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Abstract

Many high-performance computing (HPC) applications, such as training neural net-

works, image processing, and weather simulation, have continuously increasing require-

ments for the computing capabilities. Traditional CPU-based computing platforms of-

ten can not meet these requirements due to unsustainable performance gains of CPUs.

Therefore, to solve that problem, the use of dedicated hardware accelerators to improve

the performance of these HPC applications is attracting attention in the last few years.

GPUs have already been proven to be the most popular hardware accelerators in the

past decade. This is mainly due to their parallel many-core architecture and high-speed

storage bandwidth. However, these devices also suffer from the strong needs for the

power supply and limited I/O interfaces.

Recently, many studies have tried to use FPGAs as the dedicated accelerators to

deal with these HPC applications. The results demonstrate that FPGAs also have

the potential to provide GPU-level computing power and maintain energy efficiency.

However, FPGAs’ hardware-based design flow usually hinders the way to popular them

to mainstream users in the HPC field. Although both academia and industry have

developed high-level synthesis (HLS) tools that allow users to directly program FPGA

with conventional languages, e.g., C or C++, to improve usability and productivity.

Programming on FPGAs with these HLS tools to achieve high efficiency and good

performance is still a time-consuming task, and lack of knowledge about optimization

strategies and techniques may lead to poor scalability and portability. Therefore, in this

thesis paper, I discus the corresponding optimization strategies and techniques to use

HLS developing method for HPC applications, specifically, for the stencil computations.

Due to the low arithmetic intensity and irregular memory access pattern, the peak

performance of fixed architecture, e.g., GPUs or CPUs often can not be reached for

computing stencil kernels.

In the first part of this thesis, I set two typical computational fluid dynamic (CFD)

simulation modes, i.e., lattice Boltzmann method (LBM) and lattice gas cellular au-

tomata (LGCA) as the target applications. The proposed architecture design can

take advantage of both spacial and temporal parallelism to increase the simulations

performance. During the implementation process, I adopt bunch of HLS optimization

strategies. In addition, I also discuss the design portability issue that related to specific

HLS developing environment. I evaluate the architecture on a Xilinx VCU1525 FPGA
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board with the SDAccel HLS developing environment. The evaluation results show that

the simulation performance can scale well with the two main design parameters-i.e., for

spatial and temporal domain. For the LGCA simulation, the best result of VCU1525

FPGA achieves 17130 MLUPS, which is 30 times faster than a i7-6700 CPU-based

implementation and 3 times faster than a Quadro P5000 GPU-based implementation.

For the LBM simulation, the result achieve the 4919 MLUPS, which is a competitive

result compared to a GTX Titan GPU implementation.

In the next part, according to the previous work, I generalize the proposed ar-

chitecture to normal stencil applications by using 3 benchmarks, Sobel filter, Laplace

equation, and Himeno benchmark. Since an HBM-connected FPGA board is used, I

am able to explore the complete design space for using spatial parallelism. The explo-

ration process provide an opportunity to utilize the computation reusability inside the

certain stencil kernels. I evaluate the architecture on a Xilinx Alveo U280 board. For

non-iterative stencil benchmark, e.g., Sobel 2D, the results show the architecture can

achieve 10x-20x higher performance than traditional FPGA boards. This mainly due

to the advantage of HBM memory bandwidth. The resource consumption report shows

that by reusing the calculation results, the cost of the LUTs can be reduced by about

20%.For the 2D Laplace equation, compared with previous design approach, I use larger

value of spatial parallelism parameter to scale-up the application performance. The ad-

vantage of using the large value of spatial parameter enables users to share some FPGA

hardware resources like BRAMs inside space domain. This situation is more serious in

the 3D stencil applications, e.g., Himeno. Since the custom buffer needs to buffer more

data for 3D stencil kernel. The results show that the maximum performance of Alveo

U280 with large spatial parallelism can achieve 4x higher performance compared with

the version with large temporal parallelism in the Himeno benchmark.
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Chapter 1

Introduction

1.1 Background

In the past half-century, the CPUs have been the main component of building a high-

performance computing (HPC) platform. However, due to the slowdown of Moore’s

Law [1], the performance of CPUs has not shown a dramatic increase in recent years.

Also, the power consumption of the single-chip CPUs are no longer benefits from the size

of MOSFET transistors (Dennard Scaling) as before [2]. For these reasons, the CPU-

based computing platforms often can not provide the sustainable computing capabilities

and energy efficient in many HPC applications, such as training the training neural

networks, performing hydrodynamic simulations, or searching data engines. Therefore,

building modern computing platforms with pure CPUs seems not a promising solution.

For the last decade, Graphics Processing Units (GPUs) which is originally design for

rendering images in the computing system has been proven to be also good at dealing

with high performance computing tasks [3–5]. This is mainly due to the high parallel

architectures, i.e., large number of cores, fast external memory, and native supported

floating-point processing abilities. Compared to CPUs, the computing platforms us-

ing GPUs as dedicated hardware accelerators usually can achieve order of magnitude

performance improvement in high-performance applications. However, the power con-

sumption of GPUs also cannot be ignored, e.g. a single GPU often require 100 W to

300 W to run in full frequency and the corresponding cooling system also consume

large amount of power.

Recently, researchers also found Field-Programmable Gate Arrays (FPGAs), which

are prefabricated semiconductor devices that users can implement or re-implement any

digital logic on them, show great potentials in HPC area [6–10]. Compared to GPUs

or CPUs, although FPGAs’ work frequency is low, FPGA-based platforms can explore

the fine-grained parallelism of target applications by constructing application-specific

pipeline systems. Unlike the pipeline system on fixed architecture, e.g., CPU, the

custom pipeline system on FPGA do not need to process extra stages like fetch or
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decode, they can be deeply optimized only for the target applications. Moreover, the

parallel structure of large numbers of logic cells and dedicated on-chip DSPs allow users

to build a fully customize design. As a result, These FPGA-based platforms have the

possibilities to provide GPU-like performance results and maintain lower energy costs

in various HPC applications. Besides, the configurable I/O also helps FPGAs to be

integrated in complex computing systems. These features make FPGAs gain a lot of

attentions as a suitable hardware accelerator. For example, after Intel acquired Altera

in 2015, in 2020 AMD also acquired Xilinx, another FPGA leader company, to improve

the competitiveness in the HPC field. Catapult, a Microsoft research project, already

used FPGAs as their cloud computing accelerators [11]. They can achieve 21 cents

per million pictures in terms of cost for a deep neural network (DNN) application with

ResNet-50 by using the Arria 10 FPGAs.

1.2 Motivation and Contribution

To obtain the expected performance of target applications on FPGAs, the developing

methods play a significant role. The traditional developing method of FPGAs is based

on the register transfer level (RTL) description which is often programmed by hardware-

oriented languages e.g., VHDL or Verilog. However, designers using the hardware-

oriented languages are often required to spend considerable time on logic details rather

than optimizing the key area implementation in target application. Moreover, to proper

describe the RTL design with such languages like VHDL, it also need designers have

strong background in Integrated Circuit (IC) design e.g., data paths or/and Finite

State Machine (FSM). As a result, the RTL-based developing method hurts the design

productivity of FPGAs and block the way to introduce FPGAs to the mainstream

software-based users of HPC fields.

To improve productivity and usability of FPGAs, high-level synthesis (HLS) devel-

oping method starts to gain their popularity in recent years [12]. Both academia and

industry have developed various HLS tools, e.g., Vivado HLS [13], Intel HLS SDK [14],

or LegUp [15], to help users to generate the RTL level design directly from the high

abstraction description that programmed by common software-based language, such

as, C, C++, or OpenCL.

In this thesis paper, I focus on presenting an HLS-based FPGA design for stencil

applications. Stencil computations are wildly used kernels in many HPC applications,

such as hydrodynamic simulations, solution of mathematical equations, and image pro-

cessing technologies. However, since stencil computations generally do not have strong

computing intensive and the memory access patterns are irregular, the computing plat-

forms such as GPUs or CPUs often can not utilize their maximum computing capabil-

ities. For example, research [16] shows only about 20% computing power of CPUs is

delivered for implementing some CFD simulations. [17] demonstrates no more than half
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of peak performance of GPUs can be used for general stencil computations, since their

fixed memory architecture and external memory bandwidth limit the use of computing

power.

For various stencil applications, obtaining enough high performance on the target

computing devices is always the most significant goal. Many performance optimizing

techniques and strategies targeting for using the high-level languages such as C, or

C++ to implement the stencil computations on CPUs or GPUs are well discussed.

Nonetheless, for using these languages on FPGAs, especially by the HLS methods,

still few principles or rules have been established for performance optimization. Simply

reusing the CPU-based or GPU-based software code in HLS compilers often causes per-

formance degradation. In the worst case, the HLS compiler may generate the incorrect

RTL structure or fail at the implementation stage. This mainly due to the following

reasons:

• High-Level languages, e.g., C are designed for developing program on CPUs, not

for the digital logic structure. The traditional software development techniques

e.g., pointer arithmetic, dynamic memory location, or recursive function call often

do not work well on FPGAs.

• The hardware components inside FPGA such as FIFOs, BRAMs are not originally

used in these languages. Designing efficient FPGA structures requires the flexible

use of FPGA hardware components. For example, building the cache system

by using on-chip memory resource BRAMs can significantly reduce the FPGA

memory bandwidth bottleneck.

• To achieve high performance, the HLS tool allows developers to explore large

design spaces with different choices of optimizations strategies. Choosing the

optimal combinations of these strategies remains a time-consuming task.

Therefore, for efficiently implementing the stencil architecture on FPGAs by explor-

ing the HLS developing method, the developers need to perform optimizations that can

help FPGAs generate the proper hardware structure with the HLS design. These opti-

mization strategies and techniques are intended to cost the optimal on-chip computing

and memory resources to build a application specific architecture on the target FPGA.

Compared to using the high-level languages on fixed architectures like CPUs, the opti-

mizations objectives to increase the stencil computation performance for adopting HLS

on FPGAs can be characterized as the follows 3 parts:

1. Building pipeline system with the minimum value of initial interval (II) to benefit

from fine grained parallelism. Although HLS tools can use directive pragmas such

as pragma pipeline to automatically pipeline the target design code, due to FPGA

hardware limitations, some CPU-based code may not achieve full pipeline (II =

1). Users should explicitly identify the reasons and optimize the corresponding

code, e.g., optimizing data dependency issue among loops to reduce the II;
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2. To exploit coarse grained parallelism, the vectorization and duplication process

can be solved with manually adding the identical computing functions and/or

using pragma loop unroll to fold the loops insides target code. For CPU-based

users, these operations are similar concept as multi-thread programming. How-

ever, for using HLS on FPGA, the users also need to make extra optimizations

of the FPGA structure, such as re-partitioning the on-chip memory resources.

3. Re-organization of data access pattern to optimize external memory bandwidth

utilization, e.g., using FIFO structure to build the stream data-flow interfaces

between the functions. Compared to CPUs, due to lack of an explicit cache

system, the data movement from external memory and on-chip memory should

be carefully optimized.

To achieve these 3 optimization objectives, there still exist many challenges, such as,

the data dependency between the loops can stall the pipeline engine of the HLS com-

piler, the default vectorization pragma pragma loop unroll may use redundant memory

resources to feed the data bandwidth requirement by the computing logic, and the

memory access efficiency of the bus interface needs to be specially configured. In this

thesis, I will introduce a bunch of HLS specific optimization strategies for code conver-

sion from fixed architecture (e.g., CPU) to FPGAs with the various stencil applications

and I also discuss how these strategies affect the performance of target stencil appli-

cations. In addition, I also show the HLS potability problem and give some hints to

help developers realize which parts of the code might compromise the portability of

the HLS design during the implementation of target stencil applications. The main

contributions are:

Computational Fluid Dynamics

For various Stencil applications, the thesis paper uses the Computational Fluid Dy-

namics (CFD) simulations as the initial study target benchmarks. CFD analyze fluid

dynamics by numerically solving the equations of particles motion and it has been

wildly used in many scientific and engineering areas. I propose an HLS-based archi-

tecture for implementing CFD simulations on FPGA. I select two typical CFD modes,

i.e., Lattice Boltzmann Method (LBM) and Lattice Gas Cellular Automata (LGCA).

The main contributions of this work include following parts:

• I propose a HLS-based architecture design that can exploit parallelism of CFD

simulations in both spatial and temporal domains. The key to achieve high perfor-

mance in CFD simulations is to run the simulations as much parallel as possible.

The two kinds of parallelism are characterized as two main design parameters.

The proposed architecture can scale-up performance by using both two parame-

ters based on the target FPGA resources limitations.
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• I introduce a custom buffer design that explicitly uses FIFOs and registers to

solve the data dependency issue on the temporal domain. Compared to studies

adopting shift-register based buffer design under the Intel HLS developing envi-

ronment, the proposed custom buffer design can work well under the different

HLS platforms.

• For the LGCA application, I propose a object-based vectorization method to use

the spatial parallelism. This vectorization utilize the arbitrary integer datatype

to implicitly increase the spatial parallelism value. By using this method, users

do not need to explicitly change the on-chip buffer structure to feed the vectorized

simulation processing units. For the LBM application, I propose a scalable version

of FIFO-based custom buffer. This buffer can exploit the data locality of target

stencil kernel to achieve the full data reuse ability with the optimal memory

resource cost.

• A performance model is devised to tune the design parameters. To obtain the

maximum performance of CFD simulation on the target FPGA board, the users

need to search an optimal combination of design parameters, especially for spatial

parallelism and temporal parallelism parameters.

General Stencil Computations with HBM

According to the HLS-based CFD simulation framework, I extend the existing archi-

tecture to the general stencil applications. I choose 3 typical benchmarks. They are

Sobel 2D filter stands for image processing, Laplace equation (4-point) for mathemat-

ical equation, and Himeno for 3D hydrodynamic simulation. Besides, in this study, I

use the state-of-the-art FPGA board Xilinx U280. Compared to traditional FPGAs,

the board U280 is equipped with High Bandwidth Memory (HBM) banks, which can

increase the FPGA external memory to 460 GB/s. This huge advantage creates new

design possibilities in the FPGA architecture. Based on my previous work, the major

contribution in this study are as follows:

• Traditional FPGAs often use DRAM banks, e.g., DDR3 or DDR4 as external

memory, which limits the design space exploration for using the spatial paral-

lelism. With the help of HBM memory, I propose a FPGA-based stencil acceler-

ator design architecture which can significantly extend the design possibilities in

the spatial domain.

• To fully explore the design possibilities in spatial domain, I generalize the custom

buffer design that can scale parallelism value in multiple space dimensions. By

considering the portability of the design, the proposed method insist on using

the conventional FPGA resource or IP cores, e.g., FIFOs and registers to clearly
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describe the data movement inside the custom buffer design. For stencil ker-

nels with computation reuse-ability, the proposed custom buffer provide a design

option to utilize this optimization opportunity.

• I introduce an optimization flow for efficiently using the HBM memories. Com-

pared with FPGAs, the GPUs have a highly efficient dedicated memory control

module. This module can implicitly merge the memory accesses to fully utilize

external memory of GPUs. For FPGAs, it relies on the users to control the mem-

ory access pattern. Based on the HLS developing method, I first build a data

distribution and collection buffer to increase the data width of the FPGA memory

interface. Secondly, I utilize the burst mode of the AXI bus as much as possible

to achieve higher transmission efficiency.

1.3 Thesis Outline

The rests of this thesis is organized as follows.

In Chapter 2, I introduce the fundamental knowledge of FPGA architecture. The

FPGA design flow is also shown in this chapter. At last, I present two typical FPGA

developing methods.

In Chapter 3, I present the previous work of how to implement the stencil archi-

tecture on FPGA with the HLS developing method. Then, I specifically describe the

remaining challenges.

In Chapter 4, I first explain the basic concept of CFD, a and demonstrate two

specific models of CFD, i.e., LGCA and LBM. Then, I use these 2 typical stencil

application to describe the key optimization approaches to improve the simulation

performance on FPGA with HLS method. After that, I describe detail implementation

process of the simulation. At last, I discuss the results and compare them with other

platforms.

In Chapter 5, I extend the architecture in chapter 2 to fully explore the design

space for stencil applications. Since I use a HBM-enable FPGA board, I briefly show

the structure of HBM in the beginning of this chapter. Next, I mainly discuss how

to modify out stencil architecture for expanding the design space with the support of

HBM. By fully exploring the design space, I find the extra optimization chances for

re-using the computation results of certain stencil kernels. I use 3 typical benchmarks

to verify the proposed structure.

In Chapter 6, I present the conclusion and future work of this thesis paper.
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Chapter 2

FPGA Architecture and Design

Method

In this chapter I first introduce the fundamental knowledge of general FPGA architec-

ture, and show the basic logic elements inside an FPGA. Compared to fix architecture

such as CPUs, I explain that how FPGAs use these elements to realize the digital logic

operations. Then, I describe the work flow for developing FPGA design. In this section,

I specifically talk about the HLS method which uses conventional languages, e.g., C or

C++ to describe the FPGA design.

2.1 Field-Programmable Gate Array

Field-programmable gate array (FPGA) is a type of prefabricated semiconductor inte-

grated circuit (IC) device on which users can implement or re-implement any digital

logic functions after fabrication. Compared with traditional IC devices, the most ad-

vantage of FPGAs is their logic and connections can be programmed like software

code on a CPU. The history of FPGA can be traced back to 1985 when the first

FPGA device-i.e. XC2064, was invented by the creators of Xilinx [18]. Compared

with XC2064 which only owns 64 of logic gate blocks, today’s FPGAs already have the

capabilities to hold millions logic gates and thousands of dedicates DSPs and BRAMs

blocks. These tremendous advances and the re-configurable feature allow FPGAs to be

adopted in many different markets, such as aerospace instruments, automotive systems,

and HPC fields. In this thesis, I mainly discuss how to use FPGA to achieve enough

high performance for the stencil applications.

2.1.1 FPGA Architecture

The overview structure of an FPGA chip can be shown in Figure 2.1. An FPGA chip

mainly includes following 4 types of elements-i.e., configurable logic blocks (CLBs),
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DSPs, BRAMs, and wires. Unlike old type FPGA chips which mainly use the CLBs to

perform float-point computations, modern FPGAs have already integrated with dedi-

cated DSPs, allowing FPGA to provide similar computing capability as GPUs. Besides,

the large amount of on-chip configurable block memories (BRAMs) are also integrated

inside modern FPGAs. By connecting these logic elements with wires, developers have

the flexibility to efficiently implement target applications on FPGAs. The details of

these elements are shown in the following.
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Figure 2.1: The overview of FPGA basic architecture

Configurable Logic Block

As I stated above, CLBs are the fundamental logic cells of FPGAs, allowing developers

to configure them for implementing basic logic operations. When multiple CLBs are

linked together with routing resources, they also can execute complex logical functions.

An example of a CLB structure is shown in Figure 2.2. A typical CLB contains small

components such as look-up tables (LUTs), flip-flops (FFs), and multiplexers.

• Look-up tables: The LUT stores a predefined truth table of outputs value list

in which different combinations of n inputs can generate any logic functions of

2n. In another word, the LUT actually emulates the logic operation gates rather

than directly calculate the results. For example, the ”AND” logic gate with two

inputs ”in0” and ”in1” can be implemented by using the truth table value ”0001”

in the Figure 2.2.

• Flip-flop: The FFs are the minimum storage unit for FPGAs. Each FF is a binary

register used to store the logical state with the clock signal of FPGA. Generally,

the FFs are in company with the LUTs. The clock signal is controlled by the

clock enable pin. The FF can latch the result of LUT. When the clock enable is
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set to 1 and the positive edge of clock wave is coming, FF can transfer the latched

data to the output.

• Multiplexer: The multiplexer is used to select the inputs from the LUT and the

FF, and pass the selected data to the output of CLB. It can improve the design

flexibility of CLB.
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Figure 2.2: The example of CLB structure

Digital Signal Processing Block

The on-chip DSP blocks are complex calculation elements inside FPGAs. One example

of Xilinx DSP block is shown in Figure 2.3 [19]. Inside the DSP block, there are 3

main computing modules, i.e, add/sub module, multiply module and the add/sub/ac-

cumulate module. They form a chain structure to implement some independent math

functions, such as multiplication, multiply-accumulate operation, or pattern detecting.

Although these functions also can be realized by using CLBs, implementing them with

dedicated DSP block will improve the design efficiency, save energy consumption, and

optimize the FPGA operating frequency.

Block Random Access Memory

As using DSP blocks for arithmetic computing, the on-chip BRAMs are dedicated

storage elements of FPGA [20]. Although LUTs also can store some data by using the

truth tables, their storage capacities are very limited. Compared to LUT storage (also

known as distributed memories), a typical BRAM block often can store 18k or 36k bits

in one device and state-of-art FPGAs often have thousands of these BRAMs, which

allows FPGAs to hold dozens of megabytes data inside the chip. The connections of

these BRAMs also can be fully customized by the developers. As a result, developers

often use these BRAMs to build a high efficiency application-specific cache structure
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to increase the performance of FPGA. In addition, the BRAM can be used to realize a

hardware FIFO, which is a very useful structure in hardware design.

2.2 Traditional FPGA Developing Methodology

In this section, I first introduce the overview of FPGA design flow. Then, I present

two typical developing methods of FPGA design, i.e, traditional register-transfer level

(RTL) based design, and high-level language based design. I also compared these two

design methods by their features.

2.2.1 FPGA Design Flow

The design flow of FPGA is very similar to the IC hardware design [21,22], since FPGA

can be treated as a special IC chip that can change the design after fabrication. Figure

2.4 shows the overview of FPGA design flow.

The design flow starts with the design entry process. Initially, when the size of

hardware circuit is not large, the design entry can be described very specifically by

using the gates and how they are connected by wires, i.e., schematic entry. However,

with the development of FPGA technology, more hardware resources are integrated on

an FPGA, the schematic design entry become hard to maintain and the developing

productivity is extreme low.

As the design complexity continues to grow, the design entry of FPGA starts to use

more abstraction level languages to describe the design structure. Hardware description

languages (HDLs), e.g., VHDL or Verilog based RTL design is a significant advance in

terms of abstraction. Compared with the description of gates and wires, the RTL design

allow developers to use HDLs for declaring the digital logic behaviours and operations

based on registers. The RTL-based design method is also known as the traditional

design method of FPGAs, I will discuss the detail features in the following section.
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Before the developers actually program the FPGA chip with the binary files, i.e.,

bitstream. They need to use the corresponding electronic design automation (EDA)

tools such as Vivado or Quartus to help them generate the target bitstream. The

EDA tools mainly contain the following 3 parts: synthesis, implementation, and device

programming.

After finish the design entry process, the synthesis process actually transfer the

HDL-based RTL design into gate level netlist. Not all HDL code can be synthesised to

gate level, such as, duel clock triggering process, or recursive functions. The synthesis

tool can detect these descriptions and check the code errors.

Next, the gate level design will go through the implementation process which consist

of 3 sequence steps.

• First, the translation step binds the gate level netlists and their time requirements

together to a design file.

• Then, the mapping step cut the netlists into small logic elements and mapping

the logic elements with FPGA hardware resources, e.g., CLBs, DSPs, or BRAMs

according to the design file. For example, Figure 2.2 shows how to map a ”AND”

logic to a CLB block.

• Finally, the place and routing (PAR) step actually locates the mapped hardware

resources inside the FPGA (place) and connecting these blocks with wires and
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routers (routing). However, the PAR may generates congestion and wires can be

detoured. As a result, the output solution of PAR does not always meet the area

or time requirements of target design. Generally, the PAR can generates multiple

solutions and choose the best one as the final output. If the final solution still

fail to meet the requirement, the developers need to optimize the design entry file

and repeat above processes all over again.

After the implementation, the target design file is transformed to a bitstream for-

mat that can be downloaded to a specific FPGA. This process is done by the device

programming. The total FPGA design flow end here.

2.2.2 RTL-based Design Method

The traditional development method begins with RTL design [23]. Developers use HDL

language to describe the behavior of logical functions between registers. Before entering

the synthesis phase, they need to perform RTL simulation to ensure that their HDL

code works as expected.

However, the logic of HDL language is not easy to grasp. It usually requires deep

hardware design knowledge. For example, it is not recommended to use a latch in

RTL design, but developers can misuse an incomplete ”if else” statement to generate

the latch structure which is an asynchronous storage element and may cause time

error. In another case, the RTL design needs to control the clock signal to perform

synchronization or implement the control logic of the data path. Only when the clock

signal reaches the register with exact predefined clock cycles, this signal can be treated

as receiving correctly. When the clock signal is faster or slower even by 1 clock cycle,

the behavior of the RTL design may be completely different. As a result, generating

correct RTL simulation results may require a lot of time to verify the HDL code.

After the developer has verified the HDL code, the EDA tool can be used to synthe-

size and implement the design. However, the verified design may also need to change

since the PAR fail to meet the time and area requirements as I state in previous sec-

tion. Then, the developers must optimize the HDL code and restart the verification and

EDA process. Therefore, the developers are usually required to coding a large amount

of HDL code for a target design and pay special attention to the details of verification

and implementation. The result is that developers spend a lot of time on RTL code

instead of proposing new solutions and evolving new algorithms.

With the continues evolution of FPGA technology, the productivity and usability

of RTL-based development methods cannot overcome future challenges, e.g., time-to-

market. In order to remain competitive, development methods based on high-level

languages began to gain popular. I will introduce the HLS-based design method in the

next section.
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2.3 High-Level Synthesis FPGA Developing Methodology

Similar as the RTL-based design method replacing schematic method, the high-level

synthesis developing method is a further step to improve the design description level

from RTL to algorithmic [24]. Compared with the RTL description, the HLS devel-

oping method allow developers to implement the arithmetic-level behavior by directly

using high-level languages such as C or C++. Since the developers work at a higher

abstraction level and do not need to care about the detailed design of the data path

structure and its corresponding control logic, the development time is significantly re-

duced. Through the HLS design flow, developers can automatically convert arithmetic-

level designs to RTL-based designs, such as transforming C code to HDL code. Once

the RTL-based design is available, developers can use the standard FPGA design flow

to generate bitstream files and program the target FPGA as shown in Figure 2.4.

2.3.1 HLS Design Flow

A typical HLS design flow is shown in Figure 2.5 [25]. According to the input high-

level design files and constraints, the HLS compiler can use HDL code to generate RTL

designs. Basically, the HLS compiler automatically performs the following tasks instead

of explicitly performing as in RTL design. The HLS compiler can generate a design

interface based on the data type of the parameters of the defined function. Inside the

function, HLS analyzes data structures, calculation operations and control statements.

Based on this, HLS can generate the corresponding data path and control logic. By

using the constraint file, HLS can also pipeline the design and insert registers into the
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critical path to optimize frequency. As a conclusion, the final target of HLS design flow

is to automatically optimize the high-level design based on the constraints and generate

the corresponding RTL design. The HLS process mainly uses the following 3 phases to

reach the design target.

Scheduling and Binding

The main task of the scheduling is to solve the problem of how to assign the computing

operations of a high-level function to the correct clock cycle stages. Based on the

constraints, the scheduling system can assign multiple computing operations inside one

clock cycle. Meanwhile, if the target clock period is too short, the scheduling system also

can assign the operations across multiple clock cycles. The detail scheduling strategies

can be seen in paper [26]. After the scheduling step, the binding system decides which

type of hardware resources, e.g, CLB or DSP, to execute the scheduled computing

operation. For some highly optimized design, developers also can use directives to

directly bind the proper hardware resource to the specific operations.

I use the following example to explain how the scheduling and binding work. A

high-level function is shown in List 2.1.

1 //a, b, c are constant numbers.

2 int foo(int input)

3 {

4 int result;

5 result = a * input + b + c;

6 return result;

7 }

Listing 2.1: An HLS code example

x

+ +

DSP CLB
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out

a

b

c

Binding

Scheduling

Clock

Figure 2.6: The scheduling and binding result
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The result of scheduling and binding is shown in Figure 2.6. Inside the example

function, there exists 3 computing operations. The scheduling system assigns the mul-

tiplication and addition in the first clock cycle. The other addition is scheduled to

the second clock cycle. After the scheduling phase, the bind system binds the multi-

plication and addition to the DSP block, since DSP block can efficiently execute the

multiply-add (MADD) operation compared to CLB. The next addition is implemented

with the CLB.

Control Logic Extraction

As I state above, the HLS can analyze the conditional statements of high-level language

and automatically generate the control logic. I use a code example to show the idea of

control logic extraction.

1 //a, b, c are constant numbers.

2 #define N 3

3 int foo(int input[N], int out[N])

4 {

5 int t;

6 for(int i = 0; i < N; i++)

7 {

8 t = input[i] * a + b + c;

9 out[i] = t;

10 }

11 }

Listing 2.2: An code example of a loop statement

For the target foo function, there are two arguments are declared as the integer array

type. The array in the C language can be implemented by using BRAM resources. The

HLS can automatically generate the control signals, e.g., read or write enable to access

the I/O interface of the BRAMs.

Inside the function, a loop conditional statement is used to control the program to

repeat N times of the 3 computing operations and write the result value to the output

array. The HLS can automatically create the finite state machine (FSM) to implement

the loop statement. This FSM is shown in Figure 2.7.

Since the result of adding operation of b+c can be reused inside the loop statement.

The HLS can schedule this addition out of the loop and be a separate state of FSM,

i.e., S0. Then, in the next state S1, it keeps the result of the addition b + c in the

register (FF) and starts to enter the loop structure. S2 is used to wait the return

value from the BRAM, since the memory access of BRAM usually need to cost 2

clock cycles. At last, in the state S3, it calculate the result of output by binding the

MADD operation to the DSP. In addition, it also checks the loop boundary of counter

i. If i exceeds the value N , S3 goes back to the start state S0, otherwise, it goes

back to the state S1. As a conclusion, in case of N = 3, the order of the FSM is:
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S0→ S1→ S2→ S3→ S1→ S2→ S3→ S1→ S2→ S3→ S0.

2.3.2 HLS Developing Tools

The development of HLS tools can be traced back to around 1990s. At this stage, these

HLS tools try to use more abstract design which is often described by the custom HDL

to generate the RTL design. For example, the academic studies include, e.g., MIMOLA

[27], ADAM [28], HAL [29]. And the related commercial tools are Behavioral Compiler

from Synopsys [30], Visual Achitect for Cadence [31], and Monet with Mentor [32].

However, These HLS tools cannot be considered successful. These early HLS tools

are only used for design prototyping and academic exploration. This is mainly caused

by the following reasons:

• Instead of using the conventional high-level languages, e.g, C or C++, these

HLS tools choose to modify the HDL languages, e.g., removing the explicitly

clock signal, to support the high level abstraction. Although C or C++ are very

popular languages, they are not considered suitable for hardware design, due to

their complex memory management, e,g., pointers, lack of parallel scheduling, and

explicitly synchronization system. Compared with C, the custom HDL languages

require users to spend a lot of times to manage them. Moreover, these tool-

dependent custom HDLs are very hard to port them to other platforms.

• Early HLS tools pay much attention on the data path generation. They still need

users to solve the system integration problem by themselves. For example, users

often need to specify the connecting interfaces from target synthesised function

to other system modules, which hurts the design reusability.
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• Due to lack of verification techniques support, the quality of results (QoR) of

these HLS tools are very awful. The generated RTL design of HLS has few feed

backs information to the high-level user design. For example, these HLS focus

on optimizing the latency result, rather than considering the corresponding area

or power costs, making the target design often can not be correctly implemented

with the limitation of power or area budgets.

With the decades of efforts from both academia and industry, state-of-art HLS tools

can solve these shortcomings to a certain extent and effectively generate the high QoR

RTL design directly from the high-level languages, e.g., C or C++. I will introduce

some typical HLS tools in the following.

On the industry side, both Xilinx and Intel the two big vendors of FPGA have

proposed their HLS compilers for implementing C-based design on their FPGA prod-

ucts. Vivado HLS [13], the HLS tool of Xilinx, is derived from the AutoESL which is

founded by UCLA vast lab. Vivado HLS can package the the high-level abstraction of

algorithmic description to the IP core without manually creating RTL. As a commer-

cial tool from Xilinx, it can efficiently utilize the on-chip DSPs, memory resources, and

predefined libraries. It also can verify the C-based design by using C level test bench.

The most successful HLS tool of Intel is the OpenCL SDK [33]. Compared with

Xilinx, Intel is not only the vendor of FPGAs (acquiring from Altera) but also the

leader of CPUs. Intel OpenCL SDK exploits the features of OpenCL, a open standard

defined by Khronos Group for heterogeneous computing devices. The goal is to provide

an uniform developing environment for the heterogeneous platforms, e.g., multi-core

CPUs, FPGAs, or even GPUs. By using the board support package (BSP), many third

party of FPGA boards can also use the OpenCL DSK, and generate the RTL design

by using the OpenCL C language.

For the academic side, there also exist many HLS tools. Compared with commercial

tools, these academic tools are usually open source and do not bind with specific FPGA

vendors. LegUp [15] is an HLS tool invented by J. Anderson from the University of

Toronto. Similar like other HLS tools, LegUp can generate the RTL result according

to the high-level languages. In addition, it also supports the heterogeneous computing

systems as the Intel OpenCL SDK, and it can use various CPU types such as ARM, or

MIPS architecture. By using another open source compiler and tool-chain LLVM [35],

LegUp also can work with the multi-threads API, e.g., OpenMP and the Pthread,

allowing users to directly improve the performance of FPGA by utilizing the software-

based parallel processing techniques.

Bambu [34], a free HLS framework for the complex applications, is developed with

the Politecnico di Milano. It supports many C features, which is rare compared to

other HLS tools, such as pointer arithmetic, dynamic resolution of memory accesses,

and custom C struct data types. Bambu is implemented with C++ language and

the different stages of HLS process are specified in their corresponding C++ classes,
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making Bambu a lightweight modular tool. Although, Bambu does not provide the

corresponding verification tools, e.g., test bench simulators, the generated HDL files

are compatible with other commercial simulators.
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Chapter 3

Stencil Computation and Related

Work

In this chapter, I introduce the background knowledge of stencil computations and

demonstrate two typical parallelization strategies, e.g., spatial-based and temporal-

based methods to improve the performance of stencil kernels in the first section. Then,

in the next section, I present and discuss the previous studies of how to achieve high

performance for stencil computations on FPGAs by using the HLS developing methods.

At last, through the discussion of these related works, I found that there are still some

challenges that have not been resolved. I briefly show how I gonna solve these challenges

with the proposed solutions in the following chapters.

3.1 Background

In this section, I first use an detailed example to explain the definition of stencil com-

putations. Then, I explain how to exploit the parallelism of stencil kernels since the

performance is highly related to the level of parallelism.

3.1.1 Stencil Computation

Stencil computations are a class of kernels using the fixed algorithm pattern (stencil)

to update the target data elements on the one or multi-dimensional grids [36]. Stencil

computations have been widely used in various HPC applications, such as fluid dynamic

and electromagnetic simulations [37,38], solving mathematical equations by discretizing

the time iterations [39], and computer vision [40].

A detailed example is shown in Figure 3.1. The target grid is stored in an 2D

array where the length of column is N and the length of row is M . The target data

is represented by using the black block with the index (y, x). To calculate the data in

(y, x), the data from four neighbor blocks, i.e., (y+ 1, x), (y− 1, x), (y, x+ 1), (y, x− 1)
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Figure 3.1: Example of a four point stencil kernel on a (M ×N) 2D space

are required. The updated target data is equal to:

It+1(y, x) = 0.25 ∗ (It(y + 1, x) + It(y − 1, x) + It(y, x+ 1) + It(y, x− 1)) (3.1)

where It represent the iteration time-step. After finishing all blocks in the target array,

the stencil kernel can move to the next iteration step. I can easily use several lines of

high-level C code to implement this kernel in Listing 3.1.

1 for(time_iter =0; time_iter <I; time_iter ++){

2 for(y=0; y<N; y++)

3 for(x=0; x<M; x++){

4 out[y][x] = (in[y][x+1]+in[y][x-1]

5 +in[y+1][x]+in[y-1][x]) *0.25f;

6 }

7 swap(out , in);

8 }

Listing 3.1: High-level code for Laplace equation kernel

As shown in Listing 3.1, the target grid size is M ×N . The data in the target grid

are stored in the array ”in” and “out”. The function ”swap” is used to transfer data

from the array ”out” to ”in”. The iteration time-step is defined by the value I. The 3

loops (line 1, 2, 3) are the control statements of the C code. The first one traverses the

time step from 0 to the I. The second and third loops traverse the 2D grid space. The

target stencil operation is executed in line 4 and 5. These nested loops indicate the

stencil kernel is highly parallelizable. In the following section 3.1.2, I will demonstrate

the parallel computing strategies of stencil kernels.

3.1.2 Parallel Computing Strategies for Stencil Computation

Regardless of the type of computing devices, e.g., CPUs, GPUs, or FPGAs, the key

to achieve enough high performance on stencil computations is to run the stencil op-
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erations in parallel as much as possible, i.e., utilizing the parallelism of stencil kernels.

For example, in the Listing 3.1, the maximum parallelism value can be calculated as

I × (N ×M). According to the loop executing dimensions, the total parallelism can

be divided into two types, one is based on space dimension, i.e., spatial parallelism

and the other is based on time domain, i.e., temporal parallelism. These two kinds

of parallelism are the foundation to build parallel stencil computing structures. The

relationship between the performance and these parallelism is described by:

Pstencil ∝ (Spatial Parallelism× Temporal Parallelism) (3.2)

where the Pstencil is the stencil computing system performance.

Spatial-based Strategy

In Listing 3.1, the loop statements in line 2 and line 3 traverse the 2D array space by us-

ing the row order. From the high-level abstraction, the parallel computing strategy can

unroll the two loops, such as along the x-axis, y-axis, or even both axes, meaning that

the computing system wants to execute the multiple stencil operations simultaneously

within the same time iteration. The number of parallel executing stencil operations

represents the spatial parallelism. And this kind of parallel computing method is often

referred to as spatial-based parallelization strategy.
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T = N 

Spatial 
Executing

External Memory

PE

PE

PE

Data 
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T = N

T = N + 1

T = N - 1
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Figure 3.2: Spatial-based Parallelization Strategy

Figure 3.2 introduces an example for implementing the parallel computing structure

with the spatial-based strategy. Since the array used to store the stencil data usually

is too large to be located in the on-chip memory resource, e.g., cache, or BRAMs, it

usually need to be stored in the external memory such as DRAM banks. The processing

elements (PEs) are responsible for executing the stencil operations. Adopting spatial-

based strategy means to schedule all PEs inside the space domain, i.e., at one iteration
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time-step.

To achieve high performance with the spatial-based strategy, there are two con-

straints the users need to consider. Although increasing the number of PEs need to

consume more hardware resources on the target computing device, the PEs also re-

quires enough memory bandwidth to access the external memory with the I/O interface.

Moreover, compared with computing resources consumption, the stencil computations

are often dominated by the memory accession. For example, in List 3.1, assume the

users do not employ any optimization methods, it need to access 4 data from external

memory to calculate one stencil operation.

For above reasons, only adopting spatial-based parallelization strategy on the de-

vices with low external bandwidth often can not reach the peak performance of these

devices. For instance, in [41], a stencil computation is implemented on an AMD CPU,

which only utilizes 10 percentage of the CPU peak performance. Even for the GPUs

whose external bandwidth are often 10 times higher than CPUs and FPGAs, using

spatial-based strategies also can not reach their peak performance. Indeed, through

some optimization methods, the memory bandwidth requirement for the stencil com-

putations can be reduced. I will discuss these optimization methods in the next related

studies section.

Temporal-based Strategy

Similar like the spatial-based strategy unrolling the loops in line 2 and 3, the temporal-

based parallelization strategy choose to unrolling the loop structure in line 1 which

traverses the whole time dimension. Unrolling this loop in the target design means that

FPGA can execute stencil operations in parallel at different time iterations, especially

in sequential order. The number of parallel computing stencil operations represents the

temporal parallelism. This kind of parallel computing method is often referred to as

temporal-based strategy.

Figure 3.3 explains the conception of parallel computing structure with the temporal-

based strategy. 3 PEs are running in the iteration time-step N−1, N,N+1. Compared

to spatial-based strategy, only 1 PE needs to read or write data to the external mem-

ory. The other PEs access data from their previous time-step PEs and pass the outputs

to the next time-step PEs. As a result, to increase stencil computation performance,

i.e, the number of PEs by using the temporal-based strategy do not need additional

memory bandwidth support. The maximum value of temporal parallelism comes from

the device hardware resources.

However, the main challenge of using temporal-based strategy comes from the data

dependency issue. For stencil computations, data dependency means the current iter-

ation’s data is dependent on the previous iteration time-step. For example, in Figure

3.3, to calculate the result of target stencil operation on the black block N , it needs
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Figure 3.3: Temporal-based Parallelization Strategy

data from 4 deep gray blocks from the previous time-step N − 1. Similarly, to get

the result of black block in N + 1, the 4 deep gray blocks in iteration N is required.

Assume the users want to insure that the PES in time-step N − 1, N,N + 1 run flu-

ently without stalls, a well-designed cache system and the connection interface between

the PEs need to be considered. Compared to fixed architecture, e.g., CPUs, GPUs,

FPGAs have large on-chip memory resources. Moreover, these memory resources can

be customize according to the specific applications. Many previous studies have shown

some solutions. I will discuss them in the following section.

3.2 Related Studies

3.2.1 General Stencil Computation Optimizations

As I described in the section 3.1.2, compared with utilizing the temporal-based paral-

lelization, using the the spatial-based strategy is a more intuitive method, since there

is no data dependency issues in space dimension. To achieve the high performance, the

bottleneck mainly comes from the external memory bandwidth. The on-chip memory

resource of computing devices can not store the target stencil array. Therefore, users

need to store the stencil array in external memory and access data by the I/O interface.

In addition, the arithmetic intensity of stencil computation is usually very low, i.e., one

stencil operation needs multiple data accession. And the memory access pattern is not

sequential and hard to coalesce to use the wide I/O bus width.

To remove the performance bottleneck from memory bandwidth, many previous

studies [36, 42, 43]choose to specifically cache one part of the target stencil array to

the on-chip memory structure, e.g., cache system. Inside the space dimension, there
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exist strong data reuse opportunities for stencil computations. For instance, in the

time-step N , performing stencil operation on index (y, x) needs to read 4 data, i.e.,

(y+ 1, x), (y− 1, x), (y, x+ 1), (y, x− 1). On the contrary, the data on index (y, x) can

also be reused in performing 4 stencil operations on the index (y, x + 1) as left side

neighbour, (y, x − 1) as the right side neighbour, (y − 1, x) as the up side neighbour,

and (y + 1, x) as the down side neighbour. Assume the cache system is large enough

to hold all stencil data in one space dimension, then, the arithmetic intensity of stencil

computation can be optimized to 1 data accession for 1 stencil operation. Obviously,

the on-chip cache is a limited memory resource, these previous studies use various tiling

methods to solve this problem. e.g., diamond, split, or wave-front tiling.

However, buffering data from one space dimension only takes advantage of the data

locality in space area, e.g., 1 data can be mostly reused 4 times in Listing 3.1, which

hurts the design scalability. For some stencil computations, their performances are still

limited by the external memory bandwidth. To solve this problem, [44–46] propose the

temporal blocking solutions to not only benefit data reuse-ability in the space dimension

but also in the time dimension.

Similar as the previous work, temporal blocking also buffer one part of stencil array

in the cache to perform stencil operations on these data. However, after finishing the

computation of one space dimension, they do not immediately write the results back

to the external memory as in the previous solutions. The temporal blocking still keeps

the calculated results in the cache, and start performing stencil operations on these

data to generate results for the next time-step. The temporal blocking method can

repeat multiple times, it only writes the last results to the external memory. Through

the temporal blocking, the stencil data can be reused across multiple time steps. As

a result, the external memory bandwidth requirement for stencil computations can be

reduced significantly.
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Figure 3.4 shows an example of temporal blocking technique. One thing to be

noticed here is the valid temporal blocking outputs is smaller than the inputs. For

instance, there exist 15 valid outputs in time-step N . In the time-step N + 2, only one

valid output remains. To avoid frequently access the external memory, the boundary

stencil cells can not be correctly updated with the increased time-step because they

do not have enough valid data to perform the stencil operations. This situation often

causes two problems. One is that to use temporal blocking across many time-steps,

the on-chip memory resources need to store large area of overlapped data, resulting in

a lot of redundant calculations. The other one is that for architecture like GPUs, the

irregularly outputs in every time-step can cause thread divergence-i.e., every thread in

a warp needs to execute the same instruction within the same period.

3.2.2 Optimizations with FPGAs

Compared to computing devices, e.g., GPUs, the external bandwidth of FPGAs is

usually very low. Although data reuse opportunities of stencil computations both

in space and time dimension can be exploited to reduce the memory accession from

external memory, applying spatial-based parallelization strategy on FPGAs often can

not reach the peak performance of FPGAs.

On the other hand, exploiting temporal-based parallelization strategy for imple-

menting stencil computations on FPGAs is very convenient. Building custom pipeline

structure is one of the significant advantages of the FPGA architecture. Through cus-

tomizing a pipeline system, developers can overcome the data dependency issue in the

temporal-based strategy, which makes parallel computing stencil operations in differ-

ent time-steps possible. As a result, the stencil computation performance can scale-

up along the temporal parallelism with constant external memory bandwidth. Many

significant studies [47–50] have proposed optimizations based on the temporal-based

strategy, especially in the area of memory partitioning algorithm, data reuse cyclic

buffer, overlapped tiling combined temporal-based method, and stencil computation

design automation.

Studies [51–53] propose stencil architecture on FPGAs with the temporal blocking

optimization method. They choose to use coarse-grained parallel computing structure

like the thread parallelism in multi-core CPUs or GPUs. Compared with thread-based

temporal blocking implementations on fixed architecture, the thread divergence can

be avoided by utilizing the flexible architecture of FPGAs. Since there exist more

valid stencil operations in early time-steps than in the later time-steps (as I stated

in Figure 3.4), The hardware resources of FPGA can be allocated according to the

different time-step requirements. For instance in Figure 3.4, 15 times computation

units can be used in time-step N compared to time-step N + 2. However, there still

have large overlapped area and redundant computations in these studies. Moreover,

they do not fully utilize the fine-grained pipeline system on FPGAs, which lose the
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further optimization opportunities.

Although the temporal-based strategy mainly exploits the data locality in the time

dimension, the data reusability in the space dimension is also important. As I discussed

at the beginning of this section, buffering data in the cache structure can solve this

problem. Compared to CPUs or GPUs with fixed cache structures, FPGAs usually

need to use the on-chip memory resources, e.g., BRAMs to build a custom buffer

structure according to the target applications. The application-specific buffer has many

advantages. Unlike the general purposed cache system, the custom buffer structure can

decide which data should be located in the buffer and adopt a unique buffer update

program. This is can avoid problems such as cache misses or false sharing, i.e., when

multiple computing units update different data elements in the same cache line, they

will interfere with each other. However, the efficiency of custom buffer structure is

highly dependent on the developer’s skills. Inappropriate buffer design may cause

serious performance degradation.

To build an efficient custom buffer structure, paper [47] first proposes a memory

partitioning method to assign the buffed stencil array into different BRAMs. Since

the stencil operation usually needs to parallel access multiple data, partitioning these

data into different BRAMs allows computing unit to read or write these data in one

single clock cycle, which increases the stencil computation performance. Later, the

other research [48] introduces a cyclic custom buffer structure to optimize the memory

partitioning method. Instead of buffering large amount of stencil data to exploit the

data locality in space dimension, this method choose to only buffer data with minimum

data reuse distance. For example, in Figure 3.1, the data in index (y − 1, x) is first

accessed as the up side neighbour for performing stencil operation in (y − 2, x). After

reuse the data as left side and right side neighbour, the last accession of this data is to

use it as the down side neighbour to perform stencil execution on index (y, x). Then,

the minimum date reuse distance is between the index (y − 2, x) and (y, x), i.e., equal

to 2M + 1 where M is the row length.

An HLS-based stencil computation design flow is proposed in paper [51]. Their

design architecture is developed with Vivado HLS and Synphony C. They utilize the

temporal-based parallelization strategy to increase the performance of target stencil

applications. Their cone-based custom buffer design portions a frame of the stencil

array. Compared to the buffer design in [48], their cone-based design cost more on-

chip memory resources to exploit the data reusability. In addition, their design do not

discuss the possibilities to scale the stencil performance with spatial-based strategy.

The studies in [49,50] employ HLS developing method to implement the high perfor-

mance stencil computation architecture on FPGAs. They choose to use Intel OpenCL

SDK as the target HLS tool. The cyclic custom buffer method is also adopted in

their implementations. With the HLS tool supports, they abstract the cyclic buffer

behaviour as a shift register structure. Then, they connect the shift register buffer to
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realize the temporal-based parallelization strategy. In addition, the [49] propose a over-

lapped tiling combined temporal blocking method. As I discussed above, this method

can use redundant computation as a trade-off to reduce the data reuse distance, thereby

saving the on-chip memory resources. However, their shift register behaviour abstrac-

tions only work well with the Intel OpenCL compiler. I will show the detailed reasons

in the following section.

In research [54, 55], they propose the similar stencil computation architecture with

previous [49, 50]. Specifically, they discuss the detail techniques of how to connect the

custom buffer to form a data-flow or streaming structure. Furthermore, [54] introduce

a open source HLS optimization library for better employing the common functions

on FPGA. [55] provides a design automation tool of stencil computations to further

increase the design productivity. However, due to the external bandwidth limitations

of tradition FPGAs, they can not fully explore the design space and miss the potential

computing results reuse optimizing opportunities for some stencil computation appli-

cations. I will also discuss this problem in the next section.

3.3 Challenges

Through the summary of the above-mentioned studies, I found that there still exist

3 major challenges which have not been perfect solved or not solved. In this section,

with the help of a specific example, I will explain and analysis these 3 challenges, i.e.,

shift-register custom buffer behaviour (section 3.3.1), sub-optimal hardware resource

consumption in spatial-based strategy (section 3.3.2), and the computing result reuse

opportunities (section 3.3.3).

The previous studies can be concluded using the pseudo code in the Algorithm 1.

The stencil computation of Listing 3.1 is implemented in the loop (while) structure

from line 5 to 32. This structure is mainly composed of 2 parts. One part is used to

build the on-chip memory system, i.e., the cyclic custom buffer. The behaviour of the

cyclic buffer is abstracted as the shift register described from lines 7 to 13. The other

part is the computing unit (from lines 14 to 22), which is used to execute the stencil

operation by accessing the data in the shift register.

There also exist 3 pragmas (pragma unroll) in the loop structure pseudo code. These

pragmas are used to implement the temporal-based parallelization strategy. In default,

the loop structure in the high-level code is executed in sequence. The HLS tools can

automatically generate the corresponding data path and control logic for implementing

each loop iteration in order. Assume developers want to increase the performance of

loop structures, the pragma unroll can guide the HLS tools to automatically generate

the logic for parallel executing the loop iterations. The first two unroll pragmas in

line 7 and line 9 are used to duplicating the shift register structure and make sure the

shift register can finish shift operation in one clock cycle. The pragma in line 15 is to
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duplicate the computing unit.

Algorithm 1 Pseudo Code for Implementing the Stencil Computations in [50]

1: procedure stencil(din, dout)
2: shiftreg[d][size];
3: result[size];
4: Loop iterations = x;
5: while count 6= x do
6: for i = size− 1→ i = 1 do
7: # pragma unroll
8: for j = 0→ j = d do
9: # pragma unroll

10: shiftreg[j][i] = shiftreg[j][i− 1];
11: end for
12: end for
13: shiftreg[0][0] = din[count];
14: for j = 0→ j = (d− 1) do
15: # pragma unroll
16: \\boundary conditions
17: U = (condition 1) ? shiftreg[j][0]:0;
18: R = (condition 1) ? shiftreg[j][M − 1]:0;
19: . . .
20:

21: \\computation
22: result[j] = 0.25f × (U +R+D + L);
23: if count > (j + 1)× latency then
24: if j == (d− 1) then
25: dout[count] = result[j];
26: else
27: shiftreg[j + 1][0] = result[j];
28: end if
29: end if
30: end for
31: count+ +;
32: end while
33: end procedure

3.3.1 Shift-Register based Custom Buffer

The first challenge comes from the high-level shift register-based custom buffer design.

Figure 3.5 shows a shift register buffer design for the stencil pseudo code in Algorithm

1. The stencil cells covered by the blue color are stored inside the shift register. The

index of each stencil cell in the buffer is based on the lexicographic order which is

linearized the 2D index to 1D from right to left and up to bottom.

The behaviour of the shift register is describing as following. For every clock cycle,

the shift register buffer shifts in the fresh stencil data from the input interface to the
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Figure 3.5: The shift register-based custom buffer design

Figure 3.6: The Intel Shift Register IP Core [56]

head location (index = 0). Meanwhile, the last used stencil data (index = 2M) is

shifted out from the shift register. To perform the stencil operation, the computing

unit needs to access 4 stencil cells, i.e., U,R,L,D. These data are located in the index

0, M − 1, M + 1, 2M respectively. However, this kind of behaviour only can achieve

the maximum performance under the Intel-based HLS tools. This is mainly due to the

following reason.

For the commercial HLS environments, they usually have the ability to exploit their

high efficient predefined shift register IP cores. Their HLS tools usually can recognize

the high-level shift register behaviour code pattern and synthesis this part of code

by directly using the corresponding IP cores. However, the IP cores from different

developing environments may have inconsistent standard. For example, Figure 3.6

shows the IP core design from Intel environment. The Intel shift register IP core allows

developers to access the internal data of the shift register in parallel, i.e., the 4 data

1th, 4th, 7th, 10th can be accessed through the taps. Compared with Intel, Figure 3.7
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Figure 3.7: The Xilinx Shift Register IP Core [57]

shows the Xilinx shift register IP core interface. The developers only can shift data

in via the ”D” port and shift data out through the ”Q” port. The internal data can

not be accessed. As a result, the shift register-based custom buffer design is strongly

dependent on the Intel HLS tool.

For overcoming this limitation, I introduce a custom buffer design that explicitly

described by using the FIFO and register elements. Unlike the shift register IP core,

the behaviour of FIFO and register are quite common in HLS environments (e.g., push

and pop). For example, both Intel and Xilinx have the similar FIFO IP behaviours

(hls::stream for Xilinx, or ihc::stream for Intel). In Chapter 4, I show this work in detail

with the specific LGCA application.

3.3.2 Optimal Custom Buffer Design for Spatial-based Parallelization

The second challenge is that the custom buffer design in previous work can only support

one computing unit running at full speed, i.e., executing 1 stencil operation. To perform

multiple stencil operations, the pseudo code in Algorithm 1 exploit the pragma unroll

to duplicated the shift register-based buffer along with the computing unit, as shown

in Figure 3.8.

Computing Unit

Computing Unit

Custom Buffer

Computing Unit

Custom Buffer

Computing Unit

Extended Custom Buffer

Computing Unit

Custom Buffer

Computing Unit

Custom Buffer

Computing Unit
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Computing Unit
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Figure 3.8: The overview of unrolled custom buffer design
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However, the efficiency of this kind of duplication is very low, especially in the

aspect of the resource consumption when the multiple stencil operations are executed

in the space dimension, i.e., at the same iteration. The computing unit is responsible

for performing the stencil operation. Thus, duplicated computing units can perform

multiple stencil operations in parallel. Meanwhile, the custom buffer mainly have two

tasks. One is to store the stencil data for exploiting data locality. The other one is

to provide the concurrent data accession. For the example in Algorithm 1, the 4 data

U,R,D,L must be passed to the computing unit in one clock cycle. However, for the

stencil operations at the same iteration, the duplicated custom buffers are mainly used

to provide the concurrent data accesses. The stencil data stored in these duplicated

buffers are almost identical.

Rather than duplicating the custom buffer that storing the identical stencil data to

increase the concurrent data accessibility. I propose an extended custom buffer design

that can deliver enough stencil data to multiple computing units belonging to the same

iteration with the optimal resource consumption. The detail is introduced in Chapter

4 by using the LBM simulation.

3.3.3 Computation Result Reuse Optimization

The last challenge comes from the optimization for reusing the computation result.

Besides exploiting the data reusability with the custom buffer to reduce the external

memory bandwidth requirement, there also exist optimization opportunities for reusing

the stencil computation result in the computing units.

(𝑦, 𝑥)

10

(𝑦 + 1, 𝑥 + 1)

Computing Unit 1

Computing Unit 2

Figure 3.9: An example of the stencil computation result reuse opportunity

I also use the pseudo code in Algorithm 1 as the target stencil kernel. Figure 3.9

shows an example of 2 computation units which are responsible for performing stencil

operations for two stencil cells in index (y, x) and (y + 1, x + 1). For the computing

unit 1, it needs 4 data from the neighbours of index (y+1, x+1) to perform the stencil

operation, i.e., 0.25× ((y+ 2, x+ 1) + (y+ 1, x+ 2) + (y+ 1, x) + (y, x+ 1)). Similarly,

the computing unit 2 also needs 4 data to perform stencil operation on index (y, x),

i.e., 0.25× ((y+ 1, x) + (y, x+ 1) + (y− 1, x) + (y, x− 1)). As a result, the computation
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result (y + 1, x) + (y, x+ 1) is calculated both in the computing unit 1 and computing

unit 2.

Due to the flexibility of FPGA, the 2 computing units can easily merge to 1 large

computing unit that perform 2 stencil operations at the same time. Thus, the calculated

computation results can be shared inside the large computing unit. Meanwhile the

concurrent data accesses to the custom buffer are also reduced. To benefit from that,

the users need to fully explore the design possibilities in the space dimension. I explain

the detail in Chapter 5.

42



Chapter 4

Stencil Computations for

Computational Fluid Dynamics

In this chapter, I use 2 specific models of the Computational Fluid Dynamics (CFD),

i.e., LGCA and LBM as the target applications of stencil computations. The CFD

simulations predict and analyze fluid flows by numerically solving the conservation

equations of fluid motion, which have been wildly adopted in many academic and

industry areas. I first introduce the simulation background of the LGCA and LBM

models. Then, I describe how I implement the parallelization strategies (spatial-based

and temporal-based) to increase the performance of simulations with FPGA. For the

LGCA simulation, I introduce a FIFO-based custom buffer to solve the challenge I

stated in section 3.3.1. For the LBM simulation, I propose the extended custom buffer

to overcome the problem in previous section 3.3.2. Finally, I evaluate the simulation

architecture on the target FPGA board and compare the results with other studies.

4.1 LGCA Simulation

4.1.1 Background

Lattice gas cellular automata (LGCA) are a specific model that belongs to the family

of cellular automata (CA) [58]. LGCA are popular fluid model used in bunch of ap-

plications such as in [59, 60]. The LGCA model is called HPP which is presented by

Hardy, de Pazzis and Pomeau in 1973. They describe the target fluid simulation area by

using the square-based lattice grid. Due to the macroscopic limitation, the HPP model

can not perfectly satisfy the conservation equations, i.e., Navier-stokes. Later, they

optimize the square-based HPP model to the hexagon-based FHP model [61] to solve

that problem. Moreover, the unique hexagonal structure show advantage in certain

applications [60]. Therefore, for the LGCA simulation, I employ the hexagon-based

FHP lattice as the target model.
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Figure 4.1: HPP and FHP lattice structure

Figure 4.1 shows the HPP and FHP lattice structure of LGCA. The movement of

fluid particles is restricted inside the lattice structure. And the numerous directions

of these particles’ momentum are simplified to limited choices. For instance, in FHP

lattice structure, the particles only can move along 6 directions, which is defined as:

ci =
(

cos(
π

3
(5− i)), sin(

π

3
(5− i))

)
, i = 1, ..., 6. (4.1)
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Figure 4.2: LGCA simulation procedure

The LGCA simulation procedure is shown in Figure 4.2. The procedure is mainly

a loop structure which includes 2 processing stages, i.e., collision, and propagation.

These 2 processing stages will repeat multiple times until the simulation reaches to the

end stage. This procedure can also be represented by the equation in the following.

ni(r + ci, t+ 1)− ni(r, t) = ∆i (4.2)

where ni(r, t) means the particles distribution function, the index of lattice is repre-
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sented with r. t is the simulation time-step.

The propagation process is shown in the equation left side. The propagation process

is used to describe how the particles of a lattice follow the corresponding momentum

and move to the adjacent lattices. An example is shown in Figure 4.3 to explain this

process.

t=0 t=1

Figure 4.3: The LGCA simulation proportion example

The right side of Equation 4.2 uses the ∆i to represent the collision process. The

collision process defines how a particle collide with other particles inside the lattice. In

the cases of a), g), and d) the collision results also depend on the random choice.

ORa)

b)

e)

f)

ORd)

c) OR
g) OR

Figure 4.4: The LGCA simulation collision rules

Figure 4.4 shows some collision rules. These collision rules can use the corresponding

Boolean algebra functions to detect which specific case is happened. For example, the

collision rules a) and b) in Figure 4.4 can be expressed as:

∆i = [(ni ∧ ni+1) & (ni+1 ∧ ni+2) & (ni+2 ∧ ni+3)]

| [ni & ni+1 & ∼ (ni+1 | ni+2 | ni+4 | ni+5)]

| [ξ & ni+1 & ni+4 & ∼ (ni | ni+2 | ni+3 | ni+5)]

| [∼ ξ & ni+2 & ni+5 & ∼ (ni | ni+1 | ni+3 | ni+4)]

(4.3)
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where ξ represents the random variable to choose the 2 outputs of collision rule a).

4.1.2 Memory Storage Arrangement

In this section, I mainly describe how the lattice grid of the FHP model stores in the

memory system. Due to the hexagon-based structure, there are 6 possible directions

in the lattice. For each direction, a particle can either be existing or not. Besides, in

the center of the lattice, there also has the position for a rest particle. Thus, in total,

a lattice needs to store at least 7 bits information to express the particle distribution

situations. The lattice data can be stored in a variable as shown in Figure 4.5. From

MSB to LSB, each bit position corresponds to a direction.

LSBMSB

Figure 4.5: The particles storage scheme

For the FHP model, the simulation area consists of many hexagon-based lattices.

Compared to the square-based lattice model, the hexagon-based lattice grid can not

directly store in the traditional memory structure. To access the target FHP lattice

in the simulation area, usually the layout of the hexagon-based index need to be re-

arranged to fit in the square-based index system.

y
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Figure 4.6: Memory layout transformation

Figure 4.6 shows the transformation detail. The hexagon-based grid is divided into

two cases, i.e., white (odd lines) and black (even lines) points. They have different

link structures to their neighbor lattices, which is shown in Figure 4.7. After the

transformation, the lattice index r in Equation 4.2 can be changed to the coordinate

like (x, y).
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Figure 4.7: Hexagon-based lattice links

4.1.3 LGCA Simulation Architecture Design

The LGCA simulation process can be summarized by the following Algorithm 2. As the

typical stencil applications, the Algorithm 2 mainly includes 2 kinds of loop statements.

The loop in line 2 traverses the simulation time-step from t = 0 to the target time-step

Tend. The loop in line 3 traverses all the lattices of the simulation area within the same

time-step. These loop statements indicate LGCA simulation has good parallelism.

Therefore, users can exploit the parallelization strategies that described in previous

section 3.1.2, i.e., the spatial-based and temporal-based approaches to improve the

simulation performance.

Algorithm 2 Lattice Gas Cellular Automata Simulation

1: Initialization LGCA distribution function ni
2: for time t = 0 ; t < Tend ; t = t+ ∆t do
3: for every lattice (x, y) in the simulation grid do
4: Calculate density and collision function ∆i (Eq. 4.3)
5: for every direction ci do
6: Calculate the new distribution nnewi (Eq. 4.2)
7: Streaming the particle to its neighbor
8: end for
9: Boundary condition check

10: end for
11: end for

Architecture Design Overview

The LGCA simulation architecture overview is shown in Figure 4.8. I use the PE (pro-

cessing element) for performing the collision and propagation processes as I described

in the background section. One PE is responsible for processing the lattice simulation

with the same time-step. Therefore, the spatial-based parallelization strategy is imple-

mented inside the PE structure, i.e. one PE can process multiple lattices belong to the

same time-step. In order to achieve that, I propose a vectorized design for the collision
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Figure 4.8: The LGCA simulation architecture overview

and propagation units. I show the details in the following section.

To scale up the simulation performance with the temporal-based parallelization

strategy, I cascade the multiple PEs with different time-steps to build a chain structure.

Only the 1st and the nth PEs accesses data from the external memory. The other PEs

reuse the simulation results from previous time-step PEs, which means the number of

PEs can increase with the constant bandwidth requirements. The custom buffer design

in each PE shows significant impact on the implementation of temporal-based strategy.

I explain the details in the next part.

Custom Buffer Design with Temporal-based Parallelization

As I stated in section 3.1.2, implementing the temporal-based strategy needs to consider

the data dependency issue. For LGCA simulation, the propagation process needs to

access data from other 6 neighbor lattices, which blocks the way to directly perform

the simulation to multiple lattices across the different time-steps. The convectional

methods to solve this problem is to buffer a part of relative data to the on-chip memory

structure, e.g., cache.

Since FPGAs do not have the fixed cache structures, the data dependency issue can

be overcame by employing the FPGA large configurable on-chip memory resources, e.g.,

registers, and BRAMs. Due to the flexibility of the FPGA structure, these memory

resources can be used to create an application-specific custom buffer. Compared to the

fixed cache structure, the specific custom buffer often have more optimization options

and better efficiency.
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For the LGCA simulation, the proposed custom buffer design is shown in Figure

4.9. To perform a simulation on one hexagonal lattice, such as lattice in index (x, y), it

requires data from 6 neighbor lattices of the target lattice. This neighbour relationships

are shown by the arrows. One thing need to be noticed here is that the lattices in black

lines and the lattices in white lines have different neighbour relationships. For example,

the neighbor lattice of target lattice (x, y) in the direction C1 is (x − 1, y + 1), which

moves (−1,+1). In the contrast, the neighbor lattice with the same direction C1 of

lattice (x− 1, y − 1) is (x− 1, y), which moves (0,+1). To eliminate the differences, I

pad 2 neighbor lattices to create a uniform custom buffer design. As a result, all the

surrounding 8 neighbor lattices of the target simulation lattice need to be stored.

-1 -1

time step time step 

Figure 4.9: The LGCA custom buffer design

In addition to the neighbor lattices, other lattices data are also stored in the custom

buffer. As shown in Figure 4.9, all lattices in the gray area are stored into the custom

buffer. Thus, the total lattices in the buffer can be calculated as 2×M + 3. Although

these data are not needed to be directly accessed to perform the target lattice simula-

tion, these additional data can help the custom buffer to exploit the data locality in the

simulation space dimension, which reduces the external memory accessions. For exam-

ple, to perform the simulation on lattice (x, y), 1 data (x+1, y+1) need to be accessed

from the outside. Similarly, when performing the next simulation on lattice (x+ 1, y),

the new data (x + 2, y + 1) is loaded into the buffer and the old data (x − 1, y − 1) is

moved out of the buffer.

For reusing data in the time dimension, the custom buffers can be cascaded in the

different time-steps to form a chain structure. These custom buffers use the identical

structure design. At the time-step T , after finishing the simulation of the target lattice

(x, y), instead of writing the result back to the external memory, the result can be

passed to the custom buffer in the time-step T + 1 as the new input. Therefore, When

the custom buffer of time-step T loads the new input (x+2, y+1) to perform simulation

on (x+ 1, y), the custom buffer of time-step T + 1 can also perform the simulation on

(x− 1, y − 1) in parallel.

As I stated in the section 3.3.1, for HLS developing method, previous researches [50]

implement this type of custom buffer design by abstracting the behaviour to a shift
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register. Then, with the help of Intel HLS tools, these high-level abstraction can be

synthesised via the dedicated shift register IP core. However, I found that their designs

show limited performance under the Xilinx HLS platform. And the bottleneck comes

from the custom buffer behaviour abstraction. Therefore, I propose a custom buffer

design that explicitly describes the buffer behaviour by using the FIFOs and registers

for computing the LGCA simulation.

Figure 4.10 shows the FIFO-based custom buffer design. Since I pad two data, the

proposed custom buffer design has the same behavior regardless of the target lattice

in the black or white lines. Thus, in this figure, these two line types are not distin-

guished. The black block M1 is the target simulation lattice. The 8 neighbor lattices

and the target lattice itself, i.e., U0 to U2, M0 to M2, D0 to D2 are implemented with

registers. For using high-level languages, these registers can be defined as variables.

The blue color represents the FIFOup. And the FIFOdown is shown in red color.

Unlike computing devices such as CPUs or GPUs, FPGAs have dedicated hardware

design for implementing FIFO structures, e.g., BRAM-based FIFO. Since software-

based high-level languages usually do not have the specific FIFO data structure, HLS

tools often provide the special FIFO interfaces to define the hardware FIFO structure,

i.e., hls::stream with Xilinx, or ihc::stream with Intel.
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Figure 4.10: The FIFO-based custom buffer design for LGCA simulation

The behaviour of FIFO-based custom buffer is described as follows. For performing

simulation on the target lattice, the register U0 reuses data in U1 and the register U1

reuses data in U2. U2 reads the new data from external memory or another custom

buffer. Data in registers M2 and M1 are passed to the M1 and M0, respectively. The

new data of M2 is popped from the FIFOup. Similarly, the registers D0, D1 reuse data

in D1 and D2. FIFOdown pops the new data to the register D2. At this time, all the

9 registers have been updated and ready for processing the simulation. After finishing

the simulation of target lattice, data in register U0 is pushed into FIFOup, and data in

M0 is pushed into FIFOdown. Then, the custom buffer can repeat this data movement

procedure to prepare data for the next lattice simulation.
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Spatial-based Parallelization with Arbitrary Precision Data Type

In addition to cascade multiple PEs for parallel processing the LGCA simulation in

time dimension, using the spatial-based parallelization strategy also can increase the

simulation performance significantly. In the proposed architecture, the spatial-based

parallelization is implemented inside the PE, this is, a PE which can perform the

collision and propagation for multiple lattices simultaneously needs to be built.

The high flexibility of FPGAs often allows users to utilize various strategies to

exploit the parallelism. For developing the simulation architecture with HLS tools, the

most directly approach is to use the pragma like pragma unroll. Figure 4.11 shows

an example. The processing unit can be duplicated easily with the unroll parameter.

Meanwhile, this method also needs to increase the data throughput of the memory

structure, e.g, the array a and b in this figure. The HLS compiler synthesis the array

with the BRAM resource. However, the ability to access data of BRAMs in parallel in

the same clock cycle is limited by the number of BRAM ports. Therefore, in order to

implement the pragma unroll, the HLS tools usually use redundant memory resources

to support concurrent memory access.

Array a

Array b

Processing unit p1

Processing unit p2

Read    a1

Read b1

Func(a1,b1)

Read    a2

Read b2

Func(a2,b2)

Array a

Array b

Processing unit p

Read    a
Read b
Func(a,b)

Figure 4.11: The parallelization based on pragma unroll

Instead of using pragma unroll to increase the parallelism of the PE, I propose a

parallelization method based on the arbitrary precision data type. Compared with the

fixed data type length of the high-level languages on the platforms such as CPUs or

GPUs, the HLS tools on FPGAs have the ability to define a custom data type with

arbitrary length. The Listing 4.1 show an example.

1 /* assume data type width of short is 16

2 int is 32, and long is 64 */

3 short a[512];

4 int b[256];

5 long c[128];

6 ap_int <128> d[64];

7 ap_int <512> e[16];

Listing 4.1: Example of using arbitrary data type
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The ’ap int <N>’ is used to define a integer with arbitrary data length with Xilinx

HLS environment. For example, the ’ap int <128>’ in line 6 defines a integer data

type with 128-bit length. The feature of arbitrary data length is not only supported

by Xilinx, it also can be used under other HLS tools such as Intel or LegUp.

In the Listing 4.1, from line 3 to line 7, these lines define 5 integer arrays with

different data length. From the view of software-based programmer, they all allocate

the same data space, i.e., 1KB in the memory system. However, for implementing these

arrays on FPGAs, the HLS compiler can synthesis them to different memory structures.

For instance, the array ’a[512]’ is defined by the 16-bit integer data type ’short’. The

HLS tool will store the ’short’ array in a memory structure (often implemented by the

BRAMs) which has 16-bit data width and 512 depth. Assume this memory structure

has one port. Then, the throughput of this memory structure can provide 16 bits data

in one clock cycle. To access all data in the array ’a’, the 512 clock cycles are needed

to complete the accession.

On the other hand, ’ap int <512>’ defines an array ’e’ which stores the integer data

type with 512-bit data length. Compared to the implementation of array ’a’, the HLS

tool synthesis the ’e’ array by using the memory structure (BRAMs) that has 512-bit

data width and 16 depth. Similarly, assume there is one port of this memory structure,

only 16 clock cycles are needed to traverse all data in the array ’e’. By comparing the

implementations of array ’a’ an array ’e’, although both arrays store the same amount

of data, the throughput of memory structure with array ’e’ is 64 times higher than the

array ’a’. Hence, I can use the larger width data type to define arrays or variables to

increase the throughput of the on-chip memory structure without costing redundant

memory resources.

1 //Code part 1

2 ap_int <512> a,b,c;

3 c = a & b;

4 //Code part 2

5 int a[16], b[16], c[16];

6 for(i = 0; i < 16; i++)

7 c[i] = a[i] & b[i];

Listing 4.2: Boolean algebra operations based on arbitrary data type

In addition to increasing the throughput of memory structure, the arbitrary data

length can also be utilized to parallel execute the LGCA simulation, i.e., the collision

and propagation processes. I show an example in Listing 4.2. The code part 1 performs

an ’and’ operation on two 512-bit data length integer variable ’a’ and ’b’. The HLS

tools can implement this code on FPGA in 1 clock cycle.

On the other side, the code part 2 performs the ’and’ operation on two 32-bit integer

array ’a’ and ’b’. To complete the same task as code part 1, the code part 2 use a loop

structure to repeat the ’and’ operation 16 times. Compared to code part 1, the HLS

tools need to cost 16 clock cycles to implement the code part 2 on FPGA. One thing
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need to be noticed here is this kind of parallelism can only be achieved with bitwise

operations, e.g., the Boolean operations, and the shift operations.

As I stated in section 4.1.1, the collision function ∆i of LGCA mainly consists of

Boolean algebra operations. And the propagation unit can be implemented by using

shift operations to move the particles data to their neighbors. Therefore, the compu-

tation capability of parallel processing collision and propagation can both be solved

by performing operations between the variables with large arbitrary data type. To

implement the spatial-based parallelization strategy with the proposed arbitrary data

length method, I do the following changes.

• The lattice-based simulation processing units can be vectorized by using the group

concept. The group utilize the data type with large length to store multiple lat-

tices inside one group. The group size is equaled to the spatial-based paralleliza-

tion parameter, i.e., (arbitrary data length ÷ lattice data length)

• Compared with storing the status of multiple lattices one by one, the group

divides and stores the lattices status by the particle directions. An example of

the group memory arrangement is shown in Figure 4.12,

• The memory accession with the lattice-based index system is also changed to

the group-based index. Instead of performing simulation for the lattice level, the

group is used as the target of the collision and propagation unit.

1     0     0     1     1     0     1

1     1     0     1     0     1     0

0     0     1     0     1     0     1

0 1

0 1 1

0

Lattice(0,0)

Lattice(0,1)

Lattice(x,y)

Vectorized 𝟎

Vectorized 𝟏

1 0 1

Vectorized 𝟔

Figure 4.12: The group memory layout

A detailed example is described in the following part to clearly explain the method.

The initial lattices situation is shown in Figure 4.13. For this example, I use a specific

case with group size equal to 4. The index system is based on the group level. For

instance, the index of the target group with the blue circle is (1, 1). It includes four

lattices data of which are shown in the right part of the figure. According to the
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Figure 4.13: A detail example with group size equal to 4

previous description, it store these lattices information by the direction of particles Ci

where i ∈ 0, ..., 6.

Assuming there is only one collision rule, i.e., the rule b) in Figure 4.4 for this

specific example. The collision of the 4 lattices can be expressed by the Equation 4.4.

Rule = (Ci⊕Ci+1)&(Ci+1⊕Ci+2)&(Ci+2⊕Ci+3)&(Ci+3⊕Ci+4)&(Ci+4⊕Ci+5) (4.4)

To implement the group-based collision, a piece of the code example is shown in the

following Listing 4.3.

1 #include <ap_int.h>

2 ...................

3 #define GROUPSIZE 4

4 /* arbitrary data length support by hls compiler */

5 typedef ap_uint <GROUPSIZE > data_t;

6 /* the custom -sized data structure */

7 typedef struct group_type

8 {

9 data_t c0;

10 data_t c1;

11 ...................

12 data_t c6;

13 }group;

14 ...................

15 /* collision processing */

16 group a = local_storage [1][1];

17 ...................

18 three_collision = (a.c0^a.c1)&(a.c1^a.c2)&

19 (a.c2^a.c3)&(a.c3^a.c4)&(a.c4^a.c5);

20 ...................

21 /* update the data base on collision rules */

22 a.c0 = a.c0^three_collision;

23 ...................

Listing 4.3: Group-based collision computation
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To implement the group-based propagation, the situation is divided into two cat-

egories: black lines propagate to white lines and white lines propagate to black lines.

For the purpose of simplicity, only the propagation of particles in direction C0 will be

used in this part. Figure 4.14 shows the propagation example.
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Figure 4.14: The group-based propagation example

• White to black propagation. For example, particles in C0 direction of group

(1, 1) are propagated to group (1, 2). This type propagation need to read data in

group (1,1) and write to the group (1, 2). The left side of Figure 4.14 shows this

situation.

• Black to white propagation. The particles of C0 direction in group (0, 3) need to

combine 3 bits data from group (0, 2) and 1 bit data from group (1, 2). This type

propagation first reads data from the 2 group (0, 2) and (1, 2). Then, combining

the data of target group (0, 3) by shifting data in group (0, 2) 1 bit to the left

and shifting 3 bits of (1, 2) to the right. At last, writing the combined data into

(0, 3). This situation is shown in right side of Figure 4.14.

According to above description, both the collision and propagation processes of

LGCA simulation can be vectorized by using the group concept. As a result, I could

realize the spatial-based parallelization of LGCA simulation inside the PE with different

group size.

Performance Analysis

To increase the performance of proposed LGCA simulation architecture, I utilize par-

allelization strategies both from temporal-based and spatial-based. In this part, I will

discuss how these strategies impact the simulation performance by building a perfor-

mance model. This performance model can guide us to choose the optimal combinations

of these strategies for the specific FPGA board. To calculate the performance, the total

workload of LGCA simulation WLGCA is defined by:

WLGCA = i · (M ×N) (4.5)
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where M ×N means the target 2D LGCA simulation array size, i represents the total

time-steps of the simulation.

Assume the target simulation architecture generates the results without stalling,

i.e., for ever clock cycle I can write the result back to the external memory. Thus, my

proposed simulation architecture throughput can be calculated as:

thLGCA = fkernel × pPE × n (4.6)

Where the fkernel means the target FPGA operating frequency. The number n rep-

resents how many PEs in the simulation architecture, i.e., the value of temporal par-

allelism. pPE means the parallelism value inside the PE, i.e., the spatial parallelism.

As a result, the simulation throughput thLGCA mainly depends on both parameters of

pPE and n.

However, the Equation 4.6 only shows the idea situation which omits the initial

latency of the simulation architecture. The initial latency can be calculated from the

time difference between the simulation architecture reads its first input from the exter-

nal memory and writes the first output back to the external memory. Thus, the LGCA

simulation time including the latency is defined by:

t =
WLGCA

thLGCA
+ n · ( SPE

fkernel
) (4.7)

where SPE represents the stage number of the pipeline system inside the PE which

mainly contains the latency of collision processing, custom buffer data movement and

propagation processing.

For the simulation with large workload Ltotal, the stages of pipeline latency SPE

often can be ignored. From the above analysis (Equation 4.7), I can reduce the total

simulation time by using larger value of pPE and n. However, the maximum value of

these 2 parameters are limited by the target FPGA hardware resources. Let RMAX

denote the maximum on-chip resources of FPGA and BMAX denote the maximum

external memory bandwidth. The restrictions of the value n and pPE are shown in the

follows:

n ·RPE +Rplatform ≤ RMAX (4.8)

pPE ∝ RPE (4.9)

As shown in Equation 4.9, the resource consumption of PE RPE has a linear relationship

with the value of pPE . Increasing the number of PEs n also needs to consider the

resource limitations RMAX . Compared with the limitations of value n, the value of

pPE is constrained by the external bandwidth BMAX :

pPE × fkernel ×Wlattice ≤ BMAX (4.10)
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where Wlattice means the data length of the LGCA lattice.

4.1.4 Experimental Results

Experiment Setup

The LGCA simulation architecture is implemented with the Xilinx VCU1525 FPGA

board. This board uses the XCVU9P-L2FSGD2104E as the FPGA chip. The chip

specifications is shown in Table 4.1. The VCU1525 board uses 4 16GB DDR4 2400Mhz

DRAM banks as the external memory. However, I only uses 2 banks due to the limi-

tation of the inter die connection. The target FPGA board is installed on a Intel Xeon

Gold based server which has 96GB memory. The server uses CentOS 7.4 as operating

system. The HLS developing method is based on Xilinx SDAccel 2018.2.

Table 4.1: VCU1525 chip specifications.

Device Logic Cells(K) DSP Slices Memory (Mb) I/O

XCVU9P 2586 6840 345.9 676

The FPGA implementation overview is shown in Figure 4.15. The host server

is responsible for initializing the LGCA simulation data. With the help of SDAccel

platform, the simulation data are copied to the FPGA off-chip memory, i.e., the external

memory through the PCIe bus. The external memory and FPGA on-chip memory are

connected by the AXI interface.

Host Memory

Host

External Memory

On-Chip Memory

Processing Elements

PCle

FPGA Board

FPGA Chip

Figure 4.15: The target FPGA experiment system

For the CPU-based implementation, the Intel i7-6700 processor is used as the target

comparison device. The CPU is connected with 4 32GB DDR4 2133Mhz DRAM banks.

Ubuntu 18.04 is the target operating system. The software-based compiler is the GCC

7.3.0. The default compiler options OpenMP is chosen to support the multi-thread

programming.

The GPU-based implementation is based on the Nvidia Quadro P5000 GPU. The

target GPU has 2560 CUDA cores. A 16GB GDDR5 SDRAM bank is used as the
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external memory. The developing tool is the CUDA 10.0. The target GPU is installed

in the previous CPU-based platforms.

Results and Comparison

The LGCA simulation experiments work with the simulation area that contains (2048×
4096) lattices. The target collision rule set is the FHP-III which includes 76 particles

colliding situations. The simulation results is represented by using the Million Lattice

Updates Per Second (MLUPS). The definition is shown as follows:

PMLUPS =
WLGCA

tLGCA
× 10−6 (4.11)

where tLGCA means the simulation time (seconds). The WLGCA means the workload

of LGCA.
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Figure 4.16: The LGCA simulation performance scales with the spatial-based paral-
lelization

Figure 4.16 shows the LGCA simulation results. In this figure, to verify the ef-

ficiency of the spatial-based parallelization (SP) method, I keep the temporal-based

parallelization value (TP) as a constant number 6, i.e., I cascade 6 PEs to implement

the simulation architecture. Then, I increase the value of SP inside the PE. As a re-

sult, the total performance scales up almost linearly until the SP value reaches to 48.

Compared to SP = 48, although the simulation architecture can achieve the higher per-

formance result of 10776 MLUPS with the SP = 64, this result is heavily influenced by

the external memory bandwidth. Due to the bandwidth limitation, continue to increase
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the value of SP will lead to inefficient hardware resource consumption. As a result, the

computation architecture can not scale up the simulation performance linearly by using

the SP value larger than 48.
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Figure 4.17: The LGCA simulation performance scales with the temporal-based paral-
lelization

To further improve the simulation performance, I choose to employ the temporal-

based parallelization strategy in the simulation architecture. Figure 4.17 shows the

simulation result scale up with the value of TP. As shown in this figure, I set the SP

value equal to 48 as the default parallelism inside the PE. Then, I increase the TP

value from 6 to 12. The simulation performance can grow lineally with the TP value.

With the TP = 12 and SP = 48, the LGCA simulation architecture achieve the highest

performance 17130 MLUPS.

I implement the CPU-based design from the [58]. Moreover, I adopt the OpenMP to

increase the simulation performance with the CPU multi-cores. The GPU-based design

is implemented based on the work in [62]. They use the temporal blocking techniques

to increase the GPU performance. The simulation results show that the simulation

architecture on VCU1525 can achieve about 30 times and 3 times higher performance

than the i7-6700 CPU and Quadro P5000 GPU, respectively.

Although the Quadro GPU has larger memory bandwidth, the uncoalesced mem-

ory access patterns of propagation and collision cause low bandwidth utilization. Fur-

thermore, compared to the float-point operations, the LGCA simulation mainly uses

Boolean logic operations which can not utilize the power of GPU. In addition, the large
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amount of brunch situations of LGCA simulation also reduce the GPU performance.

4.2 LBM Simulation

4.2.1 Background

The lattice Boltzmann method (LBM) simulation can be seen as a successor of LGCA

[63]. Instead of using the Boolean algebra to describe the particles collision situations,

the LBM extends the binary dynamics to the real number-based dynamics, making the

LBM to be a promising approach to model more complex physical systems, especially

for fluid flows.

The LBM simulation process is based on solving the Boltzmann transport equation

which is shown in Equation 4.12.

∂f( #»x , t)

∂t
+ #»u · ∇f = Ω (4.12)

where f( #»x , t) means the particles distribution function (PDF). The PDF is used to

express the possibilities which the particles exist in the positions #»x with the specific

time t. The velocity of simulation particles is defined as #»u . Ω means the collision

operator.
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Figure 4.18: An example of D2Q9 LBM lattice grid

Like the LGCA simulation, the LBM also uses the lattice grid to simplify the target

simulation area. All the particle movements are confined inside the lattices. Similarly,

the simulation process is divided into the collision and propagation. A specific 2D LBM

model-i.e., D2Q9 is shown in Figure 4.18.

Unlike the LGCA using a hexagon-based lattice, the LBM uses the square-based

lattice grid. The particles inside the grid are allowed to propagate to 9 neighbor lattices
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(include the lattice itself). The relationship of these 9 lattices #»ei are defined as:

#»ei =


(0, 0) i = 0

(1, 0), (−1, 0), (0, 1), (0,−1) i = 1, 2, 3, 4

(1, 1), (−1, 1), (−1,−1), (1,−1) i = 5, 6, 7, 8

(4.13)

The following partial differential equation (Equation 4.14) is used to formulate the

LBM simulation process.

fi(
#»x + #»e∆t, t+ ∆t)− fi( #»x , t) =

feqi ( #»x , t)− fi( #»x , t)

τ
(4.14)

where τ represents the relaxation factor which is derived from the fluid viscosity. The

left part of the Equation 4.14 is used to describe the propagation of the LBM simulation

and the right part represents the collision. The equilibrium distribution function feqi is

the key for computing the LBM collision rules. It can be calculated as:

feqi ( #»x , t) = ωiρ+ ρsi(
#»u ( #»x , t)) (4.15)

where

si(
#»u ) = ωi

[
3

#»e · #»u

c
+

9

2

( #»e · #»u )2

c2
− 3

2

#»u · #»u

c2

]
(4.16)

ρ( #»x , t) =

8∑
i=0

fi(
#»x , t), #»u ( #»x , t) =

1

ρ

8∑
i=0

cfi
#»ei (4.17)

where c is the factor of time speed which is defined as ∆x
∆t . The ωi is the constant value

that depends on the particle directions i. For instance, the ωi = 1/36 for i = 5, 6, 7, 8,

ωi = 1/9 when i = 1, 2, 3, 4, and ωi = 4/9 when i = 0.

As a result, the LBM simulation process can be summarized by the Algorithm 3 as

follows.

Algorithm 3 Lattice Boltzmann Method

1: Initialization LBM distribution function fi
2: for time t = 0 ; t < Tend ; t = t+ ∆t do
3: for every lattice #»x in the simulation grid do
4: Calculate density ρ and velocity vector #»u (Eq. 4.17)
5: for every possible direction #»ei do
6: Calculate the equilibrium function feqi (Eq. 4.16 and Eq. 4.15)
7: Calculate the new distribution fnewi = 1

τ (feqi − fi) + fi (Eq. 4.14)
8: Update the particle fi(

#»x + #»e∆t, t+ ∆t) = fnewi

9: end for
10: end for
11: end for
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4.2.2 LBM Simulation Architecture Design

Since LBM simulation is derived from the LGCA simulation, the processes of both

simulation procedure are quite similar. As shown in Algorithm 3, the LBM simulation

mainly includes 2 loop statements. The loop in line 2 traverses all the simulation

time steps. And the loop in line 3 performs collision and propagation for every lattice

in the target simulation area. To increase the performance of LBM simulation, the

spatial-based and temporal-based parallelization methods are also applicable to the

architecture design.

Architecture Design Overview

The overview of the LBM simulation architecture is presented in Figure 4.19. The

LBM simulation architecture is mainly consists of the PEs. The PE is used to perform

the collision and propagation for the lattices within the same time step. Similar as the

LGCA architecture, the spatial-based parallelization is implemented inside the PEs.

Custom Buffer     

𝑪𝑼𝟏 𝑪𝑼𝒏

𝒏 𝒏 𝟏

Custom Buffer     

𝑪𝑼𝟏 𝑪𝑼𝒏

𝑷𝑰𝑵𝑮

𝑷𝑶𝑵𝑮

Figure 4.19: Overview of the LBM simulation architecture

To parallel execute LBM simulation for multiple lattices in one PE, I generate

multiple computing units (CUs) inside the PE. The CU is the basic unit for processing

the LBM simulation for 1 lattice. The CU is implemented with the one-step algorithm

which fuses the separate collision and propagation of LBM simulation [64]. Instead of

preforming collision with the particles inside the target lattice, the one-step algorithm

chooses to pull the particles from the neighbor lattices and directly perform the collision

on these lattices. All CUs inside a PE accesses data from the same custom buffer. To

provide enough data bandwidth to these CUs, I need to modify the custom buffer design

that proposed in section 4.1.3. I will introduce the details in the following section.

The temporal-based parallelization is implemented with the multiple PEs. These
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Algorithm 4 Computing Unit Design

1: e[9][2]← #»e , w[9]← ωi
2: for i in range (0, 9) do
3: ρ+ = f [i]
4: end for
5: ux = (f [1] + f [5] + f [8]− (f [3] + f [6] + f [7]))/ρ
6: uy = (f [2] + f [5] + f [6]− (f [4] + f [7] + f [8]))/ρ
7: for i in range (0, 9) do
8: cu = e[i][0] · ux+ e[i][1] · uy
9: feq = w[i] · ρ · (1 + 3 · cu+ cu2 − 1.5 · (ux2) + uy)2

10: fnew = f [i] · (1− 1
τ ) +

feq
τ

11: end for

PEs use the identical structure. Since one PE is responsible for processing lattices

in one time step, I connect multiple PEs to build a chain structure that can parallel

process lattices in different time steps. Similar as the LGCA architecture, only the first

PE and the last PE access data from external memory. Other PEs read the inputs

from the previous PEs and write the outputs to the next PEs. Thus, I can increase the

total number of PEs with the constant external memory bandwidth.

Custom Buffer Design with Multiple CUs

As I stated in the LGCA simulation, an appropriate custom buffer design can not only

help the PEs to overcome the data dependency issue but also utilize the data locality of

target application to reduce the memory accessions of external memory. To implement

the temporal-based parallelization, I can use the similar custom buffer design as I

designed for the LGCA simulation.

Figure 4.20 shows that the custom buffer design adapts to the LBM simulation.

The LBM lattice depends on the 8 neighbor lattices to perform the simulation. Thus,

these neighbors are included in the custom buffer. Furthermore. to utilize the data

locality, the other lattices covered by the gray area are also stored in the custom buffer.

The temporal-based parallelization are implemented by cascading the custom buffers

in sequential time steps. For example, after the simulation result of (x, y) at time step

T has passed to the custom buffer with the time step T + 1, the next simulation in the

time step T and T + 1 can be parallel executing. The detailed description of a similar

custom buffer design with the LGCA can be found in previous section 4.1.3.

However, this kind of custom buffer design is only considered for performing simu-

lation on 1 lattice at each time step, i.e., not exploiting the spatial parallelism of LBM

simulation. Although I have proposed a spatial-based parallelization method for LGCA

simulation to compute multiple lattices in parallel at each time step, this method can-

not be applied to LBM simulation. For LGCA simulation, the proposed spatial-based

parallelization method is based on the arbitrary precision data type, which vector-
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Figure 4.20: The LBM custom buffer design

izes the lattice-based computation to the group-based version. However, there exists

a limitation for using the arbitrary precision-based parallelization method, that is the

collision of LGCA simulation can be solved by the bitwise operations, e.g., the Boolean

algebra.

Since the collision of LBM simulation is based on the real number computations,

a more general spatial-based parallelization method is required. In previous section

3.3.2, I discussed the parallelization method by using the pragma unroll. The main

problem with this method is that not only does it need to duplicate the CUs to perform

simulations on multiple lattices, but it also needs to duplicate the custom buffers to

provide concurrent data accessions to these replicated CUs, which costs the redundant

memory resources of FPGA.

Therefore, I propose an extended custom buffer design that can increase the data

throughput along with the number of CUs. The proposed custom buffer do not need

to store the redundant data and also can fully exploit the data locality of the target

simulation space.

Before going further, I first introduce the basic custom buffer implementation with

1 CU, which is shown in Figure 4.21. The implementation of the basic custom buffer is

similar as I described in LGCA simulation. To avoid memory stalls for performing the

simulation on the target lattice M1, the CU needs to read the data of 9 lattices which

includes the 8 neighbors and the M1 itself in parallel. Thus, these lattices are stored in

registers. Since the CU do not directly access the other lattices in the custom buffer,

the other lattices are stored with the FIFOs, i.e., FIFOup and FIFOdown. These 2

FIFOs are responsible for updating data in the 9 registers. Since the behaviour of this

custom buffer is similar as the design in Figure 4.10, I omit the detailed description

here.

Assume the spatial parallelism is increased to 4, i.e., performing LBM simulation

on 4 lattices inside a PE, based on the basic custom buffer design with 1 CU, an

extended custom buffer design with 4 CUs is shown in Figure 4.22. Compared to the

Figure 4.21, the LBM simulations on the target lattices M1,M2,M3,M4 are performed

in parallel. 4 CUs are responsible for doing the computations for these lattices. To
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Figure 4.21: The LBM custom buffer with 1 CU

provide enough data throughput to the 4 CUs, the extended custom buffer uses 8

FIFOs and 18 registers. The behaviour of the extended custom buffer is described as

follows:
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Figure 4.22: The LBM custom buffer with 4 CUs

• For performing simulation with 4 target lattices M1,M2,M3,M4, data of the 18

registers need to be prepared. the up-floor registers U2, U3, U4, U5 are responsible

for inputting the lattices data outside the custom buffer, e.g., from previous time

step custom buffer, or directly from the external memory. Data in register U5 is

passed to U1. The register U0 reuses data in U4.

• For the middle-floor registers, the registers M0 reuses data in M4 and data in M1

is transferred from M5. Data in registers M2,M3,M4,M5 are popped from ’blue’

FIFOs, i.e., FIFO2
up, FIFO

3
up, FIFO

0
up, FIFO

1
up, respectively.

• Similar data movements are also shown in down-floor registers. The registers D0

andD1 reuse data inD4 andD5. Data in registersD2, D3, D4, D5 are popped from
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’red’ FIFOs, i.e., FIFO2
down, FIFO3

down, FIFO0
down, FIFO1

down, respectively. At

this point, all 18 registers are ready for the 4 CUs to perform the simulation on

the target lattices.

• After the CUs complete the calculations, the results of target latticesM1,M2,M3,M4,

are either passed to the custom buffer of the next PE or written back to the ex-

ternal memory.

• At last, the ’blue’ FIFOs are updated, i.e., FIFO0
up, FIFO

1
up, FIFO

2
up, FIFO

3
up

by pushing the data in registers U0, U1, U2, U4 to the FIFOs, respectively. Also

the data in M0,M1,M2,M3 are pushed into the ’red FIFOs, i.e., FIFO0
down,

FIFO1
down, FIFO2

down, FIFO3
down, respectively. Then, the custom buffer can

restart the same data movements to provide data to the CUs for processing the

next 4 lattices.

Just like the specific example I present in Figure 4.22, This kind of custom buffer

design can be easily extended along with the number of CUs. These explicitly imple-

mented registers play an important role in providing concurrent data accesses. The

number of registers is decided by the neighbor lattices of the target simulation lattices.

It can be defined as:

nreg = nCU ×Nneighbor − (nCU − 1)×Oneighbor (4.18)

where the Nneighbor means the number of neighbor lattices which are accessed by a CU

to perform the LBM simulation on 1 lattice. For example, the Nneighbor = 9 for the

D2Q9 LBM simulation model. The nCU represents the number of CUs that running in

parallel.

Since some neighbor lattices can be shared with the multiple CUs, the total number

of required registers is less than the nCU ×Nneighbor. For example, 9 neighbor lattices

are required to process simulation on 1 lattice, however, processing simulation with

2 consecutive lattices only needs 12 neighbor lattices, which is less than 2 × 9 = 18

neighbor lattices. The Oneighbor represents the overlapped neighbor lattices that are

shared by the 2 consecutive lattices. In the above specific example, the Oneighbor = 6.

As a result, to provide concurrent data accesses for the case in Figure 4.22, the total

number of required registers nreg can be calculated as 4× 9− (4− 1)× 6 = 18.

The FIFOs in the custom buffer design are mainly responsible for updating the

registers. Although the CUs do not directly access data from the FIFOs, these FIFOs

exploit the data locality of the LBM simulation to reuse data among these registers.

The required FIFOs number has a linear relationship with the number of CUs. It can

be calculated as:

nFIFO = nCU ×HLBM (4.19)

where the HLBM means the target LBM model ’height’ which is measured by the the
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vertical difference between the up-floor neighbor lattices to the down-floor neighbor

lattices. For the D2Q9 model, the HLBM = 2. Then, in Figure 4.22 the total required

FIFOs is calculated as nFIFO = 4× 2 which is equal to 8 FIFOs.

Compared with the the method that needs to duplicated the custom buffer for

providing enough data bandwidth, the most advantage of the extended custom buffer

design is the consumption of FPGA on-chip memory resources. To support the con-

current data accesses and exploit the data locality of 1 CU as shown in Figure 4.21, I

need to store 2M + 3 lattices in the custom buffer, where M means the row length of

target simulation space.

On the other hand, in Figure 4.22, I show the extended custom buffer design that

supports 4 CUs at the same time. In this case, the custom buffer stores 2M+6 lattices.

The custom buffer length lbuffer can be calculated by:

lbuffer = HLBM ×M + (2 + nCU ) (4.20)

Assume the duplicated custom buffers method is used to support the same CUs as

the Figure 4.22, the 4× (2M + 3) lattices need to be stored in the on-chip memory of

FPGA. Furthermore, according to the Equation 4.20, it can be seen that increasing the

number of CUs has almost none impact on the extended custom buffer length lbuffer

due to the row length M is usually far larger than the value of nCU . As a result,

the extended custom buffer can scale along with the number of CUs with the optimal

memory resource consumption of FPGA.

Performance Model

I introduce the performance model to guide the designers to choose the suitable par-

allelization strategies which can achieve the optimal performance for the target LBM

simulation with a certain FPGA. As I stated above, for the simulation architecture, I

mainly adopt two kinds of parallelization strategies, i.e., the temporal-based and the

spatial-based. Let sunroll denote the number of lattices that can be parallel computed

in a PE, that is the spatial-based design parameter. The tunroll represents the number

of PEs, that is the temporal-based parameter. Then, the total number of lattices that

can be parallel processed is calculated as:

ntotal = sunroll × tunroll (4.21)

sunroll = nCU , tunroll = nPE (4.22)

where the ntotal represents the lattice number. nCU is the number of CUs inside the

PE. nPE means the number of PEs.

Assume the pipeline structure of the target simulation architecture can run in fully

speed. The theoretical peak performance of the simulation architecture can be defined
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as:

Ppeak = ntotal × fdesign (4.23)

where the fdesign means the target simulation architecture operating frequency on the

certain FPGA. Ppeak denotes the peak performance, i.e., the number of lattices that

can be processed in 1 second with the simulation architecture.

Therefore, the total simulation time for the target simulation task can be calculated

as:

tLBM =
Slattice
Ppeak

+ tinit (4.24)

where

Slattice = Tstep · (N ×M) (4.25)

and

tinit = nPE × (
CPE
fdesign

) (4.26)

The Slattice defines the total task that performs Tstep time step simulation on N ×M
space area. tinit represents the initialize delay of the pipeline system in the simulation

architecture. It can be calculated by using the CPE . The CPE means the clock cycles

that a PE required to finish the computations.

The limitations of the nPE and nCU come from the target FPGA hardware re-

sources. They can be defined as:

Rdesign +Rplatform ≤ Rmax (4.27)

Rdesign = nPE · (Rbuffer + nCU ·RCU ) (4.28)

fdesign × nCU ×WLBM ≤ Bpeak (4.29)

where the Bpeak means the peak external memory bandwidth of the target FPGA

board. Rmax means the maximum available hardware resources of the FPGA chip,

e.g., LUTs, DSPs, or BRAMs. Rplatform is the infrastructure costs in addition to

the architecture design Rdesign, such as the communication interfaces with external

memory. Most hardware resource consumption of Rdesign are costed by the PEs RPE

which mainly compose of the custom buffer Rbuffer and the CUs RCU . The number of

CUs nCU is also restricted by the external memory bandwidth Bpeak.

4.2.3 Experimental Results

Experiment Setup

I evaluate the proposed LBM simulation architecture with the Xilinx VCU1525 FPGA

board, the same board I used for the LGCA simulation. Since I have already introduced

the board in the previous section 4.1.4, I skip the detailed description here. In addition,
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I upgrade the HLS developing tool as I used for LGCA simulation from Xilinx SDAccel

2018.2 to 2018.3, which allows the target design to be developed with various high-

level languages such as C, C++, SystemC, or OpenCL. I choose the D2Q9 LBM-BGK

model as the simulation target [63]. The target simulation area consists of (1024×2048)

lattices and the particle vector is expressed in single precision.

Results and Comparison

As I analyzed in the performance model, there are 2 design parameters, i.e. the nPE

and nCU that mainly decide the simulation architecture peak performance. From the

Equation 4.28 and Equation 4.29 it can be seen that compared with the value of nPE ,

the value of nCU is limited by both FPGA hardware resources and the external memory

bandwidth. However, since the LBM simulations are typical memory-intensive appli-

cations, i.e., compared to the computations, the required memory accesses of LBM

simulation is high [water], the value of nCU are more easily restricted by the external

memory bandwidth.

For the target FPGA board, the maximum memory bandwidth of 2 banks of DDR4

2400Mhz DRAMs can be calculated as 2×19.2 GB/s. The required data bandwidth for

performing simulation on 1 lattice is WLBM = (4 × 9) Bytes with the single precision

data type, where 4 is the data type length and 9 is the particle number inside 1 lattice.

Then, according to the Equation 4.29, assume the simulation architecture is running at

250Mhz, i.e. fdesign = 250Mhz, the maximum allowed value of nPE can be calculated

as 2× 250× 36 = 18 GB/s ≤ 19.2 GB/s, which is 2.

The value of nPE depends on the hardware resource consumption of the PE. Since

a PE mainly includes a custom buffer and the corresponding CUs. Assume I only

assign 1 CU to each PE, the minimum hardware resource utilization of a PE on the

target FPGA VCU1525 is shown in Table 4.2. The custom buffer mainly consumes

the BRAM resources, which takes 3.7% of the available BRAM resource. On the other

hand, the CU costs the LUTs and DSP slices, which take 3.5% and 4.5% of total

hardware resources, respectively. One thing to be noted is that the resource costs of

the CU is highly related to the nCU . If I assign 2 CUs for each PE, the utilization of

LUTs and DSPs can be almost doubled. Among these different types, the utilization

of DSPs is the highest, thereby limiting the choices of nPE . Therefore, the maximum

allowed value of nPE can be calculated as nPE × 4.5 ≤ 100, which is 22.

Table 4.2: The minimum resource utilization of 1 PE with 1 CU

Device LUT (%) DSP Slices (%) BRAM (%) FF (%)

XCVU9P 3.5 4.5 3.7 1.6

Figure 4.23 shows the results of the LBM simulation architecture with different
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configurations of nPE and nCU . The spatial-based parallelization (SP) is represented by

the nCU , and temporal-based parallelization value (TP) is represented by the nPE . For

the target simulation benchmark, the peak performance of the simulation architecture

can be achieved with the nCU × nPE = 20 which can be implemented with 2 types

of architecture design. One is 20 PEs, each PE is assigned with 1 CU. The other

one uses 10 PEs, each PE is assigned with 2 CUs. They can obtain almost the same

level results, i.e., 4791 MLUPS and 4919 MLUPS. However, in terms of the memory

resource consumption, the simulation architecture with 2 CUs in a PE (SP = 2) has

a huge advantage, which is shown in Figure 4.24. Compared with the configuration

(SP = 2, TP = 10), the BRAM bits utilization of (SP = 1, TP = 20) is almost

doubled. This is mainly due to the extended custom buffer design can increase data

throughput without using the redundant memory resources.

In addition to the hardware resource limitations, the peak performance of the simu-

lation architecture is also influenced by the placement and routing process. Compared

to the fixed computing devices, e.g., CPUs or GPUs, the FPGA operating frequency

has a strong relationship with the routing resources that are used to connect the dif-

ferent hardware elements of FPGA. In case of congestion implementations, wires can

be detoured, thereby causing the operation frequency to decrease dramatically or even

failed to implement the design on the target FPGAs. For example, the theoretical peak

performance of the simulation architecture should be obtained with the configuration

such as (TP = 22, SP = 1). However, the implementation of this configuration will

cause seriously congestion situation. As a result, the operating frequency of this imple-

mentation can be too much lower than the normal situations, which let the simulation

performance even worse.

I compare the work with the GPU-based design in [65] and [66]. In the paper [65],

the authors use a GPU device NVIDIA GTX Titan (Kepler architecture) to accelerate

the LBM simulation. In case of D2Q9 model, their peak performance can reach to

1060 MLUPS with the double precision. For the paper [66], they use the GTX280 to

implement the same D2Q9 model, they achieve the 947 MLUPS with the single pre-

cision. Compared to the FPGA devices, the external memory bandwidth of GPUs,

e.g., GTX Titan with 288.3 GB/s and the float-point computing capability, e.g., GTX

TITAN with 4.5 TFLOP are higher. However, the LBM simulation can not fully use

these advantages. This mainly due to the following reasons: 1) similar as the LGCA

simulation, the propagation and collision processes of LBM access external memory by

using different patterns, making the GPUs very hard to coalesce data during the entire

simulation time to exploit the wide bus width; 2) different collision rules for the lat-

tices in boundary regions can cause branch divergence, which leads to the performance

degradation.
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4.3 Summary

In this chapter, I present the simulation architecture design for implementing the LGCA

and LBM simulations on the target FPGA VCU1525 with the HLS developing method.

For both implementations, I mainly increase the simulation performance by combining

the spatial-based parallelization and temporal-based parallelization strategies. The

temporal-based parallelization is implemented with the multiple PEs. For using the

HLS, the behaviour of PEs is described with the C language functions. I connect these

functions to form a deep-pipelined structure. Inside the function, there exist 2 main

code sections, i.e., custom buffer design and computing logic. I duplicate the computing

logic of the LGCA and LBM simulations by using the loop unroll techniques of the

target HLS compiler to realize the spatial-based parallelization. For the custom buffer,

I implement the buffer by explicitly describing the data movement of the registers and

FIFOs structure.

I also compared the different results of the spatial-based and temporal-based meth-

ods, showing the spatial-based method consumes less resources, especially in terms of

memory resources. For LGCA simulation, I introduce a custom buffer design which ex-

plicitly describes the buffer behaviour by using the FIFOs and registers. I also propose

a arbitrary precision based vectorization method to realize the spatial-based paral-

lelization strategy. The simulation results show the simulation architecture can achieve

17130 MLUPS. For the LBM simulation, I extend the custom buffer design in LGCA

to support multiple CUs without storing redundant lattice data. The best result of

LBM simulation is 4919 MLUPS.
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Chapter 5

Stencil Computations with High

Bandwidth Memory

In previous chapter, I have already introduced the architecture design for implementing

specific stencil applications such as LBM and LGCA simulations. The results show

that by employing the spatial-based and temporal-based parallelization, the target

FPGA can achieve the same level as the GPUs. Compared with GPUs, the external

memory bandwidth of target FPGA board (VCU1525) is very low. For example, the

peak performance of a DDR4 2400 DRAM bank only can provide 19.2 GB/s. On

the contrary, the GDDR5 SDRAM of GPU can achieve 448 GB/s. Thus, to achieve

the similar results as GPUs, the temporal-based parallelization is mainly used to scale

up the performance with constant memory bandwidth. This is mainly due to the

design space of spatial-based parallelization is heavily constrained by the low memory

bandwidth.

In this chapter, I present the HLS-based stencil computation architecture implemen-

tations on FPGA that use the high bandwidth memory (HBM) as external memory.

With the continuous development of the FPGA industry, the most advanced FPGAs

have begun to be connected with the second-generation HBM, which significantly in-

creases the external memory bandwidth. For instance, the peak bandwidth of target

board Xilinx Alveo U280 used in this chapter can reach up to 460 GB/s. As a result,

the HBM extends the design exploration space for target applications, especially for

using the spatial-based methods and provides extra design optimization possibilities. I

use 3 typical stencil applications, i.e., Sobel 2D filter, Laplace Equation, and Himeno

benchmark to verify the proposed stencil computation architecture. The contributions

mainly include

• I propose a stencil computation architecture by fully exploring the design space of

the target applications in both spatial-based and temporal-based parallelization

strategies.
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• To fully explore the design possibilities and perform the computation reuse opti-

mizations as I stated in section 3.3.3, I further extend the previous custom buffer

design to multiple space dimensions.

• I show the corresponding optimization techniques to improve the utilization of

HBM peak bandwidth.

5.1 Background

WP508 (v1.1.2) July 15, 2019 www.xilinx.com  2

UltraScale+ Devices Featuring Samsung HBM2

Background
The rise of heterogeneous computing in recent years broadened the innovations on accelerating 
compute-intensive workloads in the post-Moore's Law era. Examples of popular heterogeneous 
compute-accelerated workloads in today's Data Centers are artificial intelligence, live video 
transcoding, and genomic analytics, to name just a few. Xilinx® UltraScale+™ and next-generation 
Versal™ devices provide unparalleled adaptability and compute acceleration to modern 
data-center workloads. 

For a long period of time, however, DDR memory architecture did not evolve quickly enough to 
keep pace with the innovations in compute acceleration. Over the last ten years, the bandwidth 
capabilities of parallel memory interfaces have improved—but slowly; the maximum supported 
DDR4 data rate supported in today's FPGAs is still only about 2X what DDR3 provided in 2008. In 
contrast, FPGA computation capabilities increased about 8X since 2008, and a further magnitude 
increase can be expected within the next two years as Versal devices with AI cores roll out [Ref 1]. 
Memory bandwidth and capacity therefore become prime limiting factors in the development of 
many compute- and memory bandwidth-intensive workloads in the Data Center [Ref 2]. See 
Figure 1.

The latest members of the UltraScale+ families feature high-bandwidth memory (HBM) enabled in 
the same device packaging, finally bridging the gap between memory and computation.

X-Ref Target - Figure 1

Figure 1: Compute Capacity Improvement vs. DDR Bandwidth Improvement
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Figure 5.1: The FPGA performance growth vs. DDR Bandwidth [67]

Compared to the continuously increasing number of hardware elements inside the

FPGA chips, the growth of external memory bandwidth of FPGAs is usually insignifi-

cantly, as shown in Figure 5.1. For instance, the state-of-art Xilinx Virtex UltraScale

FPGA can be integrated with 12k DSP slices, which is 6 times higher than the 2k

DSP slices in the largest Virtex 6 which is introduced in the year 2009. On the other

side, the maximum DDR4 bandwidth supported by today’s FPGAs is still less than

twice that of DDR3 in 2008. As a result, connecting the FPGA chips with multiple

DDR memory banks is almost the only way to significantly improve the total external

memory bandwidth. However, this kind of method is usually unsustainable due to the

constraints, e.g., the target FPGA chip I/O pins, total power limitations, and the cost

requirement.

As the evolve of silicon packaging technology, today’s FPGAs can use HBM as the

external memory. Unlike the traditional DDR banks, the HBM increase the memory

bandwidth by bundling the FPGA chip and the HBM DRAM chips side-by-side in the

same IC package. For example, the recent standard of HBM can stack 4 or 8 DRAM

chips with each others. Through stacking multiple DRAMs into the same chip package,
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the number of required I/O footprint can be decreased dramatically. Moreover, the close

distance of the chips in the same package can help HBM achieve good performance in

signal transporting.

Figure 5.2 shows the specific HBM configurations for the target FPGA board Alveo

U280. There exist 2 physical HBM stacks that are integrated with the FPGA chip. For

each HBM stack, there are 8 memory controllers and 1 controller can be divided into

2 channels. The channel works similarly as the traditional DRAM memory bank. The

AXI3 bus protocol is used as the interface to connect the memory controllers and the

FPGA chip. One thing to be noted here is that 1 memory controller only can directly

access the memory space belonging to itself. For example, in Figure 5.2, 1 memory

controller can manage the 256 MB data. However, for the target board U280, Xilinx

has built a switch networks which let data in 1 memory controller can communicate

with other controllers. Thus, the developers can have more flexibility to manage the

data location.
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Figure 5.2: The HBM in Xilinx Alveo U280 board

5.2 Stencil Computation Architecture

In this section, I first present the the design objectives of the proposed custom buffer

design. Then I describe how to extend the basic custom buffer design to fully explore

the design space by using a specific stencil application. At last, I introduce the proposed

computation architecture. In addition, the optimization techniques for improving the

efficiency of the memory bandwidth of HBM are also discussed in this section.

5.2.1 Custom Buffer Design Objectives

Many previous studies have used the custom buffer design to build the deep pipelined

system with FPGAs. In terms of stencil applications, the custom buffer can help the
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developers to overcome the data dependency issue when implementing the temporal-

based parallelization and also exploit the data locality for reusing data between CUs.

Meanwhile, I have introduced the proposed custom buffer design with the HLS de-

veloping method in the previous chapter. To the developers with high-level language

design background, the design of custom buffer is important as the design of algorithm

data structure. Almost all data movements and computations are based on the custom

buffer design. Therefore, a suitable custom buffer design can aid the developers to ob-

tain the optimal performance for the target stencil applications. The design objectives

of the custom buffer is shown in the following:

• The custom buffer design is able to consume the minimum hardware resources

to fully exploit the data reusability of the target stencil application based on the

data locality.

• The custom buffer can provide enough data bandwidth for computing multiple

stencil operations in parallel, which means the CU can concurrently accesses the

required data to finish the stencil computations without stalls.

• With the aid of HBM external memory, the design space of the custom buffer can

be extended to multiple dimensions of the target stencil data set, which can help

the CUs to potentially share the computation results.

To achieve these goals, I use a specific stencil application, i.e., the 4-point Laplace

Equation as the example to explain my proposed custom buffer design approaches in

the following sections.

5.2.2 Custom Buffer Design Approaches

Similar as the custom buffer described in previous chapter, the custom buffer for the

4-point Laplace Equation is built with the FIFOs and registers and I explicitly describe

the behaviour of the data movements between these hardware elements. Compared with

the shift-register based custom buffer design (as shown in section 3.3.1), the FIFO-based

custom buffer do not rely on the special shift register IP core, which can easily port to

various FPGAs platforms with the HLS developing methods.

Figure 5.3 presents a PE design that includes the custom buffer and 1 CU. The CU

needs to access data from the custom buffer for performing the stencil computation. The

behaviour of the data movements is briefly shown as follows. Before each computation,

the U register accesses data from the input of the PE. The data in registers R and D

are popped from the FIFO1 and FIFO2, respectively. Data in register L reuses the

data in C and C reuses data in L register. After the computation is complete, the data

in U and L is pushed into FIFO1, FIFO2, respectively. The computation result of

the CU is passed to the output of the PE.
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Figure 5.3: FIFO-based custom buffer design for the Laplace stencil kernel

The optimal custom buffer size to fully achieve the data reusability is can be calcu-

lated from the concept of the maximum data reuse distance that is detailed explained

in [47]. For instance, data in U can be used 4 times to achieve the fully reusability,

that is the data move to the registers R, L, and D. Thus, the maximum data reuse

distance is the defined as the number of stencil cells between U and D, i.e., 2M + 1

for the case in Figure 5.3. Assume I want to achieve the fully reusability of the custom

buffer design, the minimum custom buffer size is equal to the maximum reuse distance,

i.e, 2M + 1.

From the analysis of the proposed stencil computation architectures for the CFD ap-

plications in the previous chapter, it can be seen that the most benefit of temporal-based

parallelization is the computation performance can be scaled up without requiring extra

memory bandwidth supports. Compared to employing temporal-based parallelization,

spatial-based parallelization methods can also improve computing performance, but are

limited by external memory bandwidth. However, in terms of resource consummations,

using the spatial-based methods allow developers to exploit more design opportunities

to share or reuse the hardware resources.

Due to the feature of the HBM external memory, the design space of spatial-based

parallelization methods can be significantly extended. Then, the corresponding opti-

mizations for resource sharing and reusing are also expanded. To efficiently exploit

these opportunities, the custom buffer design can be scaled according to the following

3 situations. For the sake of simplicity, I explain the design detailed by 4-point Laplace

Equation.
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Explore Custom Buffer Design along the x Dimension of the Target Stencil

Array

  𝐿

  𝑈   𝑈  𝑈   𝑈

  𝑅  𝐶   𝐶  𝐶   𝐶

  𝐷   𝐷  𝐷   𝐷

Input

𝑭𝑰𝑭𝑶𝟏

𝑭𝑰𝑭𝑶𝟐

𝑭𝑰𝑭𝑶𝟑

𝑭𝑰𝑭𝑶𝟔

𝑭𝑰𝑭𝑶𝟓

𝑭𝑰𝑭𝑶𝟕

𝑭𝑰𝑭𝑶𝟖

𝑭𝑰𝑭𝑶𝟒

  𝑈

  𝑈

  𝑈

  𝑈

  𝑅

  𝐶

  𝐶

  𝐶

  𝐶

  𝐷

  𝐷

  𝐷

  𝐷

  𝐿

Computing Unit

Input

Output

Custom Buffer     

Figure 5.4: Example of a scalable custom buffer design along the stencil array x di-
mension.

The pseudo code for implementing the 4-point Laplace Equation is shown in Listing

3.1. As I shown in previous chapter, the most common spatial-based parallelization

method is to unroll the loop statement along with the x dimension, i.e., the line 3 in

Listing 3.1. For a specific situation, assume I sequentially unroll this loop by using

the parameter of 4, i.e., the stencil computations are simultaneously performed on 4

sequential stencil cells in x dimension. In order to achieve the design objectives I have

described in 5.2.1, the proposed custom buffer design is shown in Figure 5.4. Instead of

using 1 CU for 1 stencil computations, the CU in this figure is responsible for computing

4 stencil operations. The data movements of the custom buffer is shown as follows:

• Before performing the 4 computations on the stencil cells C0, C1, C2, C3, all

the required 14 registers need to be updated. The data of up floor registers

U0, U1, U2, U3 are read from the inputs of the PE.

• For the middle floor registers, data in registers R0, C1, C2, C3 are popped from

the FIFO1, FIFO2, FIFO3, FIFO4, respectively. The registers R0 and C0 is

transferred to the registers C0 and L0.

• Down floor registersD0, D1, D2, D3 are popped from the FIFO5, FIFO6, FIFO7,

FIFO8, respectively. Then, all required 14 registers are ready for the CU to per-

form the computations.
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• After the computations, the calculated results are passed to the outputs of the

PE. Data in registers U0, U1, U2, U3 are pushed in to FIFO1, FIFO2, FIFO3,

FIFO4, respectively. Data in registers C0, C1, C2 are pushed into FIFO5, FIFO6,

FIFO7, respectively. The register L0 is pushed into FIFO8.

I can easily generalize the custom buffer design along with other unroll parameter

values. The registers in the custom buffer is the key to provide concurrently data

accesses without stalls. The number of the required registers is decided by the stencil

shape of the specific application and the target value of unroll parameter. It can be

calculated as:

nreg = punroll × Scells −Oshape(punroll) (5.1)

where nreg means the total required registers number. punroll represents the target

value of unroll parameter. Scells is the number of stencil cells for performing 1 stencil

computations. Oshape denotes the stencil cells which are overlapped in the stencil shape

of the sequential punroll parameter.

The FIFOs in the custom buffer are used to store and move the used data of the

registers to exploit the data locality of target stencil application. To work with these

registers, the minimum required FIFOs number can be calculated as:

nFIFO = punroll ×Hstencil (5.2)

where nFIFO represents the number of FIFOs. Hstencil means the ’height’ of the target

stencil shape, i.e., the column difference between the up floor and down floor. For the

target 4-point Laplace Equation, the Hstencil is equal to 2.

As I stated in the beginning of this section, the optimal custom buffer size to fully

exploit data reusability can be calculated by the maximum data reuse distance. I can

generalize the maximum reuse distance conception to fit in the proposed custom buffer

design in Figure 5.4. For instance, in Figure 5.3 the maximum data reuse distance is

between U and D, i.e., 2M + 1. Similarly, in Figure 5.4, the maximum data reuse

distance is between U0 and D3, i.e., 2M + 4. The custom buffer size is able to define

as:

bsize = Hstencil ×M + punroll (5.3)

where bsize denotes the buffer size. M is the row length of target stencil data array.

In the Figure 5.4, the buffer size is equal to 2M + 4, i.e., the maximum reuse distance.

This means that the optimal resource can be used to realize the full data reusability in

the custom buffer design.
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Explore Custom Buffer Design along the y Dimension of the Target Stencil

Array
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Figure 5.5: Example of a scalable custom buffer design along the stencil array y dimen-
sion.

For the target stencil array in Listing 3.1, instead of exploring the design space along

the x dimension, I can also implement the spatial-based parallelization by unrolling the

loop statement in line 2 that traverses stencil cells in y dimension. Still, I set the unroll

parameter as 4 to illustrate the custom buffer design by exploring the design space

along y dimension of the stencil array. Figure 5.5 shows the specific custom buffer

design in this situation.

Due to the data movements of this custom buffer is similar as the custom buffer

design in Figure 5.4, I just briefly describe the behaviour of the data movements as

follows: before the computations, registers U0 to U3 read data from the inputs of the

PE; R0 to R5 are popped from the FIFO1 to FIFO4, respectively; C0 to C3 reuse

the data in R0 to R3 and pass the used data to L0 to L3, respectively. Register D0 is

popped from FIFO5; After the computations, results go to the outputs; U0 to U3 is

pushed into FIFO1 to FIFO4, respectively; L0 is pushed into FIFO5.

Compared to the custom buffer design in Figure 5.4, the custom buffer design scales

along the y dimension needs to consume more hardware resources. The custom buffer

size in Figure 5.5 can be calculated as:

bsize = (punroll + 1)×M + 1 (5.4)

Since the punroll = 4, the custom buffer size is equal to 5M+1, which is significantly
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larger than 2M + 1 for the design in Figure 5.4. This is mainly due to the growth

of the custom buffer size has the positive proportional relationship with the unroll

parameter punroll. As a result, the custom buffer resource consumption of implementing

the spatial-based parallelization by exploring design space along y dimension costs more

hardware resources than exploring the design space along x dimension. In addition,

the custom buffer design in Figure 5.5 can be transferred to design in Figure 5.4 by

converting the loop statement between the x dimension and y dimension.

Hybrid Custom Buffer Design

The hybrid custom buffer design explore the design space of the target stencil array

in multiple dimensions. For the example of 2D stencil array of Laplace Equation, the

spatial-based parallelization can be implemented along with both x and y dimensions.

Then, the unroll parameter punroll can be defined as:

punroll = px unroll × py unroll (5.5)

where the px unroll means the unroll parameter in the target array x dimension. Simi-

larly, the py unroll is the unroll parameter in the target array y dimension.

I still use the specific case punroll = 4 to explain the idea. According to Equation 5.5,

the 3 combinations of px unroll and py unroll are used to implement the punroll = 4, i.e.,

(px unroll = 1, py unroll = 4), (px unroll = 4, py unroll = 1), and (px unroll = 2, py unroll =

2). In practice, the former 2 combinations are the design methods I have introduced

in the above part, i.e., along the x dimension (py unroll = 1) and along the y dimension

(px unroll = 1). Therefore, I only present the custom buffer design when (px unroll =

2, py unroll = 2). Figure 5.6 shows the detailed design.
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Figure 5.6: Example of a 2D hybrid custom buffer design

The behaviour of data movements is shortly descried as follows: before start the
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computation, data in U0 to U3 are access from the inputs of the PE; C1, R0, C3, R1

are popped from FIFO1 to FIFO4, respectively; L0, C0 reuse data in C1, R0, L1, C2

reuse data in C3, R1, respectively; D0 and D1 are popped from FIFO5 and FIFO6;

when the CU finishes the computation, results are passed to the outputs of the PE;

U0 to U3 are pushed into FIFO1 to FIFO4, respectively; L0 and C0 are pushed into

FIFO5 and FIFO6.

From the above discussion of the custom buffer size, it can be seen that the custom

buffer size is proportional to the value of unroll parameter in y dimension, i.e., py unroll.

Compared with py unroll, the value of px unroll almost can not impact the buffer size.

Then, the custom buffer size of the hybrid design can be calculated as:

bsize = (py unroll + 1)×M + px unroll (5.6)

where bsize is equal to 3M + 1 when (px unroll = 2, py unroll = 2).

Compared to the custom buffer design in Figure 5.4, the design with (px unroll =

2, py unroll = 2) needs to store more stencil cells in the custom buffer. However, as I

stated in section 3.3.3, this custom buffer design opens an opportunity to make the CU

share the calculated results for computing multiple stencil operations. For instance, in

Figure 5.6, to perform the stencil computation on C0, the CU has to execute the target

operation, i.e., 0.25× (U2 +L0 +C1 +C2). Same as the cell C0, to compute the stencil

operations on C3, the CU also has to calculate the result of 0.25× (C1 +C2 +R1 +D3).

From the above analysis, it can be seen that, inside the CU, the computation result of

(C1 + C2) is used twice for performing stencil operations on C0 and C3. Therefore, by

fully exploring the design space of the custom buffer design in multiple dimensions of

target stencil array can provide the new opportunity for sharing the calculated results

in the CU.

In conclusion, I show 3 approaches for exploring the custom buffer design space of

the target 4-point Laplace Equation on a 2D stencil array. And these approaches can

be easily generalized to other stencil applications with 3D or even high dimensional

stencil arrays. The design space is mainly decided by the unroll parameter, i.e., the

spatial parallelism punroll. Since the maximum value of the spatial parallelism is limited

by the external memory bandwidth, with the aid of the HBM, the developers can fully

explore the design space of the custom buffer to obtain the expected performance on

the target stencil applications.
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5.2.3 Proposed Architecture Overview

External Memory
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1st 𝑷𝑬
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Custom Buffer     Computing Unit

Custom Buffer     Computing Unit

Figure 5.7: Overview of the stencil computation architecture

As the computation architecture I have proposed for the CFD applications, I also

employ both temporal-based parallelization and spatial-based parallelization strategies

to increase the performance of the stencil computation architecture in this section. The

proposed stencil architecture overview is shown in Figure 5.7. I use multiple identical

PEs to implement the temporal-based parallelization. These PEs are connected with

each other to form a deep pipeline structure. Each PE is responsible for computing the

stencil computations of 1 time-step. The spatial-based parallelization is implemented

inside the PE. The PE mainly composes of the custom buffer and the CU.

𝒏 𝟏 𝒏 𝒏 𝟏

Ping-FIFOn Ping-FIFOn+1

Pong-FIFOn Pong-FIFOn+1

Figure 5.8: Ping-pong FIFOs connections with PEs

For using the HLS developing method, the PE can be declared as the function

structure. The function interface is defined by using the FIFO data type which is not

a native interface for the software-based high-level language. To avoid pipeline stalls

among these PEs, I adopt the Ping-Pong FIFOs to connect these PEs. Figure 5.8 shows

the details. For example, to finish 1 stencil computation, the PE reads the inputs from

the previous level Ping-FIFO and writes the outputs to the next level Pong-FIFO. For

the next 1 stencil computation, the PE reads inputs from the previous level Pong-FIFO
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and writes to the next level Ping-FIFO.

Since the Ping-Pong FIFO structure is a popular technique to enable the full pipeline

system, the HLS tool of Xilinx even provide a special pragma to automatically imple-

ment the Ping-Pong FIFOs structure. For example, the pragma dataflow in Xilinx HLS

can define a dataflow area. Any functions inside the area can be automatically linked

with the Ping-Pong FIFOs.

5.2.4 HBM Memory Bandwidth Optimization

Unlike the fixed computing devices, e.g., CPUs or GPUs, the FPGAs do not have

the predefined memory controlling unit which can efficiently manage the data accesses

between the chips and external memories. For example, the memory controlling unit

of GPUs can automatically coalesce the data access requests from a large number of

CPU cores to increase the utilization of the external memory bandwidth of GPUs. For

using FPGAs, developers usually have to manage the large amount of data requests by

themselves. Thus, the unsuitable memory access patterns can cause a low utilization

of external memory bandwidth.

Figure 5.9 is used as an example to show the proposed HBM memory bandwidth

optimizations. Compared with the traditional developing method, using the HLS de-

veloping method often can not manage the data accesses in detail. For the target board

Alveo U280, the FPGA chip can communicate with the HBM channels through AXI3

interface. To increase the utilization of HBM memory, the HLS-based memory access

pattern has to satisfy the demands as follows:

External Memory
(HBM CHANNEL)

AXI3

1800 × 64  8⁄ = 14.4 𝐺𝐵/𝑠 

PE

512 × 225  8 = 14.4 𝐺𝐵/𝑠⁄

PE PE

MEMORY CONTROLLER

FPGA chip

512-bit FIFO

32 32 32

FIFO 1

FIFO 2

FIFO n

Figure 5.9: Memory bandwidth optimization

• First, due to the low operating frequency of the FPGAs, e.g., 300MHz, or even

slower, the large data width of the AXI bus interface has to be used for the

FPGA side. For instance, suppose the HBM memory is running at 900MHz. The
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theoretical bandwidth of the 1 channel of HBM memory can be calculated as

900MHz × 2 × 64 / 8 = 14.4 GB/s. To utilize the theoretical bandwidth of 1

HBM channel, suppose the target architecture design operates at 225 MHz on

FPGA, the data accesses need to be explicitly merged with 512-bit width. Then,

the bandwidth can achieve 512 × 225 /8 = 14.4 GB/s.

• Second, the burst mode of the AXI bus need to be exploited as much as possible.

As shown in Figure 5.9, I implement a data distribution and collection buffer to

explicitly coalesce the data accesses. The behaviour of the buffer is shown as follows:

when the target design needs to write to the external memory, this buffer merges the

multiple data requests, e.g., represented by the data type with data width 32-bit, to

a wide data width such as 512-bit; on the contrary, when reading from the external

memory, the buffer split the wide data width, e.g., 512-bit into normal data type

length, e.g., 32-bit. The buffer is mainly realized by a wide data width FIFO. I use

the arbitrary precision integer data type to synthesis the FIFO with the certain data

width. A detailed example is shown in Listing 5.1.

1 #define N 512/32

2 // assume the sizeof(unsigned int) is 32

3 //ap_uint <512> is a 512-bit width unsigned integer

4 hls::stream <ap_uint <512>> fifo;

5 unsigned int in[N], out[N];

6 for(int i = 0; i < N; i++)

7 {

8 // distribution

9 in[i] = fifo.range ((i+1)*32-1, i*32)

10 /* ................. */

11 // collection

12 fifo.range ((i+1)*32-1, i*32) = out[i];

13 }

Listing 5.1: Custom data width FIFO structure

One thing to be noted here is the wide bit width buffer is only used to expand the

AXI bus width in the FPGA side. Although I declare the buffer with the arbitrary

precision integer data type, it also can fill in with float point data. For example, I can

merge 16 32-bit single precision float number into the 512-bit FIFO. However, for using

the high-level language such as C in the HLS tools, an extra transformation has to be

done as I shown in Listing 5.2.

1 float in_float. out_float;

2 unsigned int in_uint , out_uint;

3 //uint to float , keep the binary value consistent

4 in_float = *(float *)&( in_uint);

5 //float to uint , same consistent

6 out_uint = *( unsigned int *)&( out_float);

Listing 5.2: Data type conversion between integer and float
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To use the burst mode of the AXI bus, the proposed stencil architecture needs to

perform the memory accesses in a pipelined manner, that is, the required data addresses

must be continuous. Compared to the normal data access mode, the burst mode of AXI

bus only transfer the start address and length to the receiver in the beginning, then

it burst ever data without adding the address information until it reaches the target

length, which increases the transmission efficiency. To access data from the target

stencil array with sequential data address, I also have to linearize the data access

pattern. An example is shown in Figure 5.10
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Figure 5.10: Memory access linearization

For the HLS developing method, I can use the pragma to configure the AXI bus

burst mode. For example, accessing external memory with continuous data address in

the ’for’ loop can automatically trigger the burst mode. The pragma interface m axi

can be used to set the target length.

5.3 Performance Model

In this section, a performance mode is presented for the stencil computation architec-

ture. By using the proposed performance model, I introduce a parameter tuning process

which allows developers to choose the optimal design parameters for the target stencil

application with a certain FPGA board. Since the spatial-based and temporal-based

parallelization are both used in the computation architecture, the total parallelism can

be calculated as:

ptotal = pspatial × ptemporal (5.7)

pspatial = punroll =
n∏
k=1

pk unroll (5.8)

ptemporal = nPE (5.9)
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where ptotal denotes the total parallelism I have exploited in the stencil architecture.

punroll is the design parameter for the spatial parallelism inside the PE, which can be

explored in multiple dimension of the target stencil array. nPE means the number of

PEs in the stencil architecture, i.e., the temporal parallelism.

Then, I can use the value of ptotal to calculate the peak throughput of the stencil

architecture, which is shown in:

Cthr = ptotal × fstencil (5.10)

where the fstencil means the operating frequency of the stencil architecture. Cthr de-

notes the peak throughput (cells/s). The total time of the stencil architecture to execute

the target stencil array can be defined as:

tstencil =
Wtotal

Cthr
+ Tinit (5.11)

Wtotal = i×
n∏
k=1

Dlength(ak) (5.12)

Tinit = nPE × (
SPE
fstencil

) (5.13)

where Wtotal is the target stencil workload for performing i time step stencil computa-

tions on an n-dimensional stencil array ~a(1,2,...,n). Dlength denotes the dimension length

of the stencil array. Tinit represents the initial pipeline delay to generate the first result,

which can be calculated by using the pipeline stages of a PE SPE .

The design space of the spatial-based and temporal-based parallelization, i.e., pspatial

and nPE are mainly limited by the FPGA hardware resources which can be shown as:

Rstencil +Rplatform ≤ Rmax(DSP,LUT,BRAM,FF ) (5.14)

Rstencil = nPE · (Rbuffer +Rcomp) (5.15)

Rbuffer ∝ bsize(pspatial), Rcomp ∝ pspatial (5.16)

where Rmax(DSP,LUT,BRAM,FF ) represents the maximum sources of the different hard-

ware elements for the target FPGA. Rstencil is the resource consumption of the stencil

computation architecture. Rplatform denotes the platform consumption, e.g., memory

interface. Inside a PE, the hardware resources are mainly consumed by the custom

buffer Rbuffer and the CU Rcomp. The spatial parallelism design parameter pspatial is

also constrained by the memory bandwidth of the HBM, which is shown in:

fstencil × pspatial ×Wdatatype ≤ Bpeak (5.17)

where Wdatatype denotes the data width of the target stencil computation data type.

According to the previous analysis, I use a roof-line model to illustrate the design
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parameter tuning process of the nPE and pspatial. Figure 5.11 shows the roof-line mode

of the stencil architecture. In this figure, the vertical axis denotes the performance P.

The peak performance of the stencil architecture is decided by the maximum comput-

ing resources Rmax(DSP,LUT ) in the target FPGA. The horizontal axis represents the

number of PEs, i.e., nPE . The pspatial is the slope of the lines that is limited by the

blue angle Bpeak.
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Figure 5.11: Performance roof-line model

Then, I can conclude the tuning process of parameters nPE and pspatial as follows:

1. Calculate the maximum value of parameter p1
spatial by using the peak memory

bandwidth Bpeak.

2. Keep the value of p1
spatial to explore the value of n1

PE , until the maximum com-

puting resource limitation is reached.

3. Add the design parameters (n1
PE , p

1
spatial) into the parameter tuning area.

4. Decrease the value of p1
spatial, e.g., to a smaller value p2

spatial, and repeat the above

steps from Step 2.

5. The parameter tuning area will end up in, e.g., point (n3
PE , p

3
spatial). At this

point, the maximum maximum memory resource limitation Rmax(BRAM,FF ) is

also reached.

One important thing to be noted here is using the large value of the nPE may use

up all the memory resources of the target FPGA before the stencil architecture reaches

the peak performance. For example, the design point (n4
PE , p

4
spatial) in the Figure 5.11,

whose performance is restricted by the Rmax(BRAM,FF ).
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5.4 Results

5.4.1 Experiment Setup

The Xilinx Alveo U280 is used as the target FPGA board to implement the proposed

stencil computation architecture. Table 5.1 shows the detailed board specifications.

The FPGA chip of the Alveo U280 is integrated with 2 HBM memory stacks. Each

stack of HBM can store 4GB data. The target board is connected to a host PC through

PCIe interface. The host PC uses the Intel i9900k CPU with 64GB DDR4 DRAMs.

The operating system of the host is Ubuntu 2018.2. The HLS developing environment

is based on the Xilinx Vitis 2019.2. One thing to be noted here is that I only implement

the design with 1 die of the target FPGA chip. The Alveo U280 FPGA chip includes

3 dies. These dies are connected with the super long line (SLL) routing resources.

Since the target HLS developing tool, i.e., Xilinx Vitis 2019.2 has limited supports to

efficiently use the SLLs, I do not consider the multiple dies implementations.

Table 5.1: FPGA chip specifications

Devices LUT(K) FF(K) DSP Slices BRAMs HBM Bandwidth

Alveo U280 1303 2607 9024 4032 460.8 GB/s

I evaluate the proposed stencil computation architecture with 3 typical stencil ap-

plications from different areas. The Sobel 2D filter is a widely used method to detect

the edge of the pictures. The 4-point Laplace Equation is an example for solving the

partial differential equations. The Himeno benchmark is a 3D benchmark to profile the

code of the fluid dynamics.

5.4.2 Experiment Performance

Figure 5.12 presents the evaluation results of the Sobel 2D filter. I set the input picture

size to 8k, i.e., (8192 × 8192). Since the Sobel 2D filter is a special stencil application

that performing the computations with 1 time step, I can not employ the temporal-

based parallelization on this benchmark. As a result, the computation performance is

mainly decided by the spatial parallelism, that is, restricted by the external memory

bandwidth. The result of the ADM-PCIE-KU3 board comes from the paper [55]. Since

their FPGA board is equipped with 2 DDR3 1600 DRAMs as the external memory,

they only can implement the spatial-based parallelization (SP) up to 32, i.e., 16× 32×
250 = 12.8 GB/s. Compared with the performance result on the Intel Xeon E5-2620,

the FPGA board of ADM-PCIE-KU3 is even slower due to the memory bandwidth of

the CPU is higher (4 DDR4 2133 DRAMs). As a consequence, the low external memory

bandwidth prevents the FPGA board to show the advantages of parallel structures.

For the target board Alveo U280, due to the aid from the HBM memory, I can
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implement the spatial-based parallelization up to 384 with 16-bit data type and 640

with 8-bit data type on the stencil computation architecture. As a result, I can achieve

the maximum performance results of the 16-bit in 77 GCell/s and 8-bit in 128.4 GCell/s.

In addition, to show the benefits of HBM, I also compare the results with the target

Alveo U280 which is connected with 2 DDR4 DRAMs as external memory. The results

demonstrate that the state-of-the-art Alveo U280 board has similar performance with

the Xeon CPU and the ADM-PCIE-KU3 FPGA board without the help of HBM.
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Figure 5.12: The Sobel 2D benchmark performance
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Figure 5.13: Resource consumption for the Sobel 2D benchmark

I use 4 different implementations to realize the design parameter punroll = 384, i.e.,

(px unroll, py unroll) = (384, 1), (192, 2), (96, 4), (48, 8). Figure 5.13 presents the resource

utilization of these 4 implementations. Since some computation results can be shared

in the CU as shown in Figure 5.14, the resource utilization of the 4 implementations
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are also variant. For example, the configurations of (48, 8) uses the least computing re-

sources, i.e., LUTs. On the contrary, the (384, 1) costs the minimum memory resources

such as BRAMs of the target FPGA.

(𝑥, 𝑦)

(𝑥, 𝑦 + 2)

(𝑥 + 2, 𝑦)

Result reuse

Figure 5.14: Computing results sharing in the CU of the Sobel 2D benchmark
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Figure 5.15: The 4-point Laplace Equation benchmark performance

Figure 5.15 presents the evaluation results of the 4-point Laplace Equation. The

target stencil array is set to (16,384 × 16,384) in this benchmark. The performance

results of the DE5 and ADM-PCIE-KU3 FPGA boards are from the previous studies

[50] and [55], respectively. Due to the constraints of the external memory bandwidth,

they can only use 8 as the maximum SP value. However, unlike the Sobel 2D stencil

application, they can still increase the stencil performance by using the temporal-based

parallelization. Compared with their studies, the SP value of the stencil computation

architecture can be 64 with the HBM as external memory and 8 with the DDR as
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external memory.

Figure 5.16 shows the power estimation report which is generated by the imple-

mentation tool. I set the default junction temperature as 37.9 ◦C. The report shows

the total required power of FPGA chip is 30.83 W. I list the top 5 hardware elements

in term of the power consumption. The most power is consumed by the HBM, i.e.,

34%. The logic part, e.g., LUTs, BRAMs consumes 23%. The other elements including

GTY, clock, and signal cost about 40%.
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Figure 5.16: Power report of the 4-point Laplace Equation benchmark
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Figure 5.17: The Himeno benchmark performance

Figure 5.17 presents the performance results for the 3D Himeno benchmark. The

target stencil array is (256 × 256 × 512). For the 3D stencil arrays, the custom buffer

needs to store more stencil cells than the 2D arrays. For example, in 2D the custom

buffer size is mainly decided by 1 dimension length of the array. For 3D array, the

custom buffer needs to store the 2D planes which are decided by the product of 2

92



dimension length of the array. As a result, the memory resource consumption of the

stencil architecture often becomes the bottleneck of performance. As I stated in the

performance model, using large TP value may exhaust the memory resources before

the peak performance is reached. In this benchmark, the largest allowed TP value is 4.

However, with the aid of HBM, I can use the SP value 16 to employ the spatial-based

parallelization to increase the performance. The results show that the computation

architecture can achieve almost 4 times higher performance in the HBM-based design

compared to the DDR-based.

5.5 Summary

In this chapter, I introduce the stencil architecture design on a HBM connected FPGA.

By using the HBM as external memory, the limitations of the spatial-based paral-

lelization is removed and the design space is expanded. As a result, I can scale the

stencil architecture performance by considering the spatial-based parallelization and

temporal-based parallelization equally. I also extend the custom buffer design into

multiple dimension spaces of the target stencil array.

I evaluate the proposed stencil architecture on the Xilinx Alveo U280 FPGA board

with 3 typical benchmarks. In the Sobel 2D filter, I can obtain the 128.4 GCell/s with

the 8-bit integer data type pictures. For the 4-point Laplace Equation, I achieve the

result of 56.6 GCell/s. At last, in the 3D Himeno benchmark, the stencil architecture

performance can reach to 6.8 GCell/s.
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Chapter 6

Conclusion and Future Work

In this chapter, I conclude the contributions of this thesis paper and show future work

of out study.

6.1 Conclusions

In this thesis paper, my main contribution is to propose the stencil computation ar-

chitecture based on FPGAs by using the HLS developing method. The HLS compiler

uses the programming language like C/C++ or OpenCL to describe hardware imple-

mentation. It abstracts the execution procedure of the design into loops, functions,

and the on-chip memory system is built by the combinations of variables and arrays.

Although HLS has got a lot of great achievements in the past decade, it is still not

smart enough to take a simple high-level description of an FPGA design and transfer

it into an efficient hardware implementation.

As I stated in this thesis, to achieve high performance for stencil applications on

the FPGAs with the HLS method, the users need to let the HLS tools automatically

build the high efficiency pipeline system of the stencil computations, I have specifically

described a custom buffer structure to help the HLS avoid the data dependency and

generate stalls in the pipeline system. Compared with the RTL-based FPGA design,

although the users of HLS tools can easily use the pragma, e.g., loop unroll in the

loop nests to exploit the SIMD-like parallelism and do not need to explicitly alter

the control signals of the loop structure, the HLS compiler may not prepare an optimal

memory system for the computing logic. The proposed custom buffer design also can be

extended to bind the parallelism and execution together by using the optimal hardware

resources. To efficiently use the external memory bandwidth of the target FPGA board,

I have shown the optimization techniques of how to describe a proper memory interface

contention with the HLS.

In the first part of this thesis, I use 2 specific stencil applications of CFD, i.e.,

LBM and LGCA simulations to explain the proposed architecture design. I propose a
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FIFO-based custom buffer design to exploit the data reusability both in the spatial and

temporal domain. I explicitly describes the data movements between the registers and

FIFOs to avoid the dependence on the special IP core. Moreover, in LBM simulation,

I propose an extended custom buffer design that can provide sufficient data bandwidth

to multiple CUs in the same time step without duplicating the same data in the custom

buffer. I evaluate the simulation results on the Xilinx VCU1525 FPGA board. The

results show that by using both spatial-based and temporal-based parallelization, the

proposed computation architecture can achieve competitive performance compared to

the other computing devices, e.g. CPUs and GPUs.

In the second part of this thesis, based on the work in the first part, I present a stencil

computation architecture design for FPGAs used the HBM as the external memory.

Due to the aid of HBM, the memory bandwidth of FPGAs increases significantly,

which opens the new optimization opportunities. To fully explore the design space,

I extend the custom buffer design to multiple dimensions of the target stencil array

to exploit the optimizations of computation results sharing inside the certain stencil

applications. I evaluate the computation architecture with the 3 benchmarks, i.e., Sobel

2D filter, 4-point Laplace Equation, and 3D Himeno on the target Xilinx Alveo U280

FPGA board. The performance results show that for the stencil applications with

limited temporal parallelism, the high external memory bandwidth can help FPGA to

achieve one order of magnitude performance gains than the traditional FPGAs. And

the resource consumption shows that by extending the design space of custom buffer

the optimization of sharing the computation result can be utilized.

Compared with the previous studies, I have solved 3 existed challenges. First, the

Shift register IP core dependence. I use the FIFOs and registers to explicitly describe

the custom buffer behaviour instead of using the shift register-based behaviour descrip-

tion which needs the support of the specific IP core of Intel. The stencil applications

in this thesis paper, e.g., LGCA, LBM, Himeno have used the proposed custom buffer

to avoid the dependency of the data accesses in multiple time dimensions. Second, the

previous work uses duplicated custom buffer to feed data to the computing logic to

increase parallelism of the stencil computations. The proposed custom buffer design

in this thesis costs optimal hardware resources to provide enough data bandwidth to

the computing logic. For example, in the case of LBM, the memory resource consump-

tion of the SP = 2, is almost half compared to the SP = 1. At last, the share of the

calculated result among the multiple stencil operations is also enable in the proposed

stencil computation architecture. Instead of increase the spatial-based pluralization

with limited design space, I extend the design space to the multiple space dimensions.

In the case of the stencil applications, e.g., Sobel 2D, and Laplace equation, the re-

source consumption of the computing logic is decreased along with the sharing of the

calculated results among the multiple stencil operations.
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6.2 Future Work

In future study, I agree that the HLS design portability is an interesting topic to

discuss. Through the HLS, I can abstract the architecture design description with

high-level languages and do not need to care too much about the details in dividing the

pipeline stages, synchronizing functions by certain clock cycles, or FSM control signals.

Therefore, the potential portability in FPGA design is raising. However, compared to

high-level language design based on fixed architecture e.g., CPUs, the HLS design with

FPGAs is still hard to move to another HLS platform.

Currently, the main object of this paper is not to solve the portability issue and

present general guidelines for improving portability among different HLS tools. How-

ever, I want to discuss the HLS potability problem and provide the hints to help

developers realize which parts of the code might compromise the portability of the

design in future work. In terms of portability, I suggest that developers should care-

fully utilize HLS compiler-relevant techniques. For the developers who do not have a

strong background with FPGA, these techniques may prevent them from identifying

the performance bottleneck when porting the design to other platforms. To achieve the

similar portable level as the high-level language tools on CPUs, the HLS tools on FP-

GAs still have a long way to go. It needs both academia and industry to continuously

contribute to this area, such as standard IP core behaviours, unified compiler prag-

mas and memory interface protocols. In addition, due to the feature of the high-level

languages, using the middle representation of these languages to build a tool that can

automatically generate the HLS-based stencil design with different design parameters

is also interesting. The tool can help users to preform the parameter tuning and search

the best design parameter for the target stencil application with the specific FPGA

board.

Another thing draw my attention is the operating frequency of the FPGA design.

To obtain better performance, the operating frequency of the stencil computation archi-

tecture on FPGA is also can be increased. However, the architecture design with high

resource utilization often puts heavy pressure on the routing resource, which prevents

us to use larger value of the operating frequency. At the current stage, the approaches

and guidelines to scale up design frequency with the HLS development method are still

unclear. Since by using the HLS, the detail control of hardware design is lost. For

example, it is very hard to identify the critical path in the HLS design code and use

the corresponding techniques to optimize it. The pipeline stages are also decided by

the HLS compiler, the users also cannot control the pipeline system specifically. In

addition, the current HLS tools can not predict the accurate frequency with the con-

sideration of routing resources, unless the placement and routing procedure are actually

finished, which will consume a lot of time. I will try to address these problems in future

research.
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