯 and the diagonal of 𝚲
corresponds to the singular values 𝜆 𝑗 ( 𝑗 = 1, . . . , 𝑛), i.e. diag(𝚲) = 𝜆1, 𝜆2, . . . , 𝜆𝑛 in decreasing
order. Given the compactness ratio 𝑚, the 𝑚-leftmost matrix 𝑼∗ ∈ R𝑛×𝑚 from 𝑼 is selected,
containing the first 𝑚 eigenvectors corresponding to the highest eigenvalues. The Hankel matrix 𝑯
is projected onto the subspace spanned by 𝑼∗ to obtain 𝑿 = 𝑯𝑼∗ ∈ R𝑑×𝑚, which is the best 𝑚-rank
approximation of 𝑯 and spans the subspace 𝒚 that characterizes our signal. In our classification
framework, we utilize the previous procedure to compute a basis matrix 𝑿𝑖 ∈ R𝑑×𝑚 for a SSA
subspace 𝝌𝑖 corresponding to each signal 𝑋𝑖 (𝑡).

4.2.3 Grassmann singular spectrum analysis

In this subsection, we introduce the algorithm of GSSA. Given the set of training SSA subspaces
{(𝝌𝑖 , 𝑦𝑖)}, GSSA proceeds in the same manner as GDA, that is, GSSA is conducted as kernel
discriminant analysis with a Grassmann kernel.
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We embed the Grassmann manifold G(𝑑, 𝑚) in a RKHS by using the projection kernel:

𝑘 𝑝 (𝝌1, 𝝌2) =
𝑚∑
𝑗=1

cos2 𝜃 𝑗 . (4.3)

Here, 𝜃 𝑗 refers to the 𝑗-th canonical angle between two subspaces. By using the kernel, a subspace
𝝌𝑖 ∈ G(𝑑, 𝑚) is mapped onto a kernel vector 𝒌𝑖 ∈ R𝑁 as follows:

𝒌𝑖 = 𝑘 𝑝 (𝝌𝑖 , 𝝌𝑘), (4.4)

where 𝑘 = 1, . . . , 𝑁 indexes all 𝑁 reference signals.
Let Γ : G → F be a non-linear map from the Grassmannian G to a Hilbert space F, and 𝚪 =

[Γ(𝝌1), . . . , Γ(𝝌𝑁 )] be the feature matrix of the mapped training points. Assuming a discriminant
direction 𝒘 ∈ F is a linear combination of those feature vectors, 𝒘 = 𝚪𝒖, we use the kernel trick to
optimize the following discriminant problem:

max
𝒖

𝐽 (𝒖; 𝑲) = max
𝒖

𝒖>𝚪>𝑺𝑏𝚪𝒖

𝒖>𝚪>𝑺𝑤𝚪𝒖
= max

𝒖

𝒖>𝑲 (𝑽 − 𝒆𝑁 𝒆>𝑁 /𝑁)𝑲𝒖
𝒖>(𝑲 (𝑰𝑁 − 𝑽)𝑲 + 𝜎2𝑰𝑁 )𝒖

= max
𝒖

𝒖>𝚺𝑏𝒖

𝒖>(𝚺𝑤 + 𝜎2𝑰𝑁 )𝒖
,

(4.5)
where 𝑺𝑏 is a between-class scatter matrix, 𝑺𝑤 is a within-class scatter matrix, 𝑲 is the kernel
matrix, 𝒆𝑁 is a vector of ones that has length 𝑁 , 𝑽 is a block-diagonal matrix whose 𝑐-th block is
the matrix 𝒆𝑁𝑐 𝒆

>
𝑁𝑐
/𝑁𝑐 , and 𝚺𝑏 = 𝑲 (𝑽 − 𝒆𝑁 𝒆>𝑁 /𝑁)𝑲.

In our framework, the kernel matrix, 𝑲, is calculated as the similarity matrix between training
subspaces, where each element can be written in terms of the projection kernel as 𝑘 𝑝 (𝝌𝑞, 𝝌𝑤), where
𝑞 is a row and 𝑤 is a column of 𝑲. The term 𝜎2𝑰𝑁 is used for regularizing the covariance matrix
𝚺𝑤 = 𝑲 (𝑰𝑁 − 𝑽)𝑲. It is composed of the covariance shrinkage factor 𝜎2 > 0, and the identity
matrix 𝑰𝑁 of size 𝑁 . The set of optimal vectors {𝒖∗} are obtained as the first 𝐶 − 1 eigenvectors
of (𝚺𝑤 + 𝜎2𝑰𝑁 )−1𝚺𝑏. We apply this algorithm to map all reference subspaces, keeping in memory
each 𝒌𝑖 corresponding to a Γ(𝝌𝑖).

After the learning phase, when a novel signal 𝑋 in(𝑡) is input, it is first represented by a SSA
subspace 𝝌 in, then mapped onto a kernel vector 𝒌 in and finally projected onto the discriminant
space spanned by {𝒖∗}. Classification is performed by an 1-NN approach with the reference kernel
vectors 𝒌𝑖 .

4.2.4 Tangent singular spectrum analysis

In this subsection we introduce the algorithm of TSSA. In TSSA, the algorithm of discriminant
analysis (LDA) [30] is realized in a tangent space of the Grassmann manifold, using extrinsic matrix
coordinates, as follows.

Using the training data {(𝝌𝑖 , 𝑦𝑖)}, we calculate the Karcher mean 𝜿 of all subspaces. The
Karcher mean is computed using Algorithm 1 (Chapter 2). Let 𝑁𝑐 be the number of training signals
in class 𝑐, and let the sample mean of class 𝑐 be:

�̄�𝑐 =
1
𝑁𝑐

∑
𝑖 |𝑦𝑖=𝑐

Log𝜿 𝝌𝑖 . (4.6)
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Note that the overall mean can be written as:

�̄� =
1
𝑁

𝑁∑
𝑖=1

Log𝜿 𝝌𝑖 = Log𝜿 𝜿 = 0. (4.7)

In the vector discriminant analysis one seeks the discriminant direction 𝑾 which maximizes the
Rayleigh quotient 𝑅(𝒘) = 𝒘>𝑩𝒘/𝒘>𝑺𝒘 where 𝑩 and 𝑺 are the between-class and within-class
covariance matrices respectively. This vector-valued function can be rewritten for matrices as:

𝑅(𝑾) = tr𝑾>𝑃𝑩 (𝑾)
tr𝑾>𝑃𝑺 (𝑾)

, (4.8)

where 𝑩, 𝑺 ∈ R𝑑𝑚×𝑑𝑚 are the between-class and within-class covariance matrices.
First, the class covariance matrices are defined for each class 𝑐 as:

𝑩𝑐 = 𝑁𝑐 (vec �̄�𝑐 ⊗ vec �̄�>𝑐 ), (4.9)

𝑺𝑐 =
∑
𝑖 |𝑦𝑖=𝑐

vec (Log𝜿 𝝌𝑖 − �̄�𝑐) ⊗ vec (Log𝜿 𝝌𝑖 − �̄�𝑐)>. (4.10)

Then, the regularized class covariance matrices are given by:

�̃�𝑐 (𝛿) = (1 − 𝛿)𝑩𝑐 + 𝛿
𝐶∑
𝑐=1

𝑩𝑐 (4.11)

�̃�𝑐 (𝛿) = (1 − 𝛿)𝑺𝑐 + 𝛿
𝐶∑
𝑐=1

𝑺𝑐 , (4.12)

�̃�𝑐 (𝛿, 𝛾) = (1 − 𝛾) �̃�𝑐 (𝛿) + 𝛾 tr(�̃�𝑐 (𝛿))𝑰, (4.13)

where 𝑰 is the identity matrix, the parameter 𝛿 controls the degree of shrinkage of the individual
class covariance matrix estimates towards the pooled estimate, and 𝛾 controls shrinkage towards a
multiple of the identity matrix, in order to alleviate the problem of matrix degeneration when taking
the inverse. Both parameters can be set in a range between 0 and 1. Finally, we have the covariance
matrices defined as.

𝑩 =
1
𝑁

𝐶∑
𝑐=1

�̃�𝑐 (𝛿), (4.14)

𝑺 =
1
𝑁

𝐶∑
𝑐=1

�̃�𝑐 (𝛿, 𝛾). (4.15)

The optimal 𝑾 is obtained from reshaping the largest eigenvectors of 𝑺−1𝑩 back into 𝑑 × 𝑚
matrices. Since 𝑺−1𝑩 has rank 𝐶 − 1, there are 𝐶 − 1 optima 𝑾1, . . . ,𝑾𝐶−1. Data can be
projected onto the discriminant space spanned by {𝑾 𝑗} by 𝑃𝑾 (Log𝜿 𝝌𝑖). This corresponds to
feature extraction of data onto the most discriminant subspace.

We apply this projection operation to the reference subspace matrices 𝑿𝑖 to generate reference
vectors𝑽𝑖 = 𝑃𝑾 (Log𝜿 𝝌𝑖). When given an unknown bioacoustic signal 𝑋𝑖𝑛 (𝑡), we compute its SSA
subspace basis 𝑿𝑖𝑛 and map it onto the discriminant tangent space to generate a vector 𝑽𝑖𝑛; then
we predict its corresponding bioacoustic class (e.g. species) based on the nearest reference vector
(1-NN) using the canonical metric tr𝑽>𝑖𝑛𝑽𝑖 .
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Table 4.1: Anuran records dataset. The columns min and max stand for the minimum and maximum
time duration in seconds of each record in the set. This parameter gives an idea on how different the
length of the signals can be.

Time length (s)
ID Species 𝑛𝑜 Records min max
(a) Adenomera a. 8 12 360
(b) Adenomera h. 11 40 187
(c) Ameerega t. 5 11 52
(d) Hyla m. 11 8 56
(e) Hypsiboas cin. 4 6 238
(f) Hypsiboas cor. 4 67 346
(g) Leptodactylus f. 4 13 118
(h) Osteocephalus o. 3 3 72
(i) Rhinella g. 5 13 210
(j) Scinax ruber 5 7 62

Summary 60 94 ± 113.26(𝑠)

4.3 Experimental results

In this section, we evaluate the validity of GSSA and TSSA through an experiment using the Anuran
records dataset, that was also used in [36]. This dataset is described in detail in Table 4.1. It consists
of 60 bioacoustic signals with different duration recorded in Amazon rainforest containing anuran’s
croaks and ribbits and various real background noises from the surrounding nature. Anura is the
name of an order of animals in the class Amphibia that includes frogs and toads, so the diversity of
signals is complex. The classes of this dataset consists of 10 species of anurans.

We evaluate GSSA and TSSA against 2 variants of MSSA. The variant MSSA-I refers to the
conventional method, where the class of signals is assumed to be modeled as a linear mapping in
terms of the average correlation of its signals. That means that 1 reference subspace is computed to
represent each species, regardless of the amount of records the class contains. The variant MSSA-II
computes 1 subspace for each bioacoustic signal. for example, the specie Rhinella g. has 5 records,
then we produce 5 subspaces. In this scheme we achieve 60 subspaces. However, MSSA-II does not
have a discriminant mechanism.

We performed a 10-fold cross-validation by dividing the signals randomly, with 30 for training
and 30 for test, and always ensuring that at least one signal of each anuran species is present in both
groups. The parameters were varied in the following manner: the number of lagged vectors 𝑛 was
varied from 10 to 50 and the dimension of SSA subspaces were varied from 3 to 9.

The experimental results can be seen in Table 4.2. The accuracy refers to the average among all
folds, and the standard deviation is calculated from the folds assuming a Gaussian distribution. First,
we can see that MSSA-II outperforms MSSA-I by approximately 3%, which shows that relaxing the
linearity assumption is effective to improve performance. But the main point in this experiment is that
although MSSA-I has recently been shown to be the state-of-art in bioacoustics classification [36],
we can note that GSSA outperforms MSSA-I in average by 11.5%, while TSSA outperforms MSSA-I
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Figure 4.3: Plot of error as a function of the shrinkage parameters.

in average by 15.83%. This result is a compelling evidence that the discriminant mechanisms of the
proposed methods are able to enhance the performance of bioacoustic classification in this subspace
representation paradigm. We can also see that TSSA overperformed GSSA in this experiment.
The reason is perhaps that the GSSA was limited by its Grassmann kernel assumption that the
discriminant space lies within a linear combination of data points in the RKHS. Since the amount
of training data in this experiment is limited to 30 samples, the parameterization space can be
regarded as small to contain the complicated distribution of signals, generating overlap. Meanwhile,
TSSA’s discriminant analysis operates on the Grassmann manifold Karcher mean parameterization,
for which dimension is independent of the amount of data, depending only on the hyperparameters
compactness ratio and window size.

We have also investigated the variation of performance of TSSA due to changes on the shrinkage
parameters 𝛾 and 𝛿. The subspace dimension was fixed at 𝑚 = 4 and the length of the lagged vectors
was fixed at 𝑑 = 34, both of which showed good results at the previous experiment. The plot on
Figure 4.3 shows the error rate variation when these parameter changed. The blue dots indicate
observed results, while the surface is a graphic completion for visualization. From the plot, we can
see that in general a low value of 𝛿 yields better results, which is closer to a quadratic discriminant
model. In addition 𝛾 should not be too high or too low, and results around 0.4 yielded the best
results.

Table 4.2: Results for the experiment with the Anuran data. The accuracy refers to the average
among all folds.

Methods Average (%) Std. Dev.
MSSA-I 60.17 4.11
MSSA-II 62.88 4.08
GSSA 71.67 3.60
TSSA 76.00 4.39

4.4 Summary

In this chapter we have proposed Grassmann singular spectrum analysis (GSSA) and tangent singular
spectrum analysis (TSSA), extensions of MSSA, to address more effectively the classification of
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bioacoustic signals.
The key idea of our proposed methods is 1) relaxing the assumption that a class is composed of

linear combinations of the reference signals to that it consists of a set of subspaces and 2) to add a
discriminant mechanism to MSSA. GSSA performs discrimination by first mapping the subspaces
onto a RKHS, to then introduce a discriminatory mechanism for class separation by using Grassmann
discriminant analysis (GDA).

On the other hand, TSSA utilizes the extrinsic matrix structure of the manifold instead of
relying on a kernel parameterization of the Grassmannian. The subspaces are mapped through the
logarithmic map onto a tangent space at the sample mean of the data. Then discriminant analysis in
matrix space is performed.

Our methods also inherit various advantages of MSSA, such as low storage, consistent compact-
ness ratio selection, signal length free formulation, and no costly preprocessing techniques. The
validity of both methods was demonstrated through a classification experiment with the Anuran data
where it outperformed the state-of-the-art method MSSA.
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Chapter 5

Grassmann log model

This chapter discusses a method that learns representations for subspaces in an end-to-end manner,
named Grassmann log model. The background of the proposed method is discussed in Section 5.1.
The proposed method is elaborated in Section 5.2. Experimental results are presented in Section 5.3.
Finally, the summary is given in Section 5.4.

5.1 Background

As discussed in Chapter 1, the Grassmann manifold represents the set of subspaces of a vector
space, and as such, is a significant foundation for various types of machine learning tools using
subspace representation. It has been well known as a practical and robust representation, especially
for image set recognition. Despite its usefulness, most standard machine learning methods cannot
be promptly utilized on the Grassmann manifold, since they are constructed on Euclidean space.
To fill this serious gap and exploit both the compact representation of Grassmann manifold and the
handiness of Euclidean space, we propose a method named Grassmann log model to connect those
two representations. The proposed method’s objective is to map data from a Grassmann manifold
to a vector space while maximizing discrimination capability for classification.

The key idea of our method is to formulate the manifold logarithmic map (log) as an end-to-end
learnable model working as an interface between the Grassmann manifold and Euclidean space.
It can be seamlessly followed by discriminative tools defined on Euclidean space, to provide a
discriminative representation for subspaces so that Euclidean methods can perform classification
well. Also, the proposed model can be learned in an end-to-end manner, being embedded as a single
module in larger network systems.

The motivation of proposing this method is three-fold: 1) a subspace is a robust representation
and has become a central research topic in computer vision, being applied to numerous problems
such as image set recognition [14, 107, 55, 104, 27, 110], fine-grained classification [119] and
action recognition [101, 106, 77]. 2) The image set recognition, where the goal is to model a
set of input images and classify it, has been shown to provide significant recognition stability, but
the set representation in the deep learning framework remains largely unexplored. On the other
hand, 3) there is an abundance of well-established network layers and other end-to-end processing,
which work in Euclidean space, e.g. fully-connected, batch normalization dropout layers, activation

39



functions. We would like to connect the useful subspace representation to these Euclidean tools.
As seen in previous chapters, Grassmann discriminant analysis (GDA) is one of the most

popular methods that works by mapping manifold data to a vector space. Concretely, GDA employs
a Grassmann kernel to map subspaces onto vectors in a reproducing kernel Hilbert space (RKHS),
where then kernel discriminant analysis is performed. However, GDA is limited as it uses vectors in
RKHS defined by the kernel function, without learning a manifold-aware discriminant mechanism.
Additionally, the Grassmann kernel dimension is directly dependent on the number of samples in
the dictionary, which could lead to an insufficiently small space to represent data.

Considering end-to-end methods, one could develop a simple method of concatenating a subspace
basis vectors and then using Euclidean layers such as a fully-connected layer directly. However, such
an approach cannot learn stably, since this maneuver would break the inherent subspace structure,
cancelling the interesting subspace properties. Therefore, an interface is necessary to learn the
Euclidean layers properly.

Euclidean network modules
-fully-connected
-batch normalization

Output vector

Tangency 
point 𝜿

vector 𝒉

subspace 𝝌
Grassmann manifold 𝔾(𝑑,𝑚)

Tangent space T𝜿𝔾(𝑑,𝑚)

PCA

input image set

Log

Subspace 𝝌
𝒛 = 𝑾𝒉 + 𝒃

𝒚 = 𝑓
𝒛 − 𝐸[𝒛]
𝜎 𝒛 + 𝜖 𝛾

Proposed interface from 𝝌 to 𝒉

⋮

Figure 5.1: Conceptual diagram of the proposed Grassmann log model. A subspace 𝝌 is computed
by PCA, represented by an orthogonal basis matrix. Our proposed interface is to log map 𝝌 into a
tangent vector 𝒉; then Euclidean network modules are applied. The first equation indicates a fully-
connected layer, where 𝑾 and 𝒃 denote the weights and bias, respectively. The second equation
indicates a batch normalization where 𝐸 and 𝜎 denote expectation and variance, 𝜖, 𝛾 are batch
normalization hyperparameters, and 𝑓 is a non-linear activation function.

Our proposed Grassmann log model then contains two main stages, which can be seen in
Figure 5.1: 1) a mapping from manifold to vector space, and then 2) Euclidean network modules
such as fully connected layers. More concretely, given a manifold data point 𝝌 as input data, the log
maps a manifold data point into a tangent vector 𝒉 in a tangent space parameterized by a tangency
point 𝜿. Then 𝒉 is transformed through Euclidean layers and the cross-entropy loss function is
applied. To obtain a discriminant interface between manifold and vector data, we learn both the
tangent space representation and the discriminant Euclidean layers in an end-to-end manner. The log
model is a general framework that can be learned with Riemannian stochastic gradient descent [10]
on any Riemannian manifold with a defined closed-form log map. In the Grassmannian case, the
parameter 𝜿 is learned as a point constrained to the Grassmann manifold, and the Euclidean layers
are learned in conventional Euclidean space. In the following, we refer to tangency point as "anchor
point" with emphasis on this point.

Most classification problems have a complicated distribution with a wide variance where a single
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tangent vector may yield a suboptimal representation. Therefore, we extend the log model to learn
more than one anchor point, obtaining a set of tangent vectors that are concatenated to output a
single feature vector. From a differential geometric viewpoint, this idea can be interpreted as a wider
atlas of tangent spaces, covering a broader neighborhood of the manifold and diminishing distortion.
From the perspective of computer vision, this idea is similar to that of popular image descriptors
that combine multiple residual vectors, such as Fisher vectors [87, 86], VLAD [8], and super-vector
coding [125], and the log model can be seen as a kind of extension of these ideas to represent an
image set rather than just a single image.

Through experiments, we demonstrate that learning a tangent space is important for finding a
discriminative map, by making a comprehensive comparison of a learned log model against a fixed
tangent space at the manifold data’s Karcher mean. We demonstrate the flexibility and scalability of
our Grassmann log model as an interface between deep network layers involving subspace data, by
also evaluating the log model as a middle stage within larger networks containing convolution layers,
and Resnet blocks along with PCA. We show the effectiveness of our model in artificial subspace
data and in real data for the applications of face identification, facial expression and hand shape
recognition.

Grassmann
manifold 𝒢

Data point 𝝌

anchor 𝜿(
vector 𝒉(

Tangent space T𝜿!𝒢 Tangent space T𝜿!𝒢

𝜿(

anchor 𝜿(,$

gradient 
−∇𝜿!𝐿

Class 1 Class 2 Class 1 Class 2

𝝌

Forward pass

Log
Exp

Backward pass

Figure 5.2: Conceptual diagram of the log model learning a tangent space for a binary class problem.
The log is used to map point 𝝌 to vector 𝒉𝑡 in the tangent space (in red). Then, a loss function can
be applied and the gradient with respect to the anchor point (tangency point) 𝜿𝑡 can be used to move
towards a more optimal position 𝜿𝑡+1 which defines a new tangent space (in blue).

5.2 Proposed Grassmann log model

In this section, we describe the algorithm of the proposed Grassmann Log model. First, we define
the Log layer more generally and then introduce its numerical algorithm. Next, we extend it to work
with multiple tangent spaces.
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5.2.1 Basic idea

Our learning problem is defined as follows: given training subspaces {𝝌𝑖}𝑁𝑖=1 ∈ G paired with
respective labels 𝑦𝑖 , we want to learn a model that maps them to vectors 𝒉𝑖 in Euclidean space,
so that the class distributions are separable. In the following discussion, we consider a minibatch
{𝝌𝑖}𝑛𝑖=1, as is common in neural networks, but the whole process can be repeated iteratively to use
all 𝑁 training subspaces. When convenient, we omit the 𝑖 index, and explain the process for a single
instance i.e. 𝝌.

Our key idea is to cast the log map Log𝜿 𝝌 as a learnable model by 1) defining the anchor point
𝜿 as a parameter and 𝝌 as input, and 2) seeking an anchor point 𝜿 such that a tangent vector Log𝜿 𝝌
of the manifold data point 𝝌 can be as discriminant as possible in the tangent space.

5.2.2 Learning the log layer

The learning process of the log module is given as follows. Figure 5.2 shows the conceptual diagram
of learning the tangent space with the anchor 𝜿𝑡 on a binary classification, where 𝑡 is indexing the
update iteration. The whole learning process consists of forward and backward passes. At the
iteration 𝑡 = 0, we initialize our anchor parameter as a random manifold point.

Forward pass

The forward pass is processed as follows: we map a point 𝝌 into a vector 𝒉𝑡 by:

𝒉𝑡 = vec(Log𝜿𝑡 𝝌). (5.1)

As the Grassmann manifold is a matrix manifold, we utilize the vectorization of matrices vec
to turn the tangent vectors from matrix to simple vectors, such that 𝒉𝑡 ∈ R𝑑𝑚. This does not affect
the distance structure. The equation above corresponds to the log map projecting a point 𝝌 on the
manifold to vector 𝒉𝑡 in the red tangent space as shown in the first figure in Fig.5.2. After the
proposed log layer, Euclidean modules and a discriminative loss function, here abstracted as a loss
function 𝐿 (𝒉𝑖 , 𝑦𝑖) : R𝑑𝑚 → R can be applied to the tangent vectors.

Backward pass

Then, the backward pass is processed as follows: the Euclidean gradient ∇𝒉𝑡 𝐿 with respect to the
tangent vectors is computed, and then the log layer gradient is computed through the backpropagation
algorithm. We write the chain gradient including the log as:

∇𝜿𝑡 𝐿 (𝝌𝑖 , 𝑦𝑖 , 𝜿
𝑡 ) = ∇𝒉𝑡 𝐿

𝑑

𝑑𝜿𝑡
(Log𝜿𝑡 𝝌𝑖), (5.2)

where 𝑑
𝑑𝜿𝑡 (Log𝜿𝑡 𝝌𝑖) represents the derivative of the log map.

Given the gradient ∇𝜿𝑡 𝐿, we perform the update of the anchor 𝜿𝑡 by Riemannian stochastic
gradient descent (RSGD) [11, 10]. This manifold aware update enforces the updated point 𝜿𝑡+1 to
be a member of the Grassmann manifold, i.e., avoiding the parameter to leave the manifold. The
RSGD update consists of two steps: 1) transforming the Euclidean gradient ∇𝜿𝑡 𝐿 to a Riemannian
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Figure 5.3: Update equations of the Grassmann log module backward phase. The objective is to
compute the gradient ¤𝑲 of the anchor parameter 𝑲 (in red) and the gradient ¤𝑿 of input subspace
𝑿. ¤𝑲 is used to update the anchor according to the RSGD update, and ¤𝑿 is used if there are layers
previous to the log layer, to compute their respective backward steps.

gradient grad𝜿𝑡 𝐿, that is, the closest vector to ∇𝜿𝑡 𝐿 that is also tangent to the manifold at 𝜿𝒕 . Then
2) updating the anchor point by:

𝜿𝑡+1 = Exp𝜿𝑡 −𝜆∇𝜿𝑡 𝐿. (5.3)

Here, 𝜆 is a learning rate.
The above update equation is illustrated in the second part of Figure 5.2. The exponential map

can be seen as a line walk in the opposite direction of the Riemannian gradient (direction of descent),
landing on a more optimal point 𝜿𝑡+1 (in blue). This new anchor point defines a new tangent space,
which should be more optimal in the sense that the corresponding log map yields tangent vectors
with higher class separability as shown in the last figure. This iterative process is repeated until
either a maximum number of iterations is achieved, or the gradient becomes too small, that is, the
separability cannot be improved much further.

5.2.3 Numerical algorithm

In the previous section, we have established the framework in general while abstracting the compu-
tations. In this section, we describe the equations used in this framework to compute the exp and
log maps in matrix form. Then we derive the log backward updates.

To compute the Grassmann exponential map, we utilize the following extrinsic function derived
by [1], written in terms of orthonormal matrix representation. Recall our anchor parameter 𝜿 is a
subspace, so given its basis matrix 𝑲 ∈ R𝑑×𝑚, and given a tangent vector 𝑯 ∈ R𝑑×𝑚:

Exp𝑲 𝜆𝑯 = orth(𝑲𝑸(cos𝚺𝜆)𝑸> + 𝑱(sin𝚺𝜆)𝑸>), (5.4)

where 𝑱𝚺𝑸> = 𝑯 is the compact singular value decomposition (SVD) of the tangent vector 𝑯.
Note that 𝑯 is written in upper case as it is a matrix; yet it is still is a vector in the sense that is
a member of a tangent vector space. Here, 𝑱, 𝑲,𝑸 and Exp𝑲 𝜆𝑯 are orthogonal matrices, and 𝚺
is a diagonal matrix. 𝜆 is the geodesic parameter, and can be seen as a learning rate to control the
magnitude of the movement towards the direction 𝑯.
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As for the log map, in this work, given two basis matrices 𝑿 and 𝑲 for input subspace 𝝌 and
anchor 𝜿, we utilize the following three equations to calculate the log map [2]:

𝑩 = (𝑲>𝑿)−1(𝑲> − 𝑲>𝑿𝑿>), (5.5)

𝑾𝚯𝒁> = 𝑩>, (5.6)

Log𝑲 𝑿 = 𝑯 = 𝑾∗ arctan(𝚯∗)𝒁∗>, (5.7)

where 𝑾∗,𝚯∗, 𝒁∗ represent the matrices with the first 𝑚 columns of 𝑾,𝚯 and 𝒁∗ respectively.
To perform learning by RSGD, we derived the expressions of the derivative for the log on the

Grassmann manifold, using conventional techniques to operate differential forms [81] and based on
the derivative of SVD [109]. For the detailed procedures, see the Appendix B. We omit the iteration
𝑡 for simplicity.

Given the gradient of all next layers after the log layer, up to the loss ¤𝑯 = ∇𝑯𝐿, we compute
the gradients with respect to the anchor ¤𝑲 = ∇𝜿𝐿 and input subspace ¤𝑿 = ∇𝝌𝐿. ¤𝑲 is used to update
the anchor according to equation 5.3, and ¤𝑿 is used if there are layers previous to the log layer, to
compute their respective backward steps.

We provide the update formulation for the Grassmann log equations 5.5, 5.6 and 5.7 in Fig-
ure 5.3. Since the log is determined from the composition of three functions, the chain rule can be
automatically used to compute the final gradients.

In Figure 5.3, 𝛀 is defined as a diagonal matrix where the diagonal elements are𝛀𝑖 = 1/(1+𝚯∗𝑖 ).
◦ represents the Hadamard product, and 𝑰 represents the identity matrix. 𝑭 is a matrix of the form:

𝑭𝑖 𝑗 =

{
1/(arctan2(𝚯 𝑗) − arctan2(𝚯𝑖)), 𝑖 ≠ 𝑗

0, 𝑖 = 𝑗 .
(5.8)

For the gradient of equation 5.7, the derivatives ¤𝑾∗, ¤𝚯∗ and ¤𝒁∗ are 𝑚-leftmost matrices, so
to continue back to the square matrix gradients ¤𝑾, ¤𝚯 and ¤𝒁, we can fill in columns of zeros (no
gradient update in these variables) until the matrices become square. In the gradient of equation 5.6,
𝑭 is similar to equation 5.8, but the non-diagonals are instead defined as 1/(𝚯2

𝑗 − 𝚯2
𝑖 ). The most

important part is in the gradient of 5.5 (upper box with equations), we obtain two update rules, one
to backpropagate 𝑿 in case a gradient-based pre-processing needs it, and one to update the anchor
point 𝑲.

5.2.4 Extension to multiple tangent spaces

We further extend the proposed log layer to learn multiple tangent spaces at the same time, by
defining the layer parameters as a set of anchors {𝜿𝑞}𝑄𝑞=1. We map the point 𝝌 into a vector 𝒉 in a
space T as follows:

𝒉𝑞 = vec(Log𝜿𝑞 𝝌) (5.9)

𝒉 = [𝒉1, . . . , 𝒉𝑞, . . . , 𝒉𝑄] . (5.10)

Here, the brackets denote the concatenation of vectors such that the output feature vector 𝒉 is in a
T ⊆ R𝑑𝑚𝑄. Optimizing for a discriminative space T can be seen as a search in a product space of
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Figure 5.4: Diagram of the log module consisting of multiple tangent spaces.

the Grassmann tangent bundle 𝑇G(𝑑, 𝑚), i.e. T =
∏𝑄

𝑞=1 𝑇𝑞G(𝑑, 𝑚). An example diagram for the
case of 𝑄 = 3 is shown in Figure 5.4.

The basic intuition about introducing multiple tangent spaces is to cover a larger neighborhood
of the manifold. As it maps a non-flat manifold onto a Euclidean space, there cannot be a single map
that is perfectly distance preserving between any two points of the manifold. In general, the log map
is a good approximation of the manifold in a local neighborhood of 𝜿𝑞 and its representation power
decreases to points too far from it. However, we desire a good representation for the data distribution
rather than for all points in the manifold. The core idea here is that each anchor point 𝜿𝑞 is treated
as an independent learnable parameter. By having several 𝜿𝑞 and learning them from a random
initialization without assumptions, we may find the tangent spaces that produce discriminant vectors
for the given data samples. In the case 𝑄 = 1, the equations above reduce to conventionally using
the log once.

As described in Sec. 5.1, this extension of the log model is similar to that of popular image
descriptors such as Fisher vectors [87, 86], VLAD [8], and super-vector coding [125]. A Fisher
vector consists of the log-likelihood gradients of data descriptors with respect to a Gaussian mixture.
The log model can be seen as a kind of extension of this idea of using multiple tangent vectors, but
to represent an image set rather than just a single image.
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Figure 5.5: Plots of the loss and Fisher ratio of the log model tangent vectors after training for 10
thousand epochs in artificial data. The cross-entropy loss is drawn in blue, while the Fisher ratio
between the tangent vectors is denoted in red. Note that the Fisher ratio is from before they have
been projected on a discriminant space and shows only the effect of the tangent space representation.

5.3 Experiments

In this section, we discuss the validity of the proposed method through experiments in hand gesture,
facial expression recognition and face identification tasks.

5.3.1 Experiments on artificial data

We have trained a Grassmann log model using 3D artificial data to visualize its mapped data and
verify its effectiveness in a very simple case, while obtaining some intuition about its mechanism.
The artificial data contains two classes of points on the G(3, 1), that is, the lines on 3-space crossing
the origin. The data is represented by 3D vectors, and each class is generated by a tangent Gaussian
distribution as developed in [111]. The model we utilized is composed of the log with 1 anchor, and
two fully-connected layers, one 3 × 3 and another 3 × 2.

We have trained this model for 1000 epochs and plotted the anchor’s behavior. Figure 5.5 shows
the cross-entropy loss of the network and the Fisher ratio of the tangent vectors of the log map, for
each epoch during training.

Here, one can observe that while the loss is minimized, the Fisher ratio of the tangent vectors
raises, suggesting the advantageous effects of using a learnable anchor point. Therefore, the choice
of a tangent space appears to contribute to the data separability. Moreover, Figure 5.6 shows the
similarity between the data’s Karcher mean and the anchor point for every epoch.
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Figure 5.6: Plot of the similarity between the anchor point and the Karcher mean at each epoch.
Note that the Karcher mean is fixed while the anchor point moved.

5.3.2 Experiments on hand shape recognition

We conducted an experiment with the Tsukuba hand shape dataset. This dataset contains 30 hand
classes × 100 subjects, each of which contains 210 hand shape images, consisting of 30 frames
× 7 different viewpoints. For each subject, we randomly created 6 sets with 5 frames from each
viewpoint, so that each subject has 6 image sets of 35 images. In summary, there are a total of 18000
image sets in this dataset, each set containing image information from 7 camera viewpoints. In the
experiments, all the images were resized to 24 × 24 pixels. We compute the subspaces by PCA and
extract 6 components, so for the Log model the input subspaces are on the G(576, 6).

The Grassmann log model used in this section is formed by a log map followed by 4 fully-
connected (F.C) layers, with batch normalization, dropout and number of anchor points is 6.

Effectiveness of learning tangent spaces

First, to verify the effectiveness of learning a tangent space, we trained two log models in the classi-
fication problem of 30 classes of hand shapes: one was trained normally, with random initialization
and iterative updating of the tangent space according to the gradient. The other model was trained
while freezing the tangent space at the Grassmann Karcher mean of all training subspaces, a version
we refer to as Karcher log model.

After training, we have extracted the log map tangent vectors, and measured their Fisher ratio
(FR), i.e. the ratio between the average inter-class and intra-class Euclidean distances of the tangent
vectors. The FR of the log model was 0.0171, while the FR at the Karcher was 0.0159. The FR
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Figure 5.7: tSNE visualizations of 2 classes of hand shapes. The left plot denotes the tangent vectors
at the Karcher mean, while the right plot shows the tangent vectors at the log model learned tangent
space. It shows a representation of the vectors as 2D points based on their euclidean distances.
It can be seen that the tangent vectors at the learned tangent space provide a more discriminative
representation.
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is higher when we allow the model to learn the anchor point, which indicates the choice of tangent
space works towards increasing separation capability of the subspace data. To further exemplify this
property, we have selected two classes at random and plotted their distance structure using tSNE [78],
which can be seen in Figure 5.7. The plot shows a representation where each feature vector is shown
as a point. The left plot denotes the tangent vectors at the Karcher mean, while the right plot shows
the tangent vectors at the log model learned tangent space. The log model mapping seems to have
made the samples more discriminant simply by finding suitable tangent spaces to project the data.

Accuracy (%)

Karcher log model 70.65
Log model 81.90
Conv+log model 91.90
Resnet18+log model 99.40

Table 5.1: Results on the Tsukuba hand shape dataset.

As a second experiment, we evaluated the performance of the proposed log model in the
classification problem of 30 types of hand shapes and compared it to the Karcher log model. We
used the image sets of 70 subjects as training sets, holding a subset of 15 subjects (out of 70) for
validation. The remaining 30 subjects were used as testing sets.

Table 5.1 shows the results. The proposed Log model equipped with several anchor points
provided to be efficient in modeling the complexity of the hand shapes, while the Karcher log model
achieved an inferior performance.

Scalability of the log model

We evaluated the scalability in performance of the proposed log model in the same hand shape
classification problem, extending the log model with two variants: the Conv+log and Resnet18+log
models.

Conv+log model refers to an architecture with 3 convolutions layers with batch normalization
and pooling, where the convolutional filter size is 3, the number of filters of the first layer is 8, while
the second and third are set to 2. Each layer has a zero-padding of 1 pixel and a pooling mask size
of 2. After the convolutions, we have PCA and a log map, where the number of anchors of the log
map is 2. After that, we utilize 4 F.C blocks.The Conv+log architecture was learned end-to-end
including PCA, and entirely from scratch, using only randomly initialized weights. The method
named Resnet18+log model uses a Resnet18 network pre-trained on ImageNet and fine-tuned on the
hand shape data, similar to the conventional methods. We replaced the final F.C. layer of Resnet by a
log model with PCA, log, and 4 F.C blocks, and trained this architecture while freezing the weights
of the fine-tuned Resnet.

The results for these architectures can be seen in Table 5.1. When the learning framework is
equipped with a convolutional layer, the log model achieves considerable accuracy improvement,
strengthening the concept that the proposed interface is flexible enough to be incorporated in general
neural network architectures. Following this pattern, the resnet18 architecture also benefits from the
proposed interface.
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Method Accuracy (%)

DCC [65] 88.89 ± 2.45
MMD [116] 92.50 ± 2.87
CHISD [15] 96.52 ± 1.18
MMDML [76] 97.8 ± 1.0
ADNT [48] 97.92 ± 0.73
PLRC [22] 93.74 ± 4.3
DRM [97] 98.33 ± 1.27
Resnet vote 98.61 ± 1.52
Log model 98.19 ± 1.31

Table 5.2: Results of the experiment on the CMU MoBo dataset.

Method Accuracy (%)

STM-ExpLet [73] 31.73
RSR-SPDML [44] 30.12
DCC [65] 25.78
GDA [41] 29.11
GGDA [42] 29.45
PML [54] 28.98
DeepO2P [59] 28.54
SPDNet [53] 34.23
GrNet-1 [55] 32.08
GrNet-2 [55] 34.23
Log model 32.61

Table 5.3: Results of the experiment on the AFEW dataset.
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Figure 5.8: tSNE visualizations of 24 individuals of face image sets of the CMU Mobo dataset.
The left plot denotes face image sets processed as subspaces. The plot shows a representation of
the subspaces relative distances based on their similarities. The right plot shows mapped tangent
vectors (output of the log layer). The colors represent each individual (each class). Visually, the
tangent vectors provide a more discriminative representation.

5.3.3 Experiment on face identification

We conducted an experiment on the CMU Mobo dataset, consisting of videos of 25 people walking
on a treadmill. This dataset was originally utilized for research on human gait analysis, but recently it
has been used to compare the performance of image set based face classification methods [97, 48, 15].

We first detected face region from each video frame by the Viola and Jones detection algo-
rithm [113]. A set of face images extracted from one video was considered as an image set. This
dataset has four walking patterns (videos) of each person, except for one person. We evaluated the
classification performance 10 times with the videos of 24 people with all walking patterns. For the
evaluation, one video randomly selected from each person was used for training, while the remaining
three videos were used for testing.

In this experiment, the subspaces are generated from CNN feature vectors. As the feature extrac-
tor, we used the ResNet-50 [49], which was fine-tuned to classify each face image of training data.
For the fine-tuning, we added two fully connected (FC) layers after the last global average pooling
layer in the network. The first FC layer outputs a 1024 dimension vector through the ReLU [82]
function, and the second layer outputs a 24 (the number of classes) dimension vector through soft-
max function. We used the cross-entropy loss and Adam optimizer [66]. Hyperparameters of the
optimizer were used as suggested by the original paper. We repeated the training to 100 epochs.
Then, we extracted 1024 feature vectors by the first FC layer and for each set we computed a sub-
space with PCA by extracting 10 components. Therefore, a subspace input to the log module is
on the G(1024, 10). We trained a Grassmann log model consisting of a log map followed by one
fully-connected (F.C) layer, with number of anchor points 2.
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First, we visualize the subspaces obtained through PCA in Figure 5.8 by using tSNE. The left
plot shows a representation where each subspace is a point, and subspace similarities correspond to
Euclidean distances on the plane. We also visualized the log tangent vectors of our trained model
in the right plot. Since there are 2 anchor points, the dimension of the Euclidean feature space
(product of the tangent spaces) is 2 × 1024 × 10. Each point corresponds to one tangent vector,
and their distances correspond to Euclidean distances on the tangent spaces. The output vectors of
the log model exhibits compact clusters, while the ones on the Grassmann manifold are visually
more dispersed. Additionally, the log model seems to discriminate data from different classes more
appropriately, suggesting that the tangent spaces learned by the model provide a more suitable space
for classification.

We have also evaluated the log model against various manifold methods from previous works.
Resnet vote [49] is a baseline consisting of a Resnet50 fine-tuned to this dataset, where each image
of a set is classified independently and a majority voting strategy is used to select a single class
prediction. Table 5.2 shows the results. The proposed model overperforms the classic methods, and
achieves a result on par with various deep methods.

5.3.4 Experiments on emotion recognition

We utilize the Acted Facial Expression in Wild (AFEW) [21] dataset. The dataset contains 1, 345
sequences of facial expressions acted by 330 actors in close to real world setting. We follow the
experiment protocol established by [73, 53] to present the results on the validation set. The training
videos are split into 1, 747 small subvideos augmenting the numbers of sets. For the evaluation,
each facial frame is normalized to an image of size 20 × 20. For representation, following various
works [74, 73, 55], we express the facial expression sequences with a set of linear subspaces of
dimension 10, which exist on a Grassmann manifold G(400, 10). The Grassmann log model used
in this section was composed of a log map followed by 3 fully-connected (F.C) layers, with batch
normalization and dropout, in addition to a final F.C. with softmax, with 4 anchor points.

We compare the proposed log model with a number of methods for classification of manifold-
valued data. Grassmann net (GrNet) [55], that proposes a block of manifold layers for subspace
data, is denoted by GrNet-1 for the architecture with 1 block and GrNet-2 for the one with 2 blocks.

The results can be seen in Table 5.3. The proposed method achieved competitive results, even
though it uses simple Euclidean operations such as fully-connected layers and a cross-entropy loss.
First, it overperforms popular methods such as GDA and GGDA, that have a similar purpose of
mapping Grassmann manifold data into a vector representation. This may be likely attributed to
the fact that the log model learns both the representation and the Euclidean discriminant plane in
an end-to-end manner, and the use of multiple F.C. layers allow a higher level of non-linearity for
separation. In contrast, GDA uses a fixed kernel function and learns the discriminant independently.
Methods such as SPDNet and GrNet are composed of many complex layers involving SVD, QR
decompositions, and GramSchmidt orthogonalization and its derivatives are utilized as well. They
increase in complexity as the number of layers increase by repeating these operations, which are
not easily scalable in GPUs. In contrast, the proposed method offers competitive results employing
a smaller set of parameters, benefiting a broader range of applications. By exploiting the tangent
space properties, several practical advantages arise. For instance, the proposed model is naturally
parallelizable. Also, it presents greater interpretability, providing a tool to understand its decisions
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by using the tangent space.

5.4 Summary

This chapter proposes the Grassmann log model to map data from a Riemannian manifold to a vector
space while maximizing discrimination capability for classification. The key idea is to formulate the
Grassmann log map as a learnable model in such a way that it approximates well the manifold around
the neighborhood of the data distribution. The proposed log model can be learned with Riemannian
stochastic gradient descent; therefore it can be learned together with other powerful features such as
cascaded convolutional layers. We performed classification experiments on multi-view hand shape
recognition, face identification and and facial expression classification.
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Chapter 6

Concluding remarks

This chapter summarizes the work presented in this thesis concerning the goals and the research
direction in the future.

6.1 Summary

This thesis introduced learning algorithms to classify Grassmann-valued data, i.e., subspaces living
in a Grassmann manifold. The motivation to use subspace representation is that 1) it arises naturally
in many types of data, and 2) it is both practical, robust to noise, and invariant to various types of
data transformations. Most importantly, this thesis’s central motivation is the fact that the tools to
process Grassmann-valued data are still underdeveloped despite their useful and practical nature.

Our algorithms have applications in signal processing and computer vision, particularly repre-
senting image sets and acoustic signals discriminatively. The goal was to develop general-purpose
and straightforward algorithms that achieve high classification performance.

Chapter 3 proposed the Enhanced Grassmann discriminant analysis (eGDA), a generalization of
Fisher discriminant analysis from Euclidean space to the Grassmann manifold. It is more specifically
a generalization of GDA, which maps data to a Euclidean space through a kernel trick, a limited
representation of the manifold that may not generalize its distance structure well when not enough
data is given. In eGDA, more discriminant features can be achieved by projecting the subspaces
onto a generalized difference subspace and then using a kernel trick to reproduce the manifold of
projected subspaces. We demonstrate the application of this method to the classification of motion
images.

Chapter 4 introduces two algorithms to classify signals that are generalizations of Fisher dis-
criminant analysis from Euclidean to Grassmannian. Both methods extend MSSA, a method without
a discriminant mechanism, operating just as the nearest neighbor algorithm for signals. The pro-
posed methods are Grassmann singular spectrum analysis (GSSA), which uses a Grassmann kernel
to add discrimination, and Tangent singular spectrum analysis (TSSA), which computes a discrim-
inant space in a tangent space to classify Grassmann-valued data in a neighborhood of the data
Karcher mean. We demonstrate the application of these methods to the task of bioacoustic signal
classification.

Chapter 5 introduces the Grassmann log model, an end-to-end learnable neural network layer.
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In this chapter, the problem we addressed is the fact that the tools for processing Grassmann-valued
data within deep neural networks are lacking. The proposed log model maps Grassmann-valued
data to vectors by learning a tangent space, such that this layer can be seamlessly connected to
conventional neural network layers. We employ the log model to image set recognition tasks, such
as face identification, facial expression recognition, and hand shape recognition.

6.2 Future work

Although the experimental results validate the proposed methods’ effectiveness in various applica-
tions, many challenges remain to be done in the future.

In Chapter 3, we utilized a handcrafted feature called histogram of gradients (HOG), and a CNN
called AlexNet to preprocess the frames of videos. In the future, we will consider the introduction
of multiple sophisticated features such as dense trajectories and investigate their combination in
terms of subspace representation. Our framework would also benefit from even more powerful
learned representations. Therefore, an attractive research line would investigate DNN architectures
combining the proposed eGDA with large models such as DenseNet and ResNet50. For that model
to learn in an end-to-end manner, we will seek to reformulate the GDS operator as a neural network
layer, where the gradient can be computed in a stable manner.

In Chapter 4, we decomposed a signal into oscillatory components using the simplest form of
SSA. In the future, we will consider using other decompositions based on subspaces for various
applications. For example, as SSA acts as a low-pass filter, it works well for discriminating
bioacoustic data, with considerable environmental background noise. However, in other applications
such as factory anomaly detection, we may lose important information hidden in the higher-frequency
band of machine sounds. For that, we will consider employing a band-pass filter to construct
subspaces of different frequency ranges. Another issue is that subspaces are not robust to outliers,
since they can alter the oscillatory components. We will tackle this problem by considering more
robust signal transforms. It could also be interesting to apply the proposed methods to other acoustic
signals, such as signals with multiple channels.

In Chapter 5, the log operation is performed using a single compact SVD. In the future, we will
consider creating an end-to-end model that does not need any matrix decomposition, as this is a
costly operation with a theoretically unstable gradient in the paradigm of backpropagation.

Although all algorithms were proposed for Grassmann-valued data, the core ideas are quite
general and can be extended to a much larger class of Riemann-valued data; that is, data represented
as a point on a Riemannian manifold. Future works also include generalizing this thesis’ learning
algorithms to other Riemannian manifolds, such as Lie groups (e.g., rotation group, general linear
group), structured tensors (e.g., symmetric positive definite, fixed-rank, stochastic matrices), statisti-
cal manifolds (e.g., the family of all normal distributions with Fisher metric), and other objects (e.g.,
hypersphere, hyperbolic space, real phases of Fourier transform). The value in these generalizations
is that they would allow our learning algorithms to be applied in many applications even when both
vector and subspace representations might not be the most suitable representation choice. We hope
that these basic algorithms serve as a basis for data analysis tools involving manifold-valued data.
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Appendix A

Derivation of the error-minimizing
subspace

In this appendix, we demonstrate that the subspaces obtained through PCA without centering
minimize the reconstruction error with respect to a set of patterns.

Our goal is to find the 𝑚-dimensional subspace 𝜷 that minimizes the reconstruction error. More
concretely, we seek the orthonormal basis {𝒃 𝑗 ∈ R𝑑}𝑚𝑗=1 of the subspace 𝜷 given sample vectors
from the distribution. We also call the basis vectors {𝒃 𝑗 ∈ R𝑑}𝑚𝑗=1 principal components. Let
{𝒙𝑖 ∈ R𝑑}𝑛𝑖=1 be a set of sample patterns from the underlying data distribution, with a sample size 𝑛
and number of variables (dimension) 𝑑. Note that usually 𝑚 is selected as a hyperparameter, often
much smaller than 𝑑.

Let 𝑿 = [𝒙1, 𝒙2, · · · , 𝒙𝑛] ∈ R𝑑×𝑛 be the matrix where each column is a sample pattern and
𝑩 = [𝒃1, 𝒃2, · · · , 𝒃𝑚] ∈ R𝑑×𝑚 be the matrix of basis vectors of 𝜷. We refer to 𝑩 as basis matrix.

The objective of this procedure is minimizing the error function:

min
𝜷

𝑛∑
𝑖=1
‖𝒙𝑖 − 𝑷𝒙𝑖 ‖22 , (A.1)

where 𝑷 : R𝑑 → R𝑑 is the projection operator onto 𝜷.
Now we demonstrate the solution for minimizing the error function. First, define the error matrix

as follows:
𝑬 = 𝑿 − 𝑷𝑿 = [𝒙1 − 𝑷𝒙1, 𝒙2 − 𝑷𝒙2, · · · , 𝒙𝑛 − 𝑷𝒙𝑛] . (A.2)

We rewrite our optimization as:
𝑛∑
𝑖=1
‖𝒙𝑖 − 𝑷𝒙𝑖 ‖22 = ‖𝑬‖2𝐹 , (A.3)

where ‖ · ‖𝐹 denotes the Frobenius norm. The idea is that minimizing the sum of quadratic errors
corresponds to minimizing the squared Frobenius norm of the error matrix. We now manipulate this
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form using matrix algebra:

‖𝑬‖2𝐹 = ‖𝑿 − 𝑷𝑿‖2𝐹 (A.4)
= tr

(
(𝑿 − 𝑷𝑿) (𝑿 − 𝑷𝑿)>

)
(A.5)

= tr
(
(𝑿 − 𝑷𝑿)

(
𝑿> − 𝑿>𝑷>

) )
(A.6)

= tr
(
𝑿𝑿> − 𝑿𝑿>𝑷> − 𝑷𝑿𝑿> + 𝑷𝑿𝑿>𝑷>

)
. (A.7)

Now let 𝑨 = 𝑿𝑿>, where 𝑨 is called autocorrelation matrix. We replace it in our problem and
perform a few more manipulations:

‖𝑬‖2𝐹 = tr
(
𝑨 − 𝑨𝑷> − 𝑷𝑨 + 𝑷𝑨𝑷>

)
(A.8)

= tr (𝑨 − 𝑨𝑷 − 𝑷𝑨 + 𝑷𝑨𝑷) (A.9)
= tr(𝑨) − tr (𝑨𝑷) − tr (𝑷𝑨) + tr (𝑷𝑨𝑷) (A.10)
= tr(𝑨) − tr (𝑷𝑨) − tr (𝑷𝑨) + tr (𝑷𝑨) (A.11)
= tr(𝑨) − tr (𝑷𝑨) . (A.12)

In eq. A.12 the scalar tr(𝑨) is constant, so minimizing the squared norm of the error matrix is
the same as maximizing the trace of the projected autocorrelation matrix. In addition, our goal is to
find the basis matrix 𝑩, so we replace 𝑷 = 𝑩𝑩>. Now we rewrite the optimization:

min
𝜷
‖𝑬‖2𝐹 = max

𝜷
tr (𝑷𝑨) (A.13)

= max
𝜷

tr
(
𝑩𝑩>𝑨

)
(A.14)

= max
𝜷

tr
(
𝑩>𝑨𝑩

)
. (A.15)

Finally, we replace the abstract variable 𝜷 by its basis matrix 𝑩, and insert constraints of orthonor-
mality:

max
𝑩

tr
(
𝑩>𝑨𝑩

)
s.t. 𝑩>𝑩 = 𝑰.

(A.16)

We solve this problem by induction on 𝑚, i.e., considering each basis vector, hoping it will be
clearer and more instructive for readers. For that, we can rewrite our problem in vector form as:

max
{𝒃 𝑗 }

𝑚∑
𝑗=1

𝒃 𝑗
>𝑨𝒃 𝑗

s.t. < 𝒃 𝑗 , 𝒃 𝑗 >= 1, < 𝒃 𝑗 , 𝒃𝑘 >= 0 ∀𝑘 = 1, . . . , 𝑗 − 1.

(A.17)

We start with the case 𝑚 = 1, i.e., there is only one principal component. We employ the method of
Lagrange multipliers as follows:

max
𝒃1

𝐽 (𝒃1, 𝜆 𝑗) = 𝒃1
>𝑨𝒃1 − 𝜆1

(
𝒃1
>𝒃1 − 1

)
. (A.18)
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The value 𝜆1 is the multiplier between the two terms. Now, we seek the stationary points:

𝜕𝐽

𝜕𝒃1
= 2𝑨𝒃1 − 2𝜆1𝒃1 = 0, (A.19)

𝜕𝐽

𝜕𝜆1
= 𝒃1

>𝒃1 − 1 = 0. (A.20)

Eq. A.20 simply indicates that the basis vector 𝒃1 has norm 1, while eq. A.19 leads to the following
equation:

𝑨𝒃1 = 𝜆1𝒃1. (A.21)

The solution of this equation is well known: 𝒃1 must be an eigenvector of 𝑨, while 𝜆1 must be its
corresponding eigenvalue. In addition, by multiplying both sides by 𝒃1

> we can rewrite our objective
as 𝒃1

>𝑨𝒃1 = 𝜆1. Thus, the maximum value of 𝜆1 is the solution, which leads to conclusion that 𝜆1
must be the highest eigenvalue of 𝑨.

Now that we have shown the solution for the base case 𝑚 = 1, we go back to look at the general
case. We apply the method of Lagrange multipliers to eq. A.17:

max
{𝒃 𝑗 }

𝑚∑
𝑗=1

𝐽 (𝒃 𝑗 , 𝜆 𝑗) =
𝑚∑
𝑗=1

𝒃 𝑗
>𝑨𝒃 𝑗 −

𝑚∑
𝑗=1

𝜆 𝑗
(
𝒃 𝑗
>𝒃 𝑗 − 1

)
−

𝑚∑
𝑗=1

𝑗−1∑
𝑘=1

𝛼𝑘𝒃 𝑗
>𝒃𝑘 . (A.22)

The value 𝜆 𝑗 is the multiplier for each normality constraint, while 𝛼𝑘 is the multiplier for each
orthogonality constraint. Now, we compute the stationary points for each term:

𝜕𝐽

𝜕𝒃 𝑗
= 𝑨𝒃 𝑗 − 𝜆 𝑗𝒃 𝑗 −

𝑗−1∑
𝑘=1

𝛼𝑘𝒃𝑘 = 0, (A.23)

𝜕𝐽

𝜕𝜆 𝑗
= 𝒃 𝑗

>𝒃 𝑗 − 1 = 0 (A.24)

𝜕𝐽

𝜕𝛼𝑘
=

𝑗−1∑
𝑘=1

𝒃 𝑗
>𝒃𝑘 = 0. (A.25)

We multiply eq. A.23 by 𝒃𝑝
> (𝑝 = 1, . . . , 𝑗 − 1) from the left to obtain:

𝒃𝑝
>𝑨𝒃 𝑗 − 𝜆 𝑗𝒃𝑝

>𝒃 𝑗 −
𝑗−1∑
𝑘=1

𝛼𝑘𝒃𝑝
>𝒃𝑘 = 0. (A.26)

Here, since 𝒃𝑝
>𝒃 𝑗 is always zero, the second term cancels. The last term cancels except when

𝑝 = 𝑘 , which leads to:
𝒃𝑝
>𝑨𝒃 𝑗 − 𝛼𝑝 = 0. (A.27)

However, we know that 𝒃𝑝
>𝑨𝒃 𝑗 = 𝒃 𝑗

>𝑨𝒃𝑝 = 𝜆𝑝𝒃 𝑗
>𝒃𝑝 = 0. Therefore, 𝛼𝑝 = 0.

Replacing this new result into eq. A.23 leads us to:

𝑨𝒃 𝑗 − 𝜆 𝑗𝒃 𝑗 = 0 (A.28)
𝑨𝒃 𝑗 = 𝜆 𝑗𝒃 𝑗 . (A.29)
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Thus, the solution must among the eigenvalues and eigenvectors of 𝑨. In addition, by the same
argument used for the first component 𝒃1, it is clear that the maximizers correspond to the 𝑚 highest
eigenvalues.

In summary, the subspace that minimizes the reconstruction error (eq. A.3) is spanned by the
leading 𝑚 eigenvectors of 𝑨. We write the basis matrix as:

𝑩 = 𝑼1:𝑚, (A.30)

where 𝑼1:𝑚 denotes the leftmost 𝑚 columns of 𝑼.
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Appendix B

Gradient computation of the Grassmann
log map

In this appendix, we present a derivation of the gradient of the log map for the Grassmann manifold
G(𝑑, 𝑚). For that, we utilise various conventional techniques to operate differential forms [81].

Given the data and the loss gradient ∇𝑯𝐿 = ¤𝑯, we compute the gradients with respect to the
tangency point and data.

The Grassmann log consists of the three equations below:

𝑩 = (𝑲>𝑿)−1(𝑲> − 𝑲>𝑿𝑿>), (B.1)

𝑾𝚯𝒁> = 𝑩>, (B.2)

Log𝑲 𝑿 = 𝑯 = 𝑾∗ arctan(𝚯∗)𝒁∗> , (B.3)

where 𝑾∗,𝚯∗, 𝒁∗ represent the matrices with the first 𝑚 columns of 𝑾,𝚯 and 𝒁∗ respectively. It
should be noted that equation B.2 is the transposed SVD of 𝑩. The differential of the expression B.3
may be written as:

𝑯 =𝑾∗ arctan(𝚯∗)𝒁∗> = 𝑾∗𝑺𝒁∗>, (B.4)
𝑑𝑯 =𝑑𝑾∗𝑺𝒁∗> +𝑾∗𝑑𝑺𝒁∗> +𝑾∗𝑺𝑑𝒁∗>. (B.5)

Above, we performed the change of variables 𝑺 = arctan(𝚯∗). This contains an element-wise
differential, simple to compute:

𝑑𝑺 = 𝛀𝑑𝚯, (B.6)

where 𝛀𝑖 = 1/(1 + 𝚯2
𝑖 ) is a diagonal matrix and 𝑖 = 1, . . . , 𝑑 iterates over the diagonal. Since

𝑾∗ is an orthogonal matrix, 𝑾∗>𝑑𝑾∗ is skew-symmetric. This constraint leads to Townsend’s
solution [109] for equation B.5. We use this result and reverse the change of variables to obtain the
update equations for each variable:

¤𝑾∗ = 𝑾∗(𝑭◦[𝑾∗> ¤𝑯𝒁∗ arctan(𝚯∗)+arctan(𝚯∗)𝒁∗> ¤𝑯>𝑾∗]+(𝑰−𝑾∗𝑾∗>) ¤𝑯𝒁∗ arctan(𝚯∗)−1).
(B.7)
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¤𝚯∗ = 𝑰 ◦ [𝑾∗> ¤𝑯𝒁∗]𝛀−1 (B.8)

¤𝒁∗ = 𝒁∗(𝑭◦[arctan(𝚯∗)𝑾∗> ¤𝑯𝒁∗+𝒁∗> ¤𝑯>𝑾∗ arctan(𝚯∗)])+(𝑰−𝒁∗𝒁∗>) ¤𝑯>𝑾∗ arctan(𝚯∗)−1.
(B.9)

◦ represents the Hadamard product, and 𝑰 represents the identity matrix. 𝑭 is a matrix of the form:

𝑭𝑖 𝑗 =

{
1/(arctan2(𝚯 𝑗) − arctan2(𝚯𝑖)), 𝑖 ≠ 𝑗

0, 𝑖 = 𝑗 .
(B.10)

The results ¤𝑾∗, ¤𝚯∗ and ¤𝒁∗ are 𝑚-leftmost matrices, so to continue back to the full matrix
gradients we can fill in columns of zeros until the matrices become square, where then we write
then as ¤𝑾, ¤𝚯 and ¤𝒁. Then, the next step is to consider the equation 𝑾𝚯𝒁> = 𝑩>. Since it is a
reconstruction rather than a decomposition, its update equation can be obtained as:

¤𝑩> = [𝑾 (𝑭 ◦ [𝑾> ¤𝑾 − ¤𝑾>𝑾])𝚯 + (𝑰 −𝑾𝑾>) ¤𝑾𝚯−1]𝒁>

+𝑾 (𝑰 ◦ ¤𝚯)𝒁> +𝑾 [𝚯(𝑭 ◦ [𝒁> ¤𝒁 − ¤𝒁>𝒁])𝒁> +𝚯−1 ¤𝒁>(𝑰 − 𝒁𝒁>)], (B.11)

where 𝑭 follows equation B.10, but the non-diagonals are defined as 1/(𝚯2
𝑗 −𝚯2

𝑖 ).
Finally we consider the equation 𝑩> = (𝑿>𝑲)−1(𝑿> − 𝑿>𝑲𝑲>). We transpose it and call

𝑨 = (𝑿> − 𝑿>𝑲𝑲>) and 𝑪 = (𝑿>𝑲)−1, then derivate it by the product rule, massaging the
equation to obtain a general form:

𝑑𝑩 =𝑑𝑨𝑪 + 𝑨𝑑𝑪, (B.12)
𝑑𝑨 =𝑑𝑿 − (𝑑𝑲𝑲>𝑿 + 𝑲𝑑𝑲>𝑿 + 𝑲𝑲>𝑑𝑿), (B.13)
𝑑𝑪 = − (𝑲>𝑿)−1(𝑑𝑲>𝑿 + 𝑲>𝑑𝑿) (𝑲>𝑿)−1 (B.14)

We obtain two update rules, one to from 𝑑𝑩 with respect to 𝑿 in case a gradient-based pre-
processing needs it, and one with respect to 𝑲 to update it as a parameter. The derivative with
respect to 𝑿 is calculated as follows. First we consider 𝑑𝑲 = 0:

𝑑𝑩 = (𝑿 − (𝑑𝑲𝑲>𝑿 + 𝑲𝑑𝑲>𝑿 + 𝑲𝑲>𝑑𝑿))𝑪 + 𝑨(−(𝑲>𝑿)−1(𝑑𝑲>𝑿
+ 𝑲>𝑑𝑿 + 𝑲>𝑑𝑿) (𝑲>𝑿)−1), (B.15)

𝑑𝑩 = (𝑰 − 𝑲𝑲>)𝑑𝑿 (𝑲>𝑿)−1 − 𝑨(𝑲>𝑿)−1𝑲>𝑑𝑿 (𝑲>𝑿)−1, (B.16)
𝑑𝑩 = (𝑰 − 𝑲𝑲> − 𝑨(𝑲>𝑿)−1𝑲>)𝑑𝑿 (𝑲>𝑿)−1. (B.17)

Then, since our loss function outputs a single real value, we can massage the equations to a canonical
form 𝑑𝐿 = tr ¤𝑩>𝑑𝑩:

𝑑𝐿 = tr ¤𝑩>((𝑰 − 𝑲𝑲> − 𝑨(𝑲>𝑿)−1𝑲>)𝑑𝑿 (𝑲>𝑿)−1), (B.18)

which leads to the final update equation for the gradient of 𝑿:
¤𝑿 = (𝑲>𝑿)−1 ¤𝑩> [(𝑰 − 𝑲𝑲>) (𝑰 − 𝑿 (𝑲>𝑿)−1𝑲>] . (B.19)

Repeating the same technique, the update equation for 𝑲 can be derived as:
¤𝑲 = −(𝑲>𝑿)−1 ¤𝑩> [𝑲>𝑿 + 𝑲>𝑿> + (𝑿>𝑲)−1𝑿>(𝑰 − 𝑲𝑲>)] . (B.20)
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