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Abstract

In this dissertation, we present the result of the study on improving the explanation of

cluster analysis for transcriptome data. To improve the explanation of cluster analysis,

it is necessary to perform accurate cluster analysis and select features that contribute to

cluster separation. In cluster analysis that integrates multiple instances of transcriptome

data, the batch effect deteriorates the analysis performance. To perform highly accurate

cluster analysis, we propose a batch effect correction method based on the dimensionality

reduction method. In addition, the transcriptome data have numerous features; that is, it is

difficult to explain and interpret the cluster analysis results. Accordingly, we also propose

a feature selection method that is useful for cluster analysis.
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Chapter 1

Introduction

In recent years, with the development of measuring devices such as next-generation se-

quencers and mass spectrometry, large amounts of high-dimensional data are being ob-

tained. Therefore, there is a strong demand for effective data analysis technology for such

data. Transcriptome data, which is a type of high-dimensional data, comprise data that

comprehensively grasp the transcriptomes and measure the expression level of genes; con-

sequently, they contain significant gene information as a feature. Decoding the structure

of genetic information leads to the elucidation of various life phenomena, and an infor-

mation science approach is used to acquire the life phenomena embedded in the data. In

cluster analysis for transcriptome data, the results of cluster analysis are implicated using

features, and it the differences between cell populations and their functional characteris-

tics can be discovered by explaining and interpreting the characteristics of each cluster

after analysis.

This chapter is organized as follows. The differences between the two types of tran-

scriptome data are presented in Section 1.1. An overview of transcriptome analysis is

presented in Section 1.2. We introduce the batch effect correction and feature selection

methods in Section 1.3 and Section 1.4, respectively. Section 1.6 summarizes the contri-

butions of this study. Section 1.7 illustrates the organization of the dissertation.
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Chapter 1 . Introduction

1.1 Two Types of Transcriptome Data

The concept that the genetic information of an organism is transmitted in the order of

「DNA→ (transcription)→mRNA→ (translation)→ protein」is called central dogma in

molecular biology, and gene expression refers to the production of proteins from genetic

information (see Figure 1.1). Transcriptome refers to the total amount of all mRNAs

present in a cell under a specific situation, and the expression level of each gene can be

quantified as the amount of transcription in an mRNA. The gene expression status under

various conditions can be determined by measuring the expression level of mRNA in cells,

which leads to the discovery of cell function.

DNA mRNA Protein

Transcriptome

Figure 1.1: Overview of central dogma

Transcriptome measurement methods are roughly divided into microarrays and next-

generation sequencers (NGS), and transcriptome analysis by NGS is called RNA-sequencing

(RNA-seq) analysis. In recent years, a technique for detecting transcriptome on a cell-by-

cell basis has been established, and single-cell RNA-sequencing (scRNA-seq) analysis,

which analyzes the gene expression level of each cell, is garnering significant attention.

Figure 1.2 presents an overview of the differences between RNA-seq data and scRNA-seq

data.

RNA-seq data include data that measure the average gene expression level in all cells
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Chapter 1 . Introduction

and can identify the differences in samples under various conditions. In constant, scRNA-

seq data comprise data that measure the gene expression level of individual cells; they

involve several measurement protocols such as SMART-seq2 [1], CEL-seq [2], and Drop-

seq [3], among others [4, 5, 6, 7, 8]. scRNA-seq analysis enables cell-specific analy-

sis such as cell type identification [9] and intercellular gene control network inference

[10, 11]. The measurement cost continues to decrease per year, while the number of

cells that can be analyzed is increasing; however, computational analysis and the inter-

pretability of the analysis results encounter various challenges [12]. scRNA-seq analysis

is difficult owing to several parameters, such as high dimensionality, measurement noise,

and differences in the sample size between rare and abundant cell populations [13]. One

of the important characteristics of scRNA-seq data is a phenomenon called “dropout”.

In this phenomenon, when a gene is observed in a cell at a low or moderate expression

level, it may not be detected in another cell of the same cell type [14]. This dropout phe-

nomenon occurs due to the low amount of mRNA in individual cells and the inefficient

capture of mRNA, which can result in sparse data. However, some of these issues can

be alleviated through proper normalization and corrections. In scRNA-seq analysis, the

RNA-seq analysis methods can be used; however, in most case, the development of new

methods is required.組織サンプル

の平均のデータ

A B C D …

A B C D …

:

Genes (Features)

Genes (Features)

scRNA-seqデータ

RNA-seqデータ

細胞

RNA-seq data

組織サンプル

の平均のデータ

A B C D …

A B C D …

:

Genes (Features)

Genes (Features)

scRNA-seqデータ

RNA-seqデータ

細胞

single-cell RNA-seq data

cell

Tissue

Figure 1.2: Differences between RNA-seq data and scRNA-seq data
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Chapter 1 . Introduction

1.2 Cluster Analysis for Transcriptome Data

In the general flow of transcriptome analysis, first, the transcriptome data are generated

from a sample (for example, blood, tumor) obtained from a tissue using an analytical in-

strument. Subsequently, differential expression analysis [15, 16, 17, 18, 19, 20], pathway

analysis [21], gene network analysis [22, 23], and cluster analysis [24, 25] are performed

on the obtained transcriptome data (Figure 1.3). In this study, we focus on cluster analysis

for transcriptome data.

Sample Microarray or 
Next generation sequencing

gene A gene B gene C …

Transcriptome data

ce
lls

 o
r s

am
pl

es

Differential expressed
analysis Pathway analysis Gene network analysis Cluster analysis

Figure 1.3: Workflow of transcriptome analysis

In cluster analysis of transcriptome data, the cell or gene groups are identified based

on the transcriptome similarity without prior knowledge such as cluster information. In

most cases, the number of clusters is unknown, and the transcriptome data, which are

high-dimensional data, contain technical and biological noise, thereby, making cluster

analysis even more difficult.

4



Chapter 1 . Introduction

For the cluster analysis of high-dimensional data, the application of dimensionality

reduction techniques may be beneficial. In many cases, the noise contained in the fea-

tures can be significantly reduced and the data can be visualized in a two-dimensional

or three-dimensional subspace by projecting them into a low-dimensional subspace. To

accomplish this, dimensionality reduction methods such as PCA [26], t-SNE [27], and

UMAP [28] are often used.

Cluster analysis is principally of two types, namely, sample and gene clustering;

they are performed using methods such as k-means and DBSCAN [29]. In gene clus-

ter analysis, the function of unknown genes can be estimated by grouping genes with

similar expression patterns according to various conditions of tissue samples based on

the sample space. Spellman, P. T. et al., [30] identified approximately 800 genes re-

lated to cell cycles and the genes expressed in each phase of the cell cycle. However,

in the sample cluster analysis, the tissue state and disease can be classified by grouping

the tissue samples according to the gene expression pattern based on the feature space

[31, 32, 33, 34, 35, 36, 37, 38, 39]. In particular, sample cluster analysis for scRNA-seq

data enables the classification of cell types, leading to the identification of unknown cells

and estimation of the cell population function [40, 41, 42, 43, 44, 45, 46].

Furthermore, because the explanation of the cluster analysis result is strongly required,

the genes effective for the identification of each cluster obtained by performing cluster

analysis on the sample are identified. Genes that work functionally on the cell type of

each cluster can be identified by identifying the genes whose expression decreases or

increases in each cluster and those that work specifically on each cluster of disease and

non-disease groups.

There are two important concepts associated with the explanation of the cluster analy-

sis results, i.e., the batch effect and feature selection. They are described in the following

sections.

5



Chapter 1 . Introduction

1.3 Batch Effect Correction

The transcriptome data generated at different instances or at laboratories (batch) have

differences between the data. This is called the batch effect; each data instance has its

own batch effect. Figure 1.4 shows an example of the batch effect. If we directly combine

batch 1 data (green) and batch 2 data (blue), the samples that are considered to be of

the same cell type are separated between batches in a two-dimensional space, which is

visualized as the sample clustering results.

Batch 1

Batch 2

Cluster analysis
＋

genes

ce
lls

 o
r s

am
pl

es

genes

ce
lls

 o
r s

am
pl

es

cell type 1
cell type 2

cell type 3

Figure 1.4: Example of batch effect

Thus, the batch effect can introduce incorrect structures into the data and hide the un-

derlying biological knowledge [47]. Correspondingly, the performance of cluster analysis

may deteriorate when it is performed by integrating a plurality of transcriptome data. In

order to improve the explanation of the cluster analysis results, it is necessary to remove

the batch effect and perform accurate cluster analysis before proceeding with the analysis.

6



Chapter 1 . Introduction

1.3.1 Related works

Several methods have been proposed for data merging and comparison in the presence of

batch effect using linear models [48, 49, 50, 47, 51]. The combat method [52] is a type

of batch effect correction method for RNA-seq data. It estimates the blocking coefficient

by sharing information across genes to stabilize the estimates in the presence of limited

replicates using a location and scale (L/S) model, which performs scaling adjustments for

each gene [53].

The L/S model assumes that the batch effect can be modeled by standardizing the

means (location) and variance (scales) across batches. Let X(1) ∈ Rn1×m and X(2) ∈

Rn2×m denote the datasets in different batches, where ni is the number of samples for

batch i (i = 1, 2) and m is the number of genes. Owing to the batch effect, X(1) and X(2)

cannot be directly merged for further analysis. Thus, the objective is to merge X(1) and

X(2) into a dataset, X∗ ∈ R(n1+n2)×m, by correcting the batch effect. Let X =

X(1)

X(2)

 ∈
R(n1+n2)×m be the directly merged data and Xg be the gth column of X . Using the L/S

model, Xg is represented as

X∗
g = α̂g + Φβ̂g +

1

δ̂i,g

(
Xg −

(
α̂g + Φβ̂g + γ̂i,g

))
where α̂g,β̂g, and δ̂g are the estimated parameter vectors for gene g. The additional term

α̂g + Φβ̂g −
(
α̂g + Φβ̂g + γ̂i,g

)
/δ̂i,g and multiplying term δ̂i,g indicate the location and

scale adjustments, respectively.

1.4 Feature Selection

High-dimensional data such as transcriptome data encounter challenges such as an in-

crease in the amount of calculation and deterioration of analysis accuracy due to numerous

explanatory variables. Therefore, in the analysis of high-dimensional data, the features

used in the analysis are reduced by only selecting some features. However, the original

7



Chapter 1 . Introduction

data information may be lost, thereby reducing the accuracy of analysis; thus, it is difficult

to make significant reductions while maintaining the accuracy.

We assume that transcriptome data have two types of features, first, the features that

can be uniformly expressed throughout the sample (background noise) and second, those

that are often expressed in some samples. Figure 1.5 illustrates the differences between

the two types of features. The horizontal and vertical axes of the figure denote the index

of the sample and the values of the expression level of a specific feature, respectively. The

color bar at the bottom denotes the cluster information of the samples. The left figure is

an example of the features that are highly expressed in some samples; it can be observed

that the features are highly expressed in the samples that belong to the blue cluster. The

right figure is an example of background noise. The background noise represents a feature

such that the number of expressed samples in any interval does not change.

Background noiseSignificant gene

Cell type Cell type

Figure 1.5: Differences between (left) significant gene for clustering and (right) back-

ground noise.

In cluster analysis, it is sufficient to use the features that are highly expressed in some

samples. The analysis results can be evaluated from a small number of features by only

selecting the features required for cluster analysis, which improves the explanation of the

8



Chapter 1 . Introduction

analysis results.

1.4.1 Related works

Several feature selection methods are used for the transcriptome data [54, 55, 56, 57, 58,

59]. These approaches involve the selection of variable features based on the appearance

of all samples (i.e., features with large variance) using regression models. The Seurat

method [60, 61] is a package in R language that can perform integrated analysis and

cluster analysis simultaneously; it has several tutorials and has been widely used in recent

years.

The Seurat method applies a variance-stabilizing transformation to correct the mean-

variance relationship [62]. It computes the log-transformed mean and variance values for

each feature to learn those relationships. Then, it fits a curve to predict the variance of

each feature by locally weighted scatter plot smooth. Given the expected variances, it

performs transformation as follows:

zi,j =
xi,j − x̄i

σi

,

where zi,j is the standardized value of feature i in cell j, xi,j is the raw value of feature i

in cell j, x̄i is the mean raw value of feature i, and σi is the expected standard deviation of

feature i. Subsequently, for each feature, it computes the variance of standardized values

σ̂i across all cells.

σ̂i =
1

n

n∑
j=1

(zi,j − µi)
2,

where µi =
1
n

∑n
j=1 zi,j . This variance represents a measure of single cell dispersion after

controlling for mean expression and it selects the features directly to rank them.

1.5 Dissertation Objectives and Motivations

The objective of this study is to improve the explanation of cluster analysis for transcrip-

tome data. The transcriptome data are high-dimensional data that contain technical and

9



Chapter 1 . Introduction

biological noise, making cluster analysis more difficult. There are two motivations of this

study.

Motivation 1: Batch effect correction

The conventional L/S model was performed for RNA-seq data; it multiplies and adds the

constant values to normalize the mean and variance of each feature. It is based on the as-

sumption that the composition of a cell population is the same across batches. However,

the general scRNA-seq data have different cell population compositions between batches;

therefore, the method developed for RNA-seq data cannot be applied. In this study, we

consider removing the batch effect in a low-dimensional space after dimensionality re-

duction by adjusting the original data to develop a batch effect correction method that can

be applied to both RNA-seq and scRNA-seq data. We assume that the batch effect can

be expressed by a constant multiple of a feature; moreover, it should be noted that most

features only contain technical noise.

Motivation 2: Feature selection method

The feature selection method developed for RNA-seq data uses a linear regression model

for the relationship between the mean and squared values of the coefficient variation for

each feature and selects the features whose original variance value is larger than the es-

timated variance value. However, for scRNA-seq data, the variance cannot be used as a

direct indicator of feature selection because these data contain positive correlations be-

tween the mean and variance of the expression level; additionally, various analysis tools

have been developed to solve this problem of heteroscedasticity. However, it is difficult

to significantly reduce the features while maintaining the accuracy of cluster analysis be-

cause significant amount of background noise gets selected. In this study, we attempt to

distinguish between the features required for cluster analysis and the background noise

without using the mean or variance values. We focus on the characteristic of the back-

ground noise that the number of expressed samples in any interval does not change.

10
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1.6 Our Contribution

In this study, we consider two important aspects to improve the explanation of cluster

analysis for transcriptome data: (1) Performing accurate cluster analysis and (2) selecting

features that contribute to cluster separation. Accordingly, we propose two algorithms.

1.6.1 Scaling method for batch effect correction based on spectral

clustering

In Chapter 2, we propose an effective scaling method to remove the batch effect. The pro-

posed method performs scaling adjustment for each feature and it can remove the batch

effect on manifold space after dimensionality reduction such as that in spectral cluster-

ing (SC). The contributions of the proposed method are summarized as follows. (1) The

proposed method scales each feature by multiplying a constant value to ensure that the

data samples from different batches resemble each other. (2) We formulate an optimiza-

tion problem based on SC to obtain the scaling adjustment values. (3) We propose an

approximation solution to solve the optimization problem and demonstrate how to deter-

mine the parameters. The proposed method is evaluated based on both artificial and gene

expression datasets. For the gene expression datasets, we used the microarray and single-

cell RNA-seq datasets. The results of numerical experiments verified that the proposed

method outperforms the existing well-established batch effect correction methods on both

microarray and single-cell datasets.

1.6.2 Feature selection based on principal component analysis of sam-

ple space

In Chapter 3, we propose an effective feature selection method to analyze sample clus-

tering. The contributions of the proposed method are summarized as follows. (1) It can

distinguish between the features required for clustering and the background noise by per-

11



Chapter 1 . Introduction

forming principal component analysis (PCA), a dimensionality reduction method for the

sample space. (2) The proposed method selects only significant features for clustering

analysis; i.e., it removes the background noise from the larger subset features. The pro-

posed method is evaluated based on both simple simulation and scRNA-seq datasets. The

results of numerical experiments verified that it can remove the background noise from

larger subset features while maintaining clustering accuracy.

1.7 Dissertation Organization

This dissertation is organized as follows. This chapter presents the background and an

overview of our research. In Chapter 2, we propose the scaling method for batch effect

correction based on SC. In Chapter 3, we propose feature selection method based on PCA

of the sample space. Finally, Chapter 4 concludes this dissertation and presents the future

work directions.

12



Chapter 2

Scaling method for batch effect

correction based on spectral clustering

In this chapter, we consider performing accurate cluster analysis to improve the expla-

nation of cluster analysis and present a novel scaling method for batch effect correction,

referred to as the SMSC method. We focus on the scaling adjustment of the batch effects.

The proposed method performs scaling adjustment for each feature and can remove the

batch effects on the manifold space after dimensionality reduction such as that in spectral

clustering (SC).

This chapter is organized as follows. In Section 2.1, we introduce the SC method.

In Section 2.2, we give an overview of the proposed SMSC method. In Section 2.3, we

present an approximation solution to solve the optimization problem. In Section 2.4 and

Section 2.5, we demonstrate how to determine the two kinds of parameters. Performance

analysis and comparison are presented in Section 2.6. Section 2.7 concludes this chapter.

2.1 Spectral Clustering

The SC method first performs nonlinear dimensionality reduction, followed by clustering

in the low-dimensional space. SC is induced by undirected graph partitions, where the

13



Chapter 2 . Scaling method for batch effect correction based on spectral clustering

graph has the edge weight wi,j between nodes i and j. Let W = {wi,j} ∈ Rn×n, D =

diag (d1, d2, . . . , dn) ∈ Rn×n with di =
∑n

j=1wi,j , and 1n be the n-dimensional vector

with one in all entries. Then, the graph partitioning problem is solved by the constrained

minimization problem of the normalized cut (Ncut) function [63], as follows.

min
v

vT (D −W )v

vTDv
, subject to 1T

nDv = 0, (2.1)

where v is a label vector with entries denoting the sample labels. In [63], v is set such as

vi ∈ {1, −b} with b =
∑

i:ti>0 di/
∑

i:ti<0 di, where ti ∈ {±1} is an indicator. Based on

vi, the data samples are divided into two clusters. This discrete problem can be relaxed to

find the Fielder vector v ∈ Rn[64] associated with the second smallest eigenvalue of the

constrained generalized eigenvalue problem

Lv = λDv, subject to 1T
nDv = 0,

where L = D−W ∈ Rn×n is the Laplacian matrix and λ ∈ R. The entries of the Fiedler

vector are referred to as the coordinates of the data samples in the reduced space. The

first Sℓ eigenvectors represent the reduced low-dimensional space. SC performs k-means

clustering in the low-dimensional space [v1,v2, . . . ,vℓ].

2.2 The Framework of SMSC Method

The objective of SMSC method is to merge the two datasets X(1) ∈ Rn1×m and X(2) ∈

Rn2×m into a comparable dataset using the diagonal matrix S = diag (s1, s2, . . . , sm) ∈

Rm×m, such as

X∗ = ϕ

 X(1)

X(2)S

 ,

where X∗∈ R(n1+n2)×ℓ is a merged dataset with corrected batch effects in the low-dimensional

space, ϕ is the nonlinear mapping function, and ℓ ≤ (n1 + n2) is the number of reduced

14
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dimensions. The proposed method removes the batch effects on the manifold space after

dimensionality reduction by SC.

SC is a problem of finding the Fiedler vector v using the matrices L and D, where the

element vi ∈ {1, −b} has the cluster label information. In our method, we give the batch

information to the Fiedler vector v as the cluster label information. Then, we modify the

matrices L and D based on the given Fiedler vector v. Since the matrices L and D after

batch effects correction are unknown, we use the approximate form minL,D,λ,v ∥Lv −

λDv∥22. We modify the matrices L and D using the diagonal matrix S, and proposed an

approximation solution to find the matrix S in Section 2.3.

We consider using the batch information as the cluster label information, i.e., batch 1

and batch 2 correspond to cluster 1 and cluster 2, respectively. The labels are set to 1 and

−b, respectively. Therefore, we can estimate the Fiedler vector v using a discrete variable

in (2.1) such that v = [1, 1, . . . , 1,−b,−b, . . . ,−b] ∈ R(n1+n2), where b is the parameter,

which will be discussed in Section 2.4. If the data in each batch are directly merged in a

low-dimensional space using the given Fiedler vector v, there exists a matrix S such that

mins,λs ∥Lsv−λsDsv∥22, where Ls, Ds and λs are calculated after batch effect correction

based on the scaling adjustment.

The proposed method aims to find the matrix S to remove the batch effects to ensure

that the data in two batches are similar to each other. Therefore, we solve the following

equation:

max
s,λs

∥Lsv − λsDsv∥22. (2.2)

This means that there exists a matrix S such that the data samples from different batches

can be adjusted to resemble each other in a low-dimensional space.

In general, we assume that we have N datasets X(1), X(2), . . . , X(N) in different

batches. Without loss of generality, we define X(1) as the reference data C. Then, we

correct the batch effects between the reference data C and the next dataset X(2), and

merge data C and X(2) into a dataset by correcting the batch effects. Next, we update
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the reference data as the corrected merged data, followed by correcting the batch effects

between the updated reference data and dataset X(3). These steps are repeated until the

update reference data are merged with the final dataset X(N).

2.3 Solution

We propose an effective method to approximate the solution of (2.2) for the scaling ad-

justment values. We use the Gaussian similarity function to calculate the graph weight

wi,j as wi,j = exp (−∥xi − xj∥22/2σ2), where xi is the ith row of X and σ is a parameter.

We will discuss how to set the parameter σ in Section 2.5. We can formulate (2.2) as the

following optimization problem for the scaling adjustment values si (i = 1, 2, . . . ,m):

min
s,µ
{−∥

(
A1 + A2s+ A3s

2
)
− µ

(
B1 +B2s+B3s

2
)
∥22, (2.3)

where s = [s1, s2, . . . , sm] ∈ Rm, s2 = [s21, s
2
2, . . . , s

2
m] ∈ Rm, Ai and Bi (i = 1, 2, 3)

are calculated from the two datasets X(1) ∈ Rn1×m and X(2) ∈ Rn2×m. We describe

the technical details of the proposed SMSC method in Appendix A. We solve (eq:min)

using the simplex method [65], which is a direct search method that does not use numer-

ical or analytical gradients. This method does not always converge to a local minimum

solution; therefore, its initial values are established ten times randomly in the numerical

experiments.

We summarize the procedures of the proposed SMSC method in Algorithm 1.

2.4 Determination of Parameter b

Suppose that X(1) ∈ Rn1×m and X(2) ∈ Rn2×m are the data in different batches and w
(k)
i,j

denotes the similarities between the data samples of batch X(k) (k = 1, 2). The parameter

b are set to b =
∑

i:ti>0 di/
∑

i:ti<0 di in [63], where ti = 1 indicates that data samples

i belong to a cluster and ti = −1 indicates that sample i belong to another cluster. The
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Algorithm 1 Scaling method for batch correction based on spectral clustering (SMSC)
Input: N batches of data X(i) ∈ Rni×m (i = 1, 2, . . . , N), number of reduced dimen-

sions ℓ, number of nearest neighbors k, hyperparameters σ and λ.

Output: Batch corrected and merged data C ∈ R(n1+n2+···nN )×ℓ

1: Define reference data C ← X(1).

2: for i = 2 : N do

3: Compute A1, A2, A3, B1, B2, B3 in (2.3) between batch C and X(i).

4: Solve the minimization problem in (2.3) for adjusting value s = [s1, s2, . . . , sm]
T.

5: Generate the scaling matrix S = diag(s1, s2, . . . , sm).

6: Compute the corrected data X̃(i) = X(i)S.

7: Calculate the new reference data C ←

 C

X̃(i)


8: end for

choice of ti = 1 or ti = −1 is flexible. In this study, we determine the parameter b by

b = max

(∑n1

i=1 d
(1)
1∑n2

i=1 d
(2)
1

,

∑n2

i=1 d
(2)
1∑n1

i=1 d
(1)
1

)
,

where d
(k)
i =

∑nk

j=1w
(k)
i,j (k = 1, 2). We can be more distinguished from the cluster with

label 1 by using the larger value b.

2.5 Constraint of Parameter σ

We use the first approximation of the exponential function in reformulation (2.3). This

approximation is valid under the constraint

0 <
∥x(k)

i − x
(k)
j ∥22

2σ2
< 1.

Therefore, we have the following constraint:

σ2 >
∥x(k)

i − x
(k)
j ∥22

2
,
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where x
(k)
i is the ith row of the data X(k) (k = 1, 2, . . . , N) and N is the number of

batches.

2.6 Numerical Experiments

We evaluate the performance of the proposed SMSC method by comparing it with those of

existing batch effect correction methods on both artificial and gene expression datasets.

The compared methods are combat [52], limma [48], svaseq [49, 50], and MNN [47].

We also compare the SMSC method with the baseline method that does not correct the

batch effects. For all methods, we apply SC on the merged data and test the performance

in terms of clustering accuracy. The evaluation metrics for the clustering performance

include the overall accuracy (OA) and normalized mutual information (NMI) [%] [66].

The OA is defined as

OA =
K∑
i=1

n̂i/
K∑
i=1

ni,

where ni is the number of samples in class i, n̂i is the number of samples clustered into

class i, and K is the number of classes. The larger the values of OA and NMI, the better

the clustering accuracy. In k-means clustering, we set the values of k as the number of

classes. The k-means clustering are repeated 20 times with random initializations, and

we show the mean performance with standard deviation. In SMSC, we set λ = 10−3 and

chose the value of α < σ < (α + 100), where α = ∥x(k)
i − x

(k)
j ∥2/

√
2 + 10−3 and x

(k)
i

is the ith row of the data X(k), k = 1, 2, . . . , N , and N is the number of batches. We

use the publicly available R code of the compared batch effect correction methods, i.e.,

combat, limma, svaseq, and MNN, followed by the execution of clustering in MATLAB

2019a. The proposed SMSC method are coded and executed in MATLAB 2019a.

We use a simple simulated dataset with two batches and ten dimensions. Table 2.1

gives the number of samples for each class of each batch. Figure 2.1 shows the samples

for two dimensions and the remaining eight dimensions are initialized with uniformly
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distributed random numbers in the interval [0, 1]. Different colors and different shapes

denote different classes and different batches, respectively. In this case, the data samples

in class 1 from different batches are separated. If we do not have the batch effects, the

same classes (colors) from different batches (shapes) should be pictured adjacently.

For real-world dataset, we use four datasets from the Gene Expression Omnibus

(GEO) [67], which contains gene expression data with more features than samples. Ta-

ble 2.2 gives the number of samples for each class, number of features, and the ID of

GEO for each dataset. Datasets (a)-(c) are gene expression data from a microarray and

dataset (d) comprises read-count data for single-cell RNA-seq. We normalize the datasets

(a)-(c) to the range [0, 1] and use trimmed mean of M values (TMM) method [68] for nor-

malization to dataset (d). We select the features using the analysis of variance (ANOVA)

(p value ≤0.05 after false discovery rate (FDR [69] correction) for correcting the batch

effects. For all methods, the number of reduced dimensions is the same as that of classes.

In SMSC, we define Batch 1 as the reference data.

Table 2.1: Number of samples for each class

Class 1 Class 2 Class 3

Batch 1 300 100 300

Batch 2 30 200 0

2.6.1 Simulation results

Figure 2.2 shows the performance by varying the number of reduced dimensions. As the

number of reduced dimensions increases, the accuracy of all methods decreased. Among

them, the proposed method achieves higher accuracy than the compared method on the

simulated dataset. The proposed method obtains the best result in terms of OA and NMI

when the dimension is reduced to ℓ = 2 and outperforms the compared methods. These

results show that the proposed SMSC method is more robust than other methods.
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Figure 2.1: Two-dimensional visualization of the simulated data

Figure 2.3 shows the data samples reduced in a two-dimensional space and the true

labels are denoted with different colors. The result for the svaseq method is similar to

the uncorrected case which cannot remove the batch effects. For the combat, limma, and

MNN methods, the data samples in class 2 from different batches are projected adjacent to

each other. However, the data samples in class 1 from different batches are not projected

adjacently. This means that the batch effects of Class 1 and Class 2 are not removed. For

the proposed SMSC method, the data samples in each class from different batches are

projected to resemble each other, i.e., the batch effects of all classes are removed. These

results showed that SMSM performs better than the well-established methods to remove

the batch effects such that the same classes (colors) from different batches (shapes) are

20



Chapter 2 . Scaling method for batch effect correction based on spectral clustering

projected to resemble each other.

Figure 2.2: Mean and standard deviation of clustering performance vs. reduced dimen-

sions.

2.6.2 Gene expression results

Table 2.3 gives the mean values with standard deviation in terms of OA and NMI for

each method. The bold font denotes the best result for each dataset. The proposed SMSC
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Figure 2.3: Data samples in reduced two-dimensional space.

method obtains the best result for all datasets. For Colorectal, Leukemia, and Breast

cancer, the limma or svaseq is the second best method in terms of OA and NMI, the MNN

is poor because it is developed for single-cell RNA-seq data. For the single cell RNA-seq

data i.e., Kidney, the combat and limma methods do not perform well, while the MNN

and svaseq method obtain better performance than the Uncorrected method in terms of

OA and NMI. These results show that the proposed SMSC method performs well on both

microarray and single-cell RNA-seq datasets.

2.7 Summary

In this chapter, we consider performing accurate cluster analysis to improve the expla-

nation of cluster analysis. To accurately measure the biological variability and obtain

precise statistical inference, we propose an effective batch effect correction method. The

proposed method merges multiple data from different batches by scaling adjustment the
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features in a low-dimensional space, which is different from the existing L/S model using

the empirical Bayes method to find the constant values for normalization of each fea-

ture. We propose an approximation solution to solve the optimization problem for the

scaling adjustment values. Furthermore, we propose an automatic tuning technique to

reduce the number of hyperparameters that appeared in the proposed method. Numeri-

cal experiments show that the proposed method is effective when combined with spectral

clustering. For accuracy, thereby making the proposed model more robust for interfering

features. For the simulated dataset, the proposed method project data samples in the same

classes from different bathes to resemble each other. For the gene expression datasets

with more features than samples, the proposed method is more robust and outperforms

the well-established methods on both microarray and single-cell RNA-seq datasets.
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Table 2.2: The number of samples for each class of entire data

(a) Colorectal

Class

1 2 Features ID

Batch 1 11 11 54,675 GSE4107

Batch 2 0 36 54,675 GSE4526

(b) Leukemia

Class

1 2 3 Features ID

Batch 1 30 9 0 54,675 GSE2677

Batch 2 0 40 20 54,675 GSE6338

(c) Breast cancer

Class

1 2 Features ID

Batch 1 171 47 22,284 GSE4611

Batch 2 10 0 22,284 GSE3893

Batch 3 0 96 22,284 GSE2294

(d) Kidney

Class

1 2 3 4 5 6 7 8 9 10 11

Batch 1 166 1 1459 216 578 123 84 29 9 49 65

Batch 2 78 1 590 143 200 15 112 4 2 17 5

12 13 14 15 16 Features ID

Batch 1 3 46 97 17 1 16,271 GSM2871078

Batch 2 2 12 150 52 0 16,271 GSM2871078
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Table 2.3: Performance rate (mean% ± std) for real-world datasets

(a) Colorectal

ACC NMI

Uncorrected 66.67±15.38 44.78±28.05

Combat 78.10±16.69 38.64±34.35

Limma 82.76± 0.00 46.90± 0.00

svaseq 66.90± 8.61 19.60±11.86

MNN 62.07± 9.17 13.95± 5.75

SMSC 85.35±17.30 61.52±40.07

(c) Brest cancer

ACC NMI

Uncorrected 62.53± 3.25 21.01± 6.63

Combat 60.56± 1.93 11.15± 6.14

Limma 52.55± 1.68 17.39± 2.34

svaseq 64.51±14.36 17.19±13.73

MNN 56.17± 0.00 2.11± 8.48

SMSC 85.49±0.00 50.82±0.00

(b) Leukemia

ACC NMI

Uncorrected 66.41±6.48 50.29± 8.80

Combat 65.66±0.00 47.90± 6.45

Limma 64.80±0.36 48.24±4 .29

svaseq 66.31±8.69 53.22±13.58

MNN 54.19±4.30 24.57± 4.13

SMSC 71.16±8.01 60.69±11.40

(d) Kidney

ACC NMI

Uncorrected 52.46±5.51 27.75±9.78

Combat 48.44±6.58 27.74±6.36

Limma 50.24±3.41 21.45±3.65

svaseq 55.66±2.32 32.47±2.56

MNN 54.60±7.37 38.48±3.85

SMSC 65.86±3.12 43.51±4.70
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Chapter 3

Feature selection based on principal

component analysis of sample space

In this chapter, we consider selecting the significant features for cluster analysis to im-

prove its explanation and present a novel feature selection method based on the principal

components of the sample space. We focus on distinguishing between the features re-

quired for cluster analysis and the background noise. The proposed method performs

principal component analysis (PCA) on the sample space of the data and selects the fea-

tures that contribute to cluster separation.

This chapter is organized as follows. In Section 3.1, we introduce the PCA method. In

Section 3.2, we present an overview of the proposed method. In Section 3.3, we discuss

three methods for detecting distortions in the principal components. Performance analysis

and comparison are presented in Section 3.4. Section 3.6 concludes this chapter.

3.1 Principal Component Analysis

PCA is a linear dimensionality reduction technique that aims at preserving the global

structure. It attempt to obtain the best approximation of the data samples and find the low-

dimensional space in which data samples variance becomes maximum after projection.
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PCA transforms the sample xi ∈ Rm to an embedded sample zi ∈ Rℓ (1 ≤ ℓ < m) of

low-dimensional space with matrix T ∈ Rm×ℓ. The transformation matrix T is defined as

T = arg max
T

[
tr
(
TTC̃T

(
TTT

)−1
)]

, (3.1)

where C̃ = 1
n

∑n
i=1(xi − µ)(xi − µ)T ∈ Rm×m, µ = 1

n

∑n
i=1 xi ∈ Rm. Let {φi}ni=1 be

the eigenvectors associated with the eigenvalues λ1 ≥ λ2 ≥ · · · ≥ λm of the eigenvalue

problem

Sφi = λiφi.

Then, the solution of (3.1) is given by

T = [φ1,φ2, . . . ,φℓ],

and the embedded data zi ∈ Rℓ are given by

zi = TTxi.

We can visualize the sample distributions in the low-dimensional space by performing

PCA for the feature space. In the low-dimensional space of PCA, the expression pat-

terns of the sample are similar if the distance between the samples is small; however, the

expression patterns are different if they are far apart.

3.2 The Framework of Proposed Method

The objective of the proposed method is to remove the background noise from large subset

features. The proposed method only selects significant features for cluster analysis using

the principal component of the sample space, while maintaining the accuracy of clustering

analysis for the samples.

Let X = [x1,x2, . . . ,xm] ∈ Rn×m, xi ∈ Rn be a dataset with n samples and m

features. First, we solve the following equation:

Cti = λiti, λ1 ≥ λ2 ≥ · · · ≥ λn, (3.2)

27



Chapter 3 . Feature selection based on principal component analysis of sample space

where C = 1
m

∑m
i=1(xi − µ)(xi − µ)T ∈ Rn×n, µ = 1

m

∑m
i=1 xi ∈ Rm. Then, we

compute m principal components, pi ∈ Rm (i = 1, 2, . . . ,m), by

pi = XTti. (3.3)

Next, we test the normality of the principal components using statistical tests, which are

discussed in Section 3.3. We assume that the ℓ-principal component space with normality

is denoted by P = {pi,j} ∈ Rm×ℓ. Then, we compute the distance, di (i = 1, 2, . . . ,m),

from the origin of each gene on space P such that

di = p2i,1 + p2i,2 + · · ·+ p2i,ℓ. (3.4)

Finally, we select s genes in descending order of distance di, where s is the parameter.

The procedures of the proposed method are summarized in Algorithm 2.

Algorithm 2 Procedures of the proposed method
Input: Dataset X ∈ Rn×m, parameters ℓ and s.

Output: Selected s genes

1: Perform z-score normalization across samples for each feature.

2: Solve (3.2) and compute (3.3) to obtain the principal components pi ∈ Rm (i =

1, 2, . . . ,m).

3: Let P = {pi,j} ∈ Rm×ℓ be the ℓ-dimensional space with distortion-free components.

4: Compute the distance (3.4) for each feature.

5: Select s features in descending order of the values of distance d.

3.3 Normality Test for Principal Components

To select features in a low-dimensional space composed of distortion-free principal com-

ponents, we consider detecting the distortions in the principal components by the follow-

ing three methods. Here, distortion refers to a distribution that deviates from the normal

distribution.
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Chi-Square goodness of fit test

The Chi-Square goodness of fit test test examines the null hypothesis that a data sample

xi (i = 1, 2, . . . , n) follows a normal distribution with means and variances estimated

from the data. The alternative hypothesis assumes that the data sample does not follow

such a distribution. In this test, the data are grouped into bins; subsequently, the observed

and expected counts of these bins are calculated, followed by the calculation of the Chi-

Square test statistics using the following equation.

χ2 =
nb∑
i=1

(Oi − Ei)
2

Ei

,

where Oi is the number of observed counts and Ei is the number of expected counts based

on the distribution of the hypothesis. If the counts are large enough, the test statistic will

have an approximate Chi-Square distribution. It compares the value of the test statistic

with a Chi-Square distribution, with equal degrees of freedom equal to nb−1−np, where

nb is the number of bins and np is the number of estimated parameters used to determine

the expected count (in this case, np = 2).

Skewness test

Skewness is an indicator that demonstrates the deviation of the distribution of a data sam-

ple, xi (i = 1, 2, . . . , n), from the normal distribution and exhibits left-right symmetry; it

is calculated by the following equation.

skewness =
1
n

∑n
i=1 (xi − x̄)3

1
n

∑n
i=1 (xi − x̄)

3
2

,

where x̄ is the mean of xi. If the skewness is negative, the distribution leans toward the

right, and if it is positive, the distribution leans toward the left. The skewness is 0 when

the distribution is left-right symmetric. Figure 3.1 illustrates an example of skewness.

In general, if the skewness is between -0.5 and 0.5, the distribution is considered to be

approximately symmetric.
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skewness < 0 skewness = 0 skewness > 0

Figure 3.1: Example of three types of skewness

Kurtosis test

Kurtosis is a measure of the prominent tendency of the distribution of a data sample

xi (i = 1, 2, . . . , n); it is calculated using the following equation.

kurtosis =
1
n

∑n
i=1 (xi − x̄)4(

1
n

∑n
i=1 (xi − x̄)2

)2 ,
where x̄ is the mean of xi. The kurtosis of the normal distribution is 3. The kurtosis value

of data samples with several outliers is greater than 3; moreover, the kurtosis and tail of

the distribution are steep and long, respectively. The kurtosis value of data samples with

few outliers is less than 3; moreover, the kurtosis and tail of the distribution are gentle and

short, respectively. Figure 3.2 illustrates an example for both cases.

3.4 Numerical Experiments

We verify that the proposed method maintains the clustering accuracy by comparing it

with that of the existing feature selection methods. The compared methods include Seurat

and Brennecke. We project the samples to a low-dimensional space by PCA and perform

k-means clustering in that space. In k-means clustering, the values of k denote the num-

ber of classes; it is repeated 20 times with random initializations, and we show the mean
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kurtosis < 3 kurtosis = 3 kurtosis > 3

Figure 3.2: Example of three types of kurtosis

performance. The evaluation metrics for the clustering performance include the normal-

ized mutual information (NMI) [%] [66] and the rand index (RI) [70]. The larger the

values of NMI and RI, the better the clustering accuracy. For visualization, we perform

uniform manifold approximation and projection (UMAP) [28] for the low-dimensional

PCA space and demonstrate the two-dimensional UMAP space. The proposed method

was coded and executed in MATLAB 2019a.

3.4.1 Datasets and their processing

We generate a simulation dataset from the uniformly distributed random numbers in the

interval [0, 1]. It contains 1000 samples and 4500 features. Figure 3.3 shows the heat map

of the simulation dataset, where each row and column represent a sample and feature,

respectively. The 1000 samples are assigned to five classes; the different colors of the

right bar denote different classes. The top color bar denotes different types of features.

The first 500 features are effective for clustering five classes, and the remaining 4000

features are generated as the background noise. Thus, the first 500 features are required

for clustering.

We downloaded the Gierahn dataset [71] from Gene Expression Omnibus (GEO)[67]

under accession number GSE92495, where the tuberculosis-exposed human peripheral
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Figure 3.3: Heat map of the simulation dataset.

blood mononuclear (PBMC) cell sample was used. It contains 4,296 cells, 6,713 genes,

and 6 classes.

We also downloaded the Pollen dataset [72] from GSE71315, where the human neo-

cortex cell sample is used. It includes 50 single cell libraries from gestational weeks

(GW)16, GW21 cells previously analyzed [73] and primary cells derived from GW21

brain that were cultured in differentiation media for 3 days. It contains 276 cells, 13,007

genes, and expression values were in size factor normalized counts, according to DESeq.

They classified the cells into 7 clusters by hierarchical clustering.

The details of the datasets are listed in Table 3.1.

Table 3.1: Details of datasets

# of samples # of features # of classes Accession number

1. Simulation dataset 1000 4500 5 –

2. Gierahn dataset 4,296 6,713 6 GEO: GSM2486333

3. Pollen dataset 276 13,007 7 GEO: GSE71315
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3.4.2 Simulation dataset

Figure 3.4 shows the distributions of obtained the first to twelfth principal components.

We used the seventh to eleventh principal components, which were observed to be free

from distortions based on the Chi-Square goodness of fit test; then, we computed the

distance of the distortion-free space from the origin for each feature.

Figure 3.4: Distributions of the obtained 1st to 12th principal components.

Figure 3.5 shows a sample projection into a two-dimensional space. Each point and

shape denote each sample and the correct class of the samples, respectively. For Bren-

necke, the different shapes are almost mixed, i.e., it does not perform clustering well

because the selected 200 features include significant amount of background noises. For

Seurat, the selected 200 features include those features that contribute to cluster separa-

tion, but the background noise is also selected; therefore the different shapes are slightly

mixed. For the proposed method, the samples are completely clustered because it selects

the necessary features for clustering and removes the background noise. These results

show that the proposed method can remove the unnecessary features for clustering using

PCA.

Figure 3.6 shows the clustering accuracy by varying the number of selected features,

s. The number of reduced dimensions of PCA was set to be 4. For Seurat and Brennecke,

the accuracy performance was poor when the number of selected features was small. This
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Figure 3.5: The two-dimensional space after reducing to seven-dimensions using the se-

lected 200 features by each method.

is because a significant amount of background noise was present in the top rankings. The

proposed method performed well even when the number of selected features was small;

additionally, it could select the significant features for clustering from the top rankings.

These results show that the proposed method can remove the unnecessary genes for clus-

tering without loss of accuracy.
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Figure 3.6: The clustering performance vs. selected genes.
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3.4.3 Gierahn dataset

First, we computed the principal components after selecting 2000 genes using Seurat.

Then, we excluded the first principal component because the distributions after the second

principal component are close to the normal distribution. Subsequently, parameters ℓ and

s of the proposed method were set to be six and 200, respectively. The number of selected

features for Seurat and Brennecke was 200 each.

Figure 3.7 shows the two-dimensional UMAP space. Each point and the different

shapes denote each sample and the correct classes of samples, respectively. For Seurat

and Brenncke, it does not perform clustering well because the selected 200 features do

not include the significant gene for clustering. For the proposed method, it can obtain a

good clustering structure even if using only 200 features are used. These results show

that the proposed method can select the significant features for clustering and remove the

background noises.
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Figure 3.7: The two-dimensional UMAP space after reducing to 10 dimensions by PCA.

Figure 3.8 shows the clustering accuracy by varying the number of selected genes s.

The number of reduced dimensions of PCA was set to be 10. The Seurat and Brennecke

methods cannot perform clustering well when the number of selected genes is small. For

the proposed method, the clustering accuracy for a small number of genes was observed

to be better than that when all 2000 genes were used. These results show that the proposed
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method can remove the background noise while maintaining the clustering accuracy.
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Figure 3.8: Clustering performance vs. selected genes.

3.4.4 Pollen dataset

We computed the principal components after selecting 1000 genes by Seurat. Then, we

computes the distance from the origin in the distortion-free space. Subsequently, param-

eters ℓ and s of the proposed method were set three and 100, respectively. The number of

selected features for Seurat and Brennecke was 100 each.

Figure 3.9 shows the two-dimensional UMAP space. Each point and the different

shapes denote each sample and the correct classes of samples, respectively. For Seurat, it

can obtain the better clustering structure than Brennecke results when the selected genes

is 100. For the proposed method, the Interneuron class (blue), the Dividing R. G class

(red), and the Radial Glia class (black) are completely clustered. These results show that

the proposed method can improve the visualization of the clustering structure.

Figure 3.10 shows the clustering accuracy by varying the number of selected genes s.

We set the number of reduced dimensions of PCA is six. For the Seurat, the clustering

accuracy is not well when the number of selected genes is small. The clustering accuracy

of the proposed method is best when selecting 175 genes and better than the Seurat in all
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Figure 3.9: The two-dimensional UMAP space after reducing to six dimensions by PCA.

situations. These results show that the proposed method ranks genes appropriately which

means can remove the background noise and select necessary genes for clustering.
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Figure 3.10: Clustering performance vs. selected genes.

We show the clustering performance by varying the number of reduced dimensions of

PCA for Gierahn and Pollen datasets in Appendix B.
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3.5 Related experiments

We compute the following statistics for each feature to identify the features that work

functionally in each cluster and visualized by the Feature Plot. The FeaturePlot is a di-

agram in which the sample is colored according to the expression level of each feature,

and it is possible to visually capture the features that are functioning specifically in the

cluster.

Statistical values

p val The calculated values from statistics by Wilcoxon rank-sum test

avg logFC log fold-chage of the average expression between the two groups

pct 1 The percentage of cells where the gene is detected in the first group

pct 2 The percentage of cells where the gene is detected in the second group

p val adj Adjusted p-value, based on bonferroni correction using all genes in the dataset

3.5.1 Gierahn dataset

We calculated the statistics for each of the 200 selected features for each cluster. Table 3.2

gives the top 4 features of each cluster based on the ascending order of avg logFC.

Figure 3.11 shows the FeaturePlot of the features ‘IGKC’, ‘IL7R’, ‘IL7R’, ‘TXN’,

‘IL1B’, and ‘IFITM1’, which have the largest avg logFC values for each cluster. The

largest features of avg logFC for each cluster are specifically working in a specific cluster.

The features in Table 3.2 are mostly listed in the supplementary table 4 of genes enriched

within each cluster by Gierahn, et al [71].

3.5.2 Pollen dataset

We calculated the statistics for each of the 100 selected features for each cluster. Table 3.3

gives the top 3 features of each cluster based on the ascending order of avg logFC.
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Figure 3.12 shows the FeaturePlot of the features ‘MKI67’, ‘MT-RNR1’, ‘CCND2’,

‘DLX6-AS1’, ‘STAB2’, ‘SEMA3C’, and ‘CRYAB’, which have the largest avg logFC

values for each cluster. The largest features of avg logFC for each cluster are specifically

working in a specific cluster. The features in Table 3.3 are mostly listed in the Additional

file 14: Table S7 of genes enriched within each cluster by Pollen, et al [72].

3.6 Summary

In this chapter, we considered selecting the significant features for cluster analysis to im-

prove its explanation. To remove the unnecessary background noise, we proposed an

effective feature selection method. The proposed method performed PCA for the sample

space of the data; then, it distinguished between the features required for cluster analysis

and the background noise. The proposed method selected the distance of each feature

from the origin in descending order in a low-dimensional space composed of distortion-

free principal components. We presented three methods for determining the distortions

in the obtained principal component. Numerical experiments demonstrated that the pro-

posed method is effective for removing the background noise and improving the cluster-

ing accuracy. For the simple simulation dataset, we showed that the Seurat and Brennecke

methods select a significant amount of background noise owing to its presence in the top

rankings. For all used datasets, the proposed method improved the clustering accuracy

and efficiently visualized the clustering structure even when the number of selected fea-

tures was samll.
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Table 3.2: Statistic values for each cluster

gene p val avg logFC pct 1 pct 2 p val adj Cluster

‘IGKC’ 8.9E-172 2.235 0.410 0.030 4.5E-170 Bcell

‘MS4A1’ 0.0E+00 2.157 0.723 0.044 0.0E+00 Bcell

‘BANK1’ 3.1E-168 1.280 0.380 0.024 1.0E-166 Bcell

‘TCF4’ 6.1E-87 1.091 0.364 0.061 1.5E-85 Bcell

‘IL7R’ 1.4E-130 1.204 0.765 0.311 7.1E-129 CD4

‘CD3D’ 3.2E-110 1.016 0.577 0.182 8.2E-109 CD4

‘TRAC’ 1.2E-90 1.003 0.481 0.146 1.2E-89 CD4

‘CAMK4’ 6.2E-103 0.974 0.347 0.060 1.1E-101 CD4

‘IL7R’ 1.4E-96 1.540 0.851 0.353 4.7E-95 CD8

‘CD2’ 2.6E-97 1.492 0.755 0.225 1.8E-95 CD8

‘CD3D’ 9.9E-56 1.128 0.602 0.222 2.2E-54 CD8

‘TRAC’ 2.6E-50 0.971 0.535 0.178 4.3E-49 CD8

‘TXN’ 2.1E-72 3.102 1.000 0.492 2.3E-71 DC

‘IDO1’ 1.1E-135 2.658 0.971 0.150 2.9E-134 DC

‘TBC1D4’ 1.0E-260 2.443 0.817 0.036 8.0E-259 DC

‘DUSP5’ 1.1E-140 1.724 0.663 0.050 4.2E-139 DC

‘IL1B’ 7.4E-35 1.583 0.299 0.137 1.6E-34 Myeloid

‘CYP1B1’ 1.0E-107 1.278 0.380 0.081 2.3E-106 Myeloid

‘APOBEC3A’ 5.4E-89 1.172 0.328 0.070 4.0E-88 Myeloid

‘KYNU’ 1.7E-181 1.094 0.616 0.157 1.7E-179 Myeloid

‘CXCL1’ 5.2E-20 1.031 0.176 0.078 8.8E-20 Myeloid

‘IFITM1’ 1.5E-117 1.354 0.652 0.210 1.1E-115 NK

‘IFITM2’ 1.9E-58 0.972 0.624 0.333 7.4E-57 NK

‘IL32’ 2.9E-29 0.822 0.442 0.228 7.6E-28 NK

‘HSH2D’ 1.0E-11 0.450 0.138 0.057 2.0E-10 NK
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Figure 3.11: FeaturePlot with the largest avg logFC features in each cluster.
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Table 3.3: Statistic values for each cluster

gene p val avg logFC pct 1 pct 2 p val adj Cluster

‘MKI67’ 8.9E-25 3.825 1.000 0.108 2.2E-23 Dividing R.G

‘TPX2’ 4.5E-24 3.641 1.000 0.108 7.5E-23 Dividing R.G

‘TOP2A’ 6.1E-16 3.636 1.000 0.250 4.3E-15 Dividing R.G

‘MT-RNR1’ 2.1E-04 2.348 1.000 0.956 2.3E-03 Endothelia

‘ATP1A2’ 3.3E-01 1.965 0.333 0.207 4.3E-01 Endothelia

‘RPS6’ 1.1E-03 1.583 1.000 0.970 9.4E-03 Endothelia

‘CCND2’ 2.5E-04 0.942 1.000 0.937 8.4E-03 Intermediate Progenitor

‘PER2’ 8.7E-02 0.710 0.667 0.624 2.2E-01 Intermediate Progenitor

‘HNRNPA1’ 4.2E-04 0.616 1.000 0.992 8.4E-03 Intermediate Progenitor

‘DLX6-AS1’ 1.6E-36 6.619 1.000 0.299 1.8E-35 Interneuron

‘GAD1’ 3.8E-31 5.617 0.673 0.041 2.2E-30 Interneuron

‘ERBB4’ 2.5E-43 4.338 0.982 0.118 5.7E-42 Interneuron

‘SATB2’ 8.6E-20 2.029 0.972 0.329 1.7E-18 Maturing Neuron

‘MEF2C’ 4.2E-11 1.898 0.806 0.333 2.1E-10 Maturing Neuron

‘LIMCH1’ 3.9E-09 1.875 0.694 0.250 1.6E-08 Maturing Neuron

‘SEMA3C’ 1.3E-15 1.819 0.773 0.330 1.7E-14 Newborn Neuron

‘MLLT3’ 4.1E-17 1.195 0.979 0.782 1.1E-15 Newborn Neuron

‘PPP2R2B’ 1.3E-14 0.976 0.856 0.397 1.1E-13 Newborn Neuron

‘CRYAB’ 9.3E-07 6.069 0.378 0.121 2.7E-06 Radial Glia

‘CLU’ 5.7E-30 4.123 0.956 0.242 4.0E-28 Radial Glia

‘FAM107A’ 4.2E-28 3.831 0.733 0.074 1.1E-26 Radial Glia
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Figure 3.12: FeaturePlot with the largest avg logFC features in each cluster.
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Chapter 4

Summary

In cluster analysis for transcriptome data, the discover the differences between cell popu-

lations and their functional characteristics can be discovered by explaining and interpret-

ing the characteristics of each cluster after analysis; accordingly, the explanations of the

cluster analysis results are strongly required. The high-dimensional transcriptome data

contain technical and biological noise, which further complicate the cluster analysis pro-

cess. This study attempted to improve the explanation of cluster analysis by considering

two issues; i.e., (1) performing accurate cluster analysis and (2) selecting features that

contribute to cluster separation. Accordingly, we proposed two novel algorithms, includ-

ing the scaling method for batch effect correction based on SC and the feature selection

method base on PCA of the sample space.

In Chapter 2, we considered the first issue of cluster analysis for transcriptome data,

i.e., performing accurate cluster analysis. We focused on removing the batch effect on the

manifold space after dimensionality reduction using the SC method by performing scal-

ing adjustments on each feature. We proposed an effective batch effect correction method.

The proposed method merged multiple data instances from different batches by perform-

ing scaling adjustments on the features in a low-dimensional space, which is different

from the existing L/S model that implements the empirical Bayes method to find the con-

stant values for normalizing of each feature. Furthermore, we proposed an approximation
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solution to solve the optimization problem for the scaling adjustment values and an au-

tomatic tuning technique to reduce the number of hyperparameters that appeared in the

proposed method. In Comparison to the well-established methods, the proposed method

was found to be effective when combined with SC; additionally, it was more robust and

exhibited excellent performance on both microarray and single-cell RNA-seq datasets.

In Chapter 3, we considered the second issue of cluster analysis for transcriptome data,

i.e., selecting the features that contribute to cluster separation. We focused on removing

the background noise that is unnecessary for clustering by performing PCA in the sample

space to distinguish between the features required cluster separation and the background

noises. Accordingly, we proposed an effective feature selection method. The proposed

method selected the distance of each feature from the origin in descending order in a

low-dimensional space composed of distortion-free principal components. We adopted

three methods to determine the distortions in the obtained principal component, i.e., the

evaluation of the Chi-Square goodness of fit test, skewness, and kurtosis. Numerical

experiments demonstrated that the conventional method selects a significant amount of

background noise owing to its presence in the top rankings. Furthermore, we showed that

the proposed method can remove the background noise while maintaining the accuracy

of clustering analysis for samples; additionally, it can improve the clustering accuracy

as well as the visualization of the clustering structure even when the number of selected

features is small.

In future work, we will consider more accurate clustering and visualization methods.

In addition, we will consider the development of an analysis tool for transcriptome data

including the two proposed methods.
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Appendix A: Technical details

We show an effective method to approximate the solution of the following equation:

max
s,λs

∥Lsv − λsDsv∥22 (4.1)

We assume that we have two datasets X(1) = {x(1)
i,j } ∈ Rn1×m and X(2) = {x(2)

i,j } ∈

Rn2×m, and the Fiedler vector v = [v(1)T,v(2)T]T ∈ R(n1+n2) of (4.1) is known by the

batch information, where the values of v(1) ∈ Rn1 are one and those of v(2) ∈ Rn2 are

−b. The similarity matrix based on the scaling adjustment Ws ∈ R(n1+n2)×(n1+n2) and

Ds ∈ R(n1+n2)×(n1+n2) can be blocked such as

Ws =

W (1,1)
s W

(1,2)
s

W
(2,1)
s W

(2,2)
s

 ∈ R(n1+n2)×(n1+n2), W
(p,q)
s = {w(p,q)} (p, q = 1, 2) ,

Ds =

 D
(1,1)
s On1,n2

On1,n2

T D
(2,2)
s

 = diag
(
d
(1,1)
1 , d

(1,1)
2 , . . . , d

(1,1)
n1 , d

(2,2)
1 , d

(2,2)
2 , . . . , d

(2,2)
n2

)
,

d
(1,1)
i =

n1∑
j=1

w
(1,1)
i,j +

n2∑
j=1

w
(1,2)
i,j , d

(2,2)
i =

n1∑
j=1

w
(2,1)
i,j +

n2∑
j=1

w
(2,2)
i,j ,

where W (p,q)
s and D

(p,q)
s (p, q = 1, 2) are calculated from the entries of X(1) and X(2), and

On1,n2 is a n1 × n2 matrix with zero in all entries. Then, (4.1) can be written as

max
s,λs

∥Lsv − λsDsv∥2
2

⇔ max
s,λs

(∥∥W (1,1)
s v(1) +W (1,2)

s v(2) −
(
(1− λs)D

(1,1)
s v(1)

)∥∥
2

2

+
∥∥W (2,1)

s v(1) +W (2,2)
s v(2) −

(
(1− λs)D

(2,2)
s v(2)

)∥∥
2

2
)
. (4.2)
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Let 1n be the n-dimensional vector with one in all entries, 0m be the m-dimensional vec-

tor with zero in all entries, S = diag (s1, s2, . . . , sm) ∈ Rm×m, s = [s1, s2, . . . , sm]
T ∈

Rm, s2 = [s1
2, s2

2, . . . , sm
2]T ∈ Rm, αi = [x

(1)
i,1

2
, x

(1)
i,2

2
, . . . , x

(1)
i,m

2
]T ∈ Rm,

β(p,q) = [x
(p)
i,1x

(q)
j,1 , x

(p)
i,2x

(q)
j,2 , . . . , x

(p)
i,mx

(q)
j,m]

T ∈ Rm (p, q = 1, 2), γi = [x
(2)
i,1

2
, x

(2)
i,2

2
, . . . , x

(2)
i,m

2
]T ∈

Rm, and t = 1
2σ2

[
1 sT s2

T
]T
∈ R2m+1.

Formulation of the first term of (2)

The (i, j) entry of W (1,1)
s is

w
(1,1)
i,j =


exp

−∥x(1)
i − x

(1)
j ∥2

2

2σ2

 ≈ 1− ∥x(1)
i −x

(1)
j ∥2

2

2σ2 = 1− tTk
(1,1)
i,j , i ̸= j,

0, i = j,

where x(1)
i is the ith row of X(1), σ is a parameter, and k

(1,1)
i,j =

[
1T
m

(
αi − 2β

(1,1)
i,j +αj

)
02m

T

]T
∈

R2m+1. Here, we used the first-order approximation of the exponential function exp(−x) ≈

1−x for 0 < x < 1. The ith row of W (1,1)
s is w(1,1)

i

T
= ẽT

i −tT
[
k
(1,1)
i,1 ,k

(1,1)
i,2 , . . . ,k

(1,1)
i,n1

]
,

where ẽi is the n1-dimensional vector with zero in the ith entry and ones in all other

entries. Thus, we have

W (1,1)
s v(1) = (n1 − 1)1n1 +



−n11
T
mα1 +

∑n1

j=1 1
T
m

(
2β

(1,1)
1,j −αj

)
0T 0T

−n11
T
mα2 +

∑n1

j=1 1
T
m

(
2β

(1,1)
2,j −αj

)
0T 0T

...

−n11
T
mαn1 +

∑n1

j=1 1
T
m

(
2β

(1,1)
n1,j
−αj

)
0T 0T


t.

Since the (i, j) entry of W (1,2)
s is

w
(1,2)
i,j = exp

−∥x(1)
i − Sx

(2)
j ∥2

2

2σ2

 ≈ 1− tTk
(1,2)
i,j ,
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the ith row of W (1,2)
s is w(1,2)

i

T
= 1T

n2
− tT

[
k
(1,2)
i,1 ,k

(1,2)
i,2 , . . . ,k

(1,2)
i,n2

]
, where x(2)

i is the ith

row of X(2), and k
(1,2)
i,j =

[
1T
mαi −2β(1,2)

i,j

T
γj

T

]T
∈ R2m+1. Hence, we have

W (1,2)
s v(2) = −n2b1n1 + b



n21
T
mα1 −2

(∑n2

j=1 β
(1,2)
1,j

)T (∑n2

j=1 γj

)T
n21

T
mα2 −2

(∑n2

j=1 β
(1,2)
2,j

)T (∑n2

j=1 γj

)T
...

n21
T
mαn1 −2

(∑n2

j=1 β
(1,2)
n1,j

)T (∑n2

j=1 γj

)T


t.

Then, the ith diagonal entry d
(1,1)
i of D(1,1)

s is

d
(1,1)
i = (n1 + n2 − 1) + tT


−(n1 + n2)1

T
mαi +
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T
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)
2
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(1,2)
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−
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j=1 γj

 .

Hence, we have

D(1,1)
s v(1) = (n1 + n2 − 1)1n1

+



−(n1 + n2)1
T
mα1 +

∑n1
j=1 1

T
m

(
2β

(1,1)
1,j −αj

)
2
(∑n2

j=1 β
(1,2)
1,j

)T
−
(∑n2

j=1 γj

)T
−(n1 + n2)1

T
mα2 +

∑n1
j=1 1

T
m

(
2β

(1,1)
2,j −αj

)
2
(∑n2

j=1 β
(1,2)
2,j

)T
−
(∑n2

j=1 γj

)T
...

−(n1 + n2)1
T
mαn1 +

∑n1
j=1 1

T
m

(
2β

(1,1)
n1,j
−αj

)
2
(∑n2

j=1 β
(1,2)
n1,j

)T
−
(∑n2

j=1 γj

)T


t.

Therefor, the first term of equation (4.2) can be written as

∥W (1,1)
s v(1) +W (1,2)

s v(2) − (1− λ1)D
(1,1)
s v(1)∥2

2

⇔ ∥E1 +
[
E2 bG bH

]
t− µ

(
F1 +

([
F2 −G −H

]
t
))
∥2

2

⇔ ∥
((

E1 +
E2

2σ2

)
+

bG

2σ2
s+

bH

2σ2
s2
)
− µ

((
F1 +

F2

2σ2

)
− G

2σ2
s− H

2σ2
s2
)
∥2

2

,

(4.3)

where µ = 1 − λ1, the ith entry of E1 ∈ Rn1 is n1 − n2b − 1, the ith entry of

E2 ∈ Rn1 is (−n1 + n2b)1
T
mαi +

∑n2

j=1 1
T
m

(
2β

(1,1)
i,j −αj

)
, the ith row of G ∈ Rn1×m

is −2
∑n2

j=1 β
(1,2)
i,j

T
, the ith row of H ∈ Rn1×m is

∑n2

j=1 γj
T, the ith entry of F1 ∈ Rn1 is

n1+n2−1, and the ith entry of F2 ∈ Rn1 is (−n1−n2)1
T
mαi+

∑n1

j=1 1
T
m

(
2β

(1,1)
i,j −αj

)
.
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Formulation of the second term of (2)

The (i, j) entry of W (1,2)
s is

w
(2,1)
i,j = exp

−∥Sx(2)
i − x

(1)
j ∥2

2

2σ2

 ≈ 1−
∥Sx(2)

i − x
(1)
j ∥2

2

2σ2
= 1− tTk

(2,1)
i,j ,

where k
(2,1)
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1T
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T
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T

]T
∈ R2m+1. The ith row of W (2,1)
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i

T
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1T
n1
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[
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i,1 ,k

(2,1)
i,2 , . . . ,k

(2,1)
i,n1

]
. Hence, we have

W (2,1)
s v(1) = n11n2 +
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j=1 1
T
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j=1 β
(2,1)
2,j

)T
−n1γ2

T

...

−
∑n1

j=1 1
T
mαj 2

(∑n1

j=1 β
(2,1)
n2,j

)T
−n1γn2

T


t.

Then, the (i, j) entry of W (2,2)
s is

w
(2,2)
i,j =
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]
, where êi is the n2-dimensional vector with

zero in the ith entry and ones in all other entries. Hence, we have

W (2,2)
s v(2) = −b (n2 − 1)1n2 + b



0 0T
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Then, the i the diagonal entry d
(2,2)
i of D(2,2)

s is

d
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Hence, we have

D(2,2)
s v(2) = −b(n1 + n2 − 1)1n2

+b
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Therefore, the second term of equation of (4.2) can be written as

∥W (2,1)
s v(1) +W (2,2)
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]
t− µ

(
F̃1 +

[
G̃ −H̃ F̃2

]
t
)
∥2

2

⇔ ∥

((
Ẽ1 −

G̃

2bσ2

)
+

H̃

2bσ2
s+

Ẽ2

2σ2
s2

)
− µ

((
F̃1 +

G̃

2σ2

)
− H̃

2σ2
s+

F̃2

2σ2
s2

)
∥2

2

(4.4)

where the ith entry of Ẽ1 ∈ Rn2 is n1 − n (n2 − 1), the ith entry of G̃ ∈ Rn2 is

b
∑n1

j=1 1
T
mαj , the ith row of Ẽ2 ∈ Rn2×m is
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.

Approximate the solution of (2)

From (4.3) and (4.4), we can obtain the factors si (i = 1, 2, . . . ,m) by solving the opti-

mization problem

max
s,µ
∥
(
A1 + A2s+ A3s

2
)
− µ

(
B1 +B2s+B3s

2
)
∥2

2
,
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where
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Appendix B: Clustering performance

We show the clustering performance by varying the number of reduced dimensions of

PCA for three datasets.

Simulation datasets results

We select 200 genes for each method.
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Gierahn dataset

We select 200 genes for each method.
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Pollen dataset

We select 100 genes for each method.
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