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Abstract

We deal through this thesis with the problem of enhancing the target speech in

noisy recorded signals by separating the target speech signal from other non-target

signals. Although humans are able to focus on and understand the speech of

interest in a complex acoustic environment, the presence of noise and interference

can significantly reduce the intelligibility and comprehension of speech.

Depending on the relationship between the number of sources and microphones,

the source separation problem is classified into determined and underdetermined

cases. The determined case is a well-posed problem, where a sufficient number

of observations are available. In contrast, the underdetermined case, including

single-channel situations, is an ill-defined problem, lacking information for solving

the problem. Determined methods are preferred thanks to the satisfactory perfor-

mance, but more microphones are usually needed to meet the condition in real-life

situations. Hence, application scenarios are limited. This raises the importance of

underdetermined methods since it is much easier to achieve the underdetermined

condition, especially the single-channel condition. Furthermore, different devices

and applications have different hardware configurations and prerequisites, e.g.,

low computational cost and low latency, which should also be considered when

developing methods for realistic environments. This thesis aims to develop source

separation methods that achieve high performance in the determined case and

methods can be applied in more realistic conditions in real life.

The main topic in Chapter 3 is to improve the source separation performance

of frequency domain independent component analysis (FDICA)-based determined

methods by incorporating a source model with stronger representation power into

the framework. We train source models using deep generative models (DGM) that
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include variational autoencoder (VAE) and generative adversarial network (GAN).

VAE allows us to formulate the training and separation criteria to be consistent,

whereas GAN has a high potential to achieve a more precise model. Convergence-

guaranteed optimization algorithms are derived for parameter estimation. We fur-

ther propose a fast optimization algorithm to reduce the computational cost, which

estimates parameters that approximately maximizes the posterior. The incorpora-

tion of the DGM-based source model was confirmed to be effective through exper-

imental evaluations.

In both Chapter 4 and Chapter 5, we focus on underdetermined methods to deal

with cases where the determined condition does not hold. Chapter 4 propose a

geometric information-guided multichannel source separation method, which com-

bines beamforming-based geometric constraints and independent vector analysis

(IVA). A parameter estimation algorithm is derived based on the auxiliary function

approach. Besides, an online extension of the method to real-time applications is

performed by applying autoregressive calculation to the signal statistics. We con-

firmed through the experiments the effectiveness of both offline and online meth-

ods introduced in this chapter.

As the most costless condition to achieve, it is unavailable to use spatial in-

formation in the single-channel condition, making it challenging to achieve high

source separation performance compared to multichannel conditions. However, it

has the advantage of being applicable to situations where the spatial characteris-

tics change over time and thus has the broadest range of applications. In Chapter

5, we derive a convergence-guaranteed basis training algorithm based on auxiliary

function approach for discriminative nonnegative matrix factorization (DNMF), one

powerful monaural source separation method without neural networks. Experimen-

tal results revealed the effectiveness of the basis matrix trained with the proposed

method in monaural source separation.
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Abstract in Japanese

人間は複雑な音響環境においても特定の音声に注意を向け，理解することができるが，

雑音や干渉音の存在は発話の明瞭度や理解度を著しく低下させる．本論文では，ノイ

ジーな録音信号に含まれる目的の音声信号と非目的音声信号を分離することで，目的

音声を強調する問題を取り扱う．

音源分離問題は音源とマイクロホンの数の関係性によって，優決定条件と劣決定

条件に大別される．優決定条件は十分な数の観測信号が分離の手掛かりとして利用可

能な良定義問題であるのに対し，シングルチャンネルを含む劣決定条件は問題を解く

ための情報が不足している悪定義問題である．優決定条件の手法は高い分離性能が得

られて好ましい一方で，多くの場合では音源数よりマイクロホン数が多いという条件

を満たすために多数のマイクロホンが必要である．そのため，実環境において適用可

能なシーンが限られている．従って，より容易に条件を満たせる劣決定条件の手法が

重要になる．更に，適用するデバイスやアプリケーションによってハードウェア構成，

許容される計算コストや遅延が異なる．実環境において動作する手法を開発するため

にそれらの制約を考慮しなければならない．本論文では，優決定条件からより現実的

な条件で適用可能な手法までの音源分離手法群を提案する．

第 3章では，周波数領域の独立成分分析（FDICA）に基づく優決定条件の手法を

拡張し，分離性能を向上させることを目的としている．具体的には，FDICAの枠組に

おける音源モデル部分の精緻化を実現するため，変分自己符号化器（VAE）や敵対生

成ネットワーク（GAN）と呼ばれる深層生成モデルを導入する．VAEを用いること

でネットワーク学習と推論時に同一の最適化規準を用いることができ，GANを用い

た場合はより高精度な音源モデルが得られることが期待できる．これらの提案手法に

対して，我々は収束が保証されるパラメータ最適化アルゴリズムを提案する．更に，

計算コストを削減するために，最大事後確率が得られるパラメータを近似計算する高

速な最適化アルゴリズムを提案する．評価実験により，深層生成モデルを音源モデル
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に導入するアプローチが音源分離性能の向上に有効であることが示された．

第 4章では，幾何的制約に基づく多チャンネル音源分離手法を提案する．提案手

法として，ビームフォーミングに基づく幾何的制約と独立ベクトル分析（IVA）の目

的関数の組み合わせによって定式化され，補助関数法に基づいて収束性が保証される

パラメータ最適化アルゴリズムを導出する．更に，この提案手法をリアルタイムアプ

リケーションに適用するために，信号統計量の計算に自己回帰計算を適用することで，

提案手法のオンライン化を実現する．評価実験により，本章で提案した２つの手法の

有効性を確認した．

複数のマイクが必要になる多チャンネル条件に対し，マイク一つがあれば成立す

るシングルチャンネルは最も容易に満たせる条件である．シングルチャンネル音源分

離手法は，マイク間の空間情報を利用できないため，多チャンネル手法に比べて高い

分離性能の実現は困難であるが，空間特性が時変的なシーンにも適用可能で，最も幅

広い場面に応用可能である．第 5章では，深層学習を用いない強力なシングルチャン

ネル音源分離手法である識別的非負値行列因子分解（DNMF）のための基底学習アル

ゴリズムを提案する．提案手法は補助関数法に基づき導出された最適化アルゴリズム

であるため，収束性が保証されている．評価実験により，提案手法で学習した基底行

列はシングルチャンネル音源分離の性能向上に有効であることを明らかにした．
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Chapter 1

Introduction

1.1 Background

As one of the essential communication tools for human beings, speech endows

us with a natural and efficient way to interact with the world. Besides speech,

we are always surrounded by various sounds in a natural environment, e.g., mu-

sic, mechanical sound, and ambient noise. Since multiple sounds usually occur

at the same time, they acoustically interfere with each other. Although a human

can considerably separate and focus on listening to the speech of interest among

these sounds, it is unavoidable that the presence of acoustic interferences de-

creases speech understandability. In addition, it is a much more difficult problem

for machines such as smartphones, note PCs, and robots to understand the target

speech in such a complicated acoustic environment.

Speech enhancement [1] is an important technique to solve this problem, which

aims to increase the speech understandability distorted by noise and interferences.

When we treat one specific speech source in a recorded mixture signal as the tar-

get and the other sources as interferences or noise, enhancing the specific speech

source can be considered as a target and non-target source separation prob-

lem. Therefore, source separation [2], whose objective is to recover one or more

sources contained in a recorded signal, is another promising technique to enhance

speech. Speech enhancement and source separation are fundamental technology

for audio signal processing, which have a wide range of applications. Examples

1
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include hearing aid devices, automatic speech recognition, speaker identification,

teleconferencing systems, and smart home devices. These devices have different

hardware configurations (e.g., number of microphones) and are used in various

situations where the prerequisites are different. This indicates the importance of

developing source separation algorithms that serve different situations.

With a microphone array consisting of several synchronized microphones, one

promising approach to source separation is blind source separation (BSS) [3],

which separates individual sources without any information about the sources and

microphones. Thanks to this property, the BSS technique is accessible for many

applications. However, one limitation is that the number of microphones is needed

to be equal to or greater than the number of sources, which is called determined or

overdetermined conditions. This means that the usage of more microphones (e.g.,

4, 6, or more) is necessary to meet the requirement in a realistic environment. For

example, to enhance a target speech in a cafeteria, since we need to consider

noise from other customers, tableware, kitchen, background music, and outside,

we have to use more than 6 microphones.

This raises the importance of developing source separation methods for under-

determined situations where the number of microphones is less than the number

of sources. However, due to the difficulty of obtaining sufficient information from

observations with less microphones, it is often necessary to use additional as-

sumptions (e.g., sparsity) and a priori information about sources and microphone

arrays to effectively solve the underdetermined source separation. One particu-

lar case of the underdetermined situation is single-channel, where only a single

microphone is available. Although small devices with dual microphones are now

widespread, there are still many devices that have only one microphone. More-

over, since single-channel methods do not require any spatial information, it can

also be applied to separating signals in situations where spatial characteristics are

time-varying, e.g., moving sources, a common occurrence in the real environment.

Therefore, as the esaiest case to achieve, single-channel methods have the broad-

est range of applications.
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1.2 Related work

The source separation problem can be categorized depending on its assumptions

and conditions. In this thesis, we use the terms “determined/underdetermined/single-

channel” and “blind/guided/supervised’ to properly categorize these methods. The

terms “determined”, “underdetermined” and “single-channel” indicate the relation-

ship between the numbers of sources and microphones, while the terms “blind”,

“guided”, and “supervised” indicate whether prior information is available for solv-

ing the problem or whether a training phase is required.

As blind determined method, BSS for the determined situation is one of the

most fundamental theories in these problems. In particular, independent compo-

nent analysis (ICA) [4] has been well studied for ages. Since a mixing system of

acoustic signals becomes a convolutive mixture due to the effect of room rever-

beration, and it is a more difficult problem than the instantaneous mixing system,

frequency-domain ICA (FDICA) [5] has been established to deal with such con-

volutive mixture using Fourier transform, where the instantaneous mixing system

is assumed to be approximately held in the time-frequency domain. Furthermore,

the frequency-domain approach provides the flexibility of utilizing various models

for the time-frequency representation of source signals. The approach involves

independent vector analysis (IVA) [6, 7] and independent low-rank matrix analysis

(ILRMA) [8,9], which are extensions of FDICA. With these methods, a high-quality

blind speech separation was achieved. Recently, motivated by the impressive

power of deep neural networks (DNNs), some methods have been proposed to

incorporate DNNs into the FDICA framework, which is categorized as “supervised

determined” methods. Independent deeply low-rank matrix analysis (IDLMA) [10]

is one of these methods, which trains a DNN for each source so that the trained

DNN can work as a source-dependent noise reduction system.

In many applications, the source position can be roughly known in advance

since it can be estimated by sound localization methods, determined by image/video

processing, or simply known by geometry. Geometrically constrained BSS [11,12]

is a framework that utilizes this prior information to guide the separation system

so that the desired target signal is output from a prespecified channel. This con-
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cept has already been adopted to ICA, IVA, and ILRMA [12–14]. The geometric

constraints allow us to manually control the spatial and frequency responses of

the separation system estimated by a BSS method, which provides the flexibility of

determining to preserve or suppress a signal originating from a specific direction.

With the constraint, BSS methods is able to work well even there exists additional

diffuse noise. Furthermore, the constraints can be designed as a blocking ma-

trix (BM) [15] so that the corresponding channel can produce good estimate of

interference and noise for contructing a generalized sidelobe canceller (GSC) [16],

making it possible to deal with underdetermined situations. From this point of view,

the geometrically constrained BSS methods can be considered as “guided under-

determined” methods.

For single-channel audio source separation, nonnegative matrix factorization

(NMF) [17,18] is a powerful approach. NMF factorizes an observed magnitude (or

power) spectrogram, interpreted as a nonnegative matrix, into the product of two

nonnegative matrices, which amounts to approximating the observed spectra by

a linear sum of basis spectra scaled by time-varying amplitudes. In a supervised

setting, NMF is first applied to train the basis spectra of each source. At separation

time, NMF is applied to the spectrogram of a mixture signal using the pretrained

spectra. The source signal can then be separated out using a Wiener filter. A

typical way to train the basis spectra of each source is to minimize the objective

function of NMF. However, the basis spectra obtained in this way do not ensure that

the separated signal will be optimal. To address this, a framework called discrimi-

native NMF (DNMF) [19] has been proposed, and several works have been done to

solve this bilevel optimization problem [19–21]. All these methods are categorized

as “supervised single-channel” methods.

1.3 Objective and overview of thesis

The aim of this thesis is to propose source separation methods that achieve high

performance in the determined case and methods can be applied in more realistic

conditions in real life.

This thesis consists of three parts. Fig. 5.1 shows the overwiew of the thesis.
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Figure 1.1: Overview of this thesis

In the first part, Chapter 2, we provide some preliminaries, which are necessary

for later discussions. In particular, we formulate audio source separation problems

for multichannel and single-channel cases. We then explain conventional BSS

methods based on signal independence and supervised NMF methods. Finally,

we introduce the evaluation criteria. In the second part, Chapter 3 describes the

details of the proposed methods for determined source separation, which incor-

porate supervised-learned source models pretrained using neural networks into

conventional FDICA-based methods. Also, a fast parameter estimation algorithm

for reducing computational cost is proposed. In the third part, we propose algo-

rithms aiming to address more realistic situations where the determined condition

does not hold. Chapter 4 proposes a geometric information-guided multichannel

source separation method. After explaining the offline optimization algorithm, an

online extension is developed. Chapter 5 deals with a single-channel source sepa-

ration problem. We first introduce discriminative NMF methods; then derive a new

effective optimization algorithm. The effectiveness of these methods is validated

via experiments. Finally, Chapter 6 concludes the entire contents and contributions

in this dissertation.



Chapter 2

Audio source separation

2.1 Introduction

In this chapter, we provide some preliminaries about audio source separation,

which are necessary for later discussions. We first give formulations of source

separation for multichannel and single-channel situations. Next, we explain su-

pervised NMF methods for single-channel source separation and BSS methods

based on signal independence for determined multichannel source separation. We

also introduce the auxiliary function approach, a critical optimization method used

through this thesis. Finally, we review criteria usually applied to evaluate the source

separation performance.

2.2 Formulation of source separation problems

2.2.1 Multichannel case

Let us consider I microphones capture J source signals, where xi(t) and sj(t)

denote the signal of time t observed at the ith microphone and the jth source

signal, respectively. We use xi(f, n) and sj(f, n) to denote the correspecding

complex-valued short-time Fourier transform (STFT) coefficients, where f and n

are the frequency and time indices, respectively. We denote the vectors containing

6
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x1(f, n), . . . , xI(f, n) and s1(f, n), . . . , sJ(f, n) by

x(f, n) = [x1(f, n), . . . , xI(f, n)]
T ∈ CI , (2.1)

s(f, n) = [s1(f, n), . . . , sJ(f, n)]
T ∈ CJ , (2.2)

where (·)T denotes transpose. When the length of the analysis window of STFT

is sufficiently longer than that of impulse response and the mixing system is time-

invariant, the relationship between the source signals and observed signals can be

approximated as an instantaneous mixture model at each frequency bin as

x(f, n) = A(f)s(f, n), (2.3)

where A(f) = [a1(f), . . . , aJ(f)] ∈ CI×J is called the mixing matrix. Here, aj(f) =

[a1,j(f), . . . , aI,j(f)]
T ∈ CI is the array manifold vector, also called steering vector,

which models the acoustic paths for jth source in frequency domain.

In a determined situation, where I = J , the mixing matrix is a full-rank square

matrix. Therefore, we can define an inverse matrix of A(f) that separates the

mixture signals as

y(f, n) = WH(f)x(f, n), (2.4)

where (·)H denotes the Hermitian transpose, W(f) = [w1(f), . . . ,wJ(f)] ∈ CI×J

is called demixing matrix, and y(f, n) = [y1(f, n), . . . , yJ(f, n)]
T ∈ CJ is the vector

containing separated source signals. Here, wj(f) = [w1j(f), . . . , wIj(f)]
T ∈ CI is a

demixing filter for the jth source in a mixture signal. The aim of determined source

separation is to estimateW = {W(f)}f from the observation X = {x(f, n)}f,n with

assumptions and available prior information. The waveform of separated signal

yj(t) is obtained by applying inverse STFT (iSTFT) to yj(f, n).
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2.2.2 Single-channel case

For the single-channel separation problem, the case of I = 1, the time-invariant

mixing system is simplified as

x(f, n) =
∑
j

aj(f)sj(f, n), (2.5)

where the microphone index i is omitted. Single-channel source separation is more

difficult than a multichannel problem since the difference of phase and amplitude

between microphones cannot be utilized. Therefore, more prior knowledge and

assumptions are usually needed to achieve single-channel source separation.

2.3 Nonnegative matrix factorization for single-channel

source separation

NMF refers to a technique for modeling spectra of audio sources. Since audio

sources usually have distinct structures in the time-frequency domain, e.g., STFT

domain, the basic idea of NMF is to learn these structures by factorizing the ob-

served spectrograms into two low-rank matrices, which are corresponding to the

spectral templates and scaling coefficients. With the learned spectral templates,

NMF is able to represent the corresponding sources even in mixture signals, which

makes separation possible.

2.3.1 Basic principle of NMF

Given a power spectrogram P = {p(f, n)}f,n ∈ R≥0,F×N or a magnitude spectro-

gram of an audio signal, which can be interpreted as a nonnegative matrix, NMF

factorizes it into the product of a basis matrix B = {bk(f)}f,k ∈ R≥0,F×K and an

activation (coefficient) matrix H = {hk(n)}n,k ∈ R≥0,K×N :

P ≈ Q = BH (2.6)

p(f, n) ≈ q(f, n) =
∑
k

bk(f)hk(n), (2.7)
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Figure 2.1: An example of applying NMF to spectrogram of speech signal.

where k denotes the index of spectral template in the basis matrix, and Q =

{q(f, n)}f,n ∈ R≥0,F×N . NMF learns the underlying spectral structures of the spec-

trogram and approximately represents the spectrogram as a linear combination

of the learned spectral templates with time-varying coefficients. Since the objec-

tive of NMF is to reduce the data deminsion and find out underlying data struc-

tures, typically the number of spectral templates K is set to be a small value as

K ≪ min(F,N), which is equivalent to approximating the spectrogram by a lower

rank matrix. It is important to note that NMF assumes that the observed data are

additive in nature, where is approximately true when applying NMF to magnitude

or power spectrograms. Fig. 2.1 shows an example of applying NMF to a spec-

trogram of speech signal with K = 10. In the basis matrix, we can observe that

hormonic structures of the speech are successfully extracted.

NMF leads to different optimization problems according to the definition of the

measurement of the dissimilarity between P and Q. Most widely used goodness-of-

fit criteria are Euclidean distance (EU), generalizaed Kullback-Leibler divergence

(KL), which is also known as I-divergence [22], and Itakura-Saito divergence (IS)

[23]. These criteria of q(f, n) from p(f, n) are defined as follows:

DEU(P|Q) = ||P−Q||2F =
∑
f,n

|p(f, n)− q(f, n)|2F , (2.8)

DKL(P|Q) =
∑
f,n

(p(f, n) log
p(f, n)

q(f, n)
− p(f, n) + q(f, n)), (2.9)
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DIS(P|Q) =
∑
f,n

(
p(f, n)

q(f, n)
− log

p(f, n)

q(f, n)
− 1). (2.10)

Here, ||·||2F is the squared Frobenious norm. Note that all these metrices are special

cases of β-divergence [24], where β = 2, β = 1, and β = 0 are corresponding to

EU distance, KL divergence and IS divergence, respectively. Using these metrices,

NMF is formulated as an optimization problem with respect to B and H.

F(B,H) = argmin
B,H

Dβ(P|BH), (2.11)

where Dβ(·|·) denotes the abovementioned metrices.

When assuming that each observed time-frequency bin p(f, n) is generated

independently from the normal distribution, Poission distribution, or exponential

distribution with mean of q(f, n) =
∑

k bk(f)hk(n), the optimization problem of NMF

with EU distance, KL divergence, or IS divergence is equivalent to the problem

of the maximum likelihood (ML) estimation of B and H with the likelihood function

p(P;B,H). Therefore, NMF can be explained as a generative model.

2.3.2 Auxiliary function approach and multiplicative update al-

gorithms

The objective of NMF is to find the optimal B and H that minimize the dissimilar-

ity between BH and P under the nonnegative constraint. Although it is usually

difficult to obtain the analytical expression of the global optimum, we can compu-

tationally find a local optimum using the auxiliary function approach, also known

as majorization-minimization (MM) principle [25]. Note that the auxiliary function

approach itself is not an algorithm, but a description of how to construct an opti-

mization algorithm.

When constructing an auxiliry function-based algorithm to minimize a certain

objective function, the main issue is how to design an appropriate auxiliary function

called “majorizer” that is guaranteed to never be below the objective function.

Lemma 1. If we use F(Θ) to denote an objective function that we want to min-

imize with respect to Θ, and F+(Θ,Λ) to denote its auxiliary function, satisfying
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Figure 2.2: Jensen’s inequality of I = 2 case.

F(Θ) = minΛF+(Θ,Λ), then F(Θ) is non-increasing under the following updates

of auxiliary variable Λ and parameter Θ:

Λ̂ = argmin
Λ
F+(Θ,Λ), (2.12)

Θ̂ = argmin
Θ
F+(Θ,Λ). (2.13)

Thus, if F(Θ) is bounded below, a stationary point of F(Θ) can be found by itera-

tively performing these updates.

Proof of Lemma 1. Suppose we set Θ to an arbitrary value Θ̃. We will prove

that F(Θ) is non-increasing after the update (2.12) and (2.13). From (2.12), one

obtains F(Θ̃) = F+(Θ̃, Λ̂), and it is obvious from (2.13) that F+(Θ̃, Λ̂) ≥ F+(Θ̂, Λ̂).

By definition, one sees from (2.12) that F+(Θ̂, Λ̂) ≥ F(Λ̂). Therefore, we can

immediately prove that F(Θ̃) = F+(Θ̃, Λ̂) ≥ F+(Θ̂, Λ̂) ≥ F (Θ̂).

It should be noted that this concept is adopted in many existing algorithms in-

cluding algorithms for NMF [24]. For example, the expectation-maximization (EM)

algorithm [26] builds a surrogate for a likelihood function of latent variable mod-

els by using Jensen’s inequality. In general, if we can build a tight majorizer that

is easy to optimize, we can expect to obtain a fast-converging algorithm. In ad-

dition, auxiliary function-based algorithms are notable in that there are no tuning

parameters.
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An useful inequality for designing majorizer is Jensen’s inequality, which is in-

voked in algorithms of NMF and will be used through the thesis. For arbitrary con-

vex function Φ with I nonnegative arguments z1, . . . , zI, Jensen’s inequality shows

Φ(
∑
i

zi) ≤
∑
i

ζiΦ(
zi
ζi
), (2.14)

where ζ1, . . . , ζI are nonnegative weights satisfying
∑

i ζi = 1. The equality of (2.14)

holds if and only if

ζi =
zi∑
i′ zi′

. (2.15)

Fig. 2.2 shows an illustration of Jensen’s inequality for a convex function with I = 2.

With the auxiliary function approach and Jensen’s inequality introduced above,

we can derive the well-known multiplicative update (MU) algorithms for NMF. We

first derive an algorithm for NMF using EU distance. The objective function we

want to minimize can be expressed as

DEU(P|BH)
c
=
∑
f,n

(
− 2p(f, n)q(f, n) + q2(f, n)

)
, (2.16)

where =c denotes equality up to a constant term. We want to design a majorizer

such that the elements of matrices are separated into individual terms. Since a

quadratic function x2 is convex and arguments bk(f) and hk(n) are nonnegative,

we can invoke Jensen’s inequality to obtain a function upper bounding the second

term in (2.16) as

(∑
k

bk(f)hk(n)
)2

≤
∑
k

ζk,f,n

(bk(f)hk(n)
ζk,f,n

)2

, (2.17)

where ζk,f,n is a positive weight that sums to unity. The equality of (2.17) holds if

and only if when

ζk,f,n =
bk(f)hk(n)∑
k′ bk′(f)hk′(n)

. (2.18)
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Therefore, a majorizer for the objective function DEU can be obtained as

D+
EU(B,H, ζ) =

∑
f,n

(
p(f, n)2 − 2p(f, n)

∑
k

bk(f)hk(n) +
∑
k

b2k(f)h
2
k(n)

ζk,f,n

)
. (2.19)

Here, ζ = {ζk,f,n}k,f,n denotes a set of paramter ζk,f,n. By setting the partial deriva-

tive with respect to bk(f) and hk(n) at 0, we can derive an iteratively algorithm that

consists of performing (2.18) and

bk(f)←
∑

n p(f, n)hk(n)∑
n h

2
k(n)/ζk,f,n

, (2.20)

hk(n)←
∑

f p(f, n)bk(f)∑
f b

2
k(f)/ζk,f,n

. (2.21)

By subsituting (2.18) into (2.20) and (2.21), we obtain the following MU algorithm:

bk(f)← bk(f)

∑
n p(f, n)hk(n)∑
n q(f, n)hk(n)

, (2.22)

hk(n)← hk(n)

∑
f p(f, n)bk(f)∑
f q(f, n)bk(f)

. (2.23)

Similar to EU distance, we then derive the MU algorithm for KL divergence

DKL(P|BH)
c
=
∑
f,n

(
− p(f, n) log q(f, n) + q(f, n)

)
. (2.24)

Because the first term in (2.24) has the “log-of-sum” form that is nonlinear, it is

difficult to derive the closed-form solutions. Since the negative logarithm function

is a convex function, we can invoke Jensen’s inequality to construct an upper bound

with “sum-of-log” form

− log
∑
k

bk(f)hk(n) ≤ −
∑
k

ζk,f,n log
bk(f)hk(n)

ζk,f,n
. (2.25)

The equality holds if and only if

ζk,f,n =
bk(f)hk(n)∑
k′ bk′(f)hk′(n)

. (2.26)
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Then, a majorizer of the objective function (2.24) can be written as

D+
KL(B,H, ζ) = (2.27)(
p(f, n) log p(f, n)− p(f, n)

∑
k

ζf,n,j log
bk(f)hk(n)

ζk,f,n
− p(f, n) +

∑
k

bk(f)hk(n)
)
,

where ζk,f,n > 0 satisfies
∑

k ζk,f,n = 1. The MU algorithm for the KL case can be

derived in the same way as EU distance:

bk(f)← bk(f)

∑
n p(f, n)hk(n)/q(f, n)∑

n hk(n)
, (2.28)

hk(n)← hk(n)

∑
f p(f, n)bk(f)/q(f, n)∑

f bk(f)
. (2.29)

For IS divergence, we construct a majorizer for the objective function

DIS(P|BH)
c
=
∑
f,n

(p(f, n)
q(f, n)

+ log q(f, n)
)
. (2.30)

Here, we need to design upper bound for both terms of 1/x and log x. For term

1/x, we can obtain the following inequality with Jensen’s inequality:

1∑
k bk(f)hk(n)

≤
∑
k

ζk,f,n

(
1/

bk(f)hk(n)

ζk,fn

)
, (2.31)

where ζk,f,n is a positive parameter that satisfies
∑

k ζk,f,n = 1. Since tangent

lines for a concave function is never below the original function, we can utilize this

property to design the upper bound for the term log x:

log
∑
k

bk(f)hk(n) ≤ logαf,n +
1

αf,n
(
∑
k

bk(f)hk(n)− αf,n). (2.32)

The equality holds if and only if

αf,n =
∑
k

bk(f)hk(n). (2.33)

By replacing terms 1/x and log x in the objective function with the right hand of
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(2.31) and (2.32), we obtain the majorizer

D+
IS(B,H, ζ,α) (2.34)

=
∑
f,n

(∑
k

p(f, n)ζ2k,f,n
bk(f)hk(n)

+
∑
k

bk(f)hk(n)

αf,n
− log p(f, n) + logαf,n − 2

)
,

where α = {αf,n}f,n denotes a set of parameters αf,n. Similarly, by setting the par-

tial derivative with respect to bk(f) and hk(n) at 0 and subsituting the update rules

of auxiliary variables into the closed-form solutions, we obtain the MU algorithm for

NMF with IS divergence as follows:

bk(f)← bk(f)
(∑

n p(f, n)hk(n)/q(f, n)
2∑

n hk(n)/q(f, n)

)1/2

, (2.35)

hk(n)← hk(n)
(∑

f p(f, n)bk(f)/q(f, n)
2∑

f bk(f)/q(f, n)

)1/2

. (2.36)

It is noteworthy that nonnegativity constraint of NMF can be satisfied with the MU

algorithms by easily initializing all the parameters bk(f) and hk(n) with positive

values. These auxiliary function-based update rules are equivalent to those de-

rived in a heuristic way, where the partial derivative of the cost function F(B,H)

with respective to the parameter is decomposed to two nonnegative terms, i.e.

∂BF = ∂+BF − ∂−BF , where ∂+BF ≥ 0 and ∂−BF ≥ 0. Then the parameter B can

be updated as B ← B ◦ (∂−BF/∂
+
BF)η, where ◦ and / denote element-wise multi-

plication and division, and η > 0 is a stepsize similar to that involved in a gradient

descent [27].

2.3.3 Source separation with supervised NMF

When applying NMF to single-channel source separation in a supervised manner,

there are two phases, namely, training phase and separation phase. At training

phase, NMF is applied individually to power (or magnitude) spectrograms of train-

ing samples Sj = {|sj(f, n)|2}f,n to obtain spectral templates of each source,

B̃j, H̃j = argmin
Bj ,Hj

Dβ(Sj|BjHj) + λsparse||Hj||p. (2.37)
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Here, λsparse||Hj||p is a regularization term for promoting the sparsity of Hj, which is

typically applied to improve the performance [28]. λsparse is a parameter that weighs

the importance of the regularization term and || · ||p denotes Lp norm, where L1 and

L2 are common choices.

At separation time, the concatenated basis matrix B̃ = [B̃1, . . . , B̃J ] is fixed

at the pretrained basis spectra, and the activation matrix Ĥ is estimated by fit-

ting the NMF model to the power spectrogram of observed mixture signal X =

{|x(f, n)|2}f,n,

Ĥ = argmin
H
Dβ(X|B̃H) + λsparse||H||p. (2.38)

Once B̃ and Ĥ are obtained, each source can be separated by a Wiener filter

constructed using the estimated power spectrograms as follows:

Yj =
B̃jĤj

B̃Ĥ
◦X, (2.39)

where Y1, . . . ,YJ are thus ensured to sum to the magnitude spectrogram X =
√
X

of the mixture signal. Here, ◦, ·
· and

√
· denote element-wise multiplication, division

and square-root, respectively. The time-domain signal yj(t) is then obtained by

applying iSTFT to the magnitude spectrogram Yj and the phase spectrogram of

the mixture signal. Note that speech enhancement is a special case with J = 2

and j = {s, n}, where s and n denote speech and noise, respectively.

It is obvious that the source separation and speech enhancement performance

of NMF is greatly affected by the pretrained basis matrix B̃ and the activation matrix

Ĥ. However, since the spectral templates are trained individually for each source,

it becomes challenging to achieve a high estimation accuracy of the activation

matrix when spectral structures of different sources have high similarity. Fig. 2.3

shows an example of spectrograms of the reference clean speech signal and the

speech signal enhanced using supervised NMF. Since there exist similar basis

spectra in speech and noise, oversuppression occurs, and some unsuppressed

noise components remain. To overcome this problem, various methods using prior

information or characteristics of sources have been proposed, such as temporal
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Figure 2.3: An example of speech enhancement using standard NMF. Oversup-
pression occurs and unsuppressed noise components remain in the spectrogram
of the enhanced speech.

dynamics [29–31] and co-occurrence statistics [32]. Meanwhile, it is still unclear

how to train spectral templates to yield optimal performance for source separation,

especially for those separating sources by filtering as (2.39). Many efforts have

also been made to train a more effective basis matrix [19,28,33–35].

2.4 Determined blind source separation with signal

independence

The aim of determined BSS is to estimateW from X without any prior knowledge.

The most popular approach to BSS is ICA and the term is sometimes regarded as

synonymous with BSS. ICA assumes that the source signals follow non-Gaussian

distributions and are statistically independent with each other.
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2.4.1 ICA and FDICA

ICA was originally developed for instantaneous mixtures in the time domain [36–

39], where no delays and reverberation are considered; then applied to convolutive

mixtures [40, 41]. However, the estimation of demixing filters in the time domain

is challenging since the number of parameters drastically increases when the filter

length becomes large.

Instead of solving the time-domain deconvolution, FDICA [5, 40, 42] was pro-

posed, where demixing matrix defined in the time-frequency domain W(f) is esti-

mated for the separation. In this approach, the instantaneous mixture model in the

frequency domain is applied as (2.3), where the length of the impulse response

is assumed to be shorter than the STFT window length. The problem definition

is then simplified from a convolutional formula to a multiplicative formula and the

complex-valued ICA techniques for instantaneous mixtures can then be applied

independently in each frequency bin. From the relationship (2.4) defined in the

frequency domain, we can show that

p(x(f, n)|W(f)) = |WH(f)|2p(y(f, n)), (2.40)

= |WH(f)|2
∏
j

p(yj(f, n)) (2.41)

where |WH(f)|2 is the Jacobian of the complex-valued mapping x(f, n) 7→ y(f, n).

Therefore, the negative log-likelihood of X givenW is expressed as

LFDICA(X|W) = −
∑
j,f,n

log p(wH
j (f)x(f, n))−N

∑
f

log | detW(f)|2. (2.42)

By dividing LFDICA(X|W) by the number of frames N and replacing the sam-

ple mean with the expectation operator, we obtain the normalized negative log-

likelihood

LFDICA(X|W) = −E
[∑
j,f

log p(wH
j (f)x(f))

]
−
∑
f

log | detW(f)|2, (2.43)

which is the objective function that FDICA aims to minimize. In [5], parameter
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update rules modefied from the ICA optimization algorithm based on the steepest

gradient descent as

W(f)←W(f) + η
{
E[ψ(y(f, n))xH(f, n)] + (WH(f))−1

}
(2.44)

and that based on the natural gradient descent as

W(f)←W(f) + η
{
E[ψ(y(f, n))yH(f, n)] + I

}
W(f) (2.45)

were derived. The original ICA algorithm is often called Bell-Sejnowski algorithm

[38] derived from another ICA principle called Infomax approach. Here,

ψ(y(f, n)) =
∂ log p(y(f, n))

∂y(f, n)
(2.46)

is called activation function or score function, η is a stepsize parameter, and I is a

J × J identity matrix.

Since FDICA performs paramter estimation in a frequency bin-wise manner,

there is a permutation ambiguity in the separated components for each frequency.

Therefore, we need to group together the separated components of different fre-

quency bins that originate from the same source after separation, namely,

y(f, n) = P(f)y(f, n). (2.47)

Here, P(f) is a permutation matrix. This process is called permutation alignment.

Numerous approaches have been proposed to solve the permutation alignment,

including exploiting the dependence of separated signals across frequencies [43–

47] and utilizing the spatial information, e.g., direction of arrival (DOA) and time

difference of arrival (TDOA) [48–51]. The former is effective for sources having

clearly different time structures and is robust to reverberations, whereas the latter is

effective in a low reverberation and is related to sound localization. Moreover, since

the ICA-based methods separate signals solely based on the signal independence,
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there exists scaling ambiguities, namely,

y(f, n) = Λ(f)y(f, n), (2.48)

where Λ(f) is a diagonal matrix. The simplest way for recovering signal scales is

projecting them to the observed signals, as

ŷj(f, n)←W−1(f)(ej ◦ y(f, n)), (2.49)

where ŷj(f, n) = [ŷ1,j(f, n), . . . , ŷI,j(f, n)]
T denotes the esitmated source image of

source j at all the microphones whose scale is fitted to the observed signal at

each mirophone. ej is the jth column of the J × J identity matrix. This calculation

is called the back projection technique [43].

2.4.2 IVA and time-varying IVA

Another solution for permutation problem is to make appropriate assumption on the

probability density of signals p(y(f, n)) to avoid the frequency bin-wise optimization

problem. Typically, this solution is more preferable since the relationship between

frequency bins can be used not only to solve the permutation problem but also as

a clue for separation, which can lead to higher source separation performance.

IVA [6, 7] is one of such methods that simultaneously solves the BSS and per-

mutation problem, which is a multivariate extension of FDICA. IVA models all fre-

quency bins as a variable y j(n) = [yj(1, n), . . . , yj(F, n)]
T that follows a spherically

symmetric multivariate distribution and thus higher-order correlations between the

frequency components can be considered, where the spherically symmetric prop-

erty means that the distribution is a function of only the norm of multivariate vector

variable, i.e., p(y j(n)) = f(||y j(n)||). The normalized negative log-likelihood func-

tion of IVA is expressed as

LIVA(X|W) = −E
[∑

j

log p(y j)
]
− 2

∑
f

log | detW(f)| (2.50)

=
∑
j

E
[
G(y j)

]
− 2

∑
f

log | detW(f)| (2.51)
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Figure 2.4: Illustration of source model in IVA, where non-Gaussian spherically
symmetric source distribution p(sj(n)) is assumed for all the frames of sources.

where G(y j(n)) = − log p(y j(n)) is called the constrast function. Note that the ML

estimation based on (2.51) is equivalent to the well-known estimation that maxi-

mizes the independence between all the sources with the KL divergence [52].

One typical choice of the probability density function is using spherically sym-

metric multivariate Laplace distribution [6, 7, 53] as a super-Gaussian distribution

for modeling sources sj(n) = [sj(1, n), . . . , sj(F, n)]
T. The distribution is defined as

p(sj(n)) ≈ p(y j(n)) ∝ exp
(
−

√∑
f

|yj(f, n)|2
)

(2.52)

with unit variance for j, f , and n. IVA based on this source distribution is called

Laplace IVA. Therefore, the constrast function for Laplace IVA is obtained as fol-

lows:

G(y j(n)) = − log p(y j(n))
c
= ||y j(n)||2 =

√∑
f

|yj(f, n)|2. (2.53)

Here, || · ||2 denotes L2 norm of a vector. Fig. 2.4 shows the source estimation

of IVA, where non-Gaussian spherically symmetric source distribution p(sj(n)) is

assumed for all the frames of sources.

Several optimization methods have been applied to this optimization problem,

including the natural gradient descent [6, 7, 53]. Although these methods are

straightforward, there is a tradeoff between the convergence speed and the sta-

bility. To address this weakness, a fast and stable parameter estimation algorithm,

called AuxIVA [54], has been derived based on the auxiliary function approach.
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In [54], a majorizer is designed for objective function (2.51) as follows:

LIVA(W) ∝
∑
j

E[G(y j(n))]− 2
∑
f

log | detW(f)|

≤
∑
j

{
E
[G′

R(rj)

2rj
·
∑
f

|yj(f, n)|2
]
+Rj

}
− 2

∑
f

log | detW(f)|

=
∑
j

{∑
f

wH
j (f)E

[G′
R(rj)

2rj
x(f, n)xH(f, n)

]
wH
j (f) +Rj

}
− 2

∑
f

log | detW(f)|

=
1

2

∑
j

{∑
f

wH
j (f)Qj(f)wj(f) +Rj

}
− 2

∑
f

log | detW(f)|

=: L+
IVA(W ,Q), (2.54)

where GR(r) is a continuous and differentiable function of a real variable r satis-

fying that G′
R(r)/r is continuous everywhere and it is monotonically decreasing in

r ≥ 0. Rj is a constant term independent of wj(f) for any f , and Q = {Qj(f)}j,f is

a set of auxiliary variable Qj(f) defined as

Qj(f) = E
[G′

r(rj)

rj
x(f)xH(f)

]
. (2.55)

The equality holds if and only if

rj = ||y j(n)||2 =
√∑

f

|wH
j (f)x(f, n)|2. (2.56)

Note that most of the IVA contrast functions used in the literature [6,7,53], including

Laplace IVA, meet the conditions of GR(r), such as

GR(r) = Qr, (2.57)

where Q is a positive constant. By setting partial derivative ∂L+
IVA/∂w

∗
j(f) at 0, we

obtain

1

2
Qj(f)wj(f)−

∂

∂w∗
j(f)

2 log | detW(f)| = 0, (2.58)
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where (·)∗ denotes conjugate of complex number. Rearranging (2.58) using a

matrix formula (∂/∂W(f)) detW(f) = W−T(f) detW(f), the problem can be ex-

pressed as hybrid exact approximate joint diagonalization (HEAD) problem as

wH
j′(f)Qj(f)wj(f) = δj′j, (2.59)

where the closed-form solution for updating all of wj(f) simultaneously is an open

problem. δj′j denotes the Kronecker delta, whose value is 1 when j′ = j and 0

otherwise. AuxIVA therefore proposed a sequential update rules for W(f), which

updates wj(f) while keeping other wj′:j′ ̸=j(f) fixed. The update rules are given as

wj(f)← (W(f)Qj(f))
−1ej, (2.60)

wj(f)← wj(f)/
√

wH
j (f)Qj(f)wj(f). (2.61)

Here, ej is the jth column of the J ×J identity matrix. To summarize, the algorithm

of AuxIVA includes updating auxiliary variable (2.56), (2.55), and updating demix-

ing filter (2.60), (2.61) in order for all j. This efficient update algorithm is also called

the iterative projection (IP) method, which was first applied to ICA [55].

The abovementioned model ensures that all the frequency components in the

same source have higher-order correlation, which solves the permutation problem.

However, assuming source signal at each time frame following the same distribu-

tion is inappropriate since audio signals are time-varying. Instead of spherically

symmetric Laplace distribution, in [56], the circularly symmetric complex Gaussian

distribution with time-varying variance vj(n) is introduced to the conventional IVA,

the probability density of which is expressed as

p(sj(n)) ≈ p(y j(n)) =
1

πvj(n)
exp

(
−
|y j(n)|2

vj(n)

)
. (2.62)

Here, the time-varying variance vj(n) is shared over the frequency bins in each time

frame. Similar to (2.52), the distribution (2.62) has the spherically symmetric prop-

erty and all the frequency components thus has higher-order correlation. Note that

although the temporal source model p(y j(n)) is assumed to follow the Gaussian

distribution, the global source model p(Y j) becomes the super-Gaussian distribu-
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Figure 2.5: Illustration of source models (variance structures) in time-varying
IVA (upper) and ILRMA (bottom), where color shade in each time-frequency bin
indicates scale of variance. Time-varying IVA has frequency-uniform variance
whereas ILRMA employs ISNMF as source model so that variance matrix is low-
rank and can be expressed by limited number of spectral templates.

tion with Y j = {yj(f, n)}f,n, because of the time-varying variance [57]. IVA based

on the source model (2.62) is referred to as time-varying IVA. The upper figure in

Fig. 2.5 shows the source model of time-varying IVA. This source model amounts

to assuming the magnitudes of the frequency components originating from the

same source, which is expressed as a flat spectral basis, to vary coherently over

time.

2.4.3 ILRMA

Although IVA and time-varying IVA can solve source separation and permutation

problem simultaneously and achieve better performance than FDICA, they cannot

capture the specific harmonic structures of each source since frequency-uniform

variance is used for defining the source model p(sj(n)). To further increase the

flexibility of modeling spectral structures, ILRMA has been proposed, which incor-

porates the NMF concept into the source model.
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ILRMA assumes that each time-frequency bin of source sj(f, n) independently

follows a zero-mean complex proper Gaussian distribution with variance vj(f, n),

which is called local Gaussian model (LGM) [58,59]:

p(yj(f, n)) ≈ p(sj(f, n)) = NC(sj(f, n)|0, vj(f, n)) (2.63)

=
1

πvj(f, n)
exp

(
− |sj(f, n)|

2

vj(f, n)

)
(2.64)

where vj(f, n) = E[|sj(f, n)|2] is the power density of signal. This is equivalent to

extending the stationary distribution with uniform variance for all j, f , n assumed

in the Laplace IVA or frequency-uniform variance vj(n) = 1 assumed in the time-

varying IVA to a more flexible model with time-frequency-wise variance. Similar to

the time-varying Gaussian distribution, (2.63) is a super-Gaussian distribution be-

cause of the time-varying variance, which thus can be used for ICA-based method.

The negative log-likelihood function of the parameter setW and V = {vj(f, n)}j,f,n
is given as

LILRMA(X|W ,V) c
=
∑
j,f,n

(
log vj(f, n) +

|yj(f, n)|2

vj(f, n)

)
− 2N

∑
f

log | detW(f)|, (2.65)

which is the objective function of ILRMA.

Moreover, ILRMA assumes the variance matrix Vj = {vj(f, n)}f,n is low-rank

and can be decomposed into two matrices, which amounts to express vj(f, n) as

a linear sum of spectral templates bj,1(f), . . . , bj,k(f), . . . , bj,Kj
(f) ≥ 0 scaled by

time-varying magnitudes hj,1(n), . . . , hj,k(n), . . . , hj,Kj
(n) ≥ 0:

vj(f, n) =

Kj∑
k

bj,k(f)hj,k(n). (2.66)

Here, Bj = {bj,k(f)}k,f and Hj = {hj,k(n)}k,n are the sourcewise basis and activa-

tion matrices including Kj spectral templates and activations, respectively. Since

each time-frequency bin of source sj(f, n) is assumed to follow the complex proper

Gaussian distribution, which has a circularly symmetric property in the complex

plane, namely, the probability only depends on the amplitude |sj(f, n)| or power

|sj(f, n)|2, the time-frequency bin of complex-valued observation x(f, n) =
∑

j sj(f, n)
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follows complex Gaussian distribution

p(x(f, n)) =
1

πv(f, n)
exp

(
− |x(f, n)|

2

v(f, n)

)
(2.67)

because of the reproductive property in complex Gaussian distribution, where

v(f, n) =
∑

j vj(f, n). Here, if we represent the variance v(f, n) as the linear sum of

two low-rank matrices v(f, n) =
∑

k bk(f)hk(n), the negative log-likelihood function

of B and H can be obtained as

L(B,H) =
∑
f,n

(
log π + log

∑
k

bk(f)hk(n) +
|x(f, n)|2∑
k bk(f)hk(n)

)
. (2.68)

Minimizing this function is equivalent to minimizing the IS divergence between the

power spectrogram of the observed signal X = {|x(f, n)|2}f,n and v(f, n) since

DIS(X|BH) =
∑
f,n

( |x(f, n)|2∑
k bk(f)hk(n)

− log
|x(f, n)|2∑
k bk(f)hk(n)

− 1
)

(2.69)

c
=
∑
f,n

( |x(f, n)|2∑
k bk(f)hk(n)

+ log
∑
k

bk(f)hk(n)
)
, (2.70)

which is also equivalent to minimizing the objective function of ILRMA (2.65) with

respect to the source model vj(f, n). Therefore, ILRMA can also be interpreted

as a model that incorporates the NMF model based on the IS divergence into the

time-varying IVA model. The bottom figure in Fig. 2.5 shows the source model

of ILRMA, where the variance matrix Vj is represented as the linear sum of two

spectral templates.

The optimization algorithm of ILRMA consists of iteratively updating the demix-

ing matrix W(f), the basis templates B = {bj,k(f)}f,j,k, and the activation matrix

H = {hj,k(n)}n,j,k. By fixing B and H, the differential of (2.65) with respect to W(f)

becomes equivalent to that of the auxiliary function in Laplace IVA. Therefore, the

update rules of W(f) are derived based on the IP method, which are expressed

as

Qj(f) = E
[ 1

vj(f)
x(f)xH(f)

]
, (2.71)
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wj(f)← (W(f)Qj(f))
−1ej, (2.72)

wj(f)← wj(f)/
√

wH
j (f)Qj(f)wj(f). (2.73)

By fixing W(f), the differential of (2.65) becomes equivalent to the differential of

the cost function in NMF with IS divergence. Therefore, the update rules of bj,k(f)

and hj,k(n) are give as

bj,k(f)← bj,k
(∑

n |yj(f, n)|2hj,k(n)/vj(f, n)2∑
n hj,k(n)/vj(f, n)

)1/2

, (2.74)

hj,k(n)← hj,k
(∑

f |yj(f, n)|2bj,k(f)/vj(f, n)2∑
f bj,k(f)/vj(f, n)

)1/2

. (2.75)

Since both W(f) and vj(f, n) have scale ambiguity, the following normalization is

applied at each iteration to eliminate the scale ambiguity in W(f):

wj(f)← wj(f)z
−1
j , (2.76)

yj(f, n)← yj(f, n)z
1

j , (2.77)

vj(f, n)← vj(f, n)z
−2
j , (2.78)

bj,k(f)← bj,k(f)z
−2
j , (2.79)

where

zj =

√
1

FN

∑
f,n

|yj(f, n)|2 (2.80)

is the normalization coefficient given as the sourcewise average power. Note that

the normalization do not change the value of (2.65). The scale of the separated

signal yj(f, n) is restored by the back-projection technique after the optimization. It

is noteworthy that the log-likelihood of ILRMA is non-decreasing at each iteration

of the algorithm and shown experimentally to converge quickly.
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2.5 Evaluation criteria

A necessary aspect of the development of speech enhancement algorithms is how

to evaluate the goodness of the enhanced speech. In general, the evaluation can

be done by comparing the enhanced signals to the reference signals or listensing

to the enhanced speech, namely, objective and subjective evaluations. Although

subjective evaluation is generally more accurate and reliable, it needs higher hu-

manity cost and more time. Therefore, in this thesis, we mainly use the objective

evaluation.

To evaluate the distortions introduced by speech enhancement or source sep-

aration algorithms to the enhanced speech signals, we use the source-distrotion

ratios (SDRs) that defined as the ratio of the energies of the reference signal and

the error between the enhanced and reference signal

SDR [dB] = 10 log10

∑
t s

2(t)∑
t[ŝ(t)− s(t)]2

, (2.81)

where s(t) and ŝ(t) are reference and estimated speech signals at time t, respec-

tively. The error between the reference and estimated signals is divided more

specifically into interference, noise, and artifacts error terms as

ŝ(t) = s(t) + einterf(t) + enoise(t) + eartif(t). (2.82)

By using these error terms, measurements for which called sources-to-noise ra-

tios (SNRs), source-to-interferences ratios (SIRs), and sources-to-artifacts ratios

(SARs) are respectively defined as following:

SNR [dB] = 10 log10

∑
t s

2(t)∑
t e

2
noise(t)

, (2.83)

SIR [dB] = 10 log10

∑
t s

2(t)∑
t e

2
interf(t)

, (2.84)

SAR [dB] = 10 log10

∑
t[s(t) + enoise(t) + einterf(t)]

2∑
t e

2
artif(t)

. (2.85)

SNR, SIR, and SAR evaluate how much noise remains in the estimated signal,

how much interferences remains in the estimated signal, and how much artifacts
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are generated during the signal processing, respectively. In speech enhancement

tasks, since all the sources excluding the target speech are treated as noise, also

the interference sources, SIR and SNR defined as above, practically measure the

same error. In practical, all these criteria are calucalted using BSS EVAL toolbox

[60] in this thesis, which was originally implemented using MATLAB.

To evaluate the enhanced speech from various aspects, we also use short-time

objective intelligibility measure (STOI) [61] to measure speech intelligibility. STOI

is an objective measurement that shows a high correlation with the intelligibility of

noisy speech of listening experiments. The score is given as the average of the

sample envelope linear correlation between the clean and enhanced envelop vec-

tors calculated based on the short-time segments [61,62], which is defined in [0, 1].

An implementation called PySTOI is given at https://github.com/mpariente/pystoi.

We also use the perceptual evaluation of speech quality (PESQ) [63] to evalu-

ate the speech quality, which is developed to model subjective evaluation used in

telecommunications and is standardized ITU-T recommendation P.862. The PESQ

score is given in the range of [0, 5]. Strictly speaking, PESQ is an inappropriate

metric for evaluating the performance of speech processing algorithms since it

uses clean speech as the test signal. However, PESQ is positively correlated with

the STOI score and is thus used as a reference metric for evaluation. We use the

Python implementation given at https://github.com/vBaiCai/python-pesq for calcu-

lating the PESQ score. For all the metrics mentioned here, the higher scores

indicate better performance.



Chapter 3

Determined methods incorporating

supervised-learned source model

3.1 Introduction

The frequency-domain BSS approach provides the flexibility of allowing us to utilize

various models for the time-frequency representations of source signals, such as

in IVA and ILRMA, which leads to a high source separation performance in deter-

mined situations. Owing to the fact that ILRMA reduces to time-varying IVA when

it has only one flat basis spectrum, ILRMA can be interpreted as a generalized

IVA method that incorporates a source model with stronger representation power,

which has been shown to significantly improve source separation performance [9].

However, one drawback is that ILRMA can fail to work for sources with spectro-

grams that do not comply with the low-rank assumption, such as speech [9]. This

indicates the importance of developing a more precise source model with stronger

representation power.

Given the recent advances achieved by DNN-based speaker separation meth-

ods, including deep clustering (DC) [64,65] and permutation invariant training (PIT)

[66,67], a discriminative approach has recently proved powerful in monaural source

separation tasks, including both speaker-dependent and speaker-independent sce-

narios [68–71]. The success of these single-channel DNN-based methods attests

to the excellent ability of DNNs to capture and learn the structure of spectrograms.

30
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As an alternative to the NMF model, some attempts have also been made to in-

corporate DNNs for modeling the spectrograms of sources for multichannel source

separation [10,72,73]. The idea is to replace the process for estimating the power

spectra of source signals in a source separation algorithm with the forward compu-

tations of pretrained DNNs. This can be viewed as a process of refining the esti-

mates of the power spectra of the source signals at each iteration of the algorithm.

While this approach is particularly appealing in that it can take advantage of the

strong representation power of DNNs for estimating the power spectra of source

signals, one weakness is that unlike ILRMA, the log-likelihood is not guaranteed to

be non-decreasing at each iteration of the algorithm.

On the basis of these facts, in this chapter, we introduce multichannel source

separation methods using deep generative models (DGM) for source spectrogram

modeling, including variational autoencoders (VAEs) [74, 75] and generative ad-

versarial networks (GANs) [76]. We call the method using VAE source model

the multichannel variational autoencoder method (MVAE), and that using GAN

the multichannel star GAN method (MSGAN). Different from the algorithms of IVA

and ILRMA, where source models are estimated in a blind manner, the proposed

methods use a supervised pretrained source model to estimate source signals in

the mixture signals. It is worth noting that there have been some attempts to ap-

ply DGM to monaural speech enhancement and source separation tasks [77–81],

which was later extended into multichannel tasks [82–84]. As far as we know,

the methods introduced in this chapter were the first to propose the application of

VAEs and GANs to multichannel source separation. We propose two optimization

algorithms for the proposed method. One is guaranteed to be non-decreasing at

each iteration of the log-likelihood in order to demonstrate the full potential of the

proposed method. The other is a fast algorithm to reduces computational time and

cost so that it can be applied to more practical applications.
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3.2 Multichannel variational autoencoder method

3.2.1 Problem formulation

Let us consider a determined situation where the number of sources equals to that

of microphones, namely, I = J . The relationship between observed signals x(f, n)

and source signals s(f, n) is described as (2.4). We assume that each source

signal sj(f, n) independently follows a zero-mean complex Gaussian distribution

with power spectral density vj(f, n) = E[|sj(f, n)|2]:

sj(f, n) ∼ NC(sj(f, n)|0, vj(f, n)), (3.1)

which is the same as the source model assumed in ILRMA. When sj(f, n) and

sj′(f, n)(j
′ ̸= j) are independent, s(f, n) follows

s(f, n) ∼ NC(s(f, n)|0,V(f, n)). (3.2)

Namely, the separated signals y(f, n) approximately follows

y(f, n) ∼ NC(s(f, n)|0,V(f, n)), (3.3)

where V(f, n) is a diagonal matrix with diagonal entries v1(f, n), . . . , vJ(f, n). From

the relationship between the separated signals and mixture signals given as (2.4)

and (3.3), we can show that x(f, n) follows

x(f, n) ∼ NC(x(f, n)|0, (WH(f))−1V(f, n)W(f)−1). (3.4)

Hence, the negative log-likelihood of the demixing matrices W and source model

V given the observed mixture signals X is given by

LMVAE(X|W ,V) c
=
∑
j,f,n

(
log vj(f, n) +

|yj(f, n)|2

vj(f, n)

)
− 2N

∑
f

log | detW(f)|, (3.5)

which is the same as the objective function of ILRMA (2.65). Similar to ILRMA, we

need to make constraints or incorporate spectral structures into vj(f, n) to elimi-
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nate the permutation ambiguity during the estimation of W. The difference is that

instead of using the NMF model, which assumes sources are low-rank and esti-

mates vj(f, n) frame-wise, we train a DGM to model spectrograms of utterances so

that no low-rank assumption is needed and both spectral and temporal structures

of signals can be captured.

3.2.2 VAE and CVAE

VAEs [74,75] are stochastic neural network models consisting of encoder and de-

coder networks. The encoder network generates a set of parameters for the con-

ditional distribution qϕ(z|s) of a latent space variable z given input data s, whereas

the decoder network generates a set of parameters for the conditional distribution

pθ(s|z) of the data s given the latent space variable z. Given a training data set

S = {sm}Mm=1, VAEs learn the parameters of the entire network so that the encoder

distribution qϕ(z|s) becomes consistent with the posterior pθ(z|s) ∝ pθ(s|z)p(z).
By using Jensen’s inequality, the log marginal distribution of the data s can be

lower-bounded by

log pθ(s) = log

∫
qϕ(z|s)

pθ(s|z)p(z)
qϕ(z|s)

dz (3.6)

≥
∫
qϕ(z|s) log

pθ(s|z)p(z)
qϕ(s|s)

dz (3.7)

= Ez∼qϕ(z|s)[log pθ(s|z)]−KL[qϕ(z|s)||p(z)], (3.8)

where the difference between the left- and right-hand sides of (3.8) is given by

log pθ(s)−
∫
qϕ(z|s) log

pθ(s|z)p(z)
qϕ(z|s)

dz

=

∫
qϕ(z|s) log

pθ(s)qϕ(z|s)
pθ(s, z)

dz (3.9)

=

∫
qϕ(z|s) log

qϕ(z|s)
pθ(z|s)

dz, (3.10)
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which is equivalent to the KL divergence between qϕ(z|s) and pθ(z|s). Obviously,

this is minimized when

qϕ(z|s) = pθ(z|s). (3.11)

This means we can make qϕ(z|s) and pθ(z|s) ∝ pθ(s|z)p(z) consistent by maxi-

mizing the lower bound of (3.8). One typical way of modeling qθ(z|s), pθ(s|z), and

p(z) is to assume Gaussian districutions

qϕ(z|s) = N (z|µϕ(s), diag(σ
2
ϕ(s))), (3.12)

pθ(s|z) = N (s|µθ(z), diag(σ
2
θ(z))), (3.13)

p(z) = N (z|0, I), (3.14)

where µϕ(s) and σ2
ϕ(s) are the outputs of an encoder network with parameter ϕ,

and µθ(z) and σ2
θ(z) are the outputs of a decoder network with parameter θ. Here,

it should be noted that to compute the first term of this objective function, we must

compute the expectation with respect to z ∼ qϕ(z|s). Although this expectation

cannot be expressed in an analytical form, we can compute it by using a Monte

Carlo approximation. However, simply sampling z from qϕ(z|s) does not work,

since once z is sampled, it is no longer a function of ϕ, which makes it impossible

to evaluate the gradient of the objective function with respect to ϕ. Fortunately, by

using a reparameterization

z = µϕ(s) + σϕ(s) ◦ ϵ (3.15)

with ϵ ∼ N (ϵ|0, I) where ◦ indicates the element-wise product, sampling z from

qϕ(z|s) can be replaced by sampling ϵ from the standard normal distribution, which

is independent of ϕ. This allows us to compute the gradient of the first term of

the objective function with respect to ϕ by using a Monto Carlo approximation of

the expectation Ez∼qϕ(z|x)[·]. This technique is called a reparameterization trick. By

using this reparameterization, the first term of the lower bound can be written as

Ez∼qϕ(z|s)[log pθ(s|z)]
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= Eϵ∼N (ϵ|0, I)

[
− 1

2

∑
n

log 2π[σ2
θ(µϕ(s) + σϕ(s) ◦ ϵ)]n

−
∑
n

(sn − [µθ(µϕ(s) + σϕ(s) ◦ ϵ)]n)2

2[σ2
θ(µϕ(s) + σϕ(s) ◦ ϵ)]n

]
, (3.16)

where [·]n denotes the nth element of a vector. We can confirm from equation

(3.16) that the second term reduces to a negative weighted squared error between

s and µθ(µϕ(s)) when ϵ = 0, which can be interpreted as an autoencoder re-

construction error. On the other hand, the second term of (3.8) is given as the

negative KL divergence between qϕ(z|s) and p(z) = N (z|0, I). This term can be

interpreted as a regularization term that forces each element of the encoder output

to be independent and normally distributed.

Conditional VAEs (CVAEs) are an extension version of VAEs where the only

difference is that the encoder and decoder networks can take an auxiliary variable

c as an additional input. With CVAEs, distribution (3.12) and (3.13) are replaced

with

qϕ(z|s, c) = N (z|µϕ(s, c), diag(σ
2
ϕ(s, c))), (3.17)

pθ(s|z, c) = N (s|µθ(z, c), diag(σ
2
θ(z, c))), (3.18)

and the variational lower bound to be maximized becomes

J (ϕ, θ) = E(s,c)∼pdata(s,c)
[
Ez∼qϕ(z|s,c)[log pθ(s|z, c)]−KL[qϕ(z|s, c)||p(z)]

]
, (3.19)

where E(s,c)∼pdata(s,c)[·] denotes the sample mean over the training examples S =

{sm, cm}Mm=1.

One notable feature of CVAEs is that they are able to learn a “disentangled”

latent representation underlying the data of interest. For example, when a CVAE

is trained using the MNIST data set of handwritten digists and c as the digit class

label, z and c are disentangled so that z represents the factors of variation corre-

sponding to handwriting styles. We can thus generate images of a desired digit

with random handwriting styles from the trained decoder by specifying c and ran-

domly sampling z. Analogously, we would be able to obtain a generative model
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that can represent the spectrograms of a variety of sound sources if we could train

a CVAE using class-labeled training examples.

3.2.3 CVAE source model

Let S = {s(f, n)}f,n be the entire complex spectrogram of an utterence and c be

the class label of that source. Here, c is a one-hot vector consisting of C elements,

indicating to which class the spectrogram S belongs. For example, if we consider

speaker identities (IDs) as the class category, each element of c will be associated

with a different speaker, and c will be filled with 1 at the index of a certain speaker

and with 0 everywhere else.

We now model the generative model of S using a CVAE with an auxiliary input

c. So that the decoder distribution has the same form as the LGM (2.63), which is

defined as a zero-mean complex Gaussian distribution,

pθ(S|z, c) = NC(S|0, diag(σ2
θ(z, c))), (3.20)

=
∏
f,n

NC(s(f, n)|0, σ2
θ(f, n; z, c)). (3.21)

Here, σ2
θ(f, n; z, c) denotes the (f, n)th element of the decoder output. Once the

parameter θ and ϕ of the encoder and decoder are trained by minimizing the neg-

ative variational lower bound

−J (ϕ, θ) = −E(S,c)∼pdata(S,c)
[
Ez∼qϕ(z|S,c)[log pθ(S|z, c)] + KL[qϕ(z|S, c)||p(z)]

]
(3.22)

using speaker-labeled training utterance {Sm, cm}Mm=1, the decoder with fixed θ

can be used as a generative model of spectrograms for each speaker pθ(Sj|zj, cj)
at test time. Here, pdata(S, c) is approximated as the empirical distribution of

{Sm, cm}Mm=1, and qϕ(z|S, c) and p(z) are assumed to be Gaussian distributions

p(z) = N (z|0, I), (3.23)

qϕ(z|S, c) = N (z|µϕ(S, c), diag(σ
2
ϕ(S, c))), (3.24)
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Figure 3.1: Illustration of CVAE source model used in MVAE.

=
∏
n

N (z(n)|µϕ(n;S, c), σ2
ϕ(n;S, c)), (3.25)

where z(n), µϕ(n;S, c), and σ2
ϕ(n;S, c)) denote the nth element of the latent space

variable z and the encoder outputs µϕ(S, c) and σ2
ϕ(S, c), repectively.

Normalizing the mean and variance of each training sample is one of the com-

mon practices in neural network training. Similarly, in the CVAE training in the

MVAE method, the total energy of each training utterance is normalized to 1. How-

ever, of course, the total energy of the spectrogram of each source in a test mix-

ture can vary from source to source and does not necessarily equal 1. So that the

generative model can flexibly bridge this gap, a scale parameter g is additionally

incorporated into (3.20) and treated as a free parameter to be estimated at test

time. Namely, the generative model of the complex spectrograms Sj of utterances

of speaker j can be expressed as

pθ(Sj|zj, cj, gj) =
∏
f,n

pθ(sj(f, n)|zj, cj, gj), (3.26)

where

pθ(sj(f, n)|zj, cj, gj) = NC(sj(f, n)|0, gjσ2
θ(f, n; zj, cj)), (3.27)

and zj, cj, and gj are the unknown parameters to be estimated. (3.26) is called the

CVAE source model. We can immediately confirm that the decoder distribution in
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(3.20) corresponds to a particular case of (3.26) where gj = 1. Since the CVAE

source model is given in the same form as the LGM in (2.63), where vj(f, n) is

given by gjσ2
θ(f, n; zj, cj). The trained decoder distribution pθ(Sj|zj, cj, gj) can be

used as a universal generative model that is able to generate spectrograms of all

the sources involved in the training examples where the latent space variable zj,

the auxiliary input cj, and the global scale gj can be interpreted as the source

model parameters. Fig. 3.1 shows an illustration of the CVAE source model used

in the MVAE method.

According to the properties of CVAEs, we consider that the CVAE training pro-

motes disentaglement between zj and cj, where zj characterizes the factors of

intraclass variation while cj characterizes the factors of categorical variation that

represent source identities. Instead of CVAE, one can also think of using a regular

(unconditional) VAE, as in the VAE-NMF framework proposed for monaural speech

enhancement [77, 78]. In this case, all the factors of variations in speech spec-

tra, including the speaker identity factor, will be encoded into the latent variables.

However, this can lead to an overparametrized representation since even though

the speaker identity factor should be considered time-invariant (unlike phoneme-

and F0-related factors), the latent variables are allowed to vary over time. Hence,

when estimating the latent variable sequence of each source in a given mixture, we

would want to separate out only the speaker identity factor from the latent variable

sequence and force it to be time-invariant so as not to allow it to change during

the utterance. This is the motivation behind the idea of using a CVAE instead of a

regular VAE.

Using the decoder distribution pθ(Sj|zj, cj, gj) as the generative model of each

source leads to the same form of the log-likelihood as in ILRMA (2.65):

log p(X|W ,Ψ,G) (3.28)

=2N
∑
f

log | detW(f)|+
∑
j

log pθ(Sj|zj, cj, gj)

c
=2N

∑
f

log | detW(f)| −
∑
f,n,j

(
log gjσ

2
θ(f, n; zj, cj) +

|wH
j (f)x(f, n)|2

gjσ2
θ(f, n; zj, cj)

)
, (3.29)

where G = {gj}j and Ψ = {zj, cj}j. Since z is assumed to follow N (z|0, I) when θ
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Algorithm 1 MVAE Algorithm
Require: Network parameter θ trained using (3.22), observed mixture signal

x(f, n), iteration number L
1: randomly initializeW, Ψ
2: optional: updateW using a BSS method
3: for ℓ = 1 to L do
4: for each source j of J do
5: yj(f, n) = wH

j (f)x(f, n)
6: (updating source model parameters)
7: initialize gj using (3.34)
8: normalization: S̄j = {yj(f, n)/gj}f,n
9: for k = 1 to 100 do

10: update zj and cj using backpropagation while keeping θ fixed
11: end for
12: calculate σ2

j (f, n; zj, cj, gj = 1, θ)
13: update gj using (3.34)
14: compute vj(f, n) = gj · σ2

j (f, n; zj, cj, gj = 1, θ)
15: (updating demixing matrices)
16: update wj(f) using the IP method (3.31), (3.32), and (3.33)
17: end for
18: end for

and ϕ are trained, it would be reasonable to assume it as a prior distribution for z

also at test time. The prior p(c) is the empirical distribution of the training examples

{cm}Mm=1, expressed as a multinomial distribution. Thus, the log-posterior

log p(X|W ,Ψ,G; θ) + log p(z) + log p(c) (3.30)

is the objective function of the MVAE method to be maximized with respect to W,

Ψ, and G.

3.2.4 Convergence-guaranteed optimization algorithm

A stationary point of (3.30) can be found by iteratively updating W, Ψ, and G
so that (3.30) is guaranteed to be non-decreasing. Since the differential of (3.30)

with respect to W(f) is equivalent to that of the objective function of ILRMA when
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Ψ and G are fixed, the update rules of W(f) are given as

Qj(f) = E
[ 1

vj(f)
x(f)xH(f)

]
, (3.31)

wj ← (WH(f)Qj(f))
−1ej, (3.32)

wj ← wj(f)/
√

wH
j (f)Qj(f)wj(f), (3.33)

which are equivalent to the IP method. By setting the differential of (3.30) with

respect to G at 0, we can obtain the update rule of G as the closed-form solution:

gj ←
1

FN

∑
f,n

|wH
j (f)x(f, n)|2

σ2
θ(f, n; zj, cj)

. (3.34)

Note that (3.34) maximizes (3.30) with respect to gj when W and Ψ are fixed.

While keeping W and G fixed, a gradient descent method, which is implemented

as updating the inputs of decoder with the network parameter θ fixed using a back-

propagation, can be used to search for the optimal zj and cj that maximize (3.30),

or equivalently log pθ(Sj|zj, cj, gj)+ log p(zj)+ log p(cj) for each j in parallel, where

each element of Sj is given by sj(f, n) = wH
j (f)x(f, n). Note that estimating cj

from a test mixture corresponds to identifying which source is present in the mix-

ture. There are, however, certain cases where we know which sources are present

prior to separation. Thank to the conditional modeling, we can also use our model

in such cases by simply fixing cj at a specified index. When updating cj, the

sum-to-one constraint must be taken into account. This is easily implemented by

inserting an appropriately designed softmax layer that outputs cj,

cj = softmax(uj), (3.35)

and treating uj as the parameter to be estimated instead. The source separation

algorithm of the MVAE method is summarized in Algorithm 1.

The proposed MVAE method is noteworthy in that it offers the advantages of

the conventional methods concurrently: (1) it takes full advantage of the strong

representation power of DNNs for source power spectrogram modeling, (2) the

log-likelihood is guaranteed to be non-decreasing at each iteration of the source
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separation algorithm by using a carefully chosen step size or applying a back-

tracking line search, and (3) the criteria for CVAE training and source separation

are consistent, thanks to the consistency between the expressions of the CVAE

source model and the LGM.

3.3 Learn source model with StarGAN

3.3.1 Motivation

Compared to the linear NMF model, the nonlinear CVAE source model not only

increases the representation power but also makes it possible to capture the tem-

poral structures of sources thanks to carefully designed network architectures for

sequential modeling. However, one well-known problem as regards VAEs is that

outputs from the decoder tend to be oversmoothed, which means the source spec-

trograms may leak spectral details. Besides VAEs, another promising approach to

modeling spectrogram is GANs [76], where the generative distribution of spectro-

grams is optimized by playing a minimax game between a generator and a discrim-

inator. Compared to VAEs, which explicitly assumes the prior distribution about the

data, e.g., Gaussian distribution in a regular VAE or complex Gaussian distribution

S ∼ NC(S|µθ(z, c),σ
2
θ(z, c)) in the MVAE method, and learns data distribution by

forcing an approximate posterior distributions to be consistent with the true one,

GANs train a generator network to deceive a real/fake discriminator network so

that the generator distribution is optimized to fit the target data distribution without

explicit density assumption. This allows us to avoid the mismatch between the as-

sumed and real distributions and the approximation error occuring in the posterior

estimation. Thanks to the training strategy, it is expected that GAN can learn a data

distribution more accurately than VAE. This motivates us to exploit GAN to model

power spectrograms of sources.
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Figure 3.2: Illustration of regular GAN.

3.3.2 GAN and StarGAN

GAN is a training framework of neural network for estimating generative models,

which consists of a generator G that learns the data distribution pG(s|z; θ) from

input noise z randomly sampled from p(z), which is usually defined as a Gaus-

sian distribution N (z|0, I), and a discriminator D that estimates the probability of

a sample to be real data pD(s;ϕ). Here, θ and ϕ are network parameters. Fig. 3.2

shows an illustration of GAN. This framework corresponds to a minimax two-player

game. The generator G is trained to maximize the probability estimated by the dis-

criminator D to deceive it, while the discriminator D is trained to accurately classify

the real and generated data as a binary classifier. By assigning the label for real

data as 1 and that for fake data as 0, we can train the generator and discriminator

using the following loss function:

min
G

max
D
J (D,G) = Es∼pdata(s)[log pD(s)] + Ez∼p(z)[log(1− pD(pG(s|z)))]. (3.36)

In practice, the generator G and discriminator D are updated iteratively during

the training. By fixing the parameter θ, we can obtain the optimum of discriminator

D, which is expressed as

p#D(s;ϕ) =
pdata(s)

pdata(s) + pG(s|z; θ)
. (3.37)

Then, substituting the optimal discriminator distribution into (3.36), we can obtain

J (G) = Es∼pdata(s)[log p
#
D(s;ϕ)] + Ez∼p(z)[log(1− p#D(pG(s|z)))]

= Es∼pdata(s)

[
log

pdata(s)

pdata(s) + pG(s|z; θ)

]
+ Ez∼p(z)

[
log

pG(s|z; θ)
pdata(s) + pG(s|z; θ)

]
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= − log(4) + KL
[
pdata(s)

∣∣∣∣∣∣pdata(s) + pG(s|z)
2

]
+KL

[
pG(s|z)

∣∣∣∣∣∣pdata(s) + pG(s|z)
2

]
= − log(4) + 2 · JS[pdata(s)||pG(s|z)], (3.38)

where JS[·||·] denote the Jensen-Shannon (JS) divergence [85]. Minimizing (3.36)

with respect to G with fixed discriminator D is equivalent to force the generator

distribution becomes as close as possible to the data distribution in terms of the JS

divergence, where the optimal solution is achieved when the generator distribution

becomes identity to the data distribution.

Although GAN has shown great success in many tasks, to stably train a GAN is

difficult. One reason is the loss function defined using JS divergence, which causes

gradient vanishing when two distributions are disjoint. To address this problem,

extensions of GAN, such as least square GAN (LSGAN) [86] and Wasserstein

GAN (WGAN) [87], have been proposed. Instead of using the cross-entropy in

(3.36), LSGAN utilizes the least square loss to measure the classification accuracy

of the discriminator. The loss functions for the generator and discriminator are

given as

min
D
J (D) =

1

2
Es∼pdata(s)[(pD(s)− b1)

2] +
1

2
Ez∼p(z)[(pD(pG(s|z))− b2)2], (3.39)

min
G
J (G) = 1

2
Ez∼p(z)[pD(pG(s|z)− b3)2]. (3.40)

Here, b1, b2, and b3 are constant values, which are usually defined as (b1, b2, b3) =

(−1, 1, 0) or (b1, b2, b3) = (0, 1, 1).WGAN proposes using earth-mover distance, also

named as Wasserstein-1, to measure the dissimilarity of the generator distribution

pG(s|z) and pdata(s) instead of the JS divergence, since loss function based on

the JS divergence is discontinuous, which may cause the training unstable. The

training loss function of WGAN is given as

min
G

max
D∈D
J (D,G) = Es∼pdata(s)[pD(s)]− Ez∼p(z)[pD(pG(s|z))], (3.41)

where D denotes a family of 1-Lipschitz continuous functions. In the WGAN, in-

stead of classifying real and fake sample, the discriminator is trained to learn a

1-Lipschitz continuous function to help compute Wasseristein distance. Therefore,
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the discriminator is called “critic”. As the loss function (3.41) decreases in the train-

ing, the Wasserstein distance gets smaller and the generator distribution grows

closer to the real data distribution. To enforce the 1-Lipschitz continuity during the

training, [88] proposes a practical trick called weight clipping, namely, clamping the

weights ϕ to a small range [−a, a] after every gradient update to keep the parameter

space compact so that the function pD(s) preserves the Lipschitz continuity. Here,

a is a small value usually set at 0.01. However, WGAN using weight clipping still

suffers from unstable training, vanishing gradients, and slow convergence when

an inappropriate clipping range is employed. To further improve the training pro-

cess, [89] proposes an alternative way to enforce the Lipschitz continuity. Since a

differentiable function satisfies 1-Lipschtiz if and only if it has gradients with norm at

most 1 everywhere, the gradient norm of the critic’s output with respect to its input

can be used as a constraint. This constraint is called gradient penalty. Therefore,

the training loss function of WGAN with gradient penalty (WGAN-GP) is expressed

as

min
D

max
G
J (D,G) = Ez∼p(z)[pD(pG(s|z))]− Es∼pdata(s)[pD(s)]

+ λgradEs̃∼p(s̃)[(||∇s̃pD(s̃)||2 − 1)2], (3.42)

where s̃ is a data sampled uniformly along straight lines between pairs of points

sampled from the real data distribution pdata(s) and the generator distribution pG(s|z).
λgrad is a nonnegative weight paramter and || · ||2 denotes L2 norm.

StarGAN [90] is a GAN variant, which consists of a generator G, a discrimi-

nator D, and a domain classifier O. The generator G is trained to translate input

data s into an output data ŝ conditioned on the target domain label c, pG(ŝ|s, c).
The discriminator produces the probability of a data to be real pD(s). The domain

classifier classifies to which domain the data belongs, pO(c|s). First, to make the

generated data indistinguishable from real data, an adversarial loss is defined as

Jadv(D,G) = Es∼pdata(s)[log pD(s)] + E(s,c)∼pdata(s,c)[log(1− pD(pG(ŝ|s, c)))]. (3.43)

The generator G aims to minimize this objective function, while the discriminator D
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aims to maximize it. The aim of the generator is to translate s to ŝ, which is properly

classified to the target domain c. To achieve this condition, a domain classification

loss is used to train the network, which is defined as

Jcls(O,G) = E(s,c′ )∼pdata(s,c′ )[− log pO(c
′ |s)] + E(s,c)∼pdata(s,c)[− log pO(c|pG(s, c))].

(3.44)

By minimizing this objective function, the domain classifier O learns to classify a

real data s to its corresponding original domain c′ and a generated data pG(s, c) to

the target domain c. The generator G is trained to minimizing this objective function

to generate data that can be classified as the target domain c. Finally, a recon-

struction loss is considered since minimizing the losses (3.43) and (3.44) does not

guarantee that translated data preserve the content of its input while changing only

the domain-related information. The reconstruction loss is expressed as

Jrec(G) = E(s,c′ ,c)∼pdata(s,c′ ,c)[||s− pG(pG(s, c), c
′
)||1], (3.45)

where ||·||1 denotes L1 norm. This objective function is minimized when the genera-

tor G completely reconstructs the original data s taking the translated data pG(s, c)

and the original domain label c′ as input. The total objective functions for each

network is given as

J (D) = −Jadv, (3.46)

J (O) = Jcls, (3.47)

J (G) = Jadv + λclsJcls + λrecJrec, (3.48)

where λcls and λrec are parameters weigh the importance of domain classification

loss and reconstruction loss.

StarGAN was originally proposed for multi-domain translation [90], which has

recently been adapted for use in many-to-many voice conversion [91–93] and

shown to perform remarkably. This confirms the effectiveness of StarGAN for mod-

eling audio signals.
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Figure 3.3: Concept of StarGAN training. Generator is designed as an encoder-
decoder architecture, where trained decoder distribution is used as a source
model, called StarGAN source model. Inputs of decoder, namely, z and c, are
parameters of source model.

3.3.3 StarGAN source model

Let us consider a power spectrogram S = {|s(f, n)|2}f,n as the data and a target

speaker ID c as the class label, namely, we consider a translation among speaker

domain, pG(Ŝ|S, c). If we use the power spectrogram Ŝj as the variance of vj(f, n),

we can explain the generator as a source variance convertor, which converts vari-

ance matrix of speaker c′ to speaker c. One of the goals of StarGAN is to make Ŝ

as realistic as real spectrograms belonging to the speaker c. To realize this we use

a real/fake discriminator D to produce a probability pD(S) to measure how likely the

power spectrogram S is a real spectrogram whereas we use a speaker classifier O

to produce class probabilities pO(c|Ŝ) of Ŝ.

Fisrt, instead of the adversarial loss function of GAN (3.43) used in the original

StarGAN, we define an adversarial loss using WGAN-GP [89], which can stablize

the training procedure:

J D
adv(D) = E(S,c)∼pdata(S,c)[pD(pG(S, c))]− ES∼pdata(S)[pD(S)]

+ λgradES̃∼p(S̃)[(||∇S̃D(S̃)||2 − 1)2], (3.49)
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J G
adv(G) = −E(S,c)∼pdata(S,c)[pD(pG(S, c))]. (3.50)

Here, E[·] denotes sample mean, || · ||2 denotes L2 norm, and λgrad is a nonnegative

weight parameter. J D
adv(D) takes a small value when D correctly classifies pG(S, c)

and S as fake and real spectrograms whereas J G
adv(G) takes a small value when G

successfully deceives D so that pG(S, c) is misclassified as real spectrograms by

D. Next, we consider domain classification losses for classifier O and generator G,

which are defined as

J O
cls(O) = −Ec∼p(c), S∼p(S|c)[log pO(c|S)],

J G
cls(G) = −Ec∼p(c), S∼p(S)[log pO(c|pG(S, c))]. (3.51)

Both J O
cls(O) and J G

cls(G) take small values when O correctly classifies S ∼ p(S|c)
and pG(S, c) as belonging to speaker c. Training G, D, and O using only the above

losses does not guarantee that G will preserve the linguistic information of the input

spectrogram. To encourage pG(S, c) to be a bijection, a cycle consistency loss is

also employed for training, which is expressed as

Jcyc(G) = Ec′∼p(c), S∼p(S|c′), c∼p(c)[||pG(pG(S, c), c′)− S||1], (3.52)

where || · ||1 denotes L1 norm. We also consider an identity mapping loss

Jid(G) = Ec∼p(c), S∼p(S|c)[||G(S, c)− S||1] (3.53)

to ensure that an input spectrogram into G will remain unchanged when the input

already belongs to the target speaker. To summarize, the full objectives of StarGAN

to be minimized with respect to G, D, and C are given as

JG(G) =J G
adv(G) + λclsJ G

cls(G) + λcycJcyc(G) + λidJid(G), (3.54)

JD(D) =J D
adv(D), (3.55)

JO(O) =J O
cls(O), (3.56)

respectively, where λcls ≥ 0, λcyc ≥ 0, λid ≥ 0 are regularization parameters weigh-
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ing the importance of the domain classification loss, the cycle consistency loss,

and the identity mapping loss relative to the adversarial losses.

Fig. 3.3 shows an illustration of the StarGAN source model training. We de-

sign the generator as an encoder-decoder structure. The encoder aims to extract

the low-dimensional latent representation z of the input spectrogram, whereas the

decoder takes the latent variable z and a class index c as inputs and performs

spectrogram conversion. The decoder distribution can be utilized as a genera-

tive model of power spectrograms, where z and c are parameters of the model.

Furthermore, since the generator of StarGAN is trained as a speaker convertor

for multiple speakers, the decoder can generate power spectrograms belonging to

all the speakers included in the training dataset, which has the same property of

that in the CVAE source model. We call the decoder distribution trained with the

StarGAN the StarGAN source model. With the trained decoder distribution, we

can employ the multichannel source separation algorithm proposed in the Subsec.

3.2.4 for determined situations, where we call the method MSGAN. Note that al-

though the optimization algorithm of MSGAN is guaranteed to be non-decreasing

at each iteration of log-likelihood as that in the MVAE method, the criteria used for

training the source model and separation are different, where an adversarial loss is

used for training the source model and a ML criterion is used for separation. This

is different from the MVAE method.

3.4 A fast optimization algorithm for MVAE

3.4.1 Motivation and idea

It is worth noting that with the algorithm described in Subsec. 3.2.4, the model

parameters can be updated so as not to decrease the log-likelihood at each itera-

tion by using a carefully chosen step size or applying a backtracking line search.

However, one downside is the high computational cost of the backpropagation pro-

cess involved in each iteration, which is a major barrier to the practical application

of the MVAE method. To address this drawback, in this section, we propose an

accelerated version of the MVAE method called the “FastMVAE” (or fMVAE).
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Since the process of updating the parameters of the CVAE source model is

more computationally costly than that of updating the other parameters, our main

focus is on how to accelerate this process. When W is fixed, each element of Sj

will be fixed at sj(f, n) = wH
j (f)x(f, n). Now, since the terms that depend on zj and

cj in (3.30) are given as

log pθ(Sj|zj, cj, gj) + log p(zj) + log p(cj)
c
= log pθ(zj, cj|Sj, gj), (3.57)

we would like to find zj and cj that maximize the posterior p(zj, cj|Sj, gj) after

updatingW. This posterior can be factorized as

p(zj, cj|Sj, gj) = p(zj|Sj, cj, gj)p(cj|Sj, gj). (3.58)

Here, we notice that the first factor, p(zj|Sj, cj, gj), resembles the encoder (or in-

ference) distribution in the CVAE in (3.24), with the difference being that it is also

conditioned on the scale parameter gj. Since the total energy of each training

utterance is assumed to be normalized to 1 in the CVAE training as mentioned

earlier, gj can be thought of as a parameter that plays the role of normalizing the

total energy of an unnormalized input Sj to 1 at test time so that the scale of the

encoder input is ensured to be consistent with the training utterances. Specifically,

the encoder distribution that allows for unnormalized inputs is implicitly assumed

to be given as the following expression:

qϕ(z|S, c, g) = N (z|µϕ(S/g, c), diag(σ
2
ϕ(S/g, c))), (3.59)

=
∏
n

N (z(n)|µϕ(n;S/g, c), σ2
ϕ(n;S/g, c)), (3.60)

which reduces to (3.24) when g = 1. Thus, we can use the trained encoder

qϕ(zj|Sj, cj, gj) as an approximation of the first factor of the posterior p(zj, cj|Sj, gj).

This means that if we could obtain the true distribution p(cj|Sj, gj) or its approxi-

mate distribution r(cj|Sj, gj), we would be able to find an approximation of the

maximum point of the posterior p(zj, cj|Sj, gj) by finding the maximum point of the

corresponding approximate distribution.

In this section, we review the concept of an auxiliary classifier VAE (ACVAE)
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[94], present how this concept can be used to obtain r(cj|Sj, gj), and introduce the

details of the proposed optimization algorithm.

3.4.2 Auxiliary classifier VAE

ACVAE [94] is a CVAE variant, which incorporates an information-theoretic regu-

larization [95] that assists in making the decoder outputs as correlated as possible

with the class variable c by maximizing the mutual information between c and an

output S ∼ pθ(S|z, c) from the decoder, conditioned on z. The mutual information

is expressed as

I(c,S|z) = Ec∼pdata(c),S∼pθ(S|z,c),c′∼p(c|S)[log p(c
′|S)] +H(c), (3.61)

where pdata(c) is the empirical distribution of c in the training dataset, and H(c)

represents the entropy of c, which can be considered as a constant term. Although

it is difficult to optimize I(c,S|z) directly since it requires access to the posterior

p(c|S), we can derive a variational lower bound of the first term of I(c,S|z) by

using a variational distribution r(c|S) to approximate p(c|S):

Ec∼pdata(c),S∼pθ(S|z,c),c′∼p(c|S)[log p(c
′|S)]

=Ec∼pdata(c),S∼pθ(S|z,c),c′∼p(c|S)

[
log

r(c′|S)p(c′|S)
r(c′|S)

]
=Ec∼pdata(c),S∼pθ(S|z,c)

[
KL[p(c′|S)||r(c′|S)] + Ec′∼p(c|S)[log r(c

′|S)]
]

≥Ec∼pdata(c),S∼pθ(S|z,c),c′∼p(c|S)[log r(c
′|S)]

=Ec∼pdata(c),S∼pθ(S|z,c)[log r(c|S)], (3.62)

where the equality holds if and only if r(c|S) = p(c|S). This technique of lower

bounding mutual information is known as variational information maximization [96].

The last line of (3.62) follows the lemma presented in [95]. Therefore, we can indi-

rectly maximize I(c,S|z) by increasing the lower bound with respect to pθ(S|z, c)
and r(c|S). One way to achieve this involves expressing the variational distribu-

tion r(c|S) as a neural network and training it along with qϕ(z|S, c) and pθ(S|z, c).
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Specifically, r(c|S) can be expressed as a multinomial distribution

rψ(c|S) = Mult(c|ρψ(S)). (3.63)

Here, Mult(c|ρ) ∝
∏

i ρ
ci
i denotes a multinomial distribution, where c = [c1, . . . , cI]

T

and ρ = [ρ1, . . . , ρI]
T. ρψ(S) denotes a neural network that takes S as an input and

produces a probability vector consisting of C elements. (3.63) is called an auxiliary

classifier. Therefore, the regularization term that we would like to maximize over

the training samples with respect to ϕ, θ, and ψ becomes

Jac1(ϕ, θ, ψ) = E(S,c)∼pdata(S,c),qϕ(z|S,c)[Ec∼pdata(c),S∼pθ(S|z,c)[log rψ(c|S)]], (3.64)

where rψ(c|S) must satisfy the sum-to-one constraint. With the regularization term

(3.64), the auxiliary classifier is trained using only the reconstructed spectrograms.

Since we can also use the spectrograms of real speech to train the auxiliary clas-

sifier, we can further use the cross-entropy

Jac2(ψ) = E(S,c)∼pdata(S,c)[log rψ(c|S)] (3.65)

as the training criterion. The entire training criterion is thus given by combining the

loss function of CVAE (3.22) with regularization terms,

−J (ϕ, θ)− λac1Jac1(ϕ, θ, ψ)− λac2Jac2(ψ), (3.66)

where λac1 ≥ 0 and λac2 ≥ 0 are the parameters weighing the importance of the

regularization terms. Fig. 3.4 shows an illustration of ACVAE.

3.4.3 FastMVAE algorithm

As mentioned above, the auxiliary classifier distribution rψ(c|S) trained using

{Sm, cm}Mm=1 is expected to be a good approximation of the conditional distribution

p(c|S). Now, in the same way that we considered the encoder that flexibly allows

for an unnormalized input, here we also consider an auxiliary classifier rψ(c|S, g)
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Figure 3.4: Illustration of ACVAE used in fMVAE method.

that incorporates the global scale parameter g such that

rψ(c|S, g) = Mult(c|ρψ(S/g)). (3.67)

Using the trained auxiliary classifier and encoder, we can obtain an approximation

p(zj, cj|Sj, gj) ≈ rψ(cj|Sj, gj)qϕ(zj|Sj, cj, gj). (3.68)

Since the maximum points of rψ(cj|Sj, gj) and qϕ(zj|Sj, cj, gj) can be found imme-

diately, we can use these approximate distributions to find an approximate solution

to

(zj, cj) = argmax
zj ,cj

p(zj, cj|Sj, gj) (3.69)

instead of the gradient descent update for increasing log pθ(Sj|zj, cj, gj)+log p(zj)+

log p(cj). Fig. 3.5 shows the flowchart of the proposed algorithm for the I = 2 case.

The algorithm is summarized in Algorithm 2. The main difference between the new

algorithm from the original version is that the optimal zj and cj are estimated using

the forward propagations of the two pretrained networks instead of using gradient

descent updates. Specifically, zj is given as the mean of the encoder distribution

µϕ(Sj/gj, cj). There are two possible ways to update the class variable cj. One is

to directly use the probability vector produced by the auxiliary classifier network

cj ← ρψ(Sj/gj). (3.70)
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Algorithm 2 FastMVAE Algorithm
Require: Network parameter θ, ϕ, ψ trained using (3.66), observed mixture signal

x(f, n), iteration number L , weight parameter α
1: randomly initializeW, Ψ
2: optional: updateW using a BSS method
3: for ℓ = 1 to L do
4: for each source j of J do
5: yj(f, n) = wH

j (f)x(f, n)
6: (updating source model paremeters)
7: initialize gj using (3.34)
8: normalization: S̄j = {yj(f, n)/gj}f,n
9: update cj using (3.70) or (3.71)

10: update zj using (3.75)
11: compute σ2

j (f, n; zj, cj, gj = 1, θ)
12: update gj using (3.34)
13: compute vj(f, n) = gj · σ2

j (f, n; zj, cj, gj = 1, θ)
14: (updating demixing matrices)
15: update wj(f) by IP method with (3.31), (3.32), (3.33)
16: end for
17: end for

We hereafter refer to the proposed algorithm using this update rule as fMVAE c.

The other is to use the one-hot vector closest to the output of the auxiliary classifier

[cj]n ←

1 (n = n̂),

0 (n ̸= n̂),
(3.71)

n̂ = argmax
n

[ρψ(Sj/gj)]n, (3.72)

where [·]n is used to denote the nth element of a vector. We hereafter refer

to the algorithm using this update rule as fMVAE o. Here, the subscripts are

the first letters of “continuous” and “one-hot”, respectively. rψ(cj|Sj, gj) can be

seen as a speaker recognizer trained with explicit supervision. Hence, the pro-

posed algorithm is expected to perform better than the original version in terms

of speaker identification accuracy. However, one downside would be that it does

not guarantee a non-decrease in the objective function because of the approxima-

tion p(zj, cj|Sj, gj) ≈ rψ(cj|Sj, gj)qϕ(zj|Sj, cj, gj). How this actually affects source

separation performance will be discussed later. Note that the proposed fast algo-
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Figure 3.5: Flowchart of fMVAE for I = 2 case.

rithm can be applied to MSGAN, since the StarGAN source model is trained with

domain classifier, and the generator is designed to have an encoder-decoder ar-

chitecture, which can be used as the auxiliary classifier, encoder, and decoder in

the FastMVAE method.

3.4.4 Prior-weighted inference

The encoder network is trained so that qϕ(z|S, c) becomes as close as possible to

p(z) = N (z|0, I). However, through preliminary experiments, we found that at test

time the trained encoder occasionally produced outliers that significantly deviated

from the assumed distribution N (z|0, I). This may be because the encoder did

not generalize very well due to the limited amount of training data or the mismatch

between the training and test conditions. Since the decoder network was trained

under the assumption that its input follows N (z|0, I), these outliers tended to neg-

atively affect the resulting decoder outputs and eventually the estimate of W(f).

One heuristic way to address this problem would be to reapply the prior distribution

p(z) during inference. In the following, we omit the source index j in this subsection

for simplicity of notation.

As a way of reapplying the prior, we adopt the concept of product-of-experts
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(PoE) [97] and define ẑ as

ẑ = argmax
z

p(z|S, c, g)p(z)α

≈ argmax
z

qϕ(z|S, c, g)p(z)α

= argmax
z

log qϕ(z|S, c, g) + α log p(z), (3.73)

where α weighs the importance of the prior in the inference. Since both qϕ(z|S, c, g)
and p(z) are multivariate Gaussian distributions, (3.73) can be expressed as

log qϕ(z|S, c, g) + α log p(z)

c
=−1

2

(
z− µϕ(S/g, c)

)T
Σ−1
ϕ

(
z− µϕ(S/g, c)

)
− α

2
zTz

c
=−

Σ−1
ϕ + αI

2
(z− µ)T(z− µ), (3.74)

where Σϕ = diag(σ2
ϕ(S/g, c)) and µ = Σ−1

ϕ (Σ−1
ϕ + αI)−1µϕ(S/g, c). Therefore, the

update rule for z can be easily derived as

z← Σ−1
ϕ (Σ−1

ϕ + αI)−1µϕ(S/g, c). (3.75)

Note that (3.75) reduces to the mean of the encoder distribution when α = 0.

3.5 Experimental evaluations

To evaluate the effectiveness of the proposed methods, we conducted several

multi-speaker source separation experiments in which we considered both speaker-

dependent and speaker-independent separation tasks. Specifically, the speaker-

dependent and speaker-independent conditions indicate whether the test speaker

is seen in the training dataset. It should be noted that even in the speaker-dependent

condition, the training and test sets are disjoint at the sentence level.
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Figure 3.6: Configuration of room, where ◦ and × represent the positions of micro-
phones and sources, respectively.

3.5.1 Dataset for speaker-dependent separation

We used speech utterances of two male speakers (SM1, SM2) and two female

speakers (SF1, SF2) excerpted from the Voice Conversion Challenge (VCC) 2018

dataset [98] for the speaker-dependent source separation experiment. The audio

files for each speaker were about seven minutes long and manually segmented

into 116 short sentences, where 81 and 35 sentences (about five and two minutes

long, respectively) served as training and test sets, respectively.

We used two-channel mixture signals of two sources as the test data, which

were synthesized using simulated room impulse responses (RIRs) generated us-

ing the image method [99] and real RIRs measured in an anechoic room (ANE)

and an echo room (E2A). Fig. 3.6 shows the configuration of the room used for

simulating RIRs. To meet the instantaneous mixing model assumption, the rever-

beration times (RT60) [100] of the simulated RIRs were set at 78 and 351 ms, which

were controlled by setting the reflection coefficient of the walls at 0.20 and 0.80, re-

spectively. For the measured RIRs, we used the data included in the RWCP Sound

Scene Database in Real Acoustic Environments [101]. The RT60 of ANE and E2A

were 173 and 225 ms, respectively. The test data included 4 pairs of speakers,

i.e., SF1+SF2, SF1+SM1, SM1+SM2, and SF2+SM2. For each speaker pair, we

generated ten mixture signals. Hence, there were a total of 40 test signals for each

reverberation condition, each of which was about four to seven seconds long. All

the speech signals were resampled at 16 kHz.
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Figure 3.7: Network architectures of the encoder and decoder used for MVAE
and fMVAE and the classifier used for fMVAE. The inputs and outputs are one-
dimensional data, where the frequency dimension of the spectrograms is regarded
as the channel dimension. The ‘w’, ‘c’, and ‘k’ denote the width, channel number,
and kernel size, respectively. Conv and Deconv denote one-dimensional convo-
lution and deconvolution; BN and GLU stand for batch normalization and gated
linear unit.

3.5.2 Network architectures for proposed methods

Fig. 3.7 depicts the details of the network architectures employed in the MVAE and

fMVAE methods. We used the same network architectures to train the CVAE and

ACVAE. All the networks were designed to be fully convolutional to handle input

spectrograms of signals with arbitrary lengths. We used one-dimensional gated

convolutional neural networks (CNNs) [102] to model spectrograms, which allows

the networks to capture time dependencies in spectral sequences. At each gated

CNN layer in the encoder and decoder, a broadcast version of c is appended along

the channel dimension to the output of the previous layer.

Gated CNNs were initially introduced to model word sequences for language

modeling and shown to outperform long short-term memory (LSTM) [103] lan-

guage models trained in a similar setting. By using Ol−1 to denote the output

of the (l − 1)th layer, the output of the lth layer Ol of a gated CNN can be written
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Figure 3.8: Network architectures of the generator, discriminator, and domain clas-
sifier used for MSGAN. The inputs and outputs are two-dimensional data. The
‘s’, ‘c’, and ‘k’ denote data size, channel number, and kernel size, respectively.
Conv and Deconv denote two-dimensional convolution and deconvolution; IN and
LReLU stand for instance normalization and Leacky ReLU. Class index is concate-
nated along channel dimension.

as

Ol = (Ol−1 ∗Wf
l + b

f
l)⊗ σ(Ol−1 ∗Wg

l +B
g
l ), (3.76)

where Wf
l , W

g
l , B

f
l , and Bg

l are weight and bias parameters of the lth layer, ⊗
denotes element-wise multiplication, and σ is the sigmoid function. The main dif-

ference between a gated CNN and a regular CNN layer is that a gated linear unit

(GLU), namely the second term of (3.76), is used as a nonlinear activation function.

Like LSTMs, GLUs have data-driven gates, which control the information passed

on in the hierarchy. Although it is indeed a natural choice for modeling long-term

dependencies of time series data using recurrent netural networks (RNNs)-based

architecutre, including LSTMs. CNNs also have excellent potential for capturing

long-term structures and modeling spectrograms of audio signals. We have made
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Figure 3.9: Example of CVAE and MSGAN source models obtained under ‘ANE’
condition.

an investigation of gated CNNs for spectrogram modeling in [I3], where we com-

pared the source separation performance of DC [64], amounts of training data,

and training time of gated CNNs with bidirectional LSTM (BiLSTM). We found that

using gated CNNs could achieve comparable performance of using BiLSTMs with

fewer parameters. Gated CNNs could be trained more quickly and stably. After our

work, gated CNNs have been widely used for modeling spectrograms and shown

remarkable performance [104,105].

Fig. 3.8 depicts the details of the network architectures employed in the MS-

GAN method. We leverage the idea of Patch-GAN [106] to devise a real/fake dis-

criminator D, the output of which is a sequence of probabilities that measures how

likely each segment of the input is to be real. This forces the generator to generate

more local details. Otherwise, it will fail to deceive the discriminator. The domain

classifier O is designed to share the low-level features with the discriminator. We

used two-dimensional convolution and transpose convolution networks for all the

networks used in the MSGAN method. Adam [107] was used to train the networks.

3.5.3 Difference between VAE, CVAE, and StarGAN source mod-

els

We first made a comparsion between the CVAE and StarGAN source models. We

run the MVAE and MSGAN methods for 30 iterations after initializing the demixing
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Table 3.1: SDR, SIR, SAR, PESQ, and STOI achieved by MVAE and MSGAN
under various reverberant conditions. The bold font indicates the beat scores.

SDR [dB] SIR [dB] SIR [dB]
Reverberant conditions MVAE MSGAN MVAE MSGAN MVAE MSGAN

RT60 = 78 ms 22.69 24.08 27.38 28.85 26.31 27.21
RT60 = 351 ms 7.63 6.09 14.95 12.34 8.97 8.11
ANE (RT60 = 173 ms) 19.44 20.92 23.73 25.69 23.41 24.08
E2A (RT60 = 225 ms) 6.76 6.36 15.28 13.98 7.94 7.95

average 14.13 14.36 20.33 20.21 16.66 16.84

PESQ STOI
Reverberant conditions MVAE MSGAN MVAE MSGAN

RT60 = 78 ms 3.40 3.50 0.9375 0.9480
RT60 = 351 ms 2.05 1.96 0.8221 0.8074
ANE (RT60 = 173 ms) 3.18 3.19 0.9047 0.9047
E2A (RT60 = 225 ms) 2.36 2.31 0.7666 0.7585

average 2.75 2.74 0.8577 0.8547

matrixW by running ILRMA for 30 iterations. The spectral templates number K for

ILRMA was set at 1. Adam [107] was used to estimate the source model parameter

Ψ = {zj, cj}j in both algorithms.

Table 3.1 shows SDR, SIR, SAR, PESQ, and STOI scores obtained by MVAE

and MSGAN methods. All the results were averaged over the 40 test signals under

each reverberant condition. The results reveal that MSGAN slightly outperformed

MVAE in terms of SDR and achieved comparative results in terms of other crite-

ria. Comparing the results under each reverberant condition, we find that MSGAN

performed better in low reverberant situations and the performance degraded with

relatively heavy reverberantion. Fig. 3.9 depicts an example of the power spec-

trograms estimated by different methods. We found that the CVAE and StarGAN

source models used in the MVAE and MSGAN methods can precisely capture

spectro-temporal structures of sources. Moreover, the StarGAN source model

could represent more details of harmonics than the CVAE source model, while

it might lead to more unexpected distortions in local. Considering the training dif-

ficulty of StarGAN and the limited improvement of the StarGAN source model, we
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Table 3.2: Average SDR, SIR, SAR, PESQ, and STOI scores achieved by MVAE
with CVAE and VAE for source modeling. The bold font indicates the best scores.

Method SDR [dB] SIR [dB] SAR [dB] PESQ STOI

MVAE(VAE) 15.35 20.30 17.91 2.72 0.8495
MVAE(CVAE) 17.03 23.75 18.61 2.24 0.8717

Table 3.3: Methods for comparison

Category Method Notation Initialization

unsupervised
uninformed

ILRMA Baseline1: u.u.ILRMA random

supervised
uninformed

ILRMA Baseline2: s.u.ILRMA random
MVAE Baseline3: s.u.MVAE random/IVA/u.u.ILRMA
fMVAE o Proposed1: s.u.fMVAE o random/IVA/u.u.ILRMA
fMVAE c Proposed2: s.u.fMVAE c random/IVA/u.u.ILRMA

supervised
informed

ILRMA Baseline4: s.i.ILRMA random
IDLMA Baseline5: s.i.IDLMA random
MVAE Baseline6: s.i.MVAE random/IVA/u.u.ILRMA
fMVAE Proposed3: s.i.fMVAE random/IVA/u.u.ILRMA

thought the CVAE source model was more preferable. Therefore, we compared

source separation between the baseline methods with the MVAE mothed.

We also confirmed the effectiveness of conditional modeling by comparing the

performance obtained with the CVAE source model and its unconditional counter-

part under the MVAE framework. Table 3.2 shows SDR, SIR, SAR, PESQ, and

STOI scores. As can be seen from the results, the CVAE source model obtained a

1.7-dB higher SDR than a source model based on a regular VAE.

3.5.4 Baseline methods for comparison

We chose ILRMA [9] and IDLMA [73] as the baseline methods for comparison. We

tested several different versions of the proposed and baseline methods. We use

the terms “supervised/unsupervised” and “informed/uninformed” to properly cate-

gorize each version of the methods. The terms “supervised” and “unsupervised”

indicate whether a method requires training examples of source signals prior to
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Figure 3.10: Learning curves of CVAE and ACVAE source models.

source separation, while the terms “informed” and “uninformed” indicate whether

a method is informed about which sources are present in a test mixture signal.

Categorization of each version is summarized in Table 3.3.

We set the basis number Kj = 10 for u.u.ILRMA and randomly initialized the

basis spectra and activation matrix. For supervised ILRMA, basis spectra with

K = 10 were pretrained for each speaker in the training dataset using the NMF

algorithm. They were then concatenated and used as a unified model to repre-

sent all the sources in s.u.ILRMA, whereas the basis spectra corresponding to

the specific speakers present in a mixture signal were provided to the method in

s.i.ILRMA. Note that Algorithm 1 and Algorithm 2 correspond to s.u.MVAE and

s.u.fMVAE o/s.u.fMVAE c, respectively. For s.i.MVAE and s.i.fMVAE, the correct

class label cj is given and fixed during the update. Fig. 3.10 shows the learning

curves of the CVAE and ACVAE training processes. The curves demonstrate that

the networks were trained stably with fast convergence.

For s.i.IDLMA, we used a fully connected neural network with four hidden lay-

ers. Each layer had 1024 units, and a rectified linear unit was used for the output

of each layer, which was the same as the network architecture used in [73]. We

implemented the training settings described in [73], namely using the Gaussian-

IDLMA loss function and concatenation of the current, preceding, and succeeding
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Table 3.4: Average SDR [dB] obtained with various STFT settings. The bold font
shows the best scores.

Method
Window length [ms]

32 64 128 256

s.u.MVAE 10.91 13.38 14.01 12.27
s.i.MVAE 10.84 13.41 13.76 12.47
s.u.fMVAE o 11.63 12.11 14.67 13.85
s.u.fMVAE c 4.31 10.36 13.51 13.26
s.i.fMVAE 11.57 12.25 14.76 14.13

frames to capture the temporal dependency, data augmentation, and regulariza-

tion. The only difference was the optimization algorithm, where we used Adam to

train the network for 700 epochs instead of Adadelta [108] for 200 epochs. More

training details are available in [73].

3.5.5 Experimental analysis of hyperparameters and source sep-

aration performance

In this subsection, we compare the separation performance across different STFT

window lengths, different initialization methods for the MVAE and fMVAE algo-

rithms, and different α settings.

Since all the methods are based on the instantaneous linear mixture model,

the STFT window length may affect the separation performance of each of them,

especially under reverberant conditions. We computed the STFT using a Hamming

window with a length of {32, 64, 128, 256} ms, and by shifting half of the length for

each frame. In this experiment, all the MVAE and fMVAE methods were initialized

by running u.u.ILRMA for 30 iterations. The MVAE or fMVAE algorithm was then

run for 30 iterations, where Adam was used to update zj and cj in the MVAE

methods with a step size set of 0.01. We used α = 0 for fMVAE in this experiment.

Table 3.4 shows the SDR scores obtained with each method. From these results,

the optimal window length that gave the best overall performance was 128 ms for

the current dataset. Therefore, we conducted all the following experiments using a

window length of 128 ms.
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Table 3.5: Average SDR [dB] obtained by MVAE and fMVAE methods adopting
different initialization approaches. The bold font shows the best scores.

Method
Initialization

random IVA ILRMA

s.u.MVAE 17.03 12.58 14.01
s.i.MVAE 16.58 12.45 13.76
s.u.fMVAE o 14.26 13.67 14.67
s.u.fMVAE c 13.78 12.62 13.51
s.i.fMVAE 14.93 13.82 14.76

Figure 3.11: Average SDR achieved with various α in a speaker-dependent condi-
tion.

To confirm the impact of the initialization for the MVAE and fMVAE methods on

the source separation performance, we compared the algorithms using the follow-

ing three initialization methods: 1) random initialization with the demixing matrices

initialized at identity matrices; 2) IVA; and 3) u.u.ILRMA. To keep the number of up-

dates of the demixing matrices constant, each algorithm was run for 60 iterations

for the random initialization case and 30 iterations after an initialization algorithm

was run for 30 iterations for the other cases. Table 3.5 shows the SDR scores over

the 160 test samples. From these results, we found that the methods adopting

ILRMA for initialization achieved better performance than those using IVA for ini-
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tialization. One possible reason could be that block permutation had occurred in

IVA. It is worth noting that the MVAE methods with random initialization obtained

more than 3 dB higher SDR improvements than when using IVA and ILRMA for

initialization. Meanwhile, though random initialization slightly outperformed ILRMA

in s.u.fMVAE c and s.i.fMVAE, there were no noticeable differences. Therefore, we

adopted random initialization in the following experiments.

Finally, we investigated how much the performance depends on the weight pa-

rameter α in the prior-weighted inference. We set α at {0, 1, 10, 50, 100, 200, 300,mean},
where “mean” indicates the data-dependent setting

α =
1

N

N∑
n

σ2
ϕ(n;S, c). (3.77)

Fig. 3.11 shows the average SDR scores over 160 test signals. We found that the

effectiveness of the prior distribution p(z) in improving the source separation per-

formance was modest in the speaker-dependent case and that the SDRs started

to decrease at α > 10, which indicates that a smaller value leads to better per-

formance for the speaker-dependent case. Moreover, the curve of fMVAE o was

entirely above the curve of fMVAE c without regard for the choice of the initializa-

tion methods, which indicates that fMVAE o is more effective in speaker-dependent

scenarios.

Table 3.6 shows scores obtained by each method with the optimal parameter

setting. By comparing supervised methods to the blind method (u.u.ILRMA), we

confirmed that an appropriately pretrained source model could lead to considerably

improved source separation performance. The MVAE methods achieved the best

scores in both the uninformed and informed categories, which significantly outper-

formed the other methods. The fMVAE method yielded an average SDR score that

was 2.8 dB lower than the original MVAE method, but about 0.75 dB higher than

the other baseline methods.
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Table 3.6: Average SDR, SIR, SAR, PESQ, and STOI scores achieved by each
method with the optimal parameter setting. The bold font indicates the best scores.

Method SDR [dB] SIR [dB] SAR [dB] PESQ STOI

u.u.ILRMA 12.36 17.77 15.29 1.83 0.8345
s.u.ILRMA 13.50 19.01 16.60 1.92 0.8367
s.u.MVAE 17.03 23.75 18.61 2.24 0.8717
s.u.fMVAE o 14.26 19.89 16.71 2.07 0.8454
s.u.fMVAE c 13.95 19.54 16.33 2.66 0.8452
s.i.ILRMA 13.30 18.60 17.02 1.91 0.8355
s.i.IDLMA 14.15 21.11 15.59 1.77 0.8692
s.i.MVAE 16.58 22.87 18.40 2.84 0.8641
s.i.fMVAE 14.93 21.00 16.98 2.73 0.8548

Table 3.7: Computational times of MVAE and fMVAE methods with random initial-
ization.

Processor Method rumtime/iteration [sec] total [sec]

GPU

s.u.MVAE 2.8147 172.5241
s.u.fMVAE o 0.0367 5.5661
s.u.fMVAE c 0.0365 5.5372

CPU
s.u.fMVAE o 0.0979 8.6823
s.u.fMVAE c 0.0969 8.7434

3.5.6 Computational time

The average computational times of the MVAE and fMVAE methods with random

initialization are summarized in Table 3.7. All the programs were run using an In-

tel (R) Core i7-7800X CPU@3.50 GHz and a TITAN V GPU with 12-GB memory.

Here, “runtime/iteration” means the computational time required to update the pa-

rameters once using the MVAE or fMVAE algorithm. The “total” time indicates the

time taken by the entire process, including the time for constructing the system

(e.g., loading the pretrained networks to a GPU), updating parameters, and per-

forming the separation. Through the comparison of the runtime at each iteration,

we found that the fMVAE algorithm was about 70 times faster than the MVAE algo-

rithm. Moreover, fMVAE was found to reduce the computational time by more than

90% even when using a CPU. These results indicate a tradeoff between the source
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Figure 3.12: Average SDR over 200 test signals achieved with various α.

separation performance and computational time: the MVAE method provides better

separation performance with high computational cost, whereas fMVAE significantly

reduces computational cost but with performance degradation.

3.5.7 Speaker-independent separation

In practical applications, the speakers in a given mixture signal are not always

included in the training dataset. In this subsection, we show the performance of

the MVAE and fMVAE methods in speaker-independent tasks and compare them

with u.u.ILRMA, which requires no prior information about the speakers.

We created datasets using utterances from the Wall Street Journal (WSJ0) cor-

pus [109]. All the utterances in WSJ0 folder si tr s (around 25 hours) were used

as the training set, which consists of 101 speakers in total. If there is a large num-

ber of utterances of a sufficiently wide variety of speakers in the training dataset,

the trained model is expected to have an ability to express spectrograms of un-

seen speakers. When a test mixture contains unseen speakers, (3.70) can be

interpreted as how similar speaker j is to the speakers in the training set, whereas

(3.71) indicates the speaker in the training set most similar to speaker j. A test set

was created by randomly mixing two different speakers selected from the WSJ0

folders si dt 05 and si et 05, where the number of speakers was 18. We gen-

erated test data using simulated RIRs with RT60 = 78 ms and RT60 = 351 ms,
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Table 3.8: Average SDR, SIR, SAR, PESQ, and STOI scores obtained with unin-
formed methods. The bold font shows the best scores.

Method SDR [dB] SIR [dB] SAR [dB] PESQ STOI

u.u.ILRMA 13.76 19.94 17.09 3.05 0.8727
s.u.MVAE 17.58 25.13 19.26 2.65 0.8934
s.u.fMVAE o 14.35 21.06 17.25 3.04 0.8746
s.u.fMVAE c 14.41 21.21 17.35 3.04 0.8776

where 100 mixture signals were generated under each reverberation condition.

The average SDRs of the datasets were about 0.60 dB and -0.78 dB, respectively.

Other experimental conditions and network architectures were the same as those

described in Subsec. 3.5.1.

As in the speaker-dependent case, we first investigated the dependence of the

separation performance on the α setting. Fig. 3.12 shows the average SDR scores

over the entire test dataset achieved with various α settings. Since the scores ob-

tained with α = 200 and α = 300 increased continuously, we additionally evaluated

the performance obtained when α = {500, 700, 1000, 1500, 2000}. The optimal α

settings were 500 for s.u.fMVAE o and 2000 for s.u.fMVAE c, respectively. This

was considerably different from the speaker-dependent case, where a smaller α

performed better. From these results, we can assume that the proposed prior-

weighted update rule was more effective under open-set conditions than under

closed-set conditions.

Table 3.8 summarizes the average SDR, SIR, SAR, PESQ, and STOI scores

obtained with each method with random initialization. The results demonstrate the

ability of the MVAE and fMVAE methods to handle speaker-independent scenarios

with an increasing variety and amount of training data. Both the MVAE and fMVAE

methods were superior to u.u.ILRMA, where s.u.MVAE achieved an improvement

of more than 3.5 dB over u.u.ILRMA. As with the speaker-dependent case, the

fMVAE methods provided less improvement than the MVAE method.
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3.6 Summary of chapter 3

In this chapter, we proposed two determined BSS methods, namely, MVAE and

MSGAN. The proposed methods incorporate DGM-based source models into the

FDICA-based BSS framework to capture the spectro-temporal structures of sources

so that the structures can be used as a clue to solve the permutation problem and

improve the source separation performance. The MVAE method uses a CVAE to

train the source model, whereas the MSGAN method uses a StarGAN to train the

source model. We made a comparison between both models. The experimental

results showed that the StarGAN source model could lead to a slight improve-

ment in terms of SDR. By considering the training difficulty of the StarGAN and

the limited improvement, we thought the CVAE source model was preferable. Both

MVAE and MSGAN are noteworthy in that the log-likelihood of signals are guar-

anteed to be non-decreasing at each iteration. However, the computational cost

and time are high. We proposed a fast parameter optimization algorithm for the

MVAE method, called FastMVAE, which uses ACVAE for training the CVAE source

model. With the trained auxiliary classifier and encoder, we are allowed to search

for the parameters that approximately maximizes the posterior. FastMVAE has

been shown to significantly reduce computational time by more than 90% com-

pared with the original MVAE method. The experimental evaluation showed that

the MVAE method and FastMVAE method could handle both speaker-dependent

and speaker-independent scenarios, which outperformed conventional methods.



Chapter 4

Directional speech enhancement

using geometry information

4.1 Introduction

In this chapter, we consider using the geometry of microphone arrays as prior in-

formation to guide the demixing matrices estimated by BSS methods. Although

ILRMA has shown to outperform IVA in terms of source separation performance,

IVA, especially AuxIVA, has still attracted much attention and been widely studied

due to the fast and stable optimization algorithm and its online extension [110–112].

However, when considering practical applications of speech enhancement, an ad-

ditional process is necessary for selecting the target speech after the separation,

which is typically performed by utilizing the spatial information, i.e., DOA of the

target. Moreover, it is reported that block permutation problem occurs between the

low- and high-frequency bands in IVA, which results in the degradation of the per-

formance [113] though IVA is theoretically able to solve the permutation problem.

One promising approach to eliminate the block permutation is exploiting spatial in-

formation to guide the demixing matrices W. For example, [114] derives IVA in a

maximum a posterior (MAP) fashion so that a spatially informed prior of demixing

matrices can be incorporated into the optimization. Another well-known framework

is the geometrically constrained BSS [11–13, 115, 116]. In [13], a penalty term re-

stricting the Euclidean angle between the separation filter and the far-field steering

70
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vector calculated from the desired source DOA is combined with IVA to force the

desired signal always being output at the corresponding channel. However, there

are two drawbacks to prevent this method from a wide adoption to real applica-

tions. Firstly, a relatively large number of microphones are needed to meet the

constraints of forming a sharp beam. Secondly, we must carefully tune the step-

size parameter of the gradient-based algorithm to make the system work under

different real use cases.

To address these problems, we propose a novel geometrically constrained IVA

(GCIVA) method that combines linear constraints that restrict far-field responses of

demixing filters with IVA. We derive a convergence-guaranteed optimization algo-

rithm based on the auxiliary function approach, and vectorwise coordinate descent

(VCD) [14], which we call “GCAV (geometrically constrained auxiliary function with

VCD)-IVA”, to preserve the advantages from the auxiliary function approach of fast

convergence and no step-size tuning. Although the proposed GCAV-IVA is an ex-

tension of a determined method that improves the source separation performance

for determined situations, since the geometric constraints can be well-designed as

a BM [117], which works as a noise estimator, GCAV-IVA can be easily extended

to handle underdetermined situations by applying noise suppression as done in

the GSC [118]. Moreover, thanks to the constraints, GCAV-IVA works well even

though diffuse noise exists, which relaxes the strict restriction of the determined

case. From this point of view, we consider the proposed GCAV-IVA as an underde-

termined method. We also extend the proposed GCAV-IVA to an online algorithm

for those applications where real-time processing is necessary.

4.2 Geometrically constrained IVA using auxiliary func-

tion approach

4.2.1 Problem formulation

IVA assumes that sources follow a multivariate distribution and thus dependen-

cies over frequency components can be exploited to avoid the permutation prob-
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lem. The demixing matricesW are estimated by minimizing the following objective

function

LIVA(W) =
∑
j

E[G(yj)]−
∑
f

log | detW(f)|. (4.1)

Here, yj is the source-wise vector representation and G(yj) is the contrast function.

Now, let us consider a geometric constraint [11] that restricts the far-field response

of the jth demixing filter estimated by IVA at the direction ϑ, which is described as

Lgc(W) =
∑
j

λj
∑
f

|wH
j (f)dj(f, ϑ)− qj|2. (4.2)

Here, dj(f, ϑ) is the steering vector pointing to the direction ϑ, qj is the nonnegative-

valued constant for all frequency bins, and λj ≥ 0 is a parameter weighing the

importance of the constraint. This concept is used in the linearly constrained min-

imum variance (LCMV) beamformer [119]. Note that (4.2) with qj = 1 forces the

spatial filter to form a conventional delay-and-sum beamformer steering at the di-

rection ϑ to preserve the target source while a small value of qj essentially creates

a spatial null towards the target direction ϑ aiming at suppressing the target source

and preserving all other sources. The null constraint on the target direction can

serve as a BM [117], so that the corresponding channel can produce good esti-

mate of interference and noise. Such estimate would have potential benefit of bet-

ter handling under/overdetermined cases compared to traditional BSS methods.

The objective function of the proposed GCIVA is summarized as

LGCIVA(W) = LIVA(W) + Lgc(W). (4.3)

4.2.2 Inference algorithm based on auxiliary function approach

In this section, we derive an iterative algorithm for parameter estimation of (4.3)

with the auxiliary function approach [25]. Since the geometric constraints are lin-

ear, we can simply obtain the auxiliary function that upper-bounds (4.3) by com-
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bining the original AuxIVA’s auxiliary function (2.54) with these linear constraints:

L+
GCIVA(W ,Q) c

=
∑
j

∑
f

{1

2
wH
j (f)Qj(f)wj(f)− log | detW(f)|

}
+ Lgc(W), (4.4)

where Qj(f) is the weighted covariances expressed as

Qj(f) = E
[G′

R(rj)

rj
x(f)xH(f)

]
. (4.5)

The update rule for Q = {Qj(f)}j,f is obtained straightforwardly by applying

(4.5). Here, we consider the source model with

GR(rj) = rj. (4.6)

Then, we focus on deriving the update rule for W. The indices of f and ϑ are

omitted hereafter for the notation simplicity. Due to the linear constraint terms,

the equation ∂L+
GCIVA(W ,Q)/∂w∗

j = 0 cannot be solved as the HEAD problem

anymore. To obtain the optimal wj of (4.4) with fixed Q, inspired by the VCD

method [14], we embrace the idea of arranging the term log | detW| by using the

property of cofactor expansion

B = [b1, . . . , bJ ]
def
=(detW)W−1, (4.7)

where bj is the jth column of the adjugate matrix of W defined as

Bpq = (−1)p+qW̃qp. (4.8)

Here, the index pq denotes the (p, q) entry of B and W̃qp is the (q, p) minor deter-

minant of W. We can then obtain

detW = wH
j bj. (4.9)
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The partial derivative of (4.4) with respect to w∗
j is calculated as

∂L+
GCIVA(W ,Q)
∂w∗

j

= Djwj −
bj

wH
j bj
− λjqjdj, (4.10)

where

Dj = Qj + λjdjd
H
j . (4.11)

From ∂L+
GCIVA/∂w

∗
j = 0, we have

wj = D−1
j (νjbj + λjqjdj), (4.12)

where

νj =
1

wH
j bj

. (4.13)

From (4.13), we obtain

νjw
H
j bj − 1 = 0. (4.14)

By substituting (4.12) into (4.14), we obtain

bH
jD

−1
j bj|νj|2 + λjqjd

H
jD

−1
j bjνj − 1 = 0. (4.15)

Because the first and third terms in (4.15) are real numbers, the imaginary part of

the second term must be 0 as

ℑ[λjqjdH
jD

−1
j bjνj] = 0. (4.16)

Since νj ̸= 0, we can obtain

νj = γj(λjqjd
H
jD

−1
j bj)

∗ = γjλjqjb
HD−1

j dj (4.17)
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or

λjqjd
H
jD

−1
j bj = 0, (4.18)

where γj ∈ R\{0} is a scale parameter. If (4.17) holds, we obtain a quadratic

equation with respect to γj from (4.15) as

λ2jq
2
jb

H
jD

−1
j bj|bH

jD
−1
j dj|2γ2j + λ2jq

2
j |bH

jD
−1
j dj|2γj − 1 = 0. (4.19)

By substituting the solution of γj of (4.19) into (4.17), we have the solution of νj as

νj =
λjqjb

H
jD

−1
j dj

2bH
jD

−1
j bj

−1±
√√√√1 +

4bH
jD

−1
j bj

λ2jq
2
j |b

H
jD

−1
j dj|2

 . (4.20)

Here, we should take the positive solution based on the appendix in [14]. If (4.18)

holds, the solution of (4.15) becomes

νj =
eiϕj√

bH
jD

−1
j bj

, (4.21)

where i denotes the imaginary unit and ϕj ∈ (−π, π] denotes an arbitrary phase.

Note that ϕj does not change the value of L+
GCIVA. Therefore, we set ϕj at

ϕj = ∠(detWj)
∗

| detWj|
. (4.22)

From (4.12), (4.20), (4.21), and the relationship bj = (detWj)W
−1
j ej, the update

rules of wj are obtain as

uj = D−1
j W−1ej, (4.23)

ûj = λjqjD
−1
j dj, (4.24)

hj = uH
jDjuj, (4.25)

ĥj = uH
jDjûj, (4.26)
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Algorithm 3 Offline GCAV-IVA Algorithm
Require: Observed mixture signal x(f, n), iteration number L

Initialize W(f) with identity marix.
for ℓ = 1 to L do

for each source j of J do
yj(f, n) = wH

j (f)x(f, n)
for f = 1 to F do

(updating auxiliary variables)
update Qj(f) using (4.5)
(updating demixing matrices)
calculate Dj(f) using (4.11)
update wj(f) using the IP method (4.23)−−(4.27)

end for
end for

end for

wj =


1√
hj
uj + ûj (if ĥj = 0),

ĥj
2hj

[
− 1 +

√
1 +

4hj

|ĥj |2

]
uj + ûj (otherwise).

(4.27)

Here, ej is the jth column of the J × J identity matrix. Therefore, the parameter

optimization algorithm of GCAV-IVA is summarized in Algorithm 3, which consists

of updating the auxiliary variable Qj(f) with (4.5), calculating Dj(f) with (4.11),

and updating W(f) with (4.23)–(4.27). We can simply confirm that these update

rules are equivalent to those employed in AuxIVA when λj = 0 for all j. There-

fore, GCAV-IVA can be interpreted as an geometrically constrained extension of

AuxIVA. It is noteworthy that the algorithm takes benefits of the auxiliary function

approach, namely, no step-size tuning, fast convergence, and is guaranteed to de-

crease monotonically. Moreover, the algorithm having similar updating procedures

with AuxIVA allows us to adopt autoregressive estimation [111] to develop online

systems, which is indispensable in real-time and low-latency applications.
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4.3 An extension for online applications

In the GCAV-IVA described above, which is an offline algorithm, only (4.5) requires

all the observed samples over time n = 1, . . . , N ,

Qj(f) =
1

N

∑
n

[G′
R(rj(n))

rj(n)
x(f, n)xH(f, n)

]
. (4.28)

Hence, this equation is the point of formulation for the online algorithm. One simple

way is to calculate Qj(f) in a blockwise manner by using

Qj(f, n) =
1

L

n∑
τ=n−L+1

[G′
R(rj(τ))

rj(τ)
x(f, τ)xH(f, τ)

]
, (4.29)

where Qj(f, n) denotes the calculated Qj(f) at frame n, L denotes the block size,

and rj(τ) is calculated by replacing wj(f) with wj(f, τ) in (2.56)

rj(τ) = ||yj(τ)||2 =
√∑

f

|wH
j (f, τ)x(f, τ)|. (4.30)

If we directly employ (4.29) to obtain sufficient statistics Qj(f, n), the past obser-

vation with relatively large L needs to be retained and the summation must be

calculated at every new frame arrives, which is highly cost-consuming. On the

other hand, if we set a small value to L for reducing the complexity, the insufficient

statistics may lead to severe performance degradation.

To reduce computational cost and properly compute the statistics, we propose

applying autoregressive calculation of Qj(f, n) as done in the online AuxIVA [111]

that uses the previously calculated Qj(f, n− L) as follows:

Qj(f, n) = κQj(f, n− L) + (1− κ)
1

L

n∑
τ=n−L+1

[G′
R(rj(τ))

rj(τ)
x(f, τ)xH(f, τ)

]
. (4.31)

Here, 0 ≤ κ < 1 is a forgetting factor, which controls how much statistics of past

signals is considered. Sufficient statistics can then be computed with a small value

of L. Note that (4.31) reduces to (4.29) when κ = 0. Since a longer interval of past

samples is considered through the recursion, it is expected that this approximation
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Algorithm 4 Online GCAV-IVA Algorithm
Require: Observed mixture signal x(f, n), iteration number L , forgetting factor κ,

block size L.
Initialize W(f, n) with identity marix.
Initialize Qj(f, 0).
for n = 1 to N do

for ℓ = 1 to L do
for each source j of J do
yj(f, n) = wH

j (f)x(f, n)
for f = 1 to F do

(updating auxiliary variables)
update Qj(f, n) using (4.31)
(updating demixing matrices)
calculate Dj(f, n) using (4.11)
update wj(f, n) using the IP method (4.23)−−(4.27)

end for
end for

end for
end for

can improve separation performance in the fixed source situation with a large κ.

In contrast, separation performance in moving source situation is expected to im-

prove with a small κ, where any change in source positions can be reflected quickly

via the blockwise term. The proposed online algorithm, called “online GCAV-IVA”

(oGCAV-IVA), is a natural extension of the offline algorithm and the implementation

can be very simple. However, note that the theoretical correctness of the approxi-

mation has not been guaranteed. Algorithm 4 summarizes the algorithm.

4.4 Experimental evaluations

To evaluate the effectiveness of the proposed method, we conducted several speech

enhancement experiments with a dual-microphone system.

4.4.1 Systems for a dual-microphone case

To develop a dual-mirophone system, we take the following conditions into consid-

eration:
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Figure 4.1: A dual-microphone system.

• The correct DOA of the target speaker ϑt is known;

• Null constraints are employed, i.e., qj = 0 or close to zero. It is a practical

choice since only two microphones are available.

Fig. 4.1 shows an overview of the dual-microphone system. Under the conditions

above, we always apply a null constraint to the interference channel, where the null

is formed toward the target speaker direction. For the target channel, we evaluate

three options in the next section.

1. No constraint.

2. Null constraint at the interference direction from the oracle in 2-speaker case

or at a dummy interference direction in 1-speaker case. This option is only

for reference purpose.

3. Null constraint at the interference direction estimated by a separate AuxIVA

system.

The motivation of third option is that, as demonstrated later, we find that the con-

straining both channels can lead to a higher enhancement performance. In this

option, the interference DOA is obtained from a separate AuxIVA system. Since a

BSS system can be interpreted as a set of adaptive null-beamformers [120], the

directional nulls, which can be identified from the directivity patterns, usually point
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Figure 4.2: Example of directivity pattern of demixing filter estimated with AuxIVA,
where a null steering to about 40◦ exists. This filter suppresses the signal coming
from about 40◦.

out the directions where the sources come from [12, 121, 122]. Fig. 4.2 shows

an example of the directivity pattern of the demixing filter achieved by AuxIVA. We

can see that there exists a null steering to about 40◦, which suppresses the signal

coming from that direction. Hence, we can consider that there exists a signal at

about 40◦.

In the system, the DOA of the jth output sources is given as

ϑ̂j = argmin
ϑ

F/2∑
f

|wH
j (f)d(f, ϑ)|. (4.32)

The interference DOA ϑ̂i can then be obtained by selecting the one far away from

the target DOA ϑt:

ϑ̂i = argmax
ϑ̂j

[
|ϑ̂j − ϑt|

]
, j = 1, 2 (4.33)
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Figure 4.3: Configurations of sources and microphones, where “×” and “△” denote
source positions used for 2-speaker and 1-speaker case, respectively. Red “×”
denotes the target.

4.4.2 Dataset and settings for offline speech enhancement

We used speech samples of 4 speakers (2 females and 2 males) excerpted from

VCC2018 database [98], which included 81 sentences for each speaker. The audio

files were about 3-7 seconds long. The mixture signals were created by simulating

two-channel recordings of two sources where the RIRs were synthesized using the

image method [99]. Fig. 4.3 shows the positions of the sources and microphones.

The interval of microphones was set at 5 cm. 2 DOA settings were investigated in

the 2-speaker case, and 3 settings were investigated in the 1-speaker case. We

tested two different reverberant conditions where RT60 was about 200 ms and 470

ms, which were controlled by setting the reflection coefficient of the walls at 0.4

and 0.8. To simulate the more realistic acoustic environment, 4 types of diffuse

noise excerpted from DEMAND database [123], including park, office, cafeteria,

and metro, were added to reverberant speech signals. We generated 1920 and

960 test samples for the 2-speaker and 1-speaker cases with various target-to-

interference energy ratios and speech-to-noise energy ratios. The SNRs of the

test samples in the 2-speaker case and 1-speaker case were between [-2, 6] dB

and [0, 6] dB, respectively.

All the speech signals were sampled at 16 kHz. The STFT was computed

using a Hanning window whose length was set at 32 ms, and the window shift
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Table 4.1: Summary of tested GCAV-IVA systems.

System # ϑi q1 q2 λ1 λ2

(1) No constraint —
(2)

Known
0 0

2 10
(3) 0.5 0.2
(4)

Estimated by AuxIVA
0 0

(5) 0.5 0.2

was 16 ms. We compared the minimum power distortionless response (MPDR)

beamformer [124] calculated with the far-field steering vectors, the AuxIVA using

GR(rj(n)) = rj(n), and the GCAV-IVA method with various constraints. The specific

settings of the tested systems are summarized in Table 4.1. For MPDR and GCAV-

IVA, we evaluated the output from the target channel, whereas for AuxIVA, we

evaluated outputs from all the channels and took the best score as the result.

4.4.3 Offline speech enhancement

First we investigated the potential of the standard AuxIVA as a DOA estimator. The

AuxIVA had 3 update iterations and the DOA range was set at [0°, 180°] with an

interval of 5°. Fig. 4.4 shows the estimation results in a histogram format, which

were calculated from the 2-speaker dataset. It is revealed that more than 60% of

the estimated directions is located in the range of±20° against the true DOA. In the

next subsection, we will demonstrate the benefit of the DOA estimation in speech

enhancement experiments.

Table 4.2 and Table 4.3 summarize the speech enhancement results. The pro-

posed GCAV-IVA method exceeded the conventional MPDR in terms of all criteria

and achieved higher scores than AuxIVA in terms of SDRs and SIRs, which con-

firmed the advantage of the geometric constraints. Comparing the results achieved

by system (1) with other systems, we found that constraining two channels led to

higher enhancement performances, even in the situation where any interference

speaker doesn’t exist, i.e., 1-speaker case. The results also indicate that carefully

tuned qj was able to produce slightly higher SDR and SIR scores. Interestingly, the

system exploiting interference DOA estimation outperformed the one using true
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Figure 4.4: DOA estimation results achieved by performing AuxIVA update for 3
times under reverberant conditions where RT60 = 200 ms (upper) and RT60 = 470
ms (bottom). Red lines show true DOAs. Blue and green graphs are estimated
DOA histograms for two directions.

Table 4.2: SDR, SIR, and SAR of 2-speaker case.

Method
RT60 = 200 ms RT60 = 470 ms

SDR [dB] SIR [dB] SAR [dB] SDR [dB] SIR [dB] SAR [dB]

unproc 1.46 1.61 23.02 0.78 1.47 12.11
MPDR 3.82 4.89 12.30 3.55 5.33 9.95
AuxIVA 7.12 8.98 14.05 4.96 7.42 10.51
GCAV-IVA(1) 8.42 11.19 13.33 6.47 10.33 9.86
GCAV-IVA(2) 8.71 11.50 13.53 6.51 10.34 9.89
GCAV-IVA(3) 8.75 11.62 13.49 6.55 10.50 9.84
GCAV-IVA(4) 8.72 11.52 13.52 6.53 10.36 9.93
GCAV-IVA(5) 8.80 11.69 13.51 6.57 10.50 9.88

DOAs. One possible reason is that, since the DOA estimate coming from the

AuxIVA points out the direction including the most statistically independent compo-

nents, suppressing that direction can result in a higher SIR.
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Table 4.3: SDR, SIR, and SAR of 1-speaker case.

Method
RT60 = 200 ms RT60 = 470 ms

SDR [dB] SIR [dB] SAR [dB] SDR [dB] SIR [dB] SAR [dB]

unproc 3.03 3.37 21.61 2.14 3.06 12.48
MPDR 1.29 2.79 9.50 2.14 4.03 8.98
AuxIVA 6.04 8.00 13.12 4.07 6.65 10.04
GCAV-IVA(1) 7.00 10.20 11.73 5.47 10.20 8.76
GCAV-IVA(2) 7.37 10.33 12.23 5.60 10.30 8.90
GCAV-IVA(3) 7.32 10.40 12.20 5.55 10.36 8.75
GCAV-IVA(4) 7.39 10.27 12.37 5.71 10.41 9.03
GCAV-IVA(5) 7.43 10.41 12.31 5.73 10.56 8.93

Figure 4.5: Configurations of microphones and a pair of fixed sources, where red
and blue marks denote target and interference positions, respectively

4.4.4 Dataset and settings for online speech enhancement

To evaluate the effectiveness of the proposed online GCAV-IVA method in the dual-

microphone system, we conducted speech enhancement experiments in two situa-

tions: 2 spatially fixed sources and 1 fixed target source with 1 moving interference

source.

We used speech samples of 4 speakers (2 females and 2 males) excerpted

from VCC2018 database [98]. Clean signals for the simulation were generated

by concatenating utterances spoken by a single speaker in random order, whose

length was about 30 seconds long. For 2 spatially fixed sources, the mixture sig-
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Figure 4.6: Configurations of sources and microphones. Red mark and blue line
denote fixed target source and the trace of moving interference, respectively.

Table 4.4: Summary of tested online GCAV-IVA systems.

System # ϑi q1 q2 λ1 λ2

(a) No constraint —
(b) Known 0.5 0.2 1 1
(c) Estimated by AuxIVA 0.5 0.2 1 1

nals were created by simulating two-channel recordings of two sources where RIRs

were synthesized using the image method [99]. Fig. 4.5 shows the positions of mi-

crophones and a pair of sources. The interval of microphones was set at 5 cm.

We tested 5 pairs of DOA settings involving (30◦, 110◦), (70◦, 100◦), (150◦, 60◦),

(40◦, 90◦), (90◦, 150◦), where the former and latter angles are target and inter-

ference positions, respectively. For the spatially nonstationary situation, we first

generated reverberant signals of moving interference sources using “signal gener-

ator” 1. Then we mixed the generated signals with the reverberant target signals. 4

positions of the target signal were tested, namely, 30◦, 90◦, 140◦, and 150◦. More

configuration details are available in Fig. 4.6. We tested two different reverberant

1https://www.audiolabs-erlangen.de/fau/professor/habets/software/signal-generator
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conditions. To meet the instantaneous mixing model assumption, RT60 were set

at 78 ms and 200 ms, which were controlled by setting the reflection coefficient of

the walls at 0.2 and 0.4, respectively. To simulate the realistic background noise,

4 types of diffuse noise excerpted from DEMAND database [123], including park,

office, cafeteria, and metro, were also added to reverberant speech signals to gen-

erate “noisy” datasets. We refer to the dataset without/with diffuse noise as “S+I”

and “S+I+N”, respectively. The energy ratio of target-to-interference was set at 0

dB and the input SDR of noisy speech was about [-3, 0] dB.

All the speech signals were sampled at 16 kHz. The STFT was computed using

a Hanning window whose length was set at 32 ms, and the window shift was 16 ms.

We compared the proposed online GCAV-IVA (oGCAV-IVA) method using L = 1

with online AuxIVA (oAuxIVA) that also adopts (4.31) with L = 1. We run these two

algorithms for 5 iterations with the first 5 frames to initialize demixing matrices. To

update demixing matrices every frame, we run the algorithms for 2 iterations. The

forgetting factor κ was set at 0.96 for both oAuxIVA and oGCAV-IVA. Similarly, we

considered three options for the target channel, where we refer them as to system

(a), (b), and (c). Table 4.4 shows the experimantal settings of qj and λj for each

system. λj was set at 1 for both channels or only the interference channel in the

system (a). We set qj at 0.5 for the target channel and 0.2 for the interference

channel. For DOA estimation, the range was set at [0◦, 180◦] with an interval of

5◦. For each concatenated utterance, we evaluated signals every second, then

computed the average scores over 30 seconds as the results. For GCAV-IVA, we

evaluated the output from the target channel, whereas for AuxIVA, we evaluated

outputs from all the channels and took the best score as a result.

4.4.5 Online speech enhancement

Table 4.5 shows speech enhancement results. The proposed algorithm signifi-

cantly outperformed oAuxIVA without regard to diffuse noise. Comparing with the

GCAV-IVA system using true DOA of the interference, system (c) that adopts DOA

estimation achieved a further improvement of more than 4 dB, which was impres-

sive. One possible reason is that, since the DOA estimate coming from the sep-
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Table 4.5: SDR, SIR, SAR scores obtained in spatially stationary condition.

Method
S+I S+I+N

SDR [dB] SIR [dB] SAR [dB] SDR [dB] SIR [dB] SAR [dB]

oAuxIVA 8.37 12.57 12.06 1.70 4.06 8.81
oGCAV-IVA (a) 11.77 15.72 14.51 6.07 8.48 12.06
oGCAV-IVA (b) 10.03 12.50 14.96 4.29 5.81 12.86
oGCAV-IVA (c) 14.19 18.40 16.73 6.86 9.18 13.60

Table 4.6: SDR, SIR, SAR scores obtained in spatially non-stationary condition.

Method
S+I S+I+N

SDR [dB] SIR [dB] SAR [dB] SDR [dB] SIR [dB] SAR [dB]

oAuxIVA 3.77 6.51 9.34 0.12 1.96 8.13
oGCAV-IVA (a) 6.83 9.21 11.66 3.51 5.33 10.50
oGCAV-IVA (c) 5.36 6.90 12.33 3.05 4.42 11.41

Figure 4.7: Examples of estimated DOA for moving source.

arate AuxIVA points out the direction involving the most statistically independent

components, suppressing that direction can result in a higher SIR. Moreover, we

found the proposed method was also able to improve the performance in the “noisy”

situation, where the determined condition did not hold. oAuxIVA almost failed to

enhance the speech with only achieving SDR score of 1.7 dB, whereas the pro-

posed method exploiting geometric information still achieved SDR score of about

6.8 dB.

Table 4.6 shows the results of enhancing signals against moving sources. As
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with the fixed source case, the proposed method outperformed oAuxIVA, where

oGCAV-IVA achieved more than 1.5 dB and 2.9 dB improvement in the situation

without/with diffuse noise, respectively. These results confirmed the effectiveness

of geometric constraints in improving speech enhancement performance. The sys-

tem adopting no constraint outperformed the one using DOA estimation in terms

of SDR and SIR, which was different from the fixed source case. One possible

reason is the accuracy of DOA estimation.

The trace of the moving source was designed to move with a uniform speed

from 120◦ to about 80◦, which was controlled by setting the positions of the start

and endpoint, as shown in Fig. 4.6. Fig. 4.7 shows examples of the estimated in-

terference DOA. The left figure shows an example of successful interference DOA

estimation by oAuxIVA, while an example of failure cases can be seen in the right

figure. In situations where oAuxIVA fails to estimate the interference DOA, the

inappropriate constraint may degrade the performance.

All the experiments were run using an Intel (R) Core i7-7800X CPU@3.5 GHz.

The measured average computational time was less than 16 ms, which was the

length of window shift, namely, about 5 ms for the system (a) and (b), and about 15

ms for the system (c). These results indicated that the proposed algorithm could

work in a real-time manner.

4.5 Summary of chapter 4

In this chapter, we proposed a GCIVA method, which combines IVA with a set of

linear constraints restricting the far-field response of the demixing filter. We de-

rived a convergence-guaranteed algorithm with the auxiliary function approach,

which is called GCAV-IVA. We further extended the offline method to an online ver-

sion by using an autoregressive estimation. We investigated the proposed offline

and online algorithms using a dual-microphone system, where the DOA of tar-

get was known and that of interference was estimated using a separated AuxIVA.

The experimental results revealed that the offline algorithm outperformed the con-

ventional MPDR beamformer and AuxIVA, and the online algorithm outperformed

online AuxIVA in both spatially static and dynamic conditions. Furthermore, the
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online algorithm could perform in real-time, which confirmed the computational

complexity of the proposed method was acceptable for online applications.



Chapter 5

Single-channel source separation

based on discriminative

nonnegative matrix factorization

5.1 Introduction

In this chapter, we consider supervised single-channel source separation, which is

the most achievable condition in realistic environments since only one microphone

is needed. With an NMF-based approach to supervised source separation, NMF is

first applied to train the basis spectra of each source using training examples and

is applied to the spectrogram of a mixture signal using the pretrained basis spectra

at test time. The source signals are then separated out using a Wiener filter. A

typical way to train the basis spectra is to minimize a dissimilarity measurement

between the observed spectrogram and the NMF model. However, obtaining the

basis spectra in this way does not ensure that the separated signal will be optimal

at test time due to the inconsistency between the objective functions for training

and separation, namely Wiener filtering.

To address this inconsistency, a framework called DNMF has been recently

proposed [19]. While many methods called “discriminative NMF” [20,35,125–128],

have been proposed with the aim of enhancing the discriminative power of the

basis spectra, in this work, we use this term in relation to the work done in [19].

90
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Note that the term “discriminative” is used in association with the discriminative

models for classification and regression. The central idea of DNMF is that the

basis spectra are trained in such a way that the output of the Wiener filter becomes

as close to the spectrogram of each of the training examples as possible so that

the separated signals become optimal at test time. This approach differs from the

conventional supervised NMF framework in that it uses the training examples of all

the sources to train the basis spectra for each of the sources. This is important

since it helps to enhance the discriminative power of the basis spectra. However,

the training criterion for DNMF becomes analytically more complex than the typical

divergence measurements used in the standard NMF framework, which causes

difficulty as regards optimization of the basis spectra. In the original work of DNMF,

a multiplicative update algorithm was proposed, where the multiplicative factor is

obtained by dividing the negative parts by the positive parts of the partial derivative

of the objective function. Although this way of obtaining the update rules is indeed

convenient in that it is applicable as long as an objective function is differentiable,

one drawback is that the algorithm is generally not guaranteed to converge to a

stationary point, which may limit the unleashing of the full potential of DNMF.

To overcome this weakness, in this chapter, we propose an auxiliary function-

based algorithm for DNMF. We briefly review the formulation of DNMF in Sec. 5.2.

Then, we derive the proposed algorithm in Sec. 5.3. We show in Sec. 5.4 that

using the present basis training algorithm instead of the conventional MU algorithm

leads to a notable improvement in speech enhancement performance. Sec. 5.5

conclude this chapter.

5.2 DNMF with multiplicative update algorithm

5.2.1 Formulation of DNMF

If we assume using the Wiener filter to obtain source signals, the training and test

objectives become inconsistent. Namely, the basis spectra are not necessarily

trained in such a way that the separated signals at test time will be optimal. With

the standard supervised NMF approach, at test time, the basis matrix B̃ is used not
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Figure 5.1: Flowchart of DNMF in 2 sources case.

only for estimating H from the mixture signal X but also for constructing the Wiener

filter in (2.39). To make the training objective consistent with this test inference

procedure, Weninger [19] proposed introducing two separate basis matrices for

these different purposes, B and R, and formulating a bilevel optimization problem

(B̃j, H̃j) = argmin
Bj ,Hj

Dβ(Sj|BjHj) + λsparse||Hj||p, (5.1)

Ĥ = argmin
H

Dβ(M|B̃H) + λsparse||H||p, (5.2)

R̃ = argmin
R

∑
j

λjDjβ
(
Sj

∣∣∣∣RjĤj

RĤ
◦M

)
, (5.3)

for training B and R so that B will be optimized for estimating H from X and R will

be optimized for obtaining Y1, . . . ,YJ based on the Wiener filtering. Here, λj ≥ 0 is

a constant that weighs the importance of source j. M = {|m(f, n)|2}f,n ∈ R≥0,F×N

denotes the power spectrogram of a mixture signal, which is simply constructed by

mixing complex-valued spectrograms of multiple training samples S1, . . . ,SJ . M

and Sj denote the magnitude spectrograms
√
M and

√
Sj, respectively. When our

goal is to reconstruct a single source j only, we shall set λj at 1 and 0 for other

sources j′ ̸= j. Fig. 5.1 illustrates the training and test processes of DNMF using 2

sources. Spectral templates in B are usually normalized to 1 as the standard NMF

does to eliminate the scale arbitrary when estimating the activation matrix while
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those in R do not need normalization. Note that the setting of β used in (5.2) and

(5.3) are not necessary to be the same as long as those used in training and test

time are the same. It has reported that best results were obtained by using KL

divergence for (5.2) and EU distance for (5.3) [19]. This might be due to the KL

divergence being better suited to decomposing mixtures.

The test inference algorithm for the DNMF approach consists of computing Ĥ

by solving (5.2) with the pretrained basis matrix B̃ and observed mixture signal X,

constructing Wiener filter using R̃ and Ĥ,

Ŝj =
R̃jĤj

R̃Ĥ
◦X, (5.4)

and performing iSTFT for each source j. Note that the test inference algorithm for

the standard NMF approach corresponds to a special case where B̃ = R̃.

5.2.2 MU algorithms for DNMF

It is obvious that the training criterion for DNMF is more analytically complex than

the objective function of standard NMF. In [19], Weninger proposed a two-stage

iterative algorithm for solving the above optimization problem: First, B and H are

obtained by solving (5.1) and (5.2) using a standard NMF algorithm; Second, by

using the obtained Ĥ, the basis matrix R is iteratively updated according to multi-

plicative update rules. Here, we set λj = 1 and λj′:j′ ̸=j = 0 for speech enhancement

tasks and define Υ =
∑

j RjĤj, Υj = RjĤj, Υj = Υ−Υj, and Ŝj =
Υj

Υ
◦M.

For the KL divergence case, the objective function for each source j in (5.3)

becomes

DjKL(Sj|Ŝj) =
∑
f,n

sj(f, n) log
sj(f, n)

m(f, n)
Υj(f,n)

Υ(f,n)

+ m(f, n)
Υj(f, n)

Υ(f, n)
− sj(f, n). (5.5)

Here, Gotham font denotes elements of magnitude spectrograms. Namely, sj(f, n) =

|sj(f, n)| and m(f, n) = |m(f, n)|. The partial derivative of (5.5) with respect to the
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f th element of the kth basis function of the desired source, rj,k(f), is

∂DjKL

∂rj,k(f)
=

∑
n

sj(f, n)
( ĥj,k(n)

Υ(f, n)
− ĥj,k(n)

Υj(f, n)

)
+ m(f, n)

ĥj,k(n)Υ(f, n)−Υj(f, n)ĥj,k(n)

Υ2(f, n)

=
∑
n

−
sj(f, n)Υj(f, n)

Υ(f, n)Υj(f, n)
ĥj,k(n) +

m(f, n)Υj(f, n)

Υ2(f, n)
ĥj,k(n), (5.6)

where the second quality is used by defining Υj(f, n) = Υ(f, n)−Υj(f, n). Similarly,

we obtain the partial derivative with respect to the rj′,k(f) for any j′ ̸= j as

∂DjKL

∂rj′,k(f)
=

∑
n

sj(f, n)

Υ(f, n)
ĥj′,k(n)−

m(f, n)Υj(f, n)

Υ2(f, n)
ĥj′,k(n). (5.7)

Since all matrix elements are nonnegative, the multiplicative update rules can be

derived by splitting (5.6) and (5.7) into positive and negative parts, as done in the

standard NMF [23]:

Rj ← Rj ◦
Sj◦Υj

Υ◦Υj
Ĥj

T

M◦Υj

Υ2 Ĥj
T
, (5.8)

Rj ← Rj ◦
M◦Υj

Υ2 Ĥj
T

Sj
Υ
Ĥj

T
, (5.9)

where Rj = [R1, · · · ,Rj−1,Rj+1, · · · ,RJ ], namely, the basis spectra of all sources

excep j, and Ĥj is defined accordingly.

For the EU distance, the partial derivative of DjEU leads to

Rj ← Rj ◦
M◦Sj◦Υj

Υ2 Ĥj
T

M2◦Υj◦Υj

Υ3 Ĥj
T

(5.10)

Rj ← Rj ◦
M2◦Υ2

j

Υ3 Ĥj
T

M◦Sj◦Υj

Υ2 Ĥj
T

(5.11)

The general case of λj ≥ 0 for all j is a linear extension due to the linearity of

the gredient. Although this way of obtaining update rules is convenient in that it is

generally applicable as long as an objective function is differentiable, one downside

is that the algorithm is not guaranteed to converge to a stationary point.
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5.3 Auxiliary function approach for DNMF

To overcome the weakness of the conventional MU algorithm, we derive an algo-

rithm for DNMF based on the auxiliary function approach, which is convergence-

guaranteed. Here, we derive majorizers for the objective function where Dβ is

defined as the KL divergence and the IS divergence.

When using the KL divergence, the objective function in (5.3) is given by

FKL(R) =
∑
j

λjDjKL

(
S|Ŝ

)
(5.12)

c
=
∑
j

λj
∑
f,n

(
− sj,f,n logΥj,f,n + sj,f,n logΥf,n +

Υj,f,n

Υf,n

mf,n

)
.

Hereafter, we represent indices f and n as subscript for the notation simplicity.

First, let us focus on the term Υj,f,n/Υf,n. To construct an upper bound for this

term, we can use the following inequality:

Lemma 2. For a > 0 and b > 0, we have

a

b
≤ ζa2

2
+

1

2ζb2
.

The equality holds if and only if

ζ =
1

ab
.

Proof of Lemma 2. For a, b, ζ > 0,

ζ

(
a− 1

ζb

)2

= ζ

(
a2 − 2

a

ζb
+

1

ζ2b2

)
≥ 0

⇒a

b
≤ ζa2

2
+

1

2ζb2
. (5.13)

The equality holds if and only if a− 1
ζb

= 0.

Since m is nonnegative, we can construct an upper bound for the third term of
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(5.12) according to the above lemma,

FKL(R) ≤
∑
j

λj
∑
f,n

(
− sj,f,n logΥj,f,n + sj,f,n logΥf,n +

ζj,f,nmf,nΥ
2
j,f,n

2
+

mf,n

2ζj,f,nΥ2
f,n

)
.

(5.14)

The equality of (5.14) holds if and only if

ζj,f,n =
1

Υj,f,nΥf,n

. (5.15)

In the following, we construct upper bounds for each of the terms on the right-hand

side of (5.14).

We notice that the function− log x is convex. Since sj,f,n is positive,−sj,f,n logΥj,f,n

is convex in Υj,f,n. Hence, we can use Jensen’s inequality to obtain an upper bound

for this term as

− logΥj,f,n ≤ −
∑
k

γk,j,f,n log
rk,j,f ĥk,j,n
γk,j,f,n

, (5.16)

where γk,j,f,n is a positive weight that sums to unity. The equality of (5.16) holds if

and only if

γk,j,f,n =
rk,j,f ĥk,j,n∑
k′ rk′,j,f ĥk′,j,n

. (5.17)

The second term sj,f,n logΥf,n is concave in Υf,n. Hence, we can use the fact that

a tangent line to the graph of a differentiable concave function liew entirely above

the graph:

logΥf,n ≤
∑
k

rk,f ĥk,n
αf,n

+ logαf,n − 1, (5.18)

where αf,n is an arbitrary positive number. The equality of this inequality holds if

and only if

αf,n = Υf,n =
∑
k

rk,f ĥk,n. (5.19)
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Since a quadratic function is convex, we can apply Jensen’s inequality to the third

term, which yields

Υ2
j,f,n ≤

∑
k

r2k,j,f ĥ
2
k,j,n

ξk,j,f,n
, (5.20)

where ξk,j,f,n > 0 is also a positive number that satisfies
∑

k ξk,j,f,n = 1. The equality

of (5.20) holds if and only if

ξk,j,f,n =
rk,j,f ĥk,j,n∑
k′ rk′,j,f ĥk′,j,n

. (5.21)

As regards the fourth term, we can use the fact that the function 1/x2 is convex in

the first quadrant and then use Jensen’s inequality to obtain an upper bound

1

Υ2
f,n

≤
∑
k

κ3k,f,n

r2k,j,f ĥ
2
k,j,n

, (5.22)

where κk,f,n is a positive number that sums to unity. We can confirm that the

equality of this inequality holds if and only if

κk,f,n =
rk,f ĥk,n∑
k′ rk′,f ĥk′,n

. (5.23)

From (5.16), (5.18), (5.20), and (5.22), we can construct a majorizer for the objec-

tive function with KL divergence as

FKL(R) ≤
∑
j

λj
∑
k,f,n

(sj,f,nrk,f ĥk,n
αf,n

− sj,f,nγk,j,f,n log
rk,j,f ĥk,j,n
γk,j,f,n

+
ζj,f,nmf,n
2ξk,j,f,n

r2k,j,f ĥ
2
k,j,n +

mf,nκ
3
k,f,n

2ζj,f,nr2k,f ĥ
2
k,j,n

)
+ const.

=: F+
KL(R,Γ), (5.24)

where Γ denotes a set of all the auxiliary variables, {ζj,f,n}j,f,n, {γk,j,f,n}k,j,f,n,

{αf,n}f,n, {ξk,j,f,n}k,j,f,n, and {κk,f,n}k,f,n.

By using Lemma 2, Jensen’s inequality, and the concave inequality, we can

also derive a majorizer for the case of the IS divergence in a similar manner (see
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Appendix A). The majorizer is expressed as

FIS(R) =
∑
j

λjDjIS(S|Ŝ) (5.25)

c
=
∑
j

λj
∑
f,n

(sj,f,nΥf,n

mf,nΥj,f,n

− logΥf,n + logΥj,f,n

)
≤

∑
j

λj
∑
k,f,n

(sj,f,nζj,f,nr2k,f ĥ2k,n
2mf,nξj,f,n

+
sj,f,nκ

3
k,j,f,n

2mf,nζj,f,nr2k,j,f ĥk,j,n

− γk,f,n log
rk,f ĥk,n
γk,f,n

+
rk,j,f ĥk,j,n
αj,f,n

)
+ const.

=: F+
IS(R,Γ), (5.26)

where Γ denotes a set of all the auxiliary variables, {ζj,f,n}j,f,n, {γk,f,n}k,f,n, {αj,f,n}j,f,n,

{ξk,f,n}k,f,n, and {κk,j,f,n}k,j,f,n.

These majorizers are particularly noteworthy in that they can be minimized an-

alytically with respect to rk,j,f since they are given as the sum of the reciprocal,

logarithmic, first-order, and second-order functions. We can obtain the update

rules for rk,j,f by setting the partial derivatives of the above majorizers with respect

to rk,j,f at zeros. Thus, the optimal update of rk,j,f is given by the positive solution

of

λj

(∑
n

ζj,f,nmf,n
ξk,j,f,n

ĥ2k,j,n

)
r4k,j,f − λj

(∑
n

sj,f,nγk,j,f,n

)
r2k,j,f

+
(
λj

∑
n

sj,f,nĥk,j,n
αf,n

+
∑
j′:j′ ̸=j

λj′
∑
n

sj′,f,nĥk,j,n
αf,n

)
r3k,j,f

−
(
λj

∑
n

mf,nκ
3
k,f,n

ζj,f,nĥ2k,j,n
+

∑
j′:j′ ̸=j

λj′
∑
n

mf,nκ
3
k,f,n

ζj′,f,nĥk,j,n

)
= 0 (5.27)

for the KL divergence case, and

(
λj

∑
n

ζj,f,nsj,f,nĥ
2
k,j,n

mf,nξk,f,n
+

∑
j′:j′ ̸=j

λj′
∑
n

ζj′,f,nsj′,f,nĥ
2
k,j,n

mf,nξk,f,n

)
r4k,j,f

−
(
λj

∑
n

γk,f,n +
∑
j′

λj′
∑
n

γk,f,n

)
r2k,j,f
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+ λj
∑
n

ĥk,j,n
αj,f,n

r3k,j,f − λj
∑
n

sj,f,nκ
3
k,j,f,n

ζf,nmf,nĥ2k,j,n
= 0 (5.28)

for the IS divergence case. It is worth noting that since in F+
KL(R,Γ) and F+

IS(R,Γ),

each element of R is isolated in a separate term, we can update each of the el-

ements in parallel. Thus, this algorithm is well suited to parallel implementations.

Furthermore, since each of the update rules consists of a negative 0th-order term

and a negative 2nd-order term, it turns out that there is only one positive solution,

implying that there is no need to solve a solution selection problem.

F+
KL(R,Γ) is minimized with respect to the auxliary variables when the exact

bounds of Eqs. (5.14), (5.16), (5.18), (5.20), and (5.22) are achieved, namely

when Eqs. (5.15), (5.17), (5.19), (5.21), and (5.23). The proposed basis training

algorithm with the KL divergence can therefore be summarized as Algorithm 5.

The algorithm with the IS divergence can be developed in the same way. Since the

proposed algorithm is derived based on the auxiliary function approach, we call

the proposed method “AuxDNMF”.

Algorithm 5 Proposed basis training algorithm with KL divergence
Require: S1, . . . ,SJ , M

Compute B̃ and H̃ using NMF to solve (5.1) for all j.
Compute Ĥ using NMF to solve (5.2).
Initialize R by, for example, R← B̃.
Fix Ĥ.
while not converged do

Update Γ via Eqs. (5.15), (5.17), (5.19), (5.21), and (5.23).
Update R by solving (5.27).

end while
return B̃, R

5.4 Experimental evaluations

5.4.1 Dataset and settings

To evaluate the effect of the proposed algorithm, we conducted speech enhance-

ment experiments, namely j = {s, n}. For comparison, we tested (i) the stan-
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dard supervised NMF method [129] with EU distance (SNMF EU), KL divergence

(SNMF KL), and IS divergence (SNMF IS), (ii) DNMF using the MU algorithm [19]

with KL divergence (DNMF KL) and EU distance (DNMF EU), and (iii) proposed

AuxDNMF with KL divergence (AuxDNMF KL) and IS divergence (AuxDNMF IS).

Note that we have excluded DNMF IS from the baselines since it has not been

studied in [19]. Also note that the results for AuxDNMF EU are not provided. This

is because we have yet to come up with an auxiliary function with a tractable form

for the EU distance case.

We constructed the training and test datasets using speech signals excerpted

from the WSJ0 corpus [109] and noise signals excerpted from the CHiME4 back-

ground noise database [130], which includes 4 types of noise recorded in a bus,

cafe, pedestrian area, and street, respectively. The training dataset consisted of

600 utterances, each of which was created by mixing randomly selected utterances

from si tr s and noise signals with SNRs set at {−5, 0, 5}dB. We also created a

validation dataset consisting of 90 utterances in the same way. Each of the four

test datasets consisted of 100 utterances, half of which we created using speech

signals in si tr s and the other half using speech signals of different speakers in

si dt 05. The SNRs for three of the four test datasets were set at {−5, 0, 5} dB

and those for the remaining dataset were randomly set between [−10, 10] dB.

All the audio signals were monaural and downsampled to 16 kHz. STFT was

computed using a Hanning window that was 32 ms long with a 16 ms overlap. We

used the same number K of basis for speech and noise, i.e., Ks = Kn = K. In this

task, we tested K = {25, 50, 100}. For K = 100, we evaluated the effectiveness

of sparse regularization in the case of a large number of basis numbers by setting

λsparse = {0, 0.5, 1, 5, 10}. SNMF KL was run for 100 iterations. For the DNMF algo-

rithms, SNMF KL was used for initialization. For the separation, the Wiener filter

was constructed using the trained basis and activation matrices obtained using the

standard NMF that was run for 100 iterations.
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Table 5.1: Comparison of the computational times with basis number K = 50.

Method Time / Iteration [sec] Total time [sec]

SNMF EU 0.1468 62.6800
SNMF KL 0.4687 192.3910
SNMF IS 0.2820 121.4615
DNMF EU 1.3460 256.3109
DNMF KL 0.6234 236.6248
AuxDNMF KL 1.4947 434.0287
AuxDNMF IS 1.5184 437.2275

5.4.2 Convergence behaviors and computational time

We compared the convergence behaviors of the proposed algorithms, DNMF EU,

and DNMF KL within the first 500 iterations. For all the algorithms, we used the

same initialization and evaluated the SDR improvements. Two examples are shown

in Fig. 5.2. As can be seen from the example when tested on bus noise with

K = 100, DNMF EU and DNMF KL did not decrease the objective functions mono-

tonically. This indeed shows the fact that each update in the MU algorithms does

not guarantee a decrease in the objective functions. It is also worth noting that

the objective function value does not directly reflect the speech enhancement per-

formance, as shown in the experimental results when tested on street noise with

K = 50. According to the SDR results obtained with the validation dataset as well

as the setting in [19], in the following experiments, we set the iteration number at

150 for the proposed algorithms and 25 for the MU algorithms.

We compared the computational times of all the algorithms with K = 50 using

the training data of about 1 hour long. The algorithms were implemented using

MATLAB and run on an Intel Xeon Gold 5120 @2.2GHz processor. Table 5.1

shows the average computational time of updating B or R at each iteration and

that of the entire process. Note that the total time of DNMF includes the time of

computing B̃ for initialization and Ĥ. That the time complexity of the proposed algo-

rithm is O(FKNJ2), whereas that of the standard NMF and DNMF algorithms with

multiplicative update rules is O(FKNJ). Since J was 2 in the speech enhance-

ment task, it did not have a significant impact on the computation time. Rather, the
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Table 5.2: SDR obtained with K = {25, 50, 100} average over all the test datasets
(4 types noise) with 5 random initializations. The average input SDR was about
0.063 dB.

Method
Basis number K

25 50 100

SNMF EU 2.55 2.52 2.53
SNMF KL 2.42 2.38 2.44
SNMF IS 2.11 1.83 1.68
DNMF EU 2.87 2.69 2.71
DNMF KL 2.52 2.62 2.63
AuxDNMF KL 3.49 3.39 3.36
AuxDNMF IS 2.10 2.26 2.34

increase in the number of iterations in the proposed algorithm led to an increase in

the total computation time.

5.4.3 Speech enhancement performance

The speech enhancement performances were numerically evaluated in terms of

SDRs, SIRs, and SARs. Table 5.2 shows the average SDRs took over all the

test data with basis number K = {25, 50, 100}. For each noise type with different

K, we conducted 5 trials with different initializations. The average input SDR of

the test data was about 0.063 dB. As Table 5.2 shows, increasing the bases did

not always lead to an improvement in speech enhancement performance. Com-

paring the results of the standard NMF and DNMF algorithms, we found that the

latter outperformed the former. This indicates the effectiveness of the ability to

learn discriminative bases. Furthermore, the proposed algorithm performed best

among all the algorithms based on the same divergence measure. In Table 5.3,

the average SDRs, SIRs, and SARs evaluated using K = 25 with various input

SNRs are shown. These results were averaged over 4 noise types. As the results

show, AuxDNMF KL performed best among all the algorithms in terms of SDR

and SIR. Specifically, it achieved about 1.2 dB improvements over DNMF EU and

DNMF KL, and about 1.7 dB improvements over SNMF KL. This shows that the

proposed algorithm with the KL divergence criterion had a better ability to learn dis-
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Table 5.3: From top to bottom are the average SDRs, SIRs, SARs over 4 types
noise with basis number K = 25.

Method
Input SNR [dB]

-5 0 5 [-10,10] Avg

SDR [dB]

unprocessed -4.92 0.05 5.03 0.09 0.06
SNMF EU -2.01 2.69 7.07 2.48 2.55
SNMF KL -2.04 2.63 6.79 2.29 2.42
SNMF IS -2.35 2.35 6.45 2.00 2.11
DNMF EU -1.61 3.02 7.30 2.77 2.87
DNMF KL -1.99 2.73 6.94 2.41 2.52
AuxDNMF KL -0.92 3.78 7.77 3.34 3.49
AuxDNMF IS -2.35 2.19 6.52 2.04 2.10

SIR [dB]

SNMF EU -1.18 3.73 8.75 3.87 3.79
SNMF KL -1.04 3.94 8.99 4.05 3.94
SNMF IS -0.87 4.22 9.22 4.26 4.21
DNMF EU -0.41 4.49 9.51 4.61 4.55
DNMF KL -1.01 3.94 8.74 3.91 3.90
AuxDNMF KL 0.75 5.77 10.53 5.73 5.70
AuxDNMF IS -1.29 3.44 8.22 3.51 3.47

SAR [dB]

SNMF EU 10.04 11.62 13.06 11.62 11.58
SNMF KL 8.90 10.33 11.56 10.24 10.26
SNMF IS 7.11 8.77 10.48 8.83 8.80
DNMF EU 8.85 10.60 12.35 10.64 10.61
DNMF KL 9.26 10.97 12.56 10.91 10.93
AuxDNMF KL 7.88 10.00 11.99 9.94 9.95
AuxDNMF IS 8.65 10.40 12.43 10.61 10.52

criminative bases than the baseline algorithms. However, the SARs obtained with

the proposed algorithms tended to be lower than those obtained with the baseline

algorithms.

We also evaluated the effectiveness of sparse regularization. The results are

shown in Table 5.4. We found that λsparse = 0.5 achieved the best score for each

method except for AuxDNMF IS, where the best performance was obtained without

sparse regularization. AuxDNMF KL outperformed other methods regardless of

the sparse regularization.
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Table 5.4: SDR [dB] obtained with λsparse = {0, 0.5, 1, 5, 10} and K = 100 average
over all the test datasets with 5 random initializations. Bold font shows the highest
score for each method.

Method
λsparse

0 0.5 1 5 10

SNMF EU 2.53 2.66 2.64 2.37 2.14
SNMF KL 2.44 2.48 2.41 2.40 2.40
SNMF IS 1.68 1.98 1.96 1.80 1.78
DNMF EU 2.71 3.62 3.52 3.12 2.88
DNMF KL 2.63 3.78 3.77 3.77 3.77
AuxDNMF KL 3.36 3.88 3.87 3.87 3.87
AuxDNMF IS 2.34 1.99 1.93 1.71 1.65

5.5 Summary of chapter 5

DNMF is noteworthy in that it directly uses the reconstruction errors of the sepa-

rated signals as the training criterion, which eliminates the inconsistency between

the objective functions for training and separation in the conventional NMF method

and is able to increase the discriminative power of the trained basis. However,

such training criterion causes difficulty as regards optimization. In this chapter,

we derived a novel majorizer for the objective function of DNMF and successfully

developed an MM algorithm that is guaranteed to converge to a stationary point.

Experimental results showed that the proposed algorithm with the KL divergence

criterion achieved significant improvements in terms of the SDR and SIR over stan-

dard NMF and DNMF using the MU algorithm.
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Figure 5.2: Convergence behavior and corresponding SDR improvements ob-
tained with each method in street noise with K = 50 case (top) and bus noise
with basis number K = 100 case (bottom).



Chapter 6

Conclusion

6.1 Summary of thesis

In this dissertation, we addressed speech enhancement problems by separating

the target speech signal and non-target signals, which can be applied to many

speech processing systems. This problem is divided into determined and under-

determined multichannel and single-channel cases, depending on the relationship

between the numbers of microphones and sources. Moreover, depending on the

different hardware configurations and application prerequisites, more conditions

should be considered during the algorithm development. We proposed several

source separation methods, which considered each of the following conditions:

• supervised determined multichannel with high performance;

• supervised determined multichannel with a low computational cost;

• guided underdetermined multichannel;

• real-time guided underdetermined multichannel;

• supervised single-channel.

We proposed novel effective optimization algorithms based on the auxiliary func-

tion approach for all the methods so that the objective functions are guaranteed to

be non-increasing at each iteration.
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In Chapter 3, we proposed two determined multichannel source separation

methods called MVAE and MSGAN, which utilize CVAE or StarGAN to model

spectrograms of utterances of sources. These methods can be considered as

extending FDICA-based methods by incorporating DNNs into the source model

so that the source model has stronger representation power to improve the ac-

curacy of source estimation. Owing to the sequence modeling, the CVAE and

StarGAN source models can capture the spectro-temporal structures of sources.

Thanks to the conditional modeling, we are allowed to separate the speaker infor-

mation, which is time-invariant, from other speech information. The advantage of

the separation performance of these two methods was experimentally confirmed

in multi-speaker source separation tasks. Moreover, to reduce the high compu-

tational cost of the MVAE and MSGAN method, we proposed a fast optimization

algorithm called FastMVAE. Instead of estimating parameters that exactly max-

imize the log-posterior, FastMVAE utilizes an auxiliary classifier and encoder to

estimate parameters that maximize the approximate log-posterior. Although the

convergence is not guaranteed anymore in the fast algorithm with the approxima-

tion, which slightly decreased the separation performance, FastMVAE successfully

reduced the computational time of more than 90% even when using a CPU, making

it closer to practical applications.

In Chapter 4, a geometrically constrained IVA method, called GCAV-IVA, was

described. As one of the powerful FDICA-based BSS methods, IVA can simulta-

neously solve permutation problem and source separation. However, it has been

reported that block permutation occurs in IVA, and postprocessing is generally

needed for applying IVA to speech enhancement. To overcome these problems,

we proposed a GCIVA that combines LCVM-based geometric constraints with IVA,

making it possible to control the demixing filters manually. By incorporating the

constraints, GCIVA could work in a situation where there are a number of sources

equals to the number of microphones and diffuse noise. This relaxes the strict

restriction of determined conditions. Furthermore, since LCVM-based constraints

can be designed to perform as BM, which is used in GSC to suppress the esti-

mated interferences from the target channel, the proposed GCIVA has the poten-

tial to handle underdetermined situations. We further extended the algorithm to
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an online algorithm, which could perform in real-time. To evaluate the proposed

methods, we performed an experimental evaluation of speech enhancement. The

results revealed that the proposed methods could significantly improve enhance-

ment performance.

The main topic in Chapter 5 was supervised single-channel source separation,

where we proposed a parameter optimization algorithm for DNMF based on the

auxiliary function approach. Since the objective function of DNMF is analytically

complex, which is formulated as a bi-level optimization problem, an MU algorithm

has been proposed in a heuristic way, which limits the unleashing of the full po-

tential of DNMF. To address this problem, we successfully found majorizers for the

objective function of DNMF using KL divergence and IS divergence and derived

the parameter update rules. Through simulation experiments, we showed that the

proposed methods could converge fast and outperformed existing MU algorithms

in the ability to speech enhancement.

6.2 Future perspectives

We have proposed several methods to improve the performance of source sepa-

ration and reduce the computational cost and time to meet the prerequisites for

practical use in real environments, but there is still much room for improvement.

• Although DGM-based source models have shown to outperform the conven-

tional NMF model, it has been reported that the likelihood produced by a

DGM does not always coincide with the speech quality [131]. Namely, speech

with bad quality may be scored with a high likelihood. Therefore, it is neces-

sary to improve the discriminative power of the source model so that the

model not only scores the clean speech with high likelihood, but also scores

other signals, such as noise or mixture signals, with low likelihood.

• Although FastMVAE has significantly reduced the computational time, it also

leads to performance degradation, which is undesirable. One possible rea-

son may be the inadequate training, where the log-likelihood of the recon-

structed spectrograms trained with an ACVAE was lower than that trained
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with a CVAE. This indicates that the source model trained with ACVAE has

worse generative power, which subsequently decreases the log-posterior es-

timation accuracy. A more effective training approach is necessary to reduce

the computational time of the MVAE method while maintains its impressive

source separation performance.

• We have already confirmed the ability of GCAV-IVA to estimating interfer-

ences and noise. To perform it as an underdetermined situation method,

extending GCAV-IVA to a GSC framework is necessary. Moreover, although

we have investigated the performance of the offline algorithm of GCAV-IVA in

an in-car environment [C11], we have to study the online algorithm in order

to make it possible for practical applications in more realistic environments.

• In Chapter 3, we have made constraints on the source model to solve the

permutation problem, whereas, in Chapter 4, we have made constraints on

the demixing filters to eliminate the block permutation. We can expect that

methods that combine the geometric constraints with the MVAE or MSGAN

method are able to further improve the source separation performance by

taking advantage of both approaches.

• As mentioned in the first point, it is necessary to improve the discriminative

power of the source model. Another promising approach is to perform dis-

criminative training for the source model as done in the DNMF. Namely, we

can train a generative source model for estimating the underlying source sig-

nals from a mixture signal and a discriminative source model for separating.



Appendix A

Derivation of a majorizer for DNMF

with IS divergence

For DNMF with the IS divergence case, a majorizer can be derived using Lemma

2 introduced in Chapter 5, Jensen’s inequality, and the concave inequality. We

express indices f and n as subscript for the notation simplicity. The objective

function is given as

FIS(R) =
∑
j

λjDjIS(S|Ŝ) (A.1)

c
=
∑
j

λj
∑
f,n

(sj,f,nΥf,n

mf,nΥj,f,n

− logΥf,n + logΥj,f,n

)
.

First, we focus on the first term of (A.1). By using Lemma 2, we can obtain an

upper bound

FIS(R) ≤
∑
j

λj
∑
f,n

(ζj,f,nsj,f,nΥ2
f,n

2mf,n
+

sj,f,n

2ζj,f,nmf,nΥ2
j,f,n

− logΥf,n + logΥj,f,n

)
,

(A.2)

the equality of which holds if and only if

ζj,f,n =
1

Υj,f,nΥf,n

. (A.3)
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In the following, we construct upper bound for each of the terms on the right-hand

side of (A.2).

Since a quadratic function with positive coefficient is convex, we can apply

Jensen’s inequality to the first term:

Υ2
f,n ≤

∑
k

r2k,f ĥ
2
k,n

ξk,f,n
, (A.4)

where ξk,f,n is a positive number that satisfies
∑

j ξk,f,n = 1. The equality of (A.4)

holds if and only if

ξk,f,n =
rk,f ĥk,n∑
k′ rk′,f ĥk′,n

. (A.5)

For the second term, which is a function of 1/x2, we can utilize the fact that the

function in the first quadrant is convex and use Jensen’s inequality to obtain an

upper bound

1

Υ2
j,f,n

≤
∑
k

κ3k,j,f,n

r2k,j,f ĥ
2
k,j,n

, (A.6)

where κk,j,f,n is a positive number that sums to unity. We can confirm that the

equality of this inequality holds if and only if

κk,j,f,n =
rk,j,f ĥk,j,n∑
k′ rk′,j,f ĥk′,j,n

. (A.7)

Since − log x is a convex function, we can apply Jensen’s inequality to the third

term of (A.2),

− logΥf,n ≤ −
∑
k

γk,f,n log
rk,f ĥk,n
γk,f,n

, . (A.8)

Here, γk,f,n is a positive weight that sums to unity. The equality of (A.8) holds if and

only if

γk,f,n =
rk,f ĥk,n∑
k′ rk′,f ĥk′,n

. (A.9)
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For the fourth term log x, we utilize a tengent line to obtain an upper bound

logΥj,f,n ≤
∑
k

rk,j,f ĥk,j,n
αj,f,n

+ logαj,f,n − 1, (A.10)

where αj,f,n is an arbitrary positive number. The equality holds if and only if

αj,f,n = Υj,f,n =
∑
k

rk,j,f ĥk,j,n. (A.11)

From (A.4), (A.6), (A.8), and (A.10), we can construct a majorizer for the objective

function with IS divergence as

FIS(R) ≤
∑
j

λj
∑
k,f,n

(sj,f,nζj,f,nr2k,f ĥ2k,n
2mf,nξk,f,n

+
sj,f,nκ

3
k,j,f,n

2mf,nζl,f,nr2k,j,f ĥk,j,n

− γk,f,n log
rk,f ĥk,n
γk,f,n

+
rk,j,f ĥk,j,n
αj,f,n

)
+ const.

=: F+
IS(R,Γ), (A.12)

where Γ denotes a set of all the auxiliary variables, {ζj,f,n}j,f,n, {γk,f,n}k,f,n, {αj,f,n}j,f,n,

{ξk,f,n}k,f,n, and {κk,j,f,n}k,j,f,n.
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