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Introduction

One of the most important challenges in condensed matter physics is to develop unified
and simple picture for understanding phases of matter. The so-called symmetry breaking
is one of the most fundamental concepts to classify material phases, which has been quite
successful to describe a wide variety of phase transitions. While the Landau’s symmetry
breaking theory have been becoming important cornerstone for modern physics, recent in-
tensive studies have revealed that there are other types of materials in which phases are not
identified by their symmetry breaking patterns. This new class is called topological phases,
which are characterized by topological invariants instead of the conventional order param-
eters. The topological invariants may emerge as physical observables, but most of them
cannot be measured directly from the bulk. Instead, these appear at edges as low energy
boundary states, which are characteristic properties of topological phases. For theoretical
discoveries of topological phase transitions and topological phases of matter, D. J. Thou-
less, F. D. M. Haldane, and J. M. Kosterlitz were awarded the 2016 Nobel Prize in physics.
Recent years have seen a massive growth of interests in topological phases. Although the
topological phases were historically discovered through efforts to understand the underlying
physics behind a quantum phenomenon, its concept have been nowadays extended to various
systems and have provided a new versatile platform in modern condensed matter physics.
Because of its universality and diversity, theoretical and experimental research of topological
phases is extremely essential for building a broad foundation of material science.

Historically, the discovery of the integer QH (IQH) effect in 1980 [1] opened the door to
the era of topological phases in condensed matter physics. The IQH systems exhibit quantum
phenomena associated with phase transitions, which are identified by not conventional order
parameters but the topological index known as the Chern number [2–6]. It is closely related
to the emergence of gapless edge modes around boundaries, which is called the bulk-edge cor-
respondence [7, 8]. The Haldane phases of integer Heisenberg spin chains [9, 10] are also the
typical example of topological phases without symmetry breaking. The electron-electron in-
teractions in the QH phases give birth to even more topologically nontrivial material phases.
The fractional QH (FQH) effect [11, 12] is known today as one of topologically ordered
phases [13, 14], which is an incompressible quantum liquid with fractionalized excitations.
The quasiparticles describing the excitations carry the fractional charges and the fractional
statistics [12, 15–19]. These fractionalizations are closely related to the topological degener-
acy [20–24]. The non-Abelian FQH effect [25–28], some quantum spin liquids [29–34], etc.,
are also known as the topologically ordered phase with long-range entanglement [35–37].
Some of topologically ordered states exhibits excitations with non-Abelian anyons, which
can be used for the so-called topological quantum computation. [33,38,39].

In recent years, the topological insulators/superconductors [40–43] have been studied
intensively. The topological insulators are interpreted as a kind of QH phases with time
reversal symmetry, where the spin-orbit interactions play an important role. Recent intensive
studies have revealed that internal symmetry brings further diversity into topological phases
if the idea of topology is augmented by symmetry. Indeed, many kinds of topological phases of
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Figure 1: Adiabatic deformation

noninteracting fermions are classified systematically [44–47]. These systematic classifications
plays an important role for exploring hitherto unknown various topological phases. The
electron-electron interactions in these topological materials engender new physics that does
not arise in the noninteracting problem. Recently, a wide variety of correlated topological
phases have been clarified, some of which include the fractional Chern insulators [48–50],
the fractional topological insulators [51, 52], etc. Furthermore, the concepts of the Mott
transition and the Kondo effect, which are the typical example of strongly correlate materials,
have been applied to physics of topological phases, which have given novel phases of matter
such as the topological Mott insulators [53–57] and the topological Kondo insulators [58–
61]. Also, the electron correlations have an even more significant effects on the topological
classification [62–75]. Because of this diversity of correlation effects in topological phases,
theoretical study on correlated topological materials has become increasingly important for
developing the modern theory of the topological phases.

The purpose of this thesis is to establish fundamental concepts and to develop novel
materials of topological phases in correlated systems. This thesis consists of two parts,
Part I “topological invariants” and Part II “adiabatic principle”. Part I gives arguments
on topological invariants for characterizing correlated topological systems. In Chapter 1,
we first give a generic setup for the Chern number and the Berry phase and discuss their
gauge structures. After the general arguments, the ZQ Berry phases that are quantized due
to symmetry of the system are introduced. We also review the TKNN formula and the
Niu-Thouless-Wu formula to describe the relation of physical observables and topological
invariants. In Chapter 2, it is numerically demonstrated that the integration in evaluating the
many-body Chern number for correlated systems can be actually skipped if the system size
is sufficiently large. Analyzing the Hofstadter model with or without electron correlations,
we show the exponential accuracy of the single-plaquette approximation with respect to the
system size. We also discuss the usefulness of the one-plaquette Chern number in systems
in which topological phase transitions occur.

Part II gives arguments on the adiabatic principle for characterizing correlated topological
systems, which consists of three sections. The adiabatic deformation is a fundamental concept
in the theory of topological phases (see in Fig. 1). In Chapter 3, we first revisit a simple
problem to demonstrate that the (non-Abelian) Berry phases characterize the geometrical
structures of wave functions involved in the adiabatic development. The concept of the
adiabatic deformation gives a sophisticated view for characterizing phases of matter. From
this perspective, in Chapter 4, we propose a new topological state “higher-order topological
Mott insulator” that exhibits a generalized bulk-edge correspondence. It is numerically
demonstrated that this correlated topological states are realized in the Hubbard model on a
kagome lattice. Their topological nature are simply understood from adiabatically deformed
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systems, whose information is encoded in the quantized Berry phase. In Chapter 4, we
move onto the problem of the adiabatic deformations for the QH effects. According to the
adiabatic heuristic arguments, the FQH and IQH states are adiabatically connected with
each other by flux-attachment. In this chapter, we numerically demonstrate that the energy
gap of the QH states on a torus are indeed smooth and finite even though the topological
degeneracy changes wildly. We also analytically derive the relation between the many-body
Chern number and the wild change of the topological degeneracy. This is a generalization of
the Streda formula of the Hofstadter butterfly in the single-particle problem. This formula
we discover implies what is fundamental in topological invariants is the continuity of the
energy gap, rather than the continuity of states.
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Topological invariants
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Chapter 1

Berry phase and Chern number

Over the past few decades, topology has been developing a guiding principles in modern
condensed matter physics. Topological numbers such as the Berry phase and the Chern
number serve as a kind of order parameters beyond Landau’s symmetry breaking theory. In
this chapter, we first give a generic setup for the Berry phases and the Chern number in
relation to their gauge structures. While the Chern number is always quantized, the Berry
phases generally have any real numbers. However, specific systems bring the quantization of
the Berry phases due to their symmetry. As an example of this quantized Berry phase, the
ZQ Berry phases defined in the system on hyper-Pyrochlore lattices are considered. Lastly,
we review the TKNN formula and Niu-Thouless-Wu formula to discuss the relation between
the Chern number and the quantized Hall conductance.

1.1 General setup

1.1.1 Berry phase

The Berry phase characterizes the geometrical structures of wave functions defined in the adi-
abatic development, which was historically discovered in the study of the adiabatic theorem
in the quantum mechanics [4,5,76]. This encodes the geometrical structures of the subspace
given by the ground states evolved adiabatically. Its concept is useful for characterizing
topological phases. In this subsection, let us here begin by giving general arguments on the
(non-Abelian) Berry phases in relation to the gauge structures [4, 5, 76–80]. The arguments
associated with the adiabatic theorem is given in Chapter 3.

Let us now consider an Hermitian operator H(x), where x = (x1, . . . , xd) is a vector in
a d-dimensional parameter space. It gives the following eigenvalue equation as

H(x)ψi(x) = εi(x)ψi(x). (1.1)

Using the eigenvectors ψi’s (i = 1, · · · ,M), we define the M -dimensional multiplet as

Ψ = (ψ1, · · · , ψM ) . (1.2)

We here assume that Ψ includes all of degenerated eigenstates, i.e., when Ψ includes ψi,
Ψ should include ψj if εj = εi. Due to this assumption, it seems that the multiplet Ψ is
specified uniquely by a set of eigenvalues (ε1, · · · , εM ) determined by x. However, this naive
argument is not correct since one has the freedom to change the basis; taking a different
basis, we have another representation of the multiplet as Ψ′(x) = Ψ(x)ω(x), where ω(x)
is an M -dimensional unitary matrix. Generally, ω is not diagonal if Ψ includes sets of

7
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degenerated eigenstates. Using the multiplet defined above, let us define the non-Abelian
Berry connection as

A = Ψ†dΨ, (1.3)

where d =
∑

i
∂
∂xi
dxi. We have the relations A† = −A because of A† = (dΨ†)Ψ = −Ψ†dΨ =

−A, where Ψ†Ψ = 1 has been used. The Berry connection is not gauge invariant as follows:

A′ = Ψ′†dΨ′ = ω†Aω + ω†dω. (1.4)

Integrating A along a closed loop C defined in the parameter space, we have the non-
Abelian Berry phases as [76]

U(C) = P exp

{∫
C
A

}
, (1.5)

where P is the path ordering symbol. By the gauge transformation A′ = ω†Aω + ω†dω, it
is transformed to 1

U ′(C) = ω(x0)†U ′(C)ω(x0), (1.6)

where we assume that the starting point and the terminal point of the closed path C is given
by x0. This relation implies that the eigenvalues of Uq[C], detUq[C] and trUq[C] are gauge
invariants.

Let us here mention properties of the Abelian Berry phase. We denote the Abelian Berry
connection by A = A and assume that the gauge transformation is given by ω(x) = eiχ(x).
The definition of the Berry phase eiγ(C) = U(C) implies that we have [4]

γ(C) =
1

i

∮
C
A mod 2π. (1.7)

To ensure its gauge invariance, “mod 2π” is important: the naive integration of A is not
gauge invariant as∮

C
A′ =

∮
C
A+

∮
C
ω∗dω =

∮
C
A+ i

∮
C
dχ =

∮
C
A+ i2nπ

where n is an integer.

1.1.2 Chern number

Let us now move onto the discussions on the Chern number. We first define the non-Abelian
Berry connection as follows:

F = dA+A2. (1.8)

1Rewriting the Berry connection as A = A · dx with A = Ψ†∇xΨ and ∇x = (∂xi , · · · , ∂xd), we have [80]

eA
′(x)·dx = 1 + A′(x) · dx +O(dx2)

= 1 + ω†(x)A(x)ω(x) · dx + ω(x)†∇ω(x) · dx +O(dx2)

= ω†(x) (1 + A(x) · dx)ω(x) + ω†(x)∇ω(x) · dx +O(dx2)

= ω†(x) (1 + A(x) · dx) (ω(x) + ∇ω(x) · dx) +O(dx2)

= ω†(x)eA(x)·dxω(x + dx) +O(dx2).



1.1. GENERAL SETUP 9

By the gauge transformation, it is deformed to 2

F ′ = ω†dAω + ω†A ∧Aω = ω†Fω. (1.9)

Although the Berry curvature F itself depends on the gauge, TrF is a gauge invariant. Then
integrating TrF on an orientable compact surface S in the parameter space, we define the
Chern number as [77,81]

C =
1

2πi

∫
S

TrF , (1.10)

Since the integrand is a gauge invariant, the Chern number C is also gauge invariant. We
here note that because of TrA∧A = 0, 3 the Chern number is written in terms of the Berry
connections as follows:

C =
1

2πi

∫
S

Tr dA. (1.11)

From the relation TrF = Tr dA, it seems that the term A ∧A in the definition of the non-
Abelian Berry curvature is unnecessary. However, this argument is not correct since TrF
would not become a gauge invariant if that term is absence.

Now, let us demonstrate the quantization of the Chern number analytically. Since there
is no boundaries on S, one naturally expects that the Chern number would vanish according
to Stokes theorem. This simple discussion, however, is not valid if the Berry connection is
not defined well on S globally. To apply the Stokes theorem properly, let us divide the ill-
defined region into patches Si (i = 0, 1, · · · ) and locally assign a well-defined Berry connection

Ai = Ψ†idΨi there, see Fig. 1.1. The wave functions defined in the patches are related to
the original one, which we denote by Ψ0, by the gauge transformation, i.e., Ψi = Ψ0ωi. It
implies that their local Berry connections are given by

Ai = ω†iA0ωi + ω†i dωi. (1.12)

By using it and applying the Stokes theorem, the Chern number is expressed as [6, 77]

C =
∑
i=0

1

2πi

∫
Si

Tr dAi (1.13)

=
∑
i=1

1

2πi

∫
∂Si

Trω†i dωi. (1.14)

2We have

dA′ = d
(
ω†Aω + ω†dω

)
= dω† ∧Aω + ω†dAω − ω†A ∧ dω + dω† ∧ dω

A′ ∧A′ =
(
ω†Aω + ω†dω

)
∧
(
ω†Aω + ω†dω

)
= ω†A ∧Aω + ω†A ∧ dω − dω† ∧Aω − dω† ∧ dω,

where ω†ω = 1⇒ dω†ω = −ω†dω has been used.
3We have

TrA ∧A = Tr
[
Φ†dΦ ∧ Φ†dΦ

]
=

∑
α,β=x,y

Tr
[
Φ† (∂αΦ) Φ† (∂βΦ)

]
dθα ∧ dθβ

= −
∑

α,β=x,y

Tr
[
Φ† (∂βΦ) Φ† (∂αΦ)

]
dθβ ∧ dθα

= −TrA ∧A.
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Figure 1.1: Berry connections A, A0, A1, and A2.

Because of Trω†i dωi = Tr d logωi = dTr logωi = d log detωi, the Chern number reduces to
the winding number defined along the closed circle ∂Si as follows:

C =
∑
i=1

1

2π

∫
∂Si

dχi, (1.15)

where eiχi = detωi. The presence of the winding number demonstrates the quantization of
the Chern number.

1.2 Quantized Berry phase

Although the Beery phases generally take an arbitrary real value unlike the Chern number, it
is quantized in some cases due to symmetry of systems [79,82–86]. It implies that the quan-
tized Berry phase is an adiabatic invariant under deformations that preserve the symmetry.
In this section, let us review the ZQ-quantized Berry phases for polyacetylene, kagome, and
pyrochlore lattices [83] and discuss the mechanism of the quantizations. As mentioned in
Chapter 4, this ZQ-quantized Berry phases work well as an order parameter of topological
phases such as higher-order topological Mott insulators.

Let us consider a system of spinless electrons on a hyper-Pyrochlore lattice in d-dimensions.
This series includes a kagome lattice (d = 2), a pyrochlore lattice (d = 3), etc. We assume
that the Hamiltonian is given by H = H4 +H5 with

Hγ = tγ
∑
ij∈γ

c†icj + h.c. (1.16)

where ni = c†ici, c
†
i is the creation operator on site i, γ = 4 or 5, and i, j ∈ 4(5) indicates

the summation over the nearest-neighbor pairs i < j belonging to upward (downward) trian-
gles [kagome] or tetrahedron [pyrochlore], etc. For defining the Berry phase, let now us pick
up a certain downward triangle or tetrahedron [see Fig. 1.2 (a)] in the considered system.
Then, labeling the site indices as 1, · · · , Q ≡ d+ 1, let us define a unitary operator as

U(~θ) = exp

{
i

Q∑
i

niφi

}
, (1.17)

where φi is a function of ~θ as

φi =

i∑
j=1

θj , (1.18)
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Figure 1.2: (a) Peierls phase induced by U(~θ) for the Pyrochlore lattice. (b) Integration
paths Li’s for the Pyrochlore lattice.

and Q-dimensional vector ~θ = (θ1, · · · , θQ) is a parameter defined in mod 2π. Let us now
write the Hamiltonian as

H(~θ) = H4 + U(~θ)H5U
†(~θ) (1.19)

This modification introduces the Peierls phases to some bonds as shown in Fig. 1.2(a).
Because of the local twist, this procedure is not a unitary operation with respect to the

Hamiltonian. Then defining the ground state of the Hamiltonian H(~θ) as
∣∣∣G(~θ)

〉
, the Berry

phase is given by

γi =
1

i

∮
Li

d~θ ·A(~θ), A(~θ) =
〈
G(~θ)

∣∣∣∇~θ

∣∣∣G(~θ)
〉
. (1.20)

The integration paths Li’s (i = 1, · · · , Q) are given as follows. We first define Q points
I1, · · · , IQ in the parameter space as

I1 = (2π, 0, · · · , 0)

I2 = (0, 2π, 0, · · · , 0)

...

IQ = (0, · · · , 0, 2π).

and the center of gravity as G = (2π/Q, · · · , 2π/Q). Setting φQ = 0, i.e.,

θQ = −(θ1 + · · ·+ θQ−1), (1.21)

we define a line connecting Ii with G as shown in Fig. 1.2(b) (the case of pyrochlore lattices).
They are described by the following vector as

~fi(t) =
2π

Q
(
1
t, · · · ,

i−1
t ,

i

−(Q− 1)t,
i+1
t , · · · ,

Q
t , ) for 0 ≤ t ≤ 1,

where the i − 1th element with i = 1 is defined as the Qth element. Along these lines, we
define the path integral Li : Ii−1 → G→ Ii for i = 1, · · · , Q, where I0 = IQ.

Let us give a proof of the quantization of γi. Now, we assume that the system has
a symmetry with respect to a cyclic permutation of the site indices as (1, 2, · · · , Q) →
(Q, 1, 2, · · · , Q − 1). For example, this unitary operation for the pyrochlore lattices is asso-
ciated with C3 symmetry and mirror symmetry as shown in Fig. 1.3. Denoting this unitary
operator by U , we have

UH(~θ)U † = H(g~θ), (1.22)
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Figure 1.3: Unitary operation for a pyrochlore lattice.

where g is a Q×Q unitary matrix satisfying g~θ = (θQ, θ1, θ2, · · · , θQ−1). Noting that

g ~fi(t) = ~fi+1(t), (1.23)

for i = 1, · · · , Q, where ~fQ+1 = ~f1, the equivalence between γi and γi−1 is given. 4 Namely,
we have

γ1 = γ2 = · · · = γQ mod 2π. (1.24)

Because the sum of the loops Li’s is equal to zero, the sum of the Berry phases γi’s is
vanishing, i.e.,

∑
i γi = 0 mod 2π. They imply

γ1 = γ2 = · · · = γQ =
2π

Q
n mod 2π, (1.25)

where n = 1, 2, · · · , Q.
In some cases, the quantized Berry phase can be computed analytically. Let us first

calculate γi of systems that are adiabatically connected into the system with the Hamiltonian
H = H5. Due to the quantization of the Berry phase, it reduces to the problem of calculating
γi in that deformed system. Since we have

H(~θ) = U(~θ)HU †(~θ), (1.26)

4The proof is given as follows:

γi =
∑
j

1

i

∫
Li

dθj
〈
G(~θ)

∣∣∣ ∂

∂θj

∣∣∣G(~θ)
〉

=
∑
j

1

i

∫
Li−1

d

(∑
k

gjkθ
′
k

)〈
G(g~θ′)

∣∣∣∑
l

∂θ′l
∂θj

∂

∂θ′l

∣∣∣G(g~θ′)
〉
, ~θ = g~θ′

=
∑
j

1

i

∫
Li−1

d

(∑
k

gjkθ
′
k

)〈
G(g~θ′)

∣∣∣∑
l

(g−1)lj
∂

∂θ′l

∣∣∣G(g~θ′)
〉

=
∑
jkl

gjk(g−1)lj
1

i

∫
Li−1

dθ′k

〈
G(g~θ′)

∣∣∣ ∂

∂θ′l

∣∣∣G(g~θ′)
〉

=
∑
kl

δkl
1

i

∫
Li−1

dθ′k

〈
G(g~θ′)

∣∣∣ ∂

∂θ′l

∣∣∣G(g~θ′)
〉

=
1

i

∫
Li−1

d~θ′ ·
〈
G(g~θ′)

∣∣∣∇~θ′ ∣∣∣G(g~θ′)
〉

=
1

i

∫
Li−1

d~θ′ ·
〈
G(~θ′)

∣∣∣U†∇~θ′U ∣∣∣G(~θ′)
〉

=
1

i

∫
Li−1

d~θ′ ·
〈
G(~θ′)

∣∣∣∇~θ′ ∣∣∣G(~θ′)
〉

= γi−1.
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the Berry connection is given by

Ai(~θ) = 〈G|U †(~θ) ∂

∂θi
U(~θ) |G〉 = i

Q∑
k=i

〈G|nk |G〉 (1.27)

where |G〉 is the ground state of H and ∂
∂θi
U =

∑Q
k=1

∂φk
∂θi

∂
∂φk

U =
∑Q

k=i
∂
∂φk

U = i
∑Q

k=i nkU
has been used. Then, the Berry phase specified by L1 is given by

γ1 =
1

i

∮
L1

d~θ ·A(~θ) = 2π 〈G|n1 |G〉 . (1.28)

Let us next consider systems that are adiabatically connected into the system whose
Hamiltonian is given by H = H4. This insensitivity of the local twists implies that the

Berry connection is given by A(~θ) = 0, i.e.,

γi = 0. (1.29)

This quantized Berry phases is useful to characterize topological phases and describe
phase transitions. In the next part discussing adiabatic principle, we introduce its spin
counterpart to detect the higher-order topological Mott insulating states.

1.3 Quantized Hall conductance and Chern number

The QH effect is a typical example of topological phases in condensed matter physics. It
demonstrates how topology enriches phases of matter beyond Landau’s symmetry breaking
theory. In this section, we first review the Laughlin’s argument to demonstrate the quan-
tization of the Hall conductance in the IQH effect. In this argument, the quantized Hall
conductance is shown in term of the gauge invariance. According to the TKNN formula, the
quantized Hall conductance is essentially described by the Chern number. After discussing
this formula, we also review the Niu-Thouless-Wu formula to demonstrate the fractional
quantization in the FQH effect, which is a generalization of the TKNN formula.

Before entering on discussions of the QH effect, we shortly discuss the Hall effect of
classical systems based on the Drude theory [87–89]. Let us now consider a two dimensional
system of electrons under the uniform magnetic field. According to the Drude theory, the
single-particle momentum p are given by

dp

dt
= e

(
E +

p

m
×B

)
− p
τ
, (1.30)

where E is the electric field, e < 0 is the elementary charge, m is the electron mass, B is the
magnetic field, and τ is the mean free path. Assuming dp/dt = 0 and B = Bez, we have
eE = −p/m×B + p/τ , i.e.,[

Ex
Ey

]
=

[
−ωcpy/e+ px/(eτ)
ωcpx/e+ py/(eτ)

]
=

[
1/(eτ) −ωc/e
ωc/e 1/(eτ)

] [
px
py

]
, (1.31)

where ωc = eB/m is the cyclotron frequency. Defining the resistivity tensor ρ as

E = ρi, ρ =

[
ρxx ρxy
ρyx ρyy

]
, (1.32)

where i = (ix, iy) is the current density and assuming i = nep/m with n being the electrons
number per unit volume, we have

ρ =

[
m/(ne2τ) −mωc/(ne2)
mωc/(ne

2) m/(ne2τ)

]
. (1.33)
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Figure 1.4: Two-dimensional system on a cylinder.

The important point here is that the Hall resistivity ρxy in the Drude theory is proportional
to the magnetic field B. However, systems subjected to low temperatures with the strong
magnetic field give the quantization of the Hall conductance: The IQH effect [1] gives the
vanishing longitudinal conductance and the quantized Hall conductance as follows:

σxx = 0, σxy = s
e2

~
, (1.34)

where σ = ρ−1 is the conductivity tensor and s is an integer. In the next subsection, we
show the quantization of the Hall conductance based on the Laughlin’s argument [2].

1.3.1 Laughlin’s argument

Let us consider a system with non-interacting electrons under the magnetic field. The peri-
odic boundary condition is imposed only in the y direction, i.e., ψ(x, y + L) = ψ(x, y) with
L being the circumference of the loop. Let us now consider a gauge transformation given by
the magnetic flux Φ that is threaded through the loop, see Fig. 1.4. It is described by the
vector potential A = ∇χ(r) with

χ(r) =
Φ

L
y. (1.35)

The wave function ψ(r) is deformed into ψ(r)eieχ(r)/~. Assuming that the states are ex-
tended along the y direction, the periodic boundary condition ψ(x, y + L)eieχ(x,y+L)/~ =
ψ(x, y)eieχ(x,y)/~ reduces to ei2πΦe/~ = 1. Namely, the allowed flux for a gauge transforma-
tion is an integral multiple of the quantum flux φ0 = h/e.

Because of the gauge invariance, threading φ0 maps the system back into itself. This
procedure allows the transfer of electrons from one edge to the other. With the potential
drop V , the energy change is given as

∆E = neV, (1.36)

where n is the number of the transferred electrons. According to the Byers-Yang formula [90],
the current in the y direction is given as

iy =
1

L

∆E

∆Φ
=

1

L

neV

φ0
=
ne2V

hL
=
ne2

h
Ex. (1.37)

where Ex = LV . This result clearly demonstrates the quantization of the Hall conductance
in the unit of e2/h.
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1.3.2 TKNN formula

Let us now discuss the quantization of the Hall conductance in terms of the Chern number [3,
6]. We consider a system of non-interacting electrons under the magnetic field. The Bloch
Hamiltonian and its Bloch state are denoted by Hk and |uαk〉, where k is the single-particle
momentum and α is the band index. According to the Kubo formula, the Hall conductance
is given by

σxy = i
e2

~
∑

εα<εF<εβ

∫
BZ

dk2

(2π)2

〈uαk|∂kyHk|u
β
k〉〈u

β
k|∂kxHk|u

α
k〉 − (x↔ y)

(εβk − εαk)2
, (1.38)

where εα is the eigenenergy of Hk and εF is the Fermi energy. Then, it reduces to the
following expression:

σxy =
e2

~
∑
εα<εF

Cα, (1.39)

This is the TKNN formula [3, 6]. The band Chern number Cα is defined as

Cα =
1

2πi

∫
BZ
dk2 Fα(k),

Fα(k) = [∇k ×Aα(k)]z ,

Aα(k) = 〈uαk|∇kuαk〉 .

(1.40)

This expression is rewritten in terms of the non-Abelian Berry connection as follows:

C =
1

2πi

∫
BZ
dk2Tr [∇k ×A(k)]z ,

A(k) = u†k∇kuk,

uk = (|u1
k〉, · · · , |u

Nb
k 〉),

(1.41)

where Nb is the number of the bands under the Fermi energy. Clearly, we have C =
∑

αCα.
The existence of the Chern number demonstrates the quantization of the Hall conductance.

1.3.3 Niu-Thouless-Wu formula

Let us here move onto the discussions of the Chern number in the FQH effect. The FQH
effect [11] is a typical example of a quantum liquid state with the topological order [13,20,91]
such as fractionalized excitations [12, 15–19] and the topological degeneracy [20, 91–93]. In
this subsection, we focus on discussions mainly on the Niu-Thouless-Wu formula [94] that
describes the fractional quantization of the Hall conductance in the FQH effect. This is a
generalization of the TKNN formula.

Let us consider a two-dimensional system of electrons in which the twisted boundary
conditions are imposed. The twisted angles are denoted by ~θ = (θx, θy). Defining the m-
fold ground state multiplet as Φ = (|G1〉 , · · · , |Gm〉), the Hall conductance specified by the
twisted angle ~θ is given by [94]

σxy(~θ) =
1

m

e2

~
C(~θ), (1.42)

where C(~θ) = −2πiTrF (~θ) and F (~θ) is the Berry curvature defined as

F = [∇~θ
×A+A×A]z, (1.43)

A = Φ†∇~θ
Φ. (1.44)
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Assuming that the physical observable σxy(~θ) is not strongly sensitive to the boundary
condition, we take the average over all possible values of the twisted angles:

σxy =
1

(2π)2

∫
T 2

d2θσxy(~θ) =
1

m

e2

~
C, (1.45)

where C is the Chern number. This is the so-called Niu-Thouless-Wu formula [94]. The
appearance of the Chern number demonstrates the quantization of the Hall conductance.

The Niu-Thouless-Wu formula is a many-body counterpart of the TKNN formula. To
see it, let us now demonstrate that the Niu-Thouless-Wu formula reduces to the TKNN
formula when particles are noninteracting. Let us consider the system on a square lattice
with Nsite = N × N sites, whose Hamiltonian is H = c†hc. Here, c† = (c†1, · · · , c

†
Nsite

),

c†i is a creation operator on the site i and h is an Nsite × Nsite matrix. We here impose
the twisted boundary conditions. Assuming that the Fermi energy lies in a band gap and
choosing the magnetic unit cell of the size nx × ny, the ground state is constructed from a
set of single-particle states as

|G (θx, θy)〉 =

Nb∏
α=1

N/nx∏
ix=1

N/ny∏
iy=1

(
c†ϕα(k(ix,iy))

)
|0〉 , (1.46)

k(ix,iy)(~θ) =

(
2πix + θx

N
,
2πiy + θy

N

)
(1.47)

whereϕα(k(ix,iy)) is the eigenvector of h associated with the band index α and the momentum
k(ix,iy), |0〉 is a vacuum, and Nb is the number of bands under the Fermi energy. The Berry
connection is given by

A(~θ) =
〈
G(~θ)

∣∣∣∇~θ ∣∣∣G(~θ)
〉

= tra(~θ), (1.48)

where a is the non-Abelian Berry connection [77–79] defined as

a(~θ) = ϕ(~θ)†∇~θϕ(~θ),

ϕ(~θ) = (ϕ1(k(1,1)),ϕ1(k(1,2)), · · · ,ϕNb
(k(nx/N,ny/N))),

where ϕ is the multiplet describing the ground state. Noting that the trace of the non-
Abelian Berry curvature is given by trf = tr (∇~θ × a)z, we have

F = [∇~θ ×A]z = [∇~θ × (tra)]z = tr (∇~θ × a)z = trf . (1.49)

Then, let us now define the single-particle Abelian Berry connection and curvature with
respect to the momentum k as

a′α(k) = ϕα(k)†∇kϕα(k) (1.50)

f ′α(k) = [∇k × aα(k)]z. (1.51)

Because of trf = (1/N2)
∑Nb

α=1

∑N/nx
ix=1

∑N/ny
iy=1 f

′
α(k(ix,iy)),

5 the many-body Chern number
of the Niu-Thouless-Wu formula C is given by the sum of the band Chern number integrating

5We have

trf = tr (∇~θ × a)z

= tr (∇~θ × (ϕ†∇~θϕ))z

=
1

N2
tr (∇k × (ϕ†∇kϕ))z

=
1

N2

Nb∑
α=1

N/nx∑
ix=1

N/ny∑
iy=1

f ′α(k(ix,iy)).
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on the magnetic Brillouin zone Cα as follows: 6

C =

Nb∑
α=1

Cα. (1.52)

6We have

C =
1

2πi

∫
T2

dθ2F

=
1

2πi

∫
T2

dθ2 trf

=
1

2πi

∫
T2

dθ2

N2

Nb∑
α=1

N/nx∑
ix=1

N/ny∑
iy=1

f ′α(k(ix,iy))

=
1

2πi

∫
T2

dθ2

N2

Nb∑
α=1

N/nx∑
ix=1

N/ny∑
iy=1

f ′α

(
2πix + θx

N
,

2πiy + θy
N

)

=

Nb∑
α=1

1

2πi

∫ 2π/nx

0

∫ 2π/ny

0

dkxdkyf
′
α (kx, ky) .
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Chapter 2

One-plaquette Chern number

The many-body Chern number in the Niu-Thouless-Wu formula significantly works as a kind
of order parameter in many-body problems. Its evaluation is significantly important in the
study of correlated topological phases, where numerical approaches are often necessary but
highly demanding. In this chapter, considering the Hofstadter problems with or without
electron correlations, we numerically demonstrates that the integration in the many-body
Chern number can be skipped if system sizes are sufficiently large. The lack of integration is
practically important since it significantly reduces the computational cost. We also discuss
its quantization in the vicinity of quantum phase transitions such as plateau transitions in
the IQH effect.

2.1 Topological invariant without integration

The many-body Chern number in the Niu-Thouless-Wu formula is a generalization of the
Chern number in the TKNN formula for many-body problems. Recently, a wide variety of
topological phases in correlated systems has been identified by using the many-body Chern
number [95–106]. As shown in the previous chapter, even though their expressions are almost
same, the integration in the Niu-Thouless-Wu formula has different origin from that of the
TKNN formula. The integration over the twisted angles of the boundary conditions is an
average operation based on the assumption that the integrand, namely the Berry curvature,
is insensitive to the boundary condition. Recent mathematical works [107–110] have revealed
that the integration is indeed unnecessary since the Berry curvature at a fixed twisted angle
is itself effectively quantized in thermodynamically large systems.

In this chapter, we investigate the validity of using the topological number without inte-
gration in practical problems numerically [111]. To demonstrate it, we introduce the “one-
plaquette Chern number” as follows. In numerical calculations of the Chern number, one
usually discretize the twisted angles ~θ = (θx, θy) as

θµ =
2π

Nθ
nµ (2.1)

with nµ = 1, 2, · · · , Nθ. According to the Fukui-Hatsugai-Suzuki formula [112], the Chern
number is exactly quantized even though the integration is replaced by a summation [see
Fig. 2.1(a)]:

C =
1

2πi

∑
~θ

F(~θ), (2.2)

19
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Figure 2.1: (a) Chern number and (b) one-plaquette Chern number.

where F(~θ) is the discretized Berry curvature as

F(~θ) = log[Ux(~θ)Uy(~θ + δx)Ux(~θ + δy)
−1Uy(~θ)

−1],

Uµ(~θ) = det
[
Φ†(~θ)Φ(~θ + δµ)

]
/
∣∣∣det

[
Φ†(~θ)Φ(~θ + δµ)

]∣∣∣ ,
and Φ is the ground state multiplet. Here, δx = ( 2π

Nθ
, 0) and δy = (0, 2π

Nθ
). Note that the

discretized Berry curvature F(~θ) is a gauge-invariant even if one does not fix the phases of
Φ(~θ). By using it, we define the one-plaquette Chern number [see Fig. 2.1(b)] as

C(~θ) =
1

2πi
N2
θF(~θ). (2.3)

Due to the absence of the summation, C can be any real number. In the next sections, we
numerically show that C of the IQH and FQH systems on lattices is almost quantized and it
gives exponential accuracy with respect to the system size.

2.2 Exponential accuracy of the one-plaquette Chern number

2.2.1 Noninteracting case

Model

We first consider the one-plaquette Chern number in the IQH systems. This discussion is
important for the successive discussion of FQH systems. In the following, we set Nθ = 20
unless otherwise stated. Let us consider the system of spin-polarized electrons on a square
lattice under a uniform magnetic field. The system size is set asN×N sites. The Hamiltonian
is given by

H = −t
∑
〈ij〉

eiφijc†icj , (2.4)

where t > 0 is a hopping parameter, c†i (ci) is the creation (annihilation) operator on site
i, φij is the Peierls phase that describes the magnetic field. Here, the twisted boundary
conditions are imposed, i.e.,

c†nx+N,ny
= eiθxcnx,ny

c†nx,ny+N = eiθycnx,ny .
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Figure 2.2: (a) String with the flux φ. (b) Sketches of 3 × 3 square lattice with the string
gauge φij .

Figure 2.3: The difference of C and C(~θ) is shown as a function of the system size (a) N/ξ
and (b) N/lB. The inset in (a) shows N/lB-dependence of C(~θ) in a strong magnetic field for
comparison.

As for the Peierls phase φij , the string gauge [113] is employed. Let us here explain it shortly.
Let us consider a string as shown in Fig. 2.2(a) on sites and assign the phases ei2πφ. They
give the magnetic fluxes +φ and −φ at the plaquette with the initial and terminal points of
the string. Therefore, the gauge described by the strings shown in Fig. 2.2(b) gives the flux
φ× (1−N2) into the plaquette that has the origin Oφ while φ to the other plaquettes. The

condition for the uniform magnetic field is given by ei2πφ(1−N2) = ei2πφ, i.e.,

φ =
Nφ

N2
, Nφ = 1, 2, · · · , N2, (2.5)

where Nφ corresponds to the total magnetic flux. When the number of fluxes per plaquette
is set as φ = p/q with p and q being coprime, the system provides q single-particle bands.
Since the p low-energy bands, where each band has N2/q one-body states, gives the lowest
Landau level in the continuum limit, the lowest Landau band is defined as a group of these
(N2/q)p = Nφ states. Thus, we define the filling factor for the Landau band as

ν = Ne/Nφ, (2.6)

where Ne is the number of electrons.
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Figure 2.4: The correlation functions |〈c†icj〉| are shown as functions of the distance |i− j|
in (a) a strong magnetic field and (b) a weak magnetic field. For φ = 1/q, the system size
is set as (a) N = 30q and (b) N = 3q. The inset in (b) shows the exponent a(φ) with weak
magnetic fields. The red line shows 1/(4l2B) = πφ/2.

One-plaquette Chern number

Here, we consider the system at ν = 1. The ground state is given by occupying the lowest
Landau band completely:

Φ(~θ) =

Nφ∏
k=1

d†k(
~θ) |0〉 , (2.7)

where d†k(
~θ) = c†ψk(~θ) is the creation operator of the corresponding state k belonging to

the lowest Landau band, c† = (c†1, · · · , c
†
N2), and ψk is the eigenvector of the Hamiltonian

H. In Fig. 2.3, max~θ|C(~θ)− C| is shown as a function of the system size under (a) a strong
magnetic field φ ≈ 1 and (b) a weak magnetic field φ � 1. Here, max~θ indicates the
maximum value over all N2

θ = 400 plaquettes. This result implies the exponential accuracy
of the one-plaquette Chern number as follows:

|C(~θ)− C| < Ae−cN (2.8)

where A and c are some coefficients. It means that for sufficient large systems, the one-
plaquette Chern number works well as the quantized topological number. Here, the coefficient
c is proportional to 1/ξ or 1/lB. Since the correlation length ξ and the magnetic length lB
generally become smaller if the energy gap increases, the quantization of the one-plaquette
Chern number is closely related to the energy gap.

In Fig. 2.3(a), the system size N is rescaled by the correlation length ξ in a strong
magnetic field and the magnetic length lB =

√
1/(2πφ) in a weak magnetic field. The

correlation length ξ is extracted from the correlation function 〈c†icj〉. In Fig. 2.4(a), we plot

|〈c†icj〉| in a strong magnetic field φ = 1/q (q = 3, 4, 5.6). It implies that they obey

|〈c†icj〉| ∝ e
− |i−j|
ξ(N) . (2.9)

Using these data, we determine ξ(N) for each φ by extrapolation. Here, some singular
points appears at |i − j| = q, 2, · · · , which we do not use to obtain ξ(N). Then, we repeat
this process for several system sizes 100 ≤ N ≤ 200 and calculate ξ in the thermodynamic
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Figure 2.5: (a)(c)Single-particle Berry curvature and (b)(d)one-plaquette Chern number.

limit. In Fig. 2.3(a), we use the obtained thermodynamic value to rescale the system size.
In the inset of Fig. 2.3(a), the results with respect to the system size scaled by lB are shown.
Clearly, the property that all data collapse nicely as shown in Fig. 2.3(a) is lost. In a weak

magnetic field, on the other hand, the behavior of the correlation function |〈c†icj〉| is different
from that in a strong one, which we can see in Fig. 2.4(b). For each value of φ, they obey

|〈c†icj〉| ∝ e
−a(N)|i−j|2 . (2.10)

By the extrapolation as we did in a strong magnetic field, we calculate the coefficient a(N)
and evaluate the thermodynamic value as a = limN→∞ a(N). In the inset of Fig. 2.4(b),
we show it as a function of φ. The red line in the figure indicates 1/(4l2B) = πφ/2, which
corresponds to the behavior in the continuum limit as [114]

|〈c†(z)c(z′)| = (ν/(2πl2B))e−
1
4
|z−z′|2 , (2.11)

where z = (x − iy)/lB. In the weak magnetic field limit, our numerical values of a in the
inset approaches to it, which justifies the use of lB to rescale the system size in Fig. 2.3(b).

Before moving to the interacting problems, let us here discuss the exponential behavior
in terms of the Euler-Maclaurin formula. In Fig. 2.5(a) and (c), we plot the single-particle
Berry curvature F1(~k) for φ = 1/3 and φ = 1/4, where the magnetic unit cell is given by
3 × 1 and 2 × 2, respectively. Even though the single-particle Berry curvature exhibits a
strong dependence on the momentum ~k, the one-plaquette Chern number is insensitive to
the value of ~θ as shown in Fig. 2.5(b) and (d), where we set the system size as N = 24.
This insensitivity can be explained from the Euler-Maclaurin formula [115]. 1 Choosing the
magnetic unit cell with the size nx × ny, the Chern number and the one-plaquette Chern

1According to the Euler-Maclaurin formula [115], the difference between an integral of a function F (x)
and a related sum is given by[

m∑
k=0

F (a+ kh)− 1

2
(F (b) + F (a))

]
− 1

h

∫ b

a

F (t)dt

=

n−1∑
k=1

h2k−1

(2k)!
B2k

{
F (2k−1)(b)− F (2k−1)(a)

}
+

h2n

(2n)!
B2n

m−1∑
k=0

F (2n)(a+ kh+ θh), (2.12)

where the interval [a, b] is divided into m equal parts, h = (b − a)/m, θ is a real with 0 ≤ θ ≤ 1, and Bn is
the nth Bernoulli number.
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Figure 2.6: Conceptual diagram of the difference between the Chern number C and the
one-plaquette Chern number C.

number are expressed as

C = C =
1

2πi

∫ 2π/nx

0
dkx

∫ 2π/ny

0
dkyF1(k) (2.13)

C(~θ) ≈ 2π

iN2

N/nx∑
ix=1

N/ny∑
iy=1

F1(
2πix + θx

N
,
2πiy + θy

N
). (2.14)

It implies that the one-plaquette Chern number approximates the quantized Chern number
by replacing the integral over the Brillouin zone with the Riemann sum, see Fig. 2.6. Here,
the representative points in the Brillouin zone are specified by the twisted angles ~θ. Since
the Brillouin zone is a torus, the boundary contribution of the Euler-Maclaurin formula
is vanishing if assuming F1(~k) is a smooth function. It suggests that the error due to
the discretization is smaller than any powers of the system size [116], which implies the
exponential accuracy of C(~θ).

2.2.2 Interacting case

Let us now move onto the discussions on the validity of the one-plaquette Chern number
in the FQH effect. In the following, we first describe our model and how to construct the
pseudopotentials for effectively investigating the correlation effects. After giving arguments
about the lattice analogue of Laughlin state accompanied by the topological degeneracy, we
discuss the exponential accuracy of the one-plaquette Chern number.

Model

Let us here consider the Hamiltonian H = Hkin +Hint with

Hkin = −t
∑
〈ij〉

eiφijc†icj (2.15)

Hint = V
∑
〈ij〉

ninj . (2.16)

In order to reduce the computational costs inherent to the many-body problems, we construct
the pseudopotentials [16, 117–119] that enable us to treat the electron-electron interactions
within the lowest Landau level. Constructing the projection matrix P (~θ) into the lowest
Landau band by using the lowest eigenvectors belonging to that band as

P (~θ) = ψ(~θ)ψ†(~θ), (2.17)
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where ψ = (ψ1, · · · , ψNφ), we define the projected creation operators:

c̃†(~θ) = (c̃1(~θ), · · · , c̃N2(~θ)) = c†P (~θ). (2.18)

Note that the canonical anticommutations for these projected operators are no longer sat-
isfied. Replacing c†i , cj with c̃†i , c̃j , one get the pseudopotentials projected into the lowest
Landau band as

H̃int(~θ) = V
∑
〈ij〉

c̃†i (
~θ)c̃†j(

~θ)c̃j(~θ)c̃i(~θ)

=
∑
klmn

Vklmn(~θ)d†k(
~θ)d†l (

~θ)dm(~θ)dn(~θ), (2.19)

where Vklmn = V
∑
〈ij〉(ψk)

∗
i (ψl)

∗
j (ψm)j(ψn)i, and the summation is restricted to the states

of the lowest Landau band. Choosing the strength of the interaction V in such a way that
the typical energy scale of the electron-electron interactions is much larger than the energy
width of the lowest Landau band but still sufficiently smaller than the band gap of the
Landau bands, the ground state of the Hamiltonian is approximately given by diagonalizing
the pseudopotential H̃int. When taking the following orthonormal basis for diagonalizing the
pseudopotential H̃int as

Ψ(~θ) = (
∣∣∣Ψ1(~θ)

〉
,
∣∣∣Ψ2(~θ)

〉
, · · · ,

∣∣∣ΨNdim
(~θ)
〉

), (2.20)∣∣∣Ψi(~θ)
〉

=

Ne∏
k=1

d†ik(~θ) |0〉 , (2.21)

where Ndim =Nφ CNe , we have the eigenvalue equation

h̃int(~θ)ui(~θ) = Ẽi(~θ)ui(~θ). (2.22)

Here, h̃int(~θ) = Ψ†(~θ)H̃intΨ(~θ) is a Ndim ×Ndim matrix. Then, the ground state is given by∣∣∣Gk(~θ)〉 = Ψ(~θ)uk(~θ). (2.23)

The overlap between the ground states specified by different twisted angles, ~θ and ~θ′, is given
by 〈

Gk(~θ)
∣∣∣Gl(~θ′)〉 = u†k(

~θ)O(~θ, ~θ′)uk(~θ
′), (2.24)

where O(~θ, ~θ′) = Ψ†(~θ)Ψ(~θ′) is a matrix for correction and its element is given by

Oij(~θ, ~θ
′) = det

[
ψ̃†i (

~θ)ψ̃j(~θ
′)
]
, (2.25)

where ψ̃i = (ψi1 , · · · , ψiNe
) is the multiplet composed of the single-particle wave functions

of the lowest Landau band chosen by the many-body basis
∣∣∣Ψi(~θ)

〉
. By evaluating the link

variable Uµ in this way [103,112], we compute the one-plaquette Chern number.
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Figure 2.7: The energy gap at ν = 1/3 are shown as functions of the total number of fluxes
Nφ. The ground states are always three-fold quasidegenerated.

Lattice analogue of the Laughlin state

Within the above framework, we plot in Fig. 2.7 the energy gap at ν = 1/3 as a function of
the total number of fluxes Nφ. Here, we set N = 3Ne and φ = 1/N with Ne = 2, 3, · · · , 7.
The energy gap is scaled by V ρELG, where ρ = Ne/N

2 and ELG is the Landau gap of the
non-interacting case [103]. Since the ground states always give the three-fold topological
degeneracy, we plot the excitation gap defined by the fourth excited states. The figure
indicates that the energy gap is finite for the large Nφ limit. Furthermore, the Chern number
of the three-fold degenerated ground sates is one, which is consistent with the lattice analogue
of the Laughlin state [12].

Before moving to the arguments about the one-plaquette Chern number, let us show that
the degeneracy is derived from the translational invariance of the lattice model [120]. We
first rewrite the kinetic term of the Hamiltonian as

Hkin = −t
Nx∑
n=1

Ny∑
m=1

(
eiφ

x
n,mc†n+1,mcn,m + teiφ

y
n,mc†n,m+1cn,m

)
. (2.26)

Let us assume that the Landau gauge is employed for the Peierls phase φαn,m (α = x, y), i.e.,

φxn,m = 0, φyn,m = 2πφn. (2.27)

It implies that the magnetic flux is given by φ = n/Nx with n being an integer. In Fig. 2.8(a),
the sketch of the Landau gauge is given.

Let us now define a translations operator T (a, b) as

T (a, b)c†n,mT (a, b)† = c†n+a,m+b. (2.28)

Using it, we define a new Hamiltonian as H ′kin = T (1, 0)HkinT (1, 0)†. This transformation is
expressed as

H ′kin =

Nx∑
n=1

Ny∑
m=1

(
teiφ

x
n,mc†n+2,mcn+1,m + teiφ

y
n,mc†n+1,m+1cn+1,m

)

=

Nx+1∑
n=2

Ny∑
m=1

(
teiφ

x
n−1,mc†n+1,mcn,m + teiφ

y
n−1,mc†n,m+1cn,m

)

=

Nx∑
n=1

Ny∑
m=1

(
teiφ

x
n−1,mc†n+1,mcn,m + teiφ

y
n−1,mc†n,m+1cn,m

)
, (2.29)
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Figure 2.8: Sketches of 4× 4 square lattices with the Landau gauge.

where we have used the relation eφ
x
Nx,m = eφ

x
0,m at the last part. From Fig. 2.8, one can

confirm that H ′kin is not identical to Hkin but related to Hkin by a gauge transformation.
Indeed, defining a local gauge transformation UG as

UGc
†
n,mU

†
G = e−i2πφmc†n,m, (2.30)

we have

UGHkinU
†
G =

Nx∑
n=1

Ny∑
m=1

UG

(
teiφ

x
n,mc†n+1,mcn,m + teiφ

y
n,mc†n,m+1cn,m

)
U †G

=

Nx∑
n=1

Ny∑
m=1

(
teiφ

x
n,mc†n+1,mcn,m + teiφ

y
n,me−i2πφc†n,m+1cn,m

)
= H ′kin, (2.31)

where φxn,m = φxn−1,m = 0 and φyn,m − 2πφ = φyn−1,m have been used. These relations imply

UGHkinU
†
G = T (1, 0)HkinT

†(1, 0), i.e.,

[Hkin, T
†(1, 0)UG]. (2.32)

On the other hand, the Hamiltonian Hkin also commutes T (0, 1). Thus, the eigenvectors of
Hkin is specified by T (0, 1) as follows:

Hkin|ky〉l = El(ky)|ky〉l (2.33)

T (0, 1)|ky〉l = eiky |ky〉l, (2.34)

where ky = 2πny/Ny (ny = 1, · · · , Ny) is the Bloch wave number and l is the index of bands.
Let us then expand the single-particle state |ky〉l as

|ky〉l =

Nx∑
n=1

Ny∑
m=1

ψln,mc
†
n,m|0〉, (2.35)

where ψln+Nx,m
= ψln,y+Ny

= ψln,m. Equation (2.34) reduces to

T (0, 1)|ky〉l =

Nx∑
n=1

Ny∑
m=1

ψln,mc
†
n,m+1|0〉 =

Nx∑
n=1

Ny∑
m=1

ψln,m−1c
†
n,m|0〉. (2.36)
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It implies ψln,m−1 = eikyψln,m. By using these relations, let us now consider the state

T †(1, 0)UG |ky〉l. We have

T (0, 1)T †(1, 0)UG|ky〉l = T (0, 1)T †(1, 0)

Nx∑
n=1

Ny∑
m=1

e−i2πφmψln,mc
†
n,m|0〉

=

Nx∑
n=1

Ny∑
m=1

e−i2πφmψln,mc
†
n−1,m+1|0〉

=

Nx∑
n=1

Ny+1∑
m=2

e−i2πφ(m−1)ψln,m−1c
†
n−1,m|0〉

=

Nx∑
n=1

Ny∑
m=1

e−i2πφ(m−1)ψln,m−1c
†
n−1,m|0〉+ |R〉,

= ei2πφeiky
Nx∑
n=1

Ny∑
m=1

e−i2πφmψln,mc
†
n−1,m|0〉+ |R〉

= ei2πφ+ikyT †(1, 0)UG|ky〉l + |R〉, (2.37)

where the ket |R〉 is written as

|R〉 =

Nx∑
n=1

e−i2πφNyψln,Nyc
†
n−1,Ny+1|0〉 −

Nx∑
n=1

ψln,0c
†
n−1,1|0〉

=

Nx∑
n=1

ψln,Ny

(
e−i2πφNy − 1

)
c†n−1,1|0〉. (2.38)

It means that if e−i2πφNy = 1, the state T †(1, 0)UG |ky〉l is an eigenvector of T (0, 1), i.e.,

T †(1, 0)UG |ky〉l = |ky + ∆ky〉 , (2.39)

where ∆ky = 2πφ. For example, the system satisfying Nx = Ny gives φNy = 1, which meets
the above condition.

Equation (2.39) provides a proof of existence of topological degeneracy exhibited by
many-electron systems. Let us assume that the magnetic flux φ = Nφ/(NxNy) is written
as φ = n/Nx and φ = n′/Ny with n and n′ being integers, i.e., the number of the total
flux satisfies Nφ = nNy = n′Nx. Setting the filling factor as ν < 1, let us take the basis
that spans the subspace projected into the lowest Landau band by

∣∣k1
y, · · · , kNe

y

〉
. Because of

[Hint, T (0, 1)] = 0, the Hamiltonian Hint is block-diagonalized with respect to the total wave
number defined as Ky =

∑Ne
i=1 k

i
y. Noting that [Hint, T

†(1, 0)UG] = 0, we have

〈k′1y , · · · , k′Ney |Hint|k1
y, · · · , kNey 〉

=〈k′1y , · · · , k′Ney |U
†
GT (1, 0)HintT

†(1, 0)UG|k1
y, · · · , kNey 〉

=〈k′1y + ∆ky, · · · , k′Ney + ∆ky|Hint|k1
y + ∆ky, · · · , kNey + ∆ky〉, (2.40)

This implies that the block Hamiltonian of Hint specified by the total wave number Ky is
essentially equivalent to that by Ky + ∆Ky, where

∆Ky = ∆ky ×Ne = 2πφNe = 2π
NφNe

NxNy
= 2πnn′

Ne

Nφ
= 2πnn′ν. (2.41)
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Figure 2.9: (a) Difference between the one-plaquette Chern number and the quantized
Chern number at ν = 1/3. The dashed lines are given by the linear approximation. The red
circles indicates the values at φ = 0.025. In panel (b), the values obtained in (a) at φ = 0.025
are shown as functions of the scaled system size N/lB.

When setting the parameters as Nx = Ny = Nφ and φ = 1/Nφ, we have ∆Ky = 2πν. It
means that the many-body state at ν = p/q (p, q:coprimes) exhibits at least q-fold degeneracy.
This discussion can be applied to the problem of the pseudopotential H̃int since we have

〈
k1
y, · · · , kNe

y

∣∣Hint

∣∣k1
y, · · · , kNe

y

〉
=
〈
k1
y, · · · , kNe

y

∣∣ H̃int

∣∣k1
y, · · · , kNe

y

〉
. (2.42)

One-plaquette Chern number

Let us investigate the accuracy of the one-plaquette Chern number of the FQH states. Here,
the three-fold degenerated ground state multiplets at ν = 1/3 are considered. An ideal way
to investigate the system size dependence of the one-plaquette Chern number is that we
compute C(~θ) as a function of N with fixing the magnetic flux φ to a certain value as we did
in the subsection of the noninteracting case. However, this way requires huge computational
resources and it is indeed difficult to do it in our numerical calculation. To overcome this
difficulty, we use the scaling lows observed in the previous subsection. In Fig. 2.9(a), we
plot max’~θ|C(~θ)− C| at ν = 1/3 as function of φ, where max’~θ indicates the maximum value
over randomly chosen 20 plaquettes in N2

θ = 400 ones. In this calculation to generate this
figure, we change the system size N with fixing the particle number Ne and the total flux
number Nφ, which brings the modification of the flux per plaquette φ = Nφ/N

2. Deducing
the values of the one-plaquette Chern number at φ = 0.025 from this figure based on the
linear extrapolation, we generate Fig. 2.9(b) in which the accuracy are shown as functions of
the scaled system size N/lB =

√
2πNφ. Since the considered systems are in a weak magnetic

field, the system size is rescaled by the magnetic length. The numerical result implies that
the one-plaquette Chern number given by the FQH states is also quantized for a sufficiently
large system size. In Fig. 2.9(b), the same calculation of the IQH state is repeated as a sanity
check of our calculation process, which is consistent with the results given in the previous
subsection.
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Figure 2.10: Chern number and one-plaquette Chern numbers as functions of the ratio t′/t.
The inset shows the band structure at t′/t = 2−

√
3. Red circles indicates the band touching

points.

2.3 Quantum phase transitions and the one-plaquette Chern
number

2.3.1 NNN model

Let us here investigate the validity of using the one-plaquette Chern number for systems in
which the excitation gap closes. To demonstrate it, we consider two systems: NNN model
and disordered system. In this subsection, we focus on the problem of the NNN model.

We consider the Hamiltonian with the nearest-neighbor and next nearest-neighbor hop-
pings as follows:

H = −t
∑
〈ij〉

eiφijc†icj − t
′
∑
〈〈ij〉〉

eiφ
′
ijc†icj . (2.43)

For φ = 1/3 and ν = 2, we have the phase transition at t′/t = 2 −
√

3 ≈ 0.268, where the
Chern number jumps from -1 to 2 [121].

As shown in the inset of Fig. 2.10, the band gap for t′/t = 2 −
√

3 closes at ~k =
(0, 0), (0, 2π/3), (0, 4π/3). Correspondingly, the Berry curvature exhibits sharp peaks at
those points. As discussed above, the one-plaquette Chern numbers in noninteracting prob-
lem are given by the sum of the single-particle Berry curvature over the discretized Brillouin
zone, where the choice of the representative points are decided to the system size N and the
twisted angles ~θ. This fact implies that the one-plaquette Chern number in this problem
strongly depends on ~θ, i.e., the choice of the plaquette. In Fig. 2.10, we plot the three types
of the one-plaquette Chern number, C0 = C(0, 0), C1 = C(π, 0), and C2 = C(π, π), as functions
of the ratio t′/t. Here, we set N = 30. Only the one-plaquette Chern number C0 diverges
near t′/t = 2 −

√
3 while C1 and C2 do not, which is consistent with that the sum only in

C0 includes the points of the Berry curvature peaks. On the other hand, C1 and C2 also do
not work well as the topological invariant around t′/t = 2−

√
3 compared to the quantized

Chern number C. Generally, the energy gap becomes small near the phase transition point
and it induces the increase of the correlation length. This means that the scaled system size
becomes smaller even if the system size is fixed itself, which breaks the quantization of the
one-plaquette Chern number.
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Figure 2.11: Chern number and one-plaquette Chern numbers as functions of the ratio W/t.
The inset shows the randomness strength dependence of the single-particle energy.

2.3.2 Disordered system

Let us next consider the system in which a strong disorder is presence. The Hamiltonian
that we consider is

H = −t
∑
〈ij〉

eiφijc†icj +
∑
i

wini, (2.44)

where wi is the on-site potential at site i. It represents uniform random numbers between
[−W/2,W/2], where W is the strength of the randomness. Generally, due to the random
potentials, most of single-particle states are localized. As its strength increases, extended
states, which carry the nonzero Chern number, float up in spectra and the ground state
becomes the Anderson insulator when the all extended states go across the Fermi level [113,
122–126]. This phase transition is confirmed in Fig. 2.11, where the QH state with the
quantized Chern number C = 2 becomes the Anderson insulator with C = 0 as the value of
W increases. In Fig. 2.11, we also plot the one-plaquette Chern numbers. It indicates that
they work well in the two situations: the quantum Hall states in a small W and Anderson
insulating states in a large W . However, they do not quantized near the phase transition
points. As in the case of the NNN model, for the quantization, we need to set system size
that is sufficiently large than the correlation length.

2.4 Conclusion

In this chapter, we have demonstrated that one can skip the integration procedure in the
Niu-Thouless-Wu formula for calculating the topological invariant if the system is sufficiently
large. We have shown that the one-plaquette Chern numbers defined in the Hofstadter
problem with or without the electron-electron interactions give the exponential accuracy
with respect to the system size. Since the numerical integration in many-body problems
generally requires significant computational costs, its lack is helpful to numerically charac-
terize correlated topological phases. In fact, our methodology has been discussed in recent
works [127–129]. We also have investigated the validity of using the one-plaquette Chern
number for detecting topological phase transitions.

Before closing the conclusion, we mention the shapes of the “plaquette” of the one-
plaquette Chern number. In the above arguments, the shape is fixed to a square. However,
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the one-plaquette Chern number is well-defined for any shape. We expect that the one-
triangle-plaquette Chern number, which requires eigenvectors only at three points, also gives
the quantization for a sufficiently large system.
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Adiabatic principle
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Chapter 3

Adiabatic theorem in topological
phenomena

The adiabatic theorem is one of the most fundamental concept in the quantum mechanics.
In this chapter, we first consider a simple problem of quantum mechanics to show that
the Berry phase characterizes the geometrical structures of wave functions involved in the
adiabatic development. The concept of the adiabatic deformation also gives a concise way to
characterize topological materials. This perspective is essential in the following discussions
on the higher-order topological Mott insulators and the adiabatic heuristic principle for the
quantum Hall states.

3.1 Adiabatic problem and Berry phase

Let us here derive the non-Abelian Berry phases in a general way based on the adiabatic
theorem [4,5,76,80]. We consider a system whose Hamiltonian H(R) depends on parameters
R = (R1, R2, · · · ). Let us assume that R(t) is the time-varying parameter and R(T ) = R(0).
This implies that the change of the Hamiltonian in 0 ≤ t ≤ T is given by a transport along
a closed path C in the parameter space. We also assume that the ground state exhibits
q-fold degeneracy at any point on C. Denoting the ground state multiplet at time t by
Ψ(t) = (|ψ1(t)〉 , · · · , |ψq(t)〉), we have the Schroedinger equation as

i~
∂

∂t
Ψ(t) = H(t)Ψ(t) (3.1)

At any instant, the basis is constructed from the eigenstates of the snapshot Hamiltonian
H(R(t)):

H(R(t))Φ(R(t)) = Eg(R(t))Φ(R(t)), (3.2)

where Φ(R) = (|φ1(R)〉 , · · · , |φq(R)〉 and Eg(R) is the ground state energy. When assuming
the adiabatic development, i.e., R(t) is slowly varied (T is sufficiently large) and the energy
gap does not close, the system remains in its instantaneous ground state. Then, we write
the solution of Eq. (3.1) with the initial condition Ψ(0) = Φ(R(0)) as

Ψ(t) = exp

{
− i
~

∫ T

0
E(t′)dt′

}
Φ(R(t))Uq(t), (3.3)

35
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where Uq(t) is a q-dimensional unitary matrix. To determine the explicit form of Uq(t), we
substitute it into Eq. (3.1):(

i~
∂

∂t
−H(t)

)
Ψ(t) =

(
i~
∂

∂t
−H(t)

)
exp

{
− i
~

∫ t

0
E(t′)dt′

}
Φ(R(t))Uq(t)

=i~
(
∂Φ(R(t))

∂t
Uq(t) + Φ(R(t))

∂Uq(t)

∂t

)
. (3.4)

Using Ψ†(R(t))Ψ(R(t)) = 1, we have

∂Uq(t)

∂t
=− Φ†(R(t))

∂Φ(R(t))

∂t
Uq(t)

=− Φ†(R(t))∇RΦ(R(t))Uq(t) ·
dR(t)

dt

=−A(R(t))Uq(t) ·
dR(t)

dt
, (3.5)

where A(R) = Φ†(R) ∂
∂RΦ(R) is the non-Abelian Berry connection. Then, we have 1

Uq(t+ dt) = e−A(R(t))·dR(t)Uq(t) +O(dt2). (3.7)

It implies that Uq(t) is given in terms of path-ordered integrals by

Uq(t) = e−A(R(t))·dR(t) · · · · · · · · · e−A(R(0))·dR(0)Uq(0) +O(dt2)

= Pe
−
∫R(t)
R(0)

A(R)·dR
, (3.8)

where Uq(0) = 1 has been used. Consequently, the non-Abelian Berry phase are given by

Uq[C] = Pe−
∮
C A(R)·dR. (3.9)

This geometrical phases arising in the adiabatic development are derived from the fact
that the wave functions are constrained to a subspace of the Hilbert space during the evo-
lution. The Aharonov-Bohm effect in the quantum mechanics is the typical example of the
Berry phase, where the vector potential describing the magnetic field results in the nontriv-
ial connection defined by the wave functions [4]. Before closing this section, we would like
to mention the argument about the fractional statistics in the FQH effect as an historical
example of significant applications of the Berry phase [15, 18, 19] (Detailed discussions on
fractional statistics are given in Chapter 5.) The emergence of the fractionalized excitations
is one of the defining features of the FQH effect. For example, the excitations of the Laugh-
lin wave function at ν = 1/m is described by quasiholes that carry the fractional charges
e/m and the fractional statistics 2π/m [12, 15–17]. Let us now rederive it in terms of the
Berry phases defined by adiabatic moves of quasiholes. The Laughlin wave function [12] at
ν = 1/m with m being odd is given by

Ψ1/m =
∏
i<j

(zi − zj)me−
∑
k |zk|2/4, (3.10)

1

Uq(t+ dt) =Uq(t) +
∂Uq(t)

∂t
dt+O(dt2)

=Uq(t)−A(R(t))Uq(t) ·
dR(t)

dt
dt+O(dt2)

= (1−A(R(t)) · dR(t))Uq(t) +O(dt2)

=e−A(R(t))·dR(t)Uq(t) +O(dt2) (3.6)
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where z = xi + iyi. By piercing the Laughlin state at η1, η2, · · · with infinitely thin solenoids
and adiabatically passing the flux quantums through them, an excited state with quasiholes
is given by

Ψ̃+η
1/m =

∏
k

∏
i

(zi − ηk)Ψm. (3.11)

Since this wave function is not normalized, let us denote the normalized one by

Ψ+η
1/m =

1√
Z

Ψ̃+η
1/m with Z =

〈
Ψ̃+η

1/m

∣∣∣Ψ̃+η
1/m

〉
. (3.12)

Applying the differential form expression, let us now calculate its Berry connection. Defining
d = ∂

∂ηi
dηi + ∂

∂η̄i
dη̄i and noting that that Ψ̃+η

1/m is holomorphic, i.e., not dependent on η̄i, we
have ∣∣∣dΨ+η

1/m

〉
= −1

2

1

Z
√
Z
dZ
∣∣∣Ψ̃+η

1/m

〉
+

1√
Z

∣∣∣dΨ̃+η
1/m

〉
= −1

2

1

Z
√
Z

(
∂Z
∂ηi

dηi +
∂Z
∂η̄i

dη̄i

) ∣∣∣Ψ̃+η
1/m

〉
+

1√
Z

∣∣∣∣ ∂∂ηi Ψ̃+η
1/m

〉
dηi

By using it, the Berry connection A =
〈

Ψ+η
1/m

∣∣∣dΨ+η
1/m

〉
is given by

A = −1

2

1

Z

(
∂Z
∂ηi

dηi +
∂Z
∂η̄i

dη̄i

)
+

1

Z
∂Z
∂ηi

dηi

=
1

2

(
∂ logZ
∂ηi

dηi −
∂ logZ
∂η̄i

dη̄i

)
where ∂

∂ηi

〈
Ψ̃+η

1/m

∣∣∣ = 0 has been used. To compute the Berry connection, it is necessary

to calculate the normalization factor. According to the discussions in relation to a two-
dimensional one-component plasma with some extra charges [18, 19], one can evaluate the
normalization factor with good accuracy as

Z =

∫ ∏
i

d2zi exp

∑
i,j

log |zi − ηj |2 +m
∑
k<l

log |zk − zl|2 −
1

2

∑
i

|zi|2


→ exp

− 1

m

∑
i<j

log |ηi − ηj |2 +
1

2m

∑
i

|ηi|2
.

From it, we get the Berry connection as

A =

− 1

2m

∑
j 6=i

1

ηi − ηj
+

1

4m
η̄i

 dηi +

 1

2m

∑
j 6=i

1

η̄i − η̄j
− 1

4m
ηi

 dη̄i. (3.13)

In order to demonstrate the fractional charge in the Laughlin state, let us calculate the
Berry phase defined by dragging a quasihole at ηi round a closed path that does not enclose
any of other quasiholes, see Fig. 3.1(a). The Berry phase is given by

γ =
1

i

∫
C
A =

1

i

1

4m

∫
C

(η̄idηi − η̄idηi) =
S

m
, (3.14)

where we have used
∫
C η̄idηi = i2S with S being the area surrounded by C. Since we here

use magnetic length lB =
√

~/eB as a unit of length, the given AB phases is expressed by
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Figure 3.1: The paths to compute (a) the fractional charge and (b) the fractional statistics.

exp
{
iS/(ml2B)

}
= exp{i2πeΦ/(mh)} with Φ = BS. One can interpret this result as the AB

phase given by particles with fractional charges as

e∗ = e/m. (3.15)

Let us next demonstrate the fractional statistics in the same manner as the case of the
fractional charges. The Berry phase defined by dragging a quasihole at ηi round another at
ηj [see Fig. 3.1(b)] is given by

γ′ =
1

i

∫
C′
A =

1

i

1

4m

∫
C′

(η̄idηi − η̄idηi)−
1

i

1

2m

∫
C′

(
dηi

ηi − ηj
− dη̄i
η̄i − η̄j

)
=
S′

m
− 2π

m
. (3.16)

The first term is the AB phase discussed above. The second term is interpreted as the
statistical phase associated with two exchanges of particles. It clearly demonstrates the
appearance of anyons in the excitations of the Laughlin state.

3.2 Adiabatic deformation of topological systems

The origin of the Berry phases is found in the adiabatic theorem as shown above. Generally,
topological invariants associated with the Berry connection (see Chapter 1) encode the geo-
metrical structures of the subspace given by the ground states evolved adiabatically, which
has been quite successful to describe various topological phenomena. The concept of the
adiabatic deformation also give a concise way to characterize topological phases in concrete
problems. Let us assume that a given system has complex structures to analyze its topo-
logical nature. By adiabatically deforming it into simple systems, the original topological
characters are easily investigated by simple calculations. As an example, let us here consider
the system of spinful interacting electrons on a kagome lattice shown in Fig. 3.2(a). In a cer-
tain situation, this system exhibits a nontrivial topological phenomenon closely related with
their C3 symmetry (the details are given in the next chapter). While its characterization is a
highly nontrivial problem, one can simplify this system based on the adiabatic deformation.
What is important here is that this adiabatic development should preserve their symmetry
that characterize the topological phenomena [79, 84, 130–133] (C3 in this case). In the case
of the higher-order topological Mott insulators, the system is adiabatically connected into
the decoupled system shown in Fig. 3.2(b). Namely, the topological nature of the original
complex system is diagnosed by the study of the three-site problem. This implies that the
Z3 quantized Berry phase, whose quantization is protected by the C3 symmetry, works as a
kind of the order parameter [83].
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Figure 3.2: Adiabatic deformation of the system on a kagome lattice.

Before closing this chapter, we refer to the origin of topological and adiabatic invariants.
The topological invariant associated with the Berry connection is defined by using the eigen-
states. Therefore, one naturally expects that states should be continuously changed during
adiabatic developments. In the last chapter of this part, however, we find a new formula
that implies what is deformed continuously is not states but an energy gap.
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Chapter 4

Higher-order topological Mott
insulator

The bulk-edge correspondence is a fundamental feature of the topological phases. Generaliz-
ing this concept in terms of the high-order physics and the Mott physics, we propose a new
topological states “higher-order topological Mott insulator” (HOTMI). We also demonstrate
that the HOTMI states emerge in the Hubbard model on a kagome lattice. Its topolog-
ical nature are easily understood from the three-site problem by adiabatically deforming
the systems, whose information is encoded in the spin Z3-Berry phase. Clarifying the rela-
tion between the corner-Mott states and the topological invariant, we show the bulk-edge
correspondence of the HOTMI in the Hubbard model.

4.1 Bulk-edge correspondence and its generalization

The bulk-edge correspondence [7, 8] is a remarkable phenomenon of the topological phase
such as the quantum Hall effect and topological insulators/superconductors [3, 40–43]. The
bulk topological index in d-dimensional systems predicts the emergence of gapless edge states
around d−1-dimensional boundaries. Recently, a new class of topological states “higher-order
topological insulators/superconductors” are proposed [85, 134–144], where the conventional
bulk-edge correspondence does not apply; the bulk topological invariants in d-dimensional
systems give gapless charge excitations around not d − 1-dimensional boundaries but d − 2
or d − 3-dimensional boundaries as shown in Fig. 4.1. Recent intensive studies have re-
vealed that this higher-order physics is ubiquitous and indeed observed in a wide variety of
materials [145–148].

The effects of the electron-electron interactions enrich material phases dramatically. In-
tensive studies in decades have elucidated a wide variety of correlated topological phenom-
ena [149–155]. For example, the topological classification for noninteracting particles [44–47]
are essentially modified by the electron correlation effects [62–75]. Also, impacts of the cor-
relation effects have been addressed in terms of the Mott physics [53–57], which have found
the topological Mott insulating states as a new correlated topological state. These recent
progresses gives a simple question “How do electron-electron interactions enrich higher-order
bulk-boundary correspondence?”.

The correlation effects in the higher-order topological insulators are recently discussed
in terms of a field theory [156]. In this chapter, we address this problem by analyzing a
practical model. Then we find a new correlated topological state which is called “higher-
order topological Mott insulator” (HOTMI) [157], which exhibits a generalized bulk-edge
correspondence. The HOTMI exhibits a generalized bulk-edge correspondence in which the
bulk topology in d dimensions results only in gapless spin excitations at d − n-dimensional

41
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Figure 4.1: The higher-order topological insulator in two dimensions.

(2 ≤ n) boundaries. Due to the correlation effects, these boundary states are gapped as for
charge excitations. The remainder of this part, we numerically demonstrate that a Hubbard
model on a kagome lattice exhibits the HOTMI phases. The topological nature of the HOTMI
states on a kagome lattice is simply understood from a decoupled system that is adiabatically
connected to the original system. The information of this adiabatic continuity is obtained by
calculating the quantized spin-Berry phase. The following numerical calculations are based
on the exact diagonalization approach using the Lanczos algorithm. The mechanism of this
method is described in the Sec. 4.4 of this part as an supplemental. We also describe the
computational costs required for diagonalizing the Hamiltonian.

4.2 HOTMI on a kagome lattice

Let us start with describing our model and topological invariants that is used to charac-
terize the HOTMI. The system of spinful electrons on a kagome lattice is considered. The
Hamiltonian is expressed as

H = H4kin +H5kin +Hint, (4.1)

where each term is defined by

Hγ
kin = tγ

∑
i,j∈γ

∑
α,β=↑,↓

c†iασ
z
αβcjβ + h.c., (4.2)

Hint = U
∑
i

(
ni↑ −

1

2

)(
ni↓ −

1

2

)
. (4.3)

Here, γ = 4 or5 indicates the type of the triangles in the kagome lattice as shown in Fig. 4.2,
c†iα is the creation operator on site i with spin α =↑, ↓, niα = c†iαciα, and

∑
i,j∈γ indicates

the summation over the nearest neighbor pairs of the sites that belong to the triangle γ. For
simplicity, we introduce the parameters t and φ defined by

t4 = t sinφ, t5 = t cosφ (4.4)

as shown in Fig. 4.2. In the following, we consider the half-filled system and set the param-
eters as U ≤ 0, t < 0, and 0 ≤ φ ≤ π/2 unless otherwise stated. Due to the spin-dependence
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Figure 4.2: Sketch of the kagome lattice under the open boundary condition.

of the hopping seen in Hkin, this system breaks time-reversal symmetry but preserves U(1)
symmetry with respect to the spin-rotation.

In order to diagnose the topological origin of the bulk systems, we calculate the spin-
counterpart of the quantized Z3-Berry phase [83,158] discussed in the first chapter. Namely,
using the unitary operator as

U−(~θ) = ein
−
1 θ1e−in

−
2 θ2 , (4.5)

where n−i = ni↑−ni↓ and the site indices 1 and 2 are chosen in a specific downward triangle,

we replace the term H5kin with U−(~θ)H5kinU
†
−(~θ). Then, by defining the spin-Berry connection

as A−(~θ), the Z3 spin-Berry phase is given by

γ− =
1

i

∫
C
A−, (4.6)

where C indicates the integral path: ~θ = ~f(t) (0 ≤ t ≤ 1) defined by ~f(t) = 2π(t, t) for
0 ≤ t < 1/3 and ~f(t) = 2π(t, 1/2− t/2) for 1/3 ≤ t < 1. Since the considered system has C3

symmetry, the Berry phase always quantized as γ− = 2πn/3 with n = 0, 1, 2. As discussed
in the first chapter, we can compute γ− analytically in some cases. For t4 = 0 shown in

Fig. 4.3(a), the Hamiltonian is expressed as H(~θ) = U−(~θ)HU †−(~θ), which implies that the
Berry phase is given by γ− = 2π 〈G|n−1 |G〉. In Fig. 4.3(b), we plot energy as functions
of U/t by solving the three-site problem, where the states with Sztot = 1/2 give the lowest
energy. It implies that the Berry phase for finite U/t is given by

γ− =
2π

3
. (4.7)

On the other hand, the system with t5 = 0 gives

γ− = 0. (4.8)

These results suggest that the spin-Berry phase characterizes the topological origin that the
two decoupled limit systems have. By using it, we discuss the topological character of the
HOTMI below.
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Figure 4.3: (a) Sketch of the kagome lattice with t4 = 0. (b) Energy E/t as functions of
U/t in the three-site problem. The total Sz are expressed by the color of plots. The energies
with Sztot = ±3/2 are degenerated at any U/t.

Figure 4.4: (a) Energy bands at φ = π/12. The spin Sz of the single particle is expressed
by the color. (Green:Sz = 1/2, Orange:Sz = −1/2) (b) Energy gap as a function of the angle
φ.

4.2.1 Band structure

Before moving onto the interacting problems, we review the behaviors of the noninteracting
higher-order topological insulators on a kagome lattice [83,86]. Figure 4.4(a) shows the band
structure of our model with U/t = 0. Because of the U(1) spin rotational symmetry, each
band is identified by Sz. The energy bands with Sz = ±1/2 are symmetric with respect
to E/t = 0. In Fig. 4.4(b), the energy gap ∆E is shown as a function of φ. Although
the systems are gapless in the region of 1/2 ≤ t4/t5 ≤ 2, the gaped ground states are
obtained in the other regions: the higher-order topological insulators in t4/t5 < 1/2 and
the trivial insulators in 2 < t4/t5 as formulated in Ref. 86. These features are derived from
the patterns of the bonds, which are characterized by the Z3 Berry phase [83] as summarized
in Fig. 4.4(b). In the following, we focus on the discussions on the correlation effects in the
higher-order topological insulators on the kagome lattice.
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4.2.2 Strong correlation limit

Let us first consider the Hubbard model on the kagome lattice in the strong correlation limit
1 � U/t to investigate the correlation effects effectively. Based on the degenerate pertur-
bation theory, we construct the effective Hamiltonian. Since each electrons is completely
localized into each site in this limit, the effective Hamiltonian is described by a spin model.
Its Hamiltonian is given by

Heff = H
(2)
4 +H

(2)
5 +H

(3)
4 +H

(3)
5 ,

H(2)
γ = J (2)

γ

∑
i,j,k∈γ

(
−1

2
S2
ijk + Sz 2

ijk +
3

8

)
,

H(3)
γ = J (3)

γ

∑
i,j,k∈γ

Szijk

(
−3S2

ijk + 4Sz 2
ijk +

9

4

)
,

(4.9)

where H
(2)
γ and H

(3)
γ are the second-order and the third-order effective Hamiltonians, re-

spectively. (In the last of this section, we describe the derivation of the effective model in
details.) Here, J4 = J (n) sinn φ, J5 = J (n) cosn φ, J (n) = 4tn/Un−1, Sijk = Si + Sj + Sk,
and

∑
i,j,k∈γ indicates the summation over the nearest neighbor three sites that belong to the

triangle γ. If the effective Hamiltonian includes only the second-order, the system reduces
to the XXZ model with the time-reversal symmetry while the original Hubbard Hamiltonian
does not have time-reversal invariance. To remove the symmetry that is artificially produced,
we add the third-order perturbation. In the following, we set the system size as NUC = 9
in the periodic boundary condition and NUC = 10 in the open boundary condition shown in
Fig. 4.2, where NUC is the number of the unit cell.

Bulk properties

In Fig. 4.5(a), we plot the magnetization Sztot of the ground state as a function of φ and
J (3)/J (2) = t/U under the periodic boundary condition. Let us first discuss the system with
φ = 0 and π/2, which reduces to the three-site problem. If the Hamiltonian includes only the
second-order term H(2), the many-body state |S123 = 3/2, Sz123 = ±1/2〉 with the Kramers
pair becomes the ground state. This degeneracy is broken by the third-order term H(3) and
|S123 = 3/2, Sz123 = 1/2〉 [see, Fig. 4.5(b)] becomes the unique ground state. It implies that
the systems at φ = 0 and π/2 are gapped and their gaps are characterized by J (3). These
ground states should survive when we make a sufficiently small change of φ compared with
that gap. This naive expectation is consistent with Fig. 4.5(a) in which the ground state
with Sztot = NUC/2 = 4.5 is obtained in a finite region of φ. In Fig. 4.5(c), we plot the
spin-Berry phase γ− for J (3)/J (2) = 0.1 only in the region of φ in which the magnetization
of the ground state is given by Sztot = NUC/2 = 4.5. The result indicates that two regions
around φ = 0 and φ = π/2 are characterized by γ− = 2π/3 and 0, respectively. Here, we
construct the spin-Berry phase of the spin model by replacing the operator n−i in the unitary

operator U−(~θ) with 2Szi . As shown below, the ground states with γ− = 2π/3 and γ− = 0
are the HOTMI and the trivial insulator, respectively .

Corner-Mott states

In order to verify the bulk-edge correspondence of the HOTMI, let us now consider the
system imposed on the open boundary condition as shown in Fig. 4.2. In Fig. 4.6(a), we plot
the many-body energy as function of φ, where we set J (3)/J (2) = 0.1. In a similar way as the
bulk case, let us first consider the decoupled systems at φ = 0 and π/2 shown in Figs. 4.6(b)
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Figure 4.5: (a) Magnetization Sztot of the ground state. (b) Schematic of the unique ground
state at φ = 0. (c) Spin-Berry phase γ− for J (3)/J (2) = 0.1 as a function of φ. We calculate
γ− only in the region with Sztot = 4.5. In (a) and (c), the system size is set as NUC = 9.

and (c). At φ = 0, there are three-site clusters in the bulk, two-site clusters along the edges,
and free spins at the corner. As discussed above, the unique ground state are observed in the
three-site problem. Also, as for the two-site problem, |S12 = 1, Sz12 = 0〉 become the gapped
unique ground state. Consequently, the ground state exhibits the eight-fold degeneracy
derived from the three free-spins at the corners. On the other hand, the system at φ = π/2
is composed only of the three-site clusters, which implies the emergence of the gapped unique
ground state. The result in Fig. 4.6(a) indicates that the above eight-fold degenerated ground
state and the unique ground state survive in the finite region of φ. To demonstrate that the
eight-degeneracy of the ground state around φ = 0 comes from the gapless corner states,
let us remove sites at corners and investigate its effects on the degeneracy. In Fig. 4.6(d),
we plot the energy spectra for the four types of the geometry shown in Fig. 4.6(d0)-(d3).
The ground states of the system in which p sites (corners) are removed exhibit 23−p-fold
degeneracy. This clearly implies the appearance of the gapless states at the 3 − p corners.
Our results on the spin model demonstrate the bulk-edge correspondence of the HOTMI; the
gapless corner modes only for the spin excitations appear in the region of φ with γ− = 2π/3
shown in Fig. 4.5(a). In Sec. 4.2.4, we will discuss the relation between this HOTMI and the
standard higher-order topological insulator appearing in the noninteracting system.

4.2.3 Derivation of the effective model

Here, we derive the effective Hamiltonian in Eq. (4.9). Readers on the first reading may
prefer to skip it and jump to Sec. 4.2.4, where we discuss the emergence of the HOTMI by
diagonalizing the Hamiltonian of the Hubbard model.

Let us now rewrite the Hamiltonian as H = Hkin +Hint with

Hkin =
∑
α=↑,↓

∑
i,j

tα,i,jc
†
α,icα,j , (4.10)
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Figure 4.6: (a) Many-body energy as function of φ. The magnetization Sztot is expressed by
the color of the plots. The dashed line expresses tanφ = 0.5. The Black plots indicates the
energy for Sztot < −1 or 6 < Sztot < 1. (b)(c) Ground states at (b) φ = 0 and (c) φ = π/2.
(d) Energy spectra at tanφ = 0.5 for each geometry shown in (d0)-(d4).

Hint =
∑
i

Un↑,in↓,i. (4.11)

Assuming that U is much larger than tα, we derive the effective Hamiltonian at half-filling.
In the unperturbed problem (i.e., Hint only), electrons are localized at each site completely
and the ground state exhibit the 2Nsite-fold degeneracy, where Nsite is the number of the sites.
Based on the degenerated perturbation theory, we consider the first, second, and third-order
perturbations with respect to Hkin below.

First-order effective Hamiltonian

Defining the ground state multiplet of Hint as ΨG = (|G1〉 , |G2〉 , · · · ), we have the first-order
effective Hamiltonian as

H
(1)
eff = PHkinP = 0, (4.12)

where P = ΨGΨ†G.
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Second-order effective Hamiltonian

The second-order effective Hamiltonian is given by

H
(2)
eff = PHkinP̃

1

E(0) −Hint
P̃HkinP, (4.13)

where P̃ = 1 − ΨGΨ†G and HintP = E(0)P . Since there are two Hkin’s in the effective
Hamiltonian, the explicit expression of Eq. (4.13) is essentially given by solving the two-site
problem. The ground state multiplet is given as

Ψ12
G = (|↑, ↑〉12 , |↓, ↓〉12 , |↑, ↓〉12 , |↓, ↑〉12), (4.14)

where |αβ, γδ, · · ·〉i,j,··· = c†αic
†
βic
†
γjc
†
δj · · · |0〉i,j,··· and |0〉i,j,··· is the vacuum state. Denoting

the Hamiltonians in the two-site problem by H12
kin, we have

P̃H12
kin |↑, ↑〉12 =P̃H12

kin |↓, ↓〉12 = 0 (4.15)

P̃H12
kin |↑, ↓〉12 =P̃

∑
α

(tαc
†
α,1cα,2 + t∗αc

†
α,2cα,1)c†↑,1c

†
↓,2 |0〉12

=P̃ (−t↓c†↓,1c
†
↑,1 + t∗↑c

†
↑,2c
†
↓,2) |0〉12

=− t↓ |↓↑, 0〉12 + t∗↑ |0, ↑↓〉12 , (4.16)

where tα = tα,1,2, and the double-occupancy in the two-body state is written as |↑↓, 0〉12 =

− |↓↑, 0〉12 = c†1,↑c
†
1,↓ |0〉12. We have

PH12
kinP̃

1

E(0) −Hint
P̃H12

kin |↑, ↓〉12

=PH12
kinP̃

1

E(0) −Hint
(−t↓ |↓↑, 0〉12 + t∗↑ |0, ↑↓〉12)

=PH12
kin(

t↓
U
|↓↑, 0〉12 −

t∗↑
U
|0, ↑↓〉12)

=
∑
α

(tαc
†
α,1cα,2 + t∗αc

†
α,2cα,1)

t↓
U
c†↓,1c

†
↑,1 |0〉12 −

∑
α

(tαc
†
α,1cα,2 + t∗αc

†
α,2cα,1)

t∗↑
U
c†↑,2c

†
↓,2 |0〉12

=
t↓
U

(t∗↑c
†
↓,1c
†
↑,2 − t

∗
↓c
†
↑,1c
†
↓,2) |0〉12 −

t∗↑
U

(t↑c
†
↑,1c
†
↓,2 − t↓c

†
↓,1c
†
↑,2) |0〉12

=

(
2t∗↑t↓

U
|↓, ↑〉12 −

|t↑|2 + |t↓|2

U
|↑, ↓〉12

)
. (4.17)

One can compute PH12
kinP̃

1
E(0)−Hint

P̃H12
kin |↓, ↑〉12 by replacing the site indices 1 and 2, which

corresponds to the transformation tα → t∗α, i.e., tα,1,2 → tα,2,1. From them, the second-order
effective Hamiltonian is given by

h
(2)
12 =Ψ12†

G H
(2)12
eff Ψ12

G

=Ψ12†
G H12

kinP̃
1

E(0) −Hint
P̃H12

kinΨ12
G

=

 0
− |t↑|

2+|t↓|2
U

2t↑t
∗
↓

U
2t∗↑t↓
U − |t↑|

2+|t↓|2
U

 . (4.18)
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Within the subspace Ψ12
G , the S = 1/2 spin operators defined as Szi = 1

2(n↑,i − n↓,i), S+
i =

c†↑,ic↓,i and S−i = c†↓,ic↑,i are expressed as follows:

Ψ12†
G S+

1 S
−
2 Ψ12

G =

 0
0 1
0 0

 , (4.19)

Ψ12†
G S−1 S

+
2 Ψ12

G =

 0
0 0
1 0

 , (4.20)

Ψ12†
G Sz1S

z
2Ψ12

G =


1/4 0 0 0
0 1/4 0 0
0 0 −1/4 0
0 0 0 −1/4

 . (4.21)

Using these expressions, Eq. (4.18) is written as

h
(2)
12 = Ψ†G

(
J+−S

+
1 S
−
2 + J−+S

−
1 S

+
2 + JzS

z
1S

z
2 + C

)
ΨG, (4.22)

where the parameters in the anisotropic Heisenberg model is given by J+− = J∗−+ =
2t↑t

∗
↓

U ,

Jz = 2
|t↑|2+|t↓|2

U , and C = −1
2
|t↑|2+|t↓|2

U . For general Nsite, we also have the same results: 1

H
(2)
eff =

∑
i,j

(
J i,j+−S

+
i S
−
j + J i,j−+S

−
i S

+
j + J i,jz Szi S

z
j + C

)
,

J i,j+− = J i,j∗−+ =
2t↑,i,jt

∗
↓,i,j

U
,

Jz = 2
|t↑,i,j |2 + |t↓,i,j |2

U
,

C = −1

2

|t↑,i,j |2 + |t↓,i,j |2

U
.

(4.24)

In our model in which the nearest-neighbor hopping with t↑ = −t↓ = t is only included, the
effective Hamiltonian is given by

H
(2)
eff =

∑
〈ij〉

(
J+−(S+

i S
−
j + S−i S

+
j ) + JzS

z
i S

z
j + C

)
= J

∑
〈ij〉

(
−Sxi Sxj − S

y
i S

y
j + Szi S

z
j −

1

4

)
, (4.25)

1Writing explicitly each term in the Hamiltonian as Hkin =
∑
ij H

ij
kin, we have

H
(2)
eff =PHkinP̃

1

E(0) −Hint
P̃HkinP

=
∑
ij

PHkinP̃
1

E(0) −Hint
P̃Hij

kinP

=
∑
ij

PHij
kinP̃

1

E(0) −Hint
P̃Hij

kinP

=
∑
ij

H
(2)ij
eff . (4.23)
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where J+− = −2t2/U , Jz = 4t2/U , C = −t2/U , and J = 4t2/U . Ignoring the constant term,
we have

J

3∑
i=1

(
−Sxi Sxi+1 − S

y
i S

y
i+1 + Szi S

z
i+1

)
=− J

3∑
i=1

Si · Si+1 + 2J

3∑
i=1

Szi S
z
i+1

=− J

[
(S1 + S2 + S3)2

2
− 1

2

3∑
i=1

S2
i

]
+ 2J

[
(Sz1 + Sz2 + Sz3)2

2
− 1

2

3∑
i=1

Sz2i

]

=J

[
−1

2
S2

123 + Sz2123 +
3

8

]
. (4.26)

This is the Hamiltonian of the XXZ model, which we include in the effective Hamiltonian in
Eq. (4.9).

Third-order effective Hamiltonian

Let us assume that the degenerated ground state is not lifted by the first and the second-order
perturbations. The third-order effective Hamiltonian is given by

H
(3)
eff = PHkinP̃

1

E(0) −Hint
P̃HkinP̃

1

E(0) −Hint
P̃HkinP

+ PHkinP̃
1

(E(0) −Hint)2
P̃HkinPHkinP. (4.27)

As previously noted, we have E(0) = 0 and PHkinP = 0 so that the effective Hamiltonian
we consider here is

H
(3)
eff = PHkinP̃

1

Hint
P̃HkinP̃

1

Hint
P̃HkinP. (4.28)

Since there are three Hkin’s, the three-site problem is intrinsically important. The ground
state multiplet given by the non-perturbative Hamiltonian Hint is expressed as

Ψ123
G = (|↑, ↑, ↑〉123 , |↑, ↑, ↓〉123 , |↑, ↓, ↑〉123 , |↓, ↑, ↑〉123 , |↓, ↓, ↑〉123 ,

|↓, ↑, ↓〉123 , |↑, ↓, ↓〉123 , |↓, ↓, ↓〉123). (4.29)

Denoting the hopping Hamiltonian in the three-site problem by H123
kin , we have

P̃H123
kin |↑, ↑, ↑〉123 = P̃H123

kin |↓, ↓, ↓〉123 = 0. (4.30)

From Fig. 4.7, we have

H
(3)123
eff |↑, ↑, ↓〉123

=
t32↓,21↓,13↓ + t31↓,12↓,23↓ − t23↑,12↑,31↑ − t13↑,21↑,32↑

U2
|↑, ↑, ↓〉123

+
−t32↑,21↓,13↓ − t21↓,32↑,13↓ + t12↑,31↑,23↓ + t12↑,23↓,31↑ + t23↓,12↑,31↑ − t21↓,13↓,32↑

U2
|↑, ↓, ↑〉123

+
t21↑,32↑,13↓ − t31↑,12↓,23↓ − t12↓,31↑,23↓ − t12↓,23↓,31↑ + t21↑,13↓,32↑ + t13↓,21↑,32↑

U2
|↓, ↑, ↑〉123 ,

where tijα,klβ,mnγ = tijαtklβtmnγ . One can compute H
(3)123
eff |↑, ↓, ↑〉123 by replacing the site

indices as (1, 2, 3) → (2, 3, 1). Also, one calculate H
(3)123
eff |↓, ↓, ↑〉123 by switching ↑ and ↓.
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Figure 4.7: 3rd-order perturbation
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In our model in which the nearest-neighbor hopping with t↑ = −t↓ = t is only included, we
have

H
(3)123
eff |↑, ↑, ↓〉123 = − t3

U2
(4 |↑, ↑, ↓〉123 + 6 |↑, ↓, ↑〉123 + 6 |↓, ↑, ↑〉123) . (4.31)

This equation gives us the 8× 8 matrix h
(3)
123 = Ψ123†

G H
(3)123
eff Ψ123

G written as

h
(3)
123 =

t3

U2



0
−4 −6 −6
−6 −4 −6
−6 −6 −4

4 6 6
6 4 6
6 6 4

0


. (4.32)

The operators related to S123 are given as

Ψ123†
G (Sz1 + Sz2 + Sz3)Ψ123

G =
1

2



3
1

1
1
−1

−1
−1

−3


, (4.33)

Ψ123†
G (S1 + S2 + S3)2 Ψ123

G =
1

4



15
7 4 4
4 7 4
4 4 7

7 4 4
4 7 4
4 4 7

15


. (4.34)

Using them, we have

H
(3)123
eff = JSz123(−3S2

123 + 4Sz 2
123 +

9

4
), (4.35)

where Stot =
∑3

i=1 Si and J = 4t3/U2.

4.2.4 From weak to strong correlations

In the previous subsections, we assume that the interactions are sufficiently strong as t� U
to analyze the spin model. Then, let us now investigate the topological properties of the
HOTMI by diagonalizing the Hamiltonian of the Hubbard model in Eq. (4.1) with any
values of U/t. We here also clarify the relation between the noninteracting higher-order
insulators [86] and the HOTMI.
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Figure 4.8: (a) Magnetization Sztot of the ground state. (b) U/t-dependences of the charge
gap ∆c and the spin gap ∆s under the periodic boundary condition. (c) Quantized Berry
phase γ− as a function of U/t. (d) U/t-dependences of the charge gap ∆c and the spin gap ∆s

under the open boundary condition. (e) Spin expectation values 〈S2
i 〉 − 〈S2

i 〉0. The radii of
the spheres express the calculated values. In (a)-(c), the periodic systems with NUC = 2× 2
is considered. In (d) and (e), the systems with NUC = 6 under the open boundary condition
is considered. The hopping parameters are set as t4/t5 = 0.4 in (b)-(e).

Bulk properties

We begin by investigating the bulk properties. Diagonalizing the Hamiltonian in Eq. (4.1)
under the periodic boundary condition, we show in Fig. 4.8(a) the (φ,U/t)-dependence of
Sztot of the ground state in the same way as Fig. 4.5(a). In the strongly correlated regions, the
magnetization of the ground state around φ = 0 and π/2 is given by Sztot = NUC/2, which is
consistent with the results of the effective spin model. The figure suggests that this strongly
correlated states are adiabatically connected to the weakly correlated states. In Fig. 4.8(b),
we plot the charge gap ∆c and the spin gap ∆s as a function of U/t for t4/t5 = 0.4. Here,
we define both gaps as

∆c =
ENe+1,Sztot+1/2 + ENe−1,Sztot−1/2 − 2ENe,Sztot

2
(4.36)

∆s =
ENe,Sztot+1 + ENe,Sztot−1 − 2ENe,Sztot

2
, (4.37)

where Sztot (Ne) is the value of Sztot (Ne) of the ground state. Since we set NUC = 4 in
Fig. 4.8(b), each value is given by Ne = 12 and Sztot = 2. In the strong correlated region
in the figure, the value of the charge gap ∆c is the order of U , which implies the adiabatic
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continuity between the higher-order topological insulator with U/t = 0 and the HOTMI. In
Fig. 4.8(c), one can confirm that the Berry phase is an adiabatic invariant. In Fig. 4.8(a),
we have no signs of the appearance of gapless state at U/t = 0 and φ ≈ π/4, which is came
from a finite-size effect. Indeed, one can observe it when introducing the twisted boundary
conditions to detect the single-particle momentum in which the band gap closes.

Corner-Mott states

In order to show the bulk-edge correspondence of the HOTMI in the Hubbard model, we
move onto the discussions under the open boundary condition as shown in Fig. 4.2. In
Fig. 4.8(d), we plot the U/t-dependences of the charge gap ∆c and the spin gap ∆s, where
we set NUC = 6 and t4/t5 = 0.4. Here, the eight-fold degenerated ground state gives the
magnetization as −1 ≤ Sztot ≤ 2. Therefore, we set Sztot = 1 and Ne = 18 for defining
the energy gaps. While the gapless charge excitation seen in the noninteracting system
is broken by the correlation effects, the gapless behavior of the spin excitation survives. In
Fig. 4.8(e), we show the value of 〈S2

i 〉−〈S2
i 〉0 of the system with t4/t5 = 0.4, where 〈·〉 (〈·〉0)

expresses the expectation value defined by the ground state multiplet at U/t = 1 (U/t = 0)
and S2

i = 3(ni↑ + ni↓ − 2ni↑ni↓)/4. The figure suggests that the gapless spin excitations are
derived from the emergence of the free-spins at the corners. Our results demonstrate that the
bulk-edge correspondence is modified by the electron-electron interaction even though the
bulk topology is not changed. Consequently, the standard higher-order topological insulators
are transformed into the HOTMI states by the infinitesimal interaction U .

4.3 Conclusion

In this chapter, we have discussed a new class of the correlated topological phase “higher-
order topological Mott insulator”. This topological state exhibits a generalized bulk-edge
correspondence; a d-dimensional bulk topology relates to the emergence of d − n (2 ≤ n)
boundary modes that are gapped in the charge excitations but gapless in the spin excita-
tions. We have demonstrated that the HOTMI states are observed in the Hubbard model on
a kagome lattice. Specifically, the quantized spin-Berry phase γ− = 2π/3 computed in the
bulk system corresponds to the emergence of the corner-Mott states at 0-dimensional bound-
aries. This topological nature of the HOTMI is simply understood by analyzing adiabatically
deformed systems. In the decoupled limit, the corner-Mott states are interpreted as free-spins
that are localized at corners, whose information is encoded in the Z3 quantized Berry phase.
The correlation effects of the higher-order physics have become an important research topic
recently, which have been studied intensively from various perspectives [156, 159, 160]. We
hope that the concept of the HOTMI will be useful for further explorations of topologically
nontrivial states in the higher-order topological insulators.

Before closing the conclusion, we would like to mention the realization of the HOTMIs
in other models. In this chapter, we consider only the system on a kagome lattice. How-
ever, using the approach in Ref. 83, it is expected that one can extend our approach into
d-dimensional lattices characterized by the Zd+1 spin-Berry phases. Recently, the idea of the
quantized Berry phases associated with the symmetry of the hyper-pyrochlore lattices [83]
is generalized into other lattice structures for characterizing the higher-order topological in-
sulators on various materials [143]. Combining this approach with ours, it is expected that
one could construct the HOTMI states on various lattices such as a square lattice. Nowa-
days, experimental realization for some correlated topological phases has been discussed
actively [61, 161, 162]. Lastly, let us describe candidates to realize the HOTMI. Although
the standard higher-order topological insulators has been observed experimentally in some
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materials [138,145,146], the HOTMI states has not been yet. Recently, topological phenom-
ena in organic frameworks and covalent organic frameworks with kagome structures have
been investigated [141,163]. For example, the higher-order topological insulating phases are
realized in a polymerized triptycene on a decorated star lattice [141]. Its corner modes are
characterized by the Z3 Berry phase, which share the same topological nature as the our
model without interactions. Taking into account the fact that the corner-Mott states emerge
by the infinitesimal interactions, one expects that the polymerized triptycene on a decorated
star lattice is a promising candidate for the HOTMI even if the particles are not strongly
correlated.

4.4 Supplemental: Lanczos algorithm and computational costs

4.4.1 Lanczos algorithm

In the above discussions, we have investigated correlation effects by analyzing the effec-
tive spin model and the Hubbard model. When diagonalizing their Hamiltonians, we used
Lanczos algorithm. In this section, let us describe that algorithm and computational costs
required for diagonalizing the Hamiltonians.

We consider the following eigenvalue equation:

H |Ψi〉 = Ei |Ψi〉 , (4.38)

where H is the N ×N hermitian matrix and |Ψi〉 is the N -dimensional vector. Let us first
make a N -dimensional vector |v1〉 from random numbers satisfying 〈v1|v1〉 = 1. Then we
compute αi, βi and |vi〉 as follows:

α1 = 〈v1|H |v1〉
|u1〉 = H |v1〉 − α1 |v1〉

β1 =
√
〈u1|u1〉

|v2〉 = |u1〉 /β1

...

αi = 〈vi|H |vi〉
|ui〉 = H |vi〉 − αi |vi〉

βi =
√
〈ui|ui〉

|vi+1〉 = |ui〉 /βi
...

Using the values of α’s and β’s, we define the M ×M tridiagonalized matrix H ′ as

H ′ =



α1 β1

β1 α2 β2

β2 α3 β3

. . .
. . .

. . .

αM−1 βM−1

βM−1 αM


, (4.39)

where M is an integer. Defining the N ×M matrix as V = (|v1〉 , · · · , |vM 〉), we have

H ′ = V †HV. (4.40)
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The matrices H and H ′ for M = N are unitary equivalent; otherwise their eigenvalues are
different. However, for sufficiently large M , the lowest eigenvalue of H is estimated from
that of H ′ with high precision. This algorithm is an adaptation of power methods, which
is called Lanczos algorithm. The eigenvectors of H is also approximately given by H ′ as
follows. Let us first consider the eigenvalue equation as

H ′
∣∣Ψ′i〉 = E′i

∣∣Ψ′i〉 . (4.41)

As mentioned above, we have E′1 ≈ E1 for sufficiently large M . This equation reduces to

V V †H
∣∣∣Ψ̃′i〉 = E′i

∣∣∣Ψ̃′i〉 , (4.42)

where
∣∣∣Ψ̃′i〉 = V |Ψ′i〉 is an N -dimensional vector. One can use

∣∣∣Ψ̃′1〉 as an approximation

of |Ψ1〉. In the practical calculations, the numerically obtained V for large M breaks its
orthogonality, i.e., V †V 6= 1 due to the rounding errors. This effect also results in the lost

of orthogonality of
∣∣∣Ψ̃′1〉 because of

〈
Ψ̃′1

∣∣∣Ψ̃′1〉 = 〈Ψ′1|V †V |Ψ′1〉. Thus, one should use the

normalized vector as
∣∣∣Ψ̃′1〉 /〈Ψ̃′1

∣∣∣Ψ̃′1〉.

Since we need to calculate matrix-vector products in the calculation of H ′, the Lanczos
algorithm is a useful tool to find the lowest eigenvalues and eigenvectors of sparse matrices.
If the eigenvalues or eigenvectors of the excited state, i.e., Ek 6=1 and |Ψk 6=1〉 are required, one
should diagonalize the following matrix:

H ′′ = H + Eshift

k−1∑
i=1

|Ψi〉 〈Ψi| , (4.43)

where Eshift is a value of the energy shift. For sufficiently large Eshift, Ek 6=1 and |Ψk 6=1〉 are
(approximately) given as the lowest energy state of H ′′.

4.4.2 Computational costs

In the above discussions on the HOTMI, we apply the Lanczos algorithm to calculate the
energy spectra and the topological invariants. The Hamiltonians of the effective spin model
and the Hubbard model are given by large sparse matrices. In this section, let us describe
the dimensions of their matrices and the number of their nonzero elements. Generally, it
is an important step to estimate the required amount of memory space when performing
numerical calculations.

Spin model

Let us start by considering the effective spin model. After giving a general discussion, we
consider the problem of a kagome lattice we considered above. Let us consider the following
Hamiltonian:

H =
∑
i,j

JxijS
x
i S

x
j + JyijS

y
i S

y
j + JzijS

z
i S

z
j , (4.44)

where Si = (Sxi , S
y
i , S

z
i ) is the spin-1/2 operators at the lattice site i. Here, we do not specify

the lattice structure. Let us now denote the number of the sites and the interaction pairs (i, j)
by Nsite and Npair. We now assume that the Hamiltonian commutes with the z-component
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Data type Byte (=8bit)

Integer 4

Double precision 8

Complex(kind(0d0)) 16

Table 4.1: Data types of FORTRAN.

of the total spin Sz. The dimension of the Hamiltonian H specified by Sz =
∑

i S
z
i is given

by

ND = NsiteCN↑ , (4.45)

where N↑ is the number of the spins with Szi = 1/2. Let us next calculate the number
of non-zero elements of the Hamiltonian, which we denote by Nelem = NDiago + NOff-Diago.
Since H is a hermitian matrix, we only consider the lower triangular region of the matrix.
The number of the off-diagonal elements NOff-Diago is defined in that sense. We here take
the basis which diagonalizes the operators Szi ’s. The diagonal elements of H are given by∑

i,j S
z
i S

z
j , and obviously, we have

NDiago = ND. (4.46)

The off-diagonal elements are given by
∑

i,j S
x
i S

x
j + Syi S

y
j = (1/2)

∑
i,j S

+
i S
−
j + S−i S

+
j . To

estimate its number, let us focus on the interaction S+
1 S
−
2 . States that satisfy S+

1 S
−
2 |〉 6= 0

are given by |↓↑ · · · · · · · · ·〉, where “· · · · · · · · · ” is any spin configuration. It implies that the
number of such states is given by Nsite−2CN↑−1. Because we only consider the lower triangular
region of the matrix, the number of nonzero off-diagonal elements specified by Sx1S

x
2 + Sy1S

y
2

are given by Nsite−2CN↑−1. Then we have

NOff-Diago = Npair × Nsite−2CN↑−1. (4.47)

For reference, the data types are listed in Table 4.1. In the numerical calculations in
the above discussions on HOTMIs, double precision is chosen for storing complex numbers
of nonzero elements of the Hamiltonian. In Table 4.2, we show ND and Nelem = NDiago +
NOff-Diago for the spin model on a kagome lattice under the periodic boundary condition.
Here, the interactions between the nearest-neighbor pairs are only considered. We set N↑ =
N↓ or N↑ = N↓/3. When the system is put on the Nx × Ny unit cells, we have Nsite =
3NxNy and Npair = 6NxNy. In that table, we also give the values of 16 × ND and 16 ×
Nelem, which is related to the required memory space for storing vectors and a matrix in the
Lanczos algorithm. While the periodic boundary condition is considered in Table 4.2, we
show in Table 4.3 the values of ND and Nelem = NDiago +NOff-Diago under the open boundary
condition. The sketches of kagome lattices under the open boundary conditions are given in
Fig. 4.9.

Hubbard model

Let us move onto the problem of the Hubbard model. In the similar way as the spin model.
we will discuss the case of a kagome lattice after general discussions. The Hamiltonian of
the Hubbard model is generally written by

H =
∑
i,j,σ

tijc
†
iσcjσ + U

∑
i

ni↑ni↓, (4.48)



58 CHAPTER 4. HIGHER-ORDER TOPOLOGICAL MOTT INSULATOR

Figure 4.9: Kagome lattices with the open boundary condition.

N↑↓ Nsite Npair ND 16×ND 16×Nelem

3× 22 24 924 14.8E+3 112E+3
N↑ = N↓ 3× 32 54 20.1E+6 320E+6 4.81E+9

(Sz = 0 or 1/2) 3× 42 96 32.2E+12 516E+12 13.2E+15

3× 22 24 495 7.92E+3 54.0E+3
N↑ = N↓/3 3× 32 54 4.69E+6 75.0E+6 1.01E+9

3× 42 96 2.25E+12 36.1E+12 822E+12

Table 4.2: ND and Nelem of the spin model on a kagome lattice under the periodic boundary
condition.

N↑↓ Fig.4.9 Nsite Npair ND 16×ND 16×Nelem

(a) 9 12 126 2.02E+3 8.73E+3
N↑ = N↓ (b) 18 27 48.6E+3 778E+3 6.34E+6

(Sz = 0 or 1/2) (c) 30 48 115E+6 2.48E+9 33.3E+9
(d) 45 75 4.12E+12 65.9E+12 1.33E+15

(a) 9 12 84 1.34E+3 5.38E+3
N↑ = N↓/3 (b) 18 27 18.6E+3 297E+3 2.18E+6

(c) 30 48 30.0E+6 481E+6 5.79E+9
(d) 45 75 344E+9 5.52E+12 99.6E+12

Table 4.3: ND and Nelem of the spin model on a kagome lattice under the open boundary
condition.

where c†iσ is the creation operator on site i in the spin α =↑, ↓, tij is a hopping parameter and
U is the strength of the Hubbard interaction. We here do not specify the lattice structure,
but assume that the numbers of the sites and the hopping pairs (i, j) are given by Nsite

and Npair, respectively. The Hamiltonian commutes with the z-component of the total spin
Sz = 1/2

∑
i(ni↑−ni↓), i.e., N↑(↓) =

∑
i ni↑(↓) is conserved. The dimension of the Hamiltonian

H specified by Sz is given by

ND = NsiteCN↑ ×Nsite CN↓ . (4.49)

Let us next consider the number of non-zero elements in the Hamiltonian, which we denote
by Nelem = NDiago +NOff-Diago. Because of the Hermitian matrix, considering the number in
the lower triangular region of the Hamiltonian is enough. Then, we define NOff-Diago in that
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N↑↓ Nsite Npair ND 16×ND 16×Nelem

N↑ = N↓ 3× 22 24 854E+3 13.7E+6 192E+6
(Sz = 0 or 1/2) 3× 2× 3 36 2.36E+9 37.8E+9 759E+9

3× 32 54 402E+12 6.44E+15 187E+15

N↑ = N↓/3 3× 22 24 245E+3 3.92E+6 49.5E+6
3× 32 54 22.0E+12 351E+12 9.11E+15

Table 4.4: ND and Nelem of the Hubbard model on a kagome lattice under the periodic
boundary condition.

N↑↓ Fig.4.9 Nsite Npair ND 16×ND 16×Nelem

N↑ = N↓ (a) 9 12 15.9E+3 254E+3 1.95E+6
(Sz = 0 or 1/2) (b) 18 27 2.36E+9 37.8E+9 578E+9

N↑ = N↓/3 (a) 9 12 7.06E+3 113E+3 790E+3
(b) 18 27 345E+6 5.51E+9 75.6E+9

Table 4.5: ND and Nelem of the Hubbard model on a kagome lattice under the open boundary
condition.

sense. The diagonal elements are given by U
∑
ni↑ni↓, which obviously implies that we have

NDiago = ND. (4.50)

The off-diagonal elements are given by
∑
c†iσcjσ. To calculate its number, let us first fo-

cus on the hopping c†1↑c2↑. The many-body states that satisfy c†1↑c2↑ |〉 6= 0 are given by
|2↑ · · · ; · · · · · ·〉, where the left “· · · ” is any configuration with respect to up-spins except for
1↑ and 2↑, and the right “· · · · · · ” is any configuration with respect to down-spins. Thus, the
number of such many-body states is given by Nsite−2CN↑−1 ×Nsite CN↓ . Since the triangular
region of the matrix is considered here, the number of the nonzero elements specified by
c†i↑cj↑ + h.c. is also Nsite−2CN↑−1 ×Nsite CN↓ . Consequently, we have

NOff-Diago = Npair(Nsite−2CN↑−1 ×Nsite CN↓ + NsiteCN↑ ×Nsite−2 CN↓−1) (4.51)

In Table 4.4, we show ND and Nelem = NDiago + NOff-Diago for the Hubbard model on a
kagome lattice under the periodic boundary condition. Here, hoppings between the nearest-
neighbor pairs are only considered. We set N↑ = N↓ or N↑ = N↓/3. In Table 4.4, we show
ND and Nelem obtained under the open boundary condition.
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Chapter 5

Adiabatic heuristic principle for
the quantum Hall states on a torus

The adiabatic deformation is a fundamental concept in the theory of topological phases as
shown in the previous chapters. The topological invariants given by bulk systems work as a
kind of the order parameters, which is a modern picture for characterizing material phases
beyond Landau’s symmetry breaking theory. The adiabatic heuristic argument for the QH
sates is one of the oldest such trials, which has been successful to describe the origin of the
FQH effect in terms of the adiabatic deformation. In this chapter, we start by describing the
role of the flux-attachment in the QH effect in relation to the composite fermion theory and
the adiabatic heuristic argument. Although the adiabatic heuristic argument for the QH state
is physically natural, there are some difficulties if one applies this idea to toroidal systems.
This is because it is impossible to continuously change the value of the statistics due to the
algebraic constraint in the braid group. By numerical calculations, this puzzle is resolved.
By investigating the relation between the topological degeneracy and the Chern number,
we also find the generalized Streda formula. This formula implies what is fundamental for
topological invariants is the continuity of the energy gap, rather than the continuity of states.

5.1 Flux-attachment for the quantum Hall effect

The FQH effect is a typical example of the topologically ordered phases. Even though
the FQH effect is essentially a many-body problem, one can describe it in terms of the IQH
effect by applying the flux-attachment. According to the composite fermion theory [164,165],
the FQH effect is interpreted as the IQH effect of the composite fermion. Furthermore, the
adiabatic heuristic argument [166,167] states that the FQH states are continuously deformed
into the IQH effect by adiabatic development of the flux-attachment. In this section, we begin
by considering the fractional statistics for the successive arguments on the flux-attachment
for the QH states.

5.1.1 Fractional statistics and flux-attachment

According to the quantum mechanics, identical particles are fundamentally indistinguish-
able. This simple property surprisingly brings tremendous diversity to quantum physics.
As is well known, there are two kinds of particles in three-dimensional systems: bosons
and fermions. They are defined by the phase of the wave functions associated with inter-
change of two particles, i.e., Ψ(· · · , rj , · · · , ri, · · · ) = Ψ(· · · , ri, · · · , rj , · · · ) for bosons and
Ψ(· · · , rj , · · · , ri, · · · ) = −Ψ(· · · , ri, · · · , rj , · · · ) for fermions. They are derived from the
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fact that the unitary operator of the interchange Pij satisfies P 2
ij = 1. Namely, bosons and

fermions are identified by the eigenvalues of Pij = ±1.
Let us now discuss it in more details in terms of Feynman’s path-integral formalism [168,

169] for our successive arguments. The time evolution in the quantum mechanics is described
by |Ψ, t′〉 = U(t′, t) |Ψ, t〉 with t ≤ t′. By defining the propagator, it reduces to

Ψ(q′, t′) =

∫
C
dqK(q′, t′; q, t)Ψ(q, t) (5.1)

where C denotes the configuration space that is generally multiply connected and q is the
coordinate. The propagator K is given by Feynman’s path-integral as follows:

K(q′, t′; q, t) =
∑

α∈π1(C)

χ(α)

∫
q(t)∈α

D[q(t)] exp

{
i

~

∫ t′

t
dtL[q(t)]

}
, (5.2)

where
∫
q(t)∈αD[q(t)] indicates the summation over all paths connecting the coordinates q

and q′ in the configurations space and π1(C) is the fundamental group of the configuration
space C. The paths belonging to the different homotopy class can not be continuously
deformed with each other. Correspondingly, we here introduce the weight χ(α). They
satisfy χ(α)† = χ(α) and χ(α)χ(β) = χ(α ·β), which implies that χ is itself a representation
of π1(C).

Let us now consider the structure of the configuration space C. If distinguishable particles
live on d-dimensional space, the configuration space is given by Cn = RdN ≡ Rd × · · · ×Rd,
where N is the particle number. For indistinguishable hard-core particles, on the other
hand, we need to modify that obtained configuration space. First, a set of configurations
associated with the symmetric group SN should be identified. Also, due to the hard-core
nature, configurations in which coordinates of two or more particles coincide should be
removed. Consequently, we have

CN = (RdN −D)/SN , (5.3)

where D = {x1,x2, · · · ,xN |∃i 6= j,xi = xj}. When setting 3 ≤ d, we have π1(RdN −
D) = 0, i.e., π1(CN ) = SN . Assuming the one-dimensional representations, we have only
two representations, which corresponds to the statistics of bosons and fermions; a trivial
representation χ(α) = 1 for all α is Bose-Einstein statistics and χ(α) = 1 (−1) with α even
(odd) permutation is Fermi-Dirac statistics. For d = 2, on the other hand, π1(C) is a finite
non-Abelian group. This is the so-called braid group, which is defined by

BN (M) ≡ π1(CN ) = π1((MN −D)/SN ), (5.4)

where M = R2 in this case. The generators of this group are given by the operation of
exchange between particles at xi and xi+1, which we denote by σi (i = 1, · · · , N − 1). The
group structure is determined by the following relations:

σiσj = σjσi (i 6= j ± 1)

σiσi+1σi = σi+1σiσi+1 (1 ≤ i ≤ N − 2).
(5.5)

Its one-dimensional representations are given by

χ(σi) = eiθ, (5.6)

where 0 ≤ θ < 2π. The representations with θ = 0 and θ = π correspond to the Bose-
Einstein statistics and Fermi-Dirac statistics obtained in 3 ≤ d, respectively. Other statistics



5.1. FLUX-ATTACHMENT FOR THE QUANTUM HALL EFFECT 63

are called fractional statistics, which is the property peculiar to the two-dimensional systems.
The particles with the fractional statistics are called anyons [170,171].

Even if the representation associated with the fractional statistics is allowed in the analy-
sis of the configuration space, it is a different issue that such particles really exist. Let us now
demonstrate that anyons are indeed easily generated by the flux-attachment. As described
in Chapter 3, the statistics of particles are diagnosed by computing the Berry phase defined
by adiabatic development in which a particle is dragged around another. If the statistics
of the particles is written by θ, the Berry phase is given by ei2θ. Thus, the Berry phase
of electrons (θ = π) is given by ei2π = 1. Let us then consider the system of electron-flux
composites. When the number of the attached fluxes per particle is φ, the Berry phase is
given by ei(2π+φ). This implies that the electron-flux composites are anyons whose statistics
is given by θ = π + φ/2. These fluxes localized at particles are described by the singular
gauge field as [171]

Aj = −φφ0

2π

∑
k 6=j

∇jθjk, (5.7)

where θjk is defined by zj − zk = |zj − zk|eiθjk and zij = xi + iyi is the coordinate of the
ith particle. In the following sections, we describe the flux-attachment in relation to the QH
effect.

5.1.2 Composite fermion theory

The composite fermion theory has been quite successful to describe the underlying physics
of the FQH effect [164,165]. This theory gives sophisticated views on not only the ordinary
FQH effect but also more complex ones such as the multi-component FQH effects [172,173]
and the non-Abelian FQH effect [25, 27, 28]. In this subsection, we review the composite
fermion theory for the single-component FQH effect.

Let us consider the FQH system at the filling factor ν = Ne/Nφ, where Ne is the number
of electrons and Nφ is the number of external fluxes. It means that an average flux per
electron is given by Nφ/Ne = 1/ν. We now attach the external magnetic fluxes into each
electron. When the number of the fluxes is 2m with m integer, the electron-flux composites
are fermion. These particles are called composite fermions. For the composite fermions,
the number of the external fluxes is given by N∗φ = Nφ − 2mNe, while the number of the
composite fermions NCF is identical to that of the original electrons. Then, the filling factor
of the composite fermions is given by

ν∗ =
NCF

N∗φ
=

Ne

Nφ − 2mNe
=

1

1/ν − 2m
. (5.8)

Let us here assume that the system of composite fermions exhibits the IQH effect, i.e., ν∗ = p
with p integer. Here, the sign of p indicates the z-direction of the magnetic field compared
with the original magnetic field associated with Nφ. Solving Eq. (5.8), we have

ν =
p

2mp+ 1
. (5.9)

It implies that the FQH effect of electrons at ν = p/(2mp+1) is interpreted as the IQH effect
of composite fermions at ν∗ = p. The denominator of ν is always odd, which is consistent
with experimental observations. For example, the Laughlin states is mapped to the ν = 1
IQH state in the composite fermion theory. From this perspective, various properties of
the FQH states are diagnosed by studying the IQH states. For example, the excitations



64CHAPTER 5. ADIABATIC HEURISTIC PRINCIPLE FOR THEQUANTUMHALL STATES ON A TORUS

Figure 5.1: Two Series of the ν = 1 IQH states (red) and the ν = 2 IQH state (blue).

of the FQH state is understood from the physics of the IQH effect [174–177]. Also, this
theory provides a theoretical framework to construct trial wave functions of the FQH states
in a different way from the singular gauge transformation. The excellent overlaps with
the exact wave functions with, e.g. the Coulomb interaction, implies the validity of this
approach [165]. The composite fermion theory gives simple pictures for understanding other
FQH states. For example, the FQH systems of spinful electrons gives fully spin polarized
ground states depending on the filling fractions. The composite fermion theory gives clear
explanations for this issue [172, 173]. While the FQH states such as the Laughlin state
host quasiparticles with the fractional charges and the fractional statistics, the so-called
non-Abelian FQH states [178] exhibit non-Abelian anyons obeying the generalized fractional
statistics [25–28,179,180]. The typical example of the non-Abelian FQH states is the Moore-
Read state, which is interpreted as the px + ipy paired state [28] of the composite fermions.
The composite fermion theory is also valid for characterizing the gapless state appearing in
systems at even denominator filling factors [181]. Recently, these issues have been actively
studied in terms of the Dirac fermion theory [182, 183]. The parton construction [184] is a
generalization of the composite fermion theory. This theory gives candidates of the FQH
states in terms of the IQH states beyond the composite fermion theory. Some of parton
states are expected to host non-Abelian excitations [185–189].

5.1.3 Adiabatic heuristic principle

According to the adiabatic heuristic principle [166,167], the FQH states and the IQH states
are adiabatically connected by trading the external magnetic fluxes for the statistical fluxes.
Let us discuss it in this subsection.

As mentioned above, the statistics of particles are controlled by attaching flux tubes to
particles. Particles with the fractional statistics given by θ are interpreted as bosons with θ/π
fluxes. For example, one fermion is composed of one boson and one flux quantum. Then, we
consider the system of anyons with θ under the magnetic field. The filling factor is defined as
ν = Na/Nφ, where Na is the number of anyons. When considering it as the system of bosons,
the number of the total fluxes are given by Nφ+Naθ/π. Let us consider the flux-attachment
in which the total flux remains constant. Noting that Nφ + Naθ/π = Na(1/ν + θ/π), this
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Figure 5.2: (a) Exchange operator σi and global operators τi and ρi. (b) Auxiliary operators
Aij and Cij . (c) (d) The pictorial proofs about Aij and Cij .

condition is expressed as

1

ν
+
θ

π
= const. (5.10)

If a series includes the IQH system of fermions (θ = π) at ν = p, the filling factor ν and the
statistics θ satisfy the relation 1/ν + θ/π = 1/p+ 1. Solving it, we have

ν =
p

p(1− θ/π) + 1
. (5.11)

This equation is identical to Eq. (5.9) in the composite fermion picture if θ/π is odd, i.e.,
particles are fermions. According to the adiabatic heuristic argument, the QH states in
a same series are adiabatically connected by that adiabatic process. In Fig. 5.1, we plot
Eq. (5.11) as for two series of the ν = 1 IQH state and the ν = 2 IQH state, respectively. A
series of the ν = 1 IQH state shown as the red line in the figure includes the Laughlin state.
A series of the ν = 2 IQH state shown as the blue line includes the fermion FQH state at
ν = 2/5.

While this heuristic argument for adiabatic deformation of the QH state is physically nat-
ural, there are some difficulties if one applies this idea to toroidal systems. This is because it
is impossible to continuously change the value of the statistics due to the algebraic constraint
in the braid group as shown in Sec. 5.2. Also, how does the topological degeneracy [91, 92]
change during the process of the flux-attachment? In Sec. 5.3, we discuss the validity of the
adiabatic heuristic on a torus numerically.

5.2 Anyons on a torus

As mentioned above, the fractional statistics of anyons are described from the representations
of the braid group. For successive discussions on the adiabatic heuristic on a torus, let us
now analyze the braid group on a torus [21, 190–192]. Also, we describe how to construct
the system of anyons on a lattice on a torus [191, 193] for the numerical demonstration of
the adiabatic heuristic principle.

5.2.1 Braid group on a torus

When N indistinguishable hard-core particles live on a manifold M, their configuration
space is given by CN = (MN − D)/SN , where D is the subset of configurations in which
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two or more coordinate coincide and SN is the symmetric group. Then the braid group of
the manifold M is given by BN (M) = π1(CN ). In this subsection, we investigate the group
structure of BN (M) with M = T 2, which governs the fractional statistics of anyons on a
torus.

The generators of the braid group BN (M) consist of σi (i = 1, · · · , N − 1), τj , and ρj
(j = 1, · · · , N), where σi is the counterclockwise interchange of the ith and i+ 1th particles,
and τi and ρi take ith particle along a noncontractible loop in x and y directions, respectively.
For convenience, let us introduce the auxiliary operators Aij and Cij defined as

Aij = τjρ
−1
i τ−1

j ρi, Cij = ρjτ
−1
i ρ−1

j τi, (5.12)

where 1 ≤ i < j ≤ N . Their paths are shown in Figs. 5.2(a) and (b). The pictorial
explanations about Aij and Cij are given in Figs. 5.2(c) and (d). The complete set of the
relations of the braid group on a torus are divided into three categories [21, 190, 192]. The
first category involves only the global operators τi’s and ρi’s:

Almτk = τkAlm, Almρk = ρkAlm, (5.13a)

τiτj = τjτi, ρiρj = ρjρi, (5.13b)

Cij =
(
τ−1
i τ−1

j

)
A−1
ij (τjτi) , (5.13c)

Aij =
(
ρ−1
i ρ−1

j

)
C−1
ij (ρjρi) , (5.13d)

Cij =
(
A−1
j−1,jA

−1
j−2,j · · ·A

−1
i+1,j

)
A−1
ij (Ai+1,j · · ·Aj−2,jAj−1,j) , (5.13e)

τ−1
1 ρ−1

1 τ1ρ1 = A1,2A1,3 · · ·A1,n−1A1,n, (5.13f)

where 1 ≤ k < l < m ≤ N , 1 ≤ i < j ≤ N . The pictorial proofs of Eqs. (5.13c) and (5.13d)
are given in Figs. 5.3(a) and (b). The proofs of Eqs. (5.13e) and (5.13f) for N = 3 are also
given in Figs. 5.3(c) and (d). The second category involves only σi’s:

σiσj = σjσi (i 6= j ± 1) (5.14a)

σiσi+1σi = σi+1σiσi+1 (1 ≤ i ≤ N − 2). (5.14b)

The third category mixes the global and the exchange operators:

τi+1 = σ−1
i τiσ

−1
i , ρi+1 = σiρiσi, (5.15a)

τ1σj = σjτ1, ρ1σj = σjρ1, (5.15b)(
σ−1
i

)2
= Ai,i+1, (5.15c)

where 1 ≤ i ≤ N − 1 and 2 ≤ j ≤ N − 1. The pictorial proof of Eq. (5.15a) is given in
Figs. 5.3(e) and (f).

From the relations of the braid group described above, let us discuss the universal features
of anyons on a torus. Taking the basis |r1, r2, · · · , rN ;w〉, let us here assume that the
representation of σi is given by

σi = eiθ1M , (5.16)

where w = 1, · · · ,M is the additional index, ri is the position of the ith anyon, and M is
the dimension of the representation. Hereafter, the symbol indicating the representations as
χ(σi) is omitted. From Eqs. (5.15a) and (5.15b), we have

τi = e−i2(i−1)θτ1 (5.17a)

ρi = ei2(i−1)θρ1. (5.17b)



5.2. ANYONS ON A TORUS 67

Figure 5.3: Pictorial proofs of (a) Eq. (5.13c), (b) Eq. (5.13d), (c) Eq. (5.13e) for N = 3,
(d) Eq. (5.13f) for N = 3, and (e)(f) Eq. (5.15a).

It is consistent with Eq. (5.13b). Using it with Eqs. (5.12), (5.15c) and (5.13e), we have

Aij = C−1
ij = A12 = e−i2θ. (5.18)

It is consistent with Eqs. (5.13a), (5.13c), (5.13d). Then, the remaining problems is to find
the representations of τi’s and ρi’s satisfying Eqs. (5.12) and (5.13f). Equation (5.12) is
rewritten as Aij = τ1ρ

−1
1 τ−1

1 ρ1 = e−i2θ and Cij = ρ1τ
−1
1 ρ−1

1 τ1 = ei2θ, i.e., τ1ρ1 = ei2θρ1τ1.
Therefore, we have

τ1ρ1 = ei2θρ1τ1,

τ1ρ1 = e−i2(N−1)θρ1τ1.
(5.19)

Clearly these two relations require the restriction for the statistical phase as ei2Nθ = 1, i.e.,

θ =
sπ

N
, s = 0, · · · , N − 1. (5.20)

Furthermore, calculating the determinant of Eqs. (5.19), we have the constraints on the
dimension of the representation M and the statistical phase θ as 1 = ei2Mθ, i.e.,

θ =
sπ

M
, s = 1, · · · ,M − 1. (5.21)

It means that when the statistics is given by θ = nπ/m with n and m coprime integers, the
dimension of the representation M should be a multiple of m. Matrices that meet Eqs. (5.19)



68CHAPTER 5. ADIABATIC HEURISTIC PRINCIPLE FOR THEQUANTUMHALL STATES ON A TORUS

are given by τ1 = Wx and ρ1 = Wy with, for example,

Wx =


0 1 . . . 0
...

...
. . .

...
0 0 . . . 1
eiηx 0 . . . 0

 , (5.22)

Wy = eiηydiag[ei2θ, ei4θ, · · · , ei2Mθ], (5.23)

where the phase factor eiηx and eiηy correspond to the twisted angles of the boundary con-
ditions. Indeed, they satisfy

WxWy = e−i2θWyWx (5.24)

for any ~η = (ηx, ηy). Consequently, the representations of τi and ρi are given by

τj = e−i2θ(j−1)Wx (5.25)

ρj = ei2θ(j−1)Wy. (5.26)

Let us now move onto the discussions on anyons on a torus under the magnetic field [194].
Naively, some of the relations described above are modified. Assuming that the system size is
Lx×Ly and the external magnetic field B is described by the vector potential A, Eqs. (5.13f)
and (5.15a) are replaced with

τ−1
1 ρ−1

1 τ1ρ1 = e−i
e
~BLxLyA1,2A1,3 · · ·A1,n−1A1,n, (5.27)

τi+1 = ei
e
~ (αi+1−αi)σ−1

i τiσ
−1
i , ρi+1 = ei

e
~ (βi+1−βi)σiρiσi, (5.28)

where the charge is −e, αi and βi are defined by

αi =

∮
Lτi

dr ·A(r), (5.29)

βi =

∮
Lρi

dr ·A(r). (5.30)

Here Lτi and Lρi are the path defined by the global operators τi and ρi, respectively. As seen
in Figs. 5.3(e) and (f), the path given by (σ−1

i τiσ
−1
i )−1τi+1 and (σiρiσi)

−1ρi+1 define closed
regions, respectively. Correspondingly, the AB phases are added in the relations. These
modifications make a little change in the characteristics of anyons mentioned above. Instead
of Eqs. (5.26), the representations of τj and ρj are given by

τj = ei
e
~αje−i2θ(j−1)Wx (5.31)

ρj = ei
e
~βjei2θ(j−1)Wy. (5.32)

In addition, Eq. (5.19) is replaced with the following relations as

τ1ρ1 = ei2θρ1τ1,

τ1ρ1 = e−i2πNφ−i2(N−1)θρ1τ1,
(5.33)

where Nφ = BLxLy/φ0 is the total number of external fluxes. Due to it, the constraint in
Eq. (5.20) is changed as ei2πNφ+i2Nθ = 1, i.e.,

Nφ

N
+
θ

π
=

s

N
, (5.34)
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Figure 5.4: Anyons on lattices.

where s is the total number of fluxes including to the external magnetic fluxes and statistical
fluxes. Assuming that s/N is constant, this equation is identical to Eq. (5.10) in the adiabatic
heuristic argument. On the other hand, the constraint in Eq. (5.21) on the dimension of the
representation is given again.

In this subsection, we analyze the braid group on a torus and derive the fundamental
relations of the adiabatic heuristic argument consistently. However, some constraints of the
braid group implies that continuous deformation of the statistics θ is prohibited on a torus
even though the magnetic field is present. In the following, we resolve this issue of the
adiabatic heuristic principle on a torus by numerical calculations.

5.2.2 Anyon model on a torus

In this subsection, let us describe our model of anyons on a torus [191, 193] under the
magnetic field for numerical calculations. This system is put on the Nx×Ny square lattices.
The number of anyons is Na. We here denote the number of external fluxes per plaquette
and the statistics of anyons by φ and θ, respectively. We consider the Hamiltonian including
hoppings and interactions as

H = t
∑
〈ij〉

eiφijeiθijc†icj ⊗W
(ij) + V

∑
〈ij〉

ninj ⊗ 1M , (5.35)

where c†i is the creation operator of a hard-core boson at site i, ni = c†ici, the phase factors
eiφij is the Peierls phase describing the external magnetic field, eiθij describes the statistical
fluxes localized into particles, and W (ij) is the M × M matrix that describes the global
behavior of anyons on a torus. For φij , the string gauge [113] is chosen, which we have
mentioned in Chapter 2. How to construct θij and the matrix W (ij) is described below [191,
193].

Let us now first describe the matrix W (ij). When the statistics is given by θ = nπ/m
with n,m coprime integers, we set the irreducible representation, i.e., M = m. As shown
in Figs. 5.4(a) and (b), it is defined as W (ij) = Wx(y) for hoppings across the boundary

in the x(y) direction, and W (ij) = 1M for other hoppings. The matrices Wx and Wy are
given in Eqs. (5.22) and (5.23), where |r1, r2, · · · , rN ;w〉 is used for the basis. It means
that when an anyon hops across the boundary in the x-direction [cut B in Fig. 5.4(c)], the
index is modified from w to w − 1. In addition, the twisted angle eiηx is applied if w = 1.
When an anyon hops across the boundary in the y-direction [cut A in Fig. 5.4(c)], the phase
factor ei2wθeiηy is given. While the global behavior of anyons are given by the matrix W (ij),
their local features are described by eiθij . In a similar way with the string gauge, θij is also
described by the strings as shown in Fig. 5.4(c). While the initial point of the string is fixed
at one plaquette with the origin Oθ, the terminal point is located at a plaquette adjacent to
an anyon and it carries the phase eiθ. In addition, we need to require other rules as follows.
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(i) When a string of a hopping anyon wipes other anyons, the phase factor is given as if
the wiped anyons hop across the string.

(ii) When an anyon hops across the boundary in x direction [cut B in Fig. 5.4(c)], the
additional phase factor ei(Na−1)θ is given. This rule removes the artificial twisted angle of
the boundary condition in x-direction that is made by statistical strings.

(iii) Horizontal strings carry the phase factor ei2θ instead of eiθ. This rule also correct the
boundary condition in y-direction. For otherwise, the artificial angle in y-direction appears.

(iv) When an anyon hops across the boundary in y-direction [cut A in Fig. 5.4(c)], the
additional phase factor eiXθ is given, where X is the number of anyons that locate at sites in
the same x-axis. This rule describes the fractional statistics with respect to the interchange
of anyons in the same x-axis.

This formulation of anyons in this framework are consistent with the representation of
τi and ρi shown in Eqs. (5.31) and (5.32). We would like to note that the artificial fluxes
are given at the plaquette with the origin Oθ [193]. Therefore, the condition of the uniform
magnetic field shown in Eq. (2.5) is rewritten as

ei2πφ(1−NxNy)−i2θNa = ei2πφ. (5.36)

This condition consistently rederive the fundamental relation of the adiabatic heuristic.

5.3 Numerical demonstration of the adiabatic heuristic prin-
ciple

In this section, by using the above framework, we demonstrate the validity of the adiabatic
heuristic principle on a torus. Unless otherwise stated, the parameters are set as Nx = Ny =
10, t = −1, V = 5, and ~η = ~0. Also, we mention topological invariants of this adiabatic
development. In the following discussions, we assume that states are degenerated when their
energy difference ∆E is given by ∆E < 0.001.

5.3.1 Energy gap and adiabatic deformation

Let us first consider a series of the ν = 1 IQH state. This series includes the Laughlin state.
In Fig. 5.5(a), we plot the many-body energy as function of 1/ν, where the statistics is given
by

ν =
p

p(1− θ/π) + 1
(5.37)

with p = 1. Since the system at ν is identical to that at−ν, we only consider systems at 0 ≤ ν.
In the calculation, we set θ = nπ/m with various n and m ≤ 7. The denominator of θ/π is
expressed by colors of the plots. It means that the plots with different colors in the figure are
given by the Hamiltonian with different dimensions. Nevertheless, the gaps defined by a dense
set of the Hamiltonians seen in Fig. 5.5(a) are smooth. At ν = 1/3, the gapped ground state
with the three-fold degeneracy is obtained, which is consistent with the lattice analogue of
the Laughlin state [103]. Furthermore, the gap at 0 < ν are always finite, which demonstrates
the adiabatic continuity between the ν = 1 IQH state and the Laughlin state. This finite
gap closes at 1/ν = 0 in which the particles are bosons. This gapless behavior implies the
emergence of the Nambu-Goldston modes of the superconductor of hard-core bosons [195].
In contrast to the smoothness of the gaps, the topological degeneracy is surprisingly changed
wildly as shown in Fig. 5.5(b). We will give its explanation in terms of the many-body
Chern number. In Fig. 5.5(a), we also plot the energy gap of the noninteracting systems,
i.e., V = 0. While the FQH states of anyons have the finite gaps, they collapse at ν = 1/3
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Figure 5.5: Many-body energy in a series of the ν = 1 IQH state. We set Nx = Ny = 10,
t = −1, V = 5, and Na = 4. The lowest 40 states are shown in the figures. (a) Energy
gap as function of the inverse of the filling factor ν. The dashed lines indicate systems of
bosons or fermions. The gaps for V = 0 are plotted as the empty circles. The inset in (a)
is the energy spectrum En. (b) Ground state degeneracy ND. (c)(d)(e) Energy spectra as
functions of the strength of the interaction V . The filling factor and the statistics are given
as (c) (ν, θ) = (1/2, 0), (d) (ν, θ) = (2/5,−π/2), and (e) (ν, θ) = (1/3,−π).

in which the FQH state of fermions is realized. This is because this ground state of fermions
is described by the partially filled lowest Landau bands. This suggests that the electron-
electron interactions are fundamental only for systems of fermions to show the FQH effects.
In Figs. 5.5(c)-(e), the energy spectra are shown as functions of the strength of the interaction
V . As long as V is finite, the global features of the spectra are independent of the value
of V . It implies that the adiabatic behavior shown in Fig. 5.5(a) for V = 5 is also nearly
independent of the value of V as long as V 6= 0.

Let us next discuss other series of the FQH effects. Figures 5.6(a) and (b) show the energy
gaps as functions of 1/ν in the same way as Fig. 5.5(a) but we fix p = 2 or p = 3 in Eq. (5.37).
For example, a series of the ν = 2 and ν = 3 IQH state include the FQH state of fermions at
ν = 2/5 and ν = 3/7, respectively. The results imply that the gaps of these FQH states are
connected to the IQH states without gap closing, while their topological degeneracy changes
wildly as seen in Figs. 5.6(c) and (d). In both figures, the energy gaps close at 1/ν = 0. These
are the systems of anyons with θ = 3π/2 and θ = 4π/3 under no magnetic field, respectively.
This gapless behaviors are consistent with the emergence of the Nambu-Goldston modes of
the anyon-superconductor [196–198]. Our results imply that the adiabatic heuristic principle
for other series with larger p is also valid and the anyon-superconductor with θ = (1 + 1/p)π
appears when all external fluxes are attached into particles.

Before moving to the next subsection, let us mention the relation of the Hofstadter
butterfly of the single-particle problem [199,200]. In Fig. 5.5(a) and Fig. 5.6(a) and (b), the
horizontal-axis and the vertical-axis indicate the inverse of the filling factor ν and the energy
En. Because of 1/ν = Nφ/Na = NxNyφ/Na and we fix Nx, Ny and Na in the figures, the
horizontal-axis also represents the number of external fluxes per plaquette φ. In this sense,
unusual adiabatic deformation, where the gap is smooth but the ground state degeneracy is
changed wildly, is associated with a many-body generalization of the Hofstadter butterfly.
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Figure 5.6: Energy gaps in a series of (a) the ν = 2 and (b) the ν = 3 IQH state. The
number of anyons is set as (a) Na = 4 and (b) Na = 3. The dashed lines indicate systems
of bosons or fermions. The lowest (a) 40 and (b) 70 states are shown in the figures. (c)(d)
Ground state degeneracy ND.

This similarity implies that the many-body Chern number would work as the topological
and adiabatic invariant for characterizing the finite many-body gap in the manner similar
to the single-particle Chern number for the Hofstadter bands. As demonstrated below, this
expectation of the Chern number is correct.

5.3.2 Topological invariants

In this subsection, let us discuss the topological invariance of the adiabatic heuristic argu-
ment. Based on the above discussions on the relation to the Hofstadter butterfly, we calculate
the many-body Chern number defined by

C =
1

2πi

∫
T 2

TrF , (5.38)

where F = dA+A2, A = Ψ†dΨ, d =
∑

α ∂ηα , T 2 = [0, 2π]×[0, 2π], and Ψ = (|G1〉 , |G2〉 , · · · )
is the ground state multiplet. Figures 5.7(a), (b), and (c) show the Chern number of a series
of the ν = p IQH state with p = 1, 2, 3. These results imply that the many-body Chern
number works well as the topological (adiabatic) invariant. The Chern number jumps at
1/ν = 0, which is consistent with the gap closing behavior seen in Figs. 5.5 and 5.6. It is
suggested that the Chern number defined by a series of the ν = p IQH state is given by

C = sgn(ν)× p, (5.39)

where sgn(x) = 1 for 0 < x and −1 for x < 0. Namely, it means that the topology of the
ν = p IQH state remains valid as long as the energy gap remains open even though the
topological degeneracy is changed wildly.

It is confirmed that the many-body energy of the QH systems nearly independent of
the value of the twisted angles ~η. On the other hand, the spectral flows at the transition
point, i.e., 1/ν = 0, show completely different features. In Fig. 5.7(d), (e), and (f), we
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Figure 5.7: (a)-(c) Many-body Chern number for a series of ν = p IQH state with (a) p = 1,
(a) p = 2, and (c) p = 3. (d)-(f) Spectral flows of the systems of anyons with θ = (1 + 1/p)π
with (d) p = 1, (e) p = 2, and (f) p = 3. The twisted angles in the y-direction are fixed at
ηy = 0.

show the energy as functions of ηy for the systems of anyons with θ = (1 + 1/p)π with
p = 1, 2, 3. These are systems in which the gap closing occurs for a series of the ν = p IQH
state. Their energies depend greatly on the boundary conditions. This strong dependence
is indeed consistent with the absence of the energy gap. This gapless behavior implies the
emergence of the Nambu-Goldston modes of the anyon-superconductor.

5.4 Generalized Streda formula

In this section, we clarify the problem of the topological degeneracy that changes wildly dur-
ing the unusual adiabatic deformation. Specifically, we show that the topological degeneracy
is described by the many-body Chern number. Our finding corresponds to a generalization of
the Streda formula [201], which we call the generalized Streda formula. When the magnetic
field φ is sufficiently weak, the magnetic length becomes larger compared to the lattice con-
stant. This implies that physics of this lattice model is diagnosed by studying a continuous
system. For ease of analysis, we consider the continuous system below.

5.4.1 Topological degeneracy

Fermions

For the successive discussions on anyons, let us begin by considering the fermionic FQH
states [91–93, 202]. We first consider a one-body system in a uniform magnetic field. Here,
the system with the size Lx × Ly under the twisted boundary conditions is considered. The
Hamiltonian is given by

H =
1

2m
π2, (5.40)
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where π = p − eA(r) with e < 0. Due to the magnetic field, the operator e
i
~p·a no longer

work well as a translation operation. Defining another momentum as K = π+ eB×r [203],
let us define the magnetic translation operator as

t(a) = e
i
~K·a. (5.41)

It gives the following commutation relations as

t(a) r t(a)−1 = r + a

t(a)πt−1(a) = π.

However, this translations do not commute with each other:

t(b)t(a) = t(b+ a)e−
1
2
i
~ eB(a×b) = t(a)t(b)e−

i
~ eB(a×b). (5.42)

One can interpret the phase factor e−
i
~ eB(a×b) as the AB phase.

Let us move on to the many-body problem. We assume that the Hamiltonian is given by

H =

Ne∑
k=1

1

2m
π2
k +

∑
k,l

V (rk − rl). (5.43)

The above results of the one-body problem lead the following relations:

ti(a) rj ti(a)−1 = rj + δija

[πi, tj(a)] = 0

[ti(a), tj(b)] = 0 (i 6= j)

ti(b)ti(a) = ti(a)ti(b)e
i2πNφ

a×b
LxLy ,

(5.44)

where we have used Nφ = BLxLy/φ0, φ0 = ~/|e|. Those relations imply

[H, ti(Lxex)] = [H, ti(Lyey)] = [tj(Lxex), ti(Lyey)] = 0,

ti(Lyey)ti(Lxex) = ti(Lxex)ti(Lyey)e
i2πNφ ,

(5.45)

for any i and j. This implies that if Nφ is an integer, the operators H, ti(Lxex)’s, and
ti(Lyey)’s commute with each other. The twisted boundary conditions are specified by
ti(Lxex)’s and ti(Lyey)’s. Let us now define the center-of-mass translation operator as

T (a) =

Ne∏
k=1

tk(a), (5.46)

where we denote the particle number by Ne We try to find the condition of a such that T (a)
commutes with H, ti(Lxex)’s, and ti(Lyey)’s. Because of[

Ne∑
k=1

1

2m
π2
k, T (a)

]
=

∑
k,l

V (rk − rl), T (a)

 = 0 (5.47)

with any a, we have [H,T (a)] = 0. Also we have the following commutation relations

ti(Lyey)T (axex) = T (axex)ti(Lyey)e
i2πNφ

ax
Lx ,

ti(Lxex)T (ayey) = T (ayey)ti(Lxex)e
−i2πNφ

ay
Ly ,
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which implies that their simultaneous diagonalization requires the relations ax = (Lx/Nφ)×
(int.) and ay = (Ly/Nφ)× (int.). It means that the center-of-mass translation operators that
commute with H, ti(Lxex)’s, and ti(Lyey)’s are given by the linear combination of T ( LxNφex)

and T (
Ly
Nφ
ey). Noting that

T (ayey)T (axex) = T (axex)T (ayey)e
i2πNeNφ

axay
LxLy ,

we have the important commutation relations

T (
Ly
Nφ
ey)T (

Lx
Nφ
ex) = T (

Lx
Nφ
ex)T (

Ly
Nφ
ey)e

i2π Ne
Nφ . (5.48)

Specifying the ground state by the eigenvalues of T (
Ly
Nφ
ey), i.e. T (

Ly
Nφ
ey) |λ〉 = eiλ |λ〉, we

have

T s(
Lx
Nφ
ex) |λ〉 = |λ+ 2sπν〉 . (5.49)

It implies that the ground state is at least q-fold degenerated, where ν = p/q with p and q
being co-primes.

Anyons

Let us extend the above discussions to the systems of anyons. We now assume that the
center-of-mass translation operator T (a), where all anyons are translated by a, commutes
with the Hamiltonian and satisfies the following relations:

T−1(b)T−1(a)T (b)T (a) = exp
{
−i e

~
B(a× b)Na

}
, (5.50)

ρ−1
i T−1(a)ρiT (a) = exp

{
−i e

~
B(a× Lyey)

}
, (5.51)

T−1(b)τ−1
i T (b)τi = exp

{
−i e

~
B(Lxex × b)

}
. (5.52)

This is the natural assumption since the loops defined by above operators enclose no anyons.
According to the arguments of the braid group, the global operators of anyons τi and ρj ,
which specify the twisted boundary condition, do not commute with each other. Instead, we
have

[τmi , ρj ] = 0, (5.53)

where the statistics is given by θ = nπ/m. Then let us try to find a such that T (a) commutes
with τmi and ρj . By using Eqs. (5.51) and (5.52) and generalizing the above discussions on
fermions, we naively have such operator as

Tx ≡ T (
Lx
Nφ
ex), (5.54)

Ty ≡ T (
1

m

Ly
Nφ
ey). (5.55)

From Eq. (5.50) with Nφ = BLxLy/φ0, and φ0 = ~/|e|, we have

T −1
y T −1

x TyTx = e
i2π Na

mNφ . (5.56)
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Specifying the ground state by the eigenvalues of Ty, i.e., Ty |λ〉 = eiλ |λ〉, we have

T sx |λ〉 = |λ+ 2sπν/m〉 . (5.57)

This implies that when ν/m = P/Q with P, Q coprime integers, the ground state is Q-fold
degenerated. However, the numerically obtained degeneracy is indeed larger than the number
given by the above formulation. It means that there is another operator that characterizes the
internal structure of the degenerated ground state. Then let us now define a new translation
operator as

T ′x ≡ τ1T (
n

m

Lx
Nφ
ex). (5.58)

From Eq. (5.51) and τ−1
i ρ−1

j τiρj = ei2θ, we have [T ′x, τmi ] = [T ′x, ρj ] = 0. We also have

T −1
y T ′−1

x TyT ′x = e
i2π

(
1
m

+ nNa
m2Nφ

)
. (5.59)

Then, we have

T sx T ′tx |λ〉 = |λ+ 2πfs,t〉 ,

fs,t =
ν

m
s+

(
1

m
+
nν

m2

)
t.

(5.60)

This implies that the number of the degeneracy is identical to the number of pairs s, t that
gives different value of ei2πfs,t . In a series of the ν = p IQH state, the filling factor ν and the
statistical phase θ satisfy the relation in Eq. (5.37), i.e.,

θ

π
= −1

ν
+

1

p
+ 1. (5.61)

Substituting it into Eq. (5.60), we have

fs,t =
ν

m
s+

(
1

m
+
nν

m2

)
t (5.62)

=
ν

m
s+

(
1

m
+

(
−1

ν
+

1

p
+ 1

)
ν

m

)
t (5.63)

= (t+ pt+ ps)
ν

mp
(5.64)

We here would like to note that mp/ν is always integer as

mp

ν
= mp× p(1− n/m) + 1

p
= p(m− n) +m (5.65)

where Eq. (5.37) has been used. This implies that the possible values of ei2πfs,t is given by
ei2πf−a,a with a = 1, · · · ,mp/|ν|. Namely, the topological degeneracy is given by

NTD =
mp

|ν|
. (5.66)

This expression is completely consistent with the numerically obtained results. In the above
calculation, we set the dimension of the representation as M = m. If one sets reducible
representation, i.e., M = αm with α integer, the degeneracy increases by α times. This
implies that Eq. (5.66) is extended for the any dimensions of the representation as follows:

NTD =
Mp

|ν|
. (5.67)
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5.4.2 Generalization of the Streda formula

Let us now demonstrate that the relation in Eq. (5.67) reduces to the generalized Streda
formula. As mentioned above, our numerical calculations suggests that the Chern number
works as an adiabatic invariant. Substituting Eq. (5.39) into Eq.(5.67), we have

NTD =
MC

ν
. (5.68)

Taking difference between two states belonging to a same series, it reduces to

∆NTD = ∆

(
M

ν

)
C. (5.69)

Let us now define the number of “partons” and the extended number of sites as Np =
NTDNa and N ′site = MNxNy, respectively. Because of ∆NTD = (∆Np) /Na and ∆ (M/ν) =
∆ (MNxNyφ) /Na = ∆ (N ′siteφ) /Na, we finally have

∆Np/N
′
site

∆φ
= C. (5.70)

We call this equation the “generalized Streda formula”. Indeed, this formula for fermions
reduces to the standard Streda formula; the FQH system of fermions gives the parameters
as M = 1, ν = p/q, NTD = q and C = p. In this case, Np/N

′
site = qNa/Nsite is identical to

the density of particles for the system in which the p Landau bands are completely filled.
Before closing this section, we would like to mention the generalized Streda formula.

Equation (5.70) indicates that the difference of the topological degeneracy induced by the
flux-attachment is described by the topological (adiabatic) invariant. This implies that what
is deformed continuously in adiabatic developments is not states but energy gaps.

5.5 Conclusion

In this chapter, we have showed that the adiabatic heuristic argument on a torus is valid even
though the continuous deformation of the statistics θ is not allowed due to the constraints
of the braid group on a torus. Namely, it has been numerically confirmed that the FQH
states on a torus are adiabatically connected to the IQH states without gap closing although
their topological degeneracy wildly changes during the deformation. The Chern number
defined by the degenerated ground state multiplet works well as an adiabatic invariant of
this unusual development. By the analysis based on the translational invariance of anyons, we
have clarified the problem of the wild change in the topological degeneracy. From this result,
we have discovered the generalized Streda formula, which makes the connection between the
wild change of the topological degeneracy and the topological invariant (i.e., the many-body
Chern number). This implies that what is fundamental for topological invariants is the
continuity of the energy gap, rather than the continuity of states.
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Summary and Conclusions

In this thesis, we have presented theoretical studies of topological invariants and the adiabatic
principle in correlated systems. The first part was dedicated to theoretical investigations of
the topological invariants. In Chapter 1, we have given general arguments for topological
invariants associated with the Berry connection and their gauge structures. By reviewing
the TKNN formula and the Niu-Thouless-Wu formula, we have also showed that how the
quantization of the Hall conductance is described by the Chern number. Nowadays, a wide
variety of correlated topological materials have been characterized by numerical calculations
of the many-body Chern number in the Niu-Thouless-Wu formula. In Chapter 2, we have
numerically demonstrated that the integration in evaluating it can be indeed skipped if the
system size is sufficiently large. Introducing the one-plaquette Chern number as a topological
index without the integration, we have showed its exponential accuracy in the integer and
fractional quantum Hall (IQH and FQH) systems. Our findings provide a concise way to
numerically identify correlated topological phases since the lack of the integration essentially
reduces the computational costs inherent to the many-body problems.

The second part was dedicated to theoretical investigations regarding to the adiabatic
principle. The adiabatic deformation is a fundamental concept for theory of topological
phases. In Chapter 3, we have revisited a simple problem to show that the (non-Abelian)
Berry phases characterize the geometrical structures of wave functions involved in the adi-
abatic development. These topological characters are invariant under certain adiabatic de-
formations of systems (quantized Berry phase in Chapter 1). From this perspective, in
Chapter 4, we have proposed a new topological state called “higher-order topological Mott
insulator” (HOTMI). This state exhibits a generalized bulk-edge correspondence derived from
correlation effects; the bulk topology in d-dimensions predicts the appearance of boundary
modes only with gapless spin excitations around d− n-dimensional boundaries (2 ≤ n). We
have numerically confirmed that the HOTMIs appear in the Hubbard model on a kagome
lattice, where the emergence of the corner-Mott sates are associated with the quantized
spin-Berry phase. This gapless nature can be described by free-spins that emerge from the
adiabatically deformed systems. While its emergence is confirmed only in the kagome lattice
in this thesis, the HOTMI is expected to be ubiquitous. In Chapter 5, moving on to the
problem of the adiabatic deformations of the QH states, we have investigated the validity
of the adiabatic heuristic principle on a torus. According to the braid group on a torus,
the continuous change of the statistical phase is not algebraically allowed. By the numerical
analysis of the periodic systems of anyons, we have demonstrated that the energy gaps of the
QH states are indeed smooth and finite even though the topological degeneracy is changed
wildly. Our numerical results imply that the many-body Chern number of the ground state
multiplet works as an adiabatic invariant in this unusual adiabatic continuity. From the argu-
ments on the translational invariance of anyons, we also have shown that the wild change of
the topological degeneracy is described by the Chern number. We call this relation the gen-
eralized Streda formula. This formula implies what is fundamental for topological invariants
is the continuity of the energy gap, rather than the continuity of states.
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This thesis gives not only an efficient way to evaluate the topological invariant but also
propose a new correlated topological states. Furthermore, a new formula is discovered that
provides a new perspective on topological invariants. We hope that our finding opens up a
new way for understanding correlated topological phases.
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Luis Guillermo Villanueva, and Sebastian D. Huber. Observation of a phononic
quadrupole topological insulator. Nature, 555:342 EP –, 01 2018.

[147] Zhongbo Yan, Fei Song, and Zhong Wang. Majorana corner modes in a high-
temperature platform. Phys. Rev. Lett., 121:096803, Aug 2018.

[148] Changming Yue, Yuanfeng Xu, Zhida Song, Hongming Weng, Yuan-Ming Lu, Chen
Fang, and Xi Dai. Symmetry-enforced chiral hinge states and surface quantum anoma-
lous hall effect in the magnetic axion insulator bi2–xsmxse3. Nature Physics, 2019.

[149] M. Hohenadler, T. C. Lang, and F. F. Assaad. Correlation effects in quantum spin-hall
insulators: A quantum monte carlo study. Phys. Rev. Lett., 106:100403, Mar 2011.



94 Bibliography

[150] Shun-Li Yu, X. C. Xie, and Jian-Xin Li. Mott physics and topological phase transition
in correlated dirac fermions. Phys. Rev. Lett., 107:010401, Jun 2011.

[151] Tsuneya Yoshida, Satoshi Fujimoto, and Norio Kawakami. Correlation effects on a
topological insulator at finite temperatures. Phys. Rev. B, 85:125113, Mar 2012.

[152] Y. Tada, R. Peters, M. Oshikawa, A. Koga, N. Kawakami, and S. Fujimoto. Correlation
effects in two-dimensional topological insulators. Phys. Rev. B, 85:165138, Apr 2012.

[153] Tsuneya Yoshida, Robert Peters, Satoshi Fujimoto, and Norio Kawakami. Topological
antiferromagnetic phase in a correlated bernevig-hughes-zhang model. Phys. Rev. B,
87:085134, Feb 2013.

[154] M Hohenadler and F F Assaad. Correlation effects in two-dimensional topological
insulators. Journal of Physics: Condensed Matter, 25(14):143201, mar 2013.

[155] Stephan Rachel. Interacting topological insulators: a review. Reports on Progress in
Physics, 81(11):116501, oct 2018.

[156] Yizhi You, Trithep Devakul, F. J. Burnell, and Titus Neupert. Higher-order symmetry-
protected topological states for interacting bosons and fermions. Phys. Rev. B,
98:235102, Dec 2018.

[157] Koji Kudo, Tsuneya Yoshida, and Yasuhiro Hatsugai. Higher-order topological mott
insulators. Phys. Rev. Lett., 123:196402, Nov 2019.

[158] Tohru Kawarabayashi, Kota Ishii, and Yasuhiro Hatsugai. Fractionally quantized
berry’s phase in an anisotropic magnet on the kagome lattice. Journal of the Physical
Society of Japan, 88(4):045001, 2019.

[159] Alex Rasmussen and Yuan-Ming Lu. Classification and construction of higher-
order symmetry-protected topological phases of interacting bosons. Phys. Rev. B,
101:085137, Feb 2020.

[160] Julian Bibo, Izabella Lovas, Yizhi You, Fabian Grusdt, and Frank Pollmann. Fractional
corner charges in a two-dimensional superlattice bose-hubbard model. Phys. Rev. B,
102:041126, Jul 2020.

[161] Rui-Xing Zhang, Cenke Xu, and Chao-Xing Liu. Interacting topological phases in thin
films of topological mirror kondo insulators. Phys. Rev. B, 94:235128, Dec 2016.

[162] Zhen Bi, Ruixing Zhang, Yi-Zhuang You, Andrea Young, Leon Balents, Chao-Xing
Liu, and Cenke Xu. Bilayer graphene as a platform for bosonic symmetry-protected
topological states. Phys. Rev. Lett., 118:126801, Mar 2017.

[163] Masahiko G. Yamada, Tomohiro Soejima, Naoto Tsuji, Daisuke Hirai, Mircea Dincă,
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