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Abstract

In this doctoral thesis, we investigate metric geometry from the viewpoints of convergences
and topological distributions of metric structure. This thesis mainly consists of two parts.

The fist part is a study on the Assouad dimension and limit spaces of subspaces of
metric spaces. We introduce pseudo-cones of metric spaces as generalizations of tangent
and asymptotic cones of metric spaces, and provide lower estimations of the Assouad
dimensions of metric spaces by the dimensions of pseudo-cones. This is a generalization
of the Mackay–Tyson estimation of the Assouad dimension by tangent cones. As another
application of pseudo-cones, we study subsets of full Assouad dimension of metric spaces,
and we introduce the notion of a tiling space. A tiling space is a pair of a metric space and
a family of subsets called tiles of the metric spaces. The class of tiling spaces contains the
Euclidean spaces, the p-adic numbers, the Sierpiński gasket, and various self-similar spaces
appearing in fractal geometry. As our result, for a doubling tiling space, we characterize
a subspace possessing the same Assouad dimension as that of the whole space in terms
of pseudo-cones and tiles. Since the Euclidean spaces are tiling spaces, this result can
be considered as a generalization of the Fraser–Yu characterization of a subspace of the
Euclidean space of full Assouad dimension.

The second part is a study on topological distributions of sets of “singular” metrics
in spaces of metrics. We first prove an interpolation theorem of metrics adapted for
investigating topologies of spaces of metrics. We introduce the notion of the transmissible
property, which unifies geometric properties determined by finite subsets of metric spaces.
As an application of our interpolation theorem, we prove that the sets of all metrics
not satisfying transmissible properties are dense and represented as an intersection of
countable open subsets of spaces of metrics. We also prove analogues of these results for
ultrametric spaces. It is often expected to prove ultrametric analogues of statements on
ordinary metrics. As realizations of this expectation, we first prove an isometric embedding
theorem stating that every ultrametric space can be isometrically embedded into an ultra-
normed module over an integral domain, which is an analogue of the Arens–Eells isometric
embedding theorem. Due to this embedding theorem, as an analogue of the Hausdorff
metric extension theorem, we can prove a theorem on extending an ultrametric on a
closed subset to an ultrametric on the whole space, while referring to the Toruńczyk’s
proof of the Hausdorff metric extension theorem by the Arens–Eells isometric embedding
theorem. By our extension theorem on ultrametrics, we establish an interpolation theorem
on ultrametrics, and theorems on topological distributions on spaces of ultrametrics.

This doctoral thesis is written as a comprehensive paper including the contents of
the author’s papers [60], [56], [59], and [58]. Most of the results stated in this doctoral
thesis have appeared in [60], [56], [59], and [58]. The author has added some auxiliary
explanations and statements for the sake of comprehension of readers.
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Chapter 1

Introduction

In this doctoral thesis, we investigate metric geometry from the viewpoints of conver-
gences and topological distributions of metric structure. We prove theorems concerning
the Assouad dimension and convergences of metric spaces, and theorems on topological
distributions of metrics satisfying geometric properties.

1.1 Background

We first review backgrounds of our studies.

1.1.1 The Assouad dimensions and cones

Assouad [3, 4, 5] introduced the notion which today we call Assouad dimension for metric
spaces, and studied the relation between the Assouad dimension and bi-Lipschitz embed-
dability into a Euclidean space of metric spaces (see Theorem 2.3.4). For a metric space,
its Assouad dimension is greater or equal to its Hausdorff dimension. As is the case with
the Hausdorff dimension, in general, it seems to be difficult to estimate the Assouad di-
mension from below. Mackay–Tyson [76] proved that if (W,h) is a tangent space of a
metric space (X, d), then dimA(W,h) ≤ dimA(X, d), where dimA stands for the Assouad
dimension.

The Assouad dimension and its variations are studied as geometric dimensions, and
several estimations of these dimensions were proven in metric geometry and coarse ge-
ometry. Le Donne and Rajala [26] gave both-sides estimations of the Assouad dimension
and the Nagata dimension by tangent spaces under a certain assumption (see [26, There-
oms 1.2, 1.4]). Dydak and Higes [30] provided a lower estimation of the Assouad–Nagata
dimension by asymptotic cones as ultralimits (see [30, Proposition 4.1]). Note that the
Nagata dimension and the Assouad–Nagata dimension are identical notions.

1.1.2 A subset of the Euclidean space of full Assouad dimension

We now introduce another geometric dimension focusing on local behavior of the Hausdorff
measures. Let δ ∈ (0,∞). A metric space (X, d) is said to be Ahlfors regular of dimension
δ if (X, d) is complete and has at least two elements, and if there exists C ∈ (0,∞)
such that for all x ∈ X and for all r ∈ (0, δd(X)], we have C−1rδ ≤ µδ(B(x, r)) ≤ Crδ,
where µδ is the δ-dimensional Hausdorff measure, B(x, r) is the ball of (X, d), and δd(X)
is the diameter of (X, d) (see [25]). Dyatlov–Zahl [29] observed that if a subset S of
[0, 1] is Ahlfors regular of dimension δ ∈ (0, 1), then S does not contain long arithmetic
progressions (see [29, Subsection 6.1.1]).
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Focusing on the Assouad dimension, Fraser–Yu [35] developed Dyatlov–Zahl’s obser-
vation mentioned above on the Ahlfors regularity and arithmetic progressions. In [35],
they provided a characterization of subsets of the Euclidean space possessing the same
Assouad dimension as that of the whole space. Before stating their precise statement, we
introduce an arithmetic patch. For k ∈ N, and for δ ∈ (0,∞), a subset P of RN is said to
be an arithmetic patch of size k and scale δ if P = {t+ δ

∑N
i=1 xiei | xi ∈ {0, . . . , k − 1}},

where {ei}Ni=1 is some linear basis of RN . The notion of an arithmetic patch is a higher
dimensional generalization of arithmetic progressions. Fraser–Yu’s characterization [35]
states that for every subset F of the N -dimensional Euclidean space RN , the following are
equivalent:

(1) F asymptotically contains arbitrary large arithmetic patches; namely, for every k ∈ N
and for every ϵ ∈ (0,∞), there exist a positive number δ ∈ (0,∞), and an arithmetic
patches of size k and scale δ, and a subset E of F such that H(E,P ) ≤ δϵ, where H
is the Hausdorff metric;

(2) F satisfies the asymptotic Steinhaus property; namely, for every finite subset P of
RN , and for every ϵ ∈ (0,∞), there exists a positive number δ ∈ (0,∞), and t ∈ RN ,
and a subset E of F such that H(E, t+ δP ) ≤ δϵ;

(3) dimA F = N ;

(4) CdimA F = N , where CdimA stands for the conformal Assouad dimension;

(5) F has a weak tangent with non-empty interior;

(6) the closed unit ball B(0, 1) in RN is a weak tangent to F .

The notion of the weak tangent appearing in Fraser–Yu’s characterization is a specialized
concept of tangent cones for the Euclidean spaces. They used this characterization to solve
a problem of whether specific subsets of the Euclidean spaces related to number theory,
such as the Cartesian products of the set of all prime numbers, asymptotically contain
arithmetic patches. This problem is an asymptotic version of the Erdős–Turán conjecture
on arithmetic progressions in sets of natural numbers.

1.1.3 Extension of metrics

For a metrizable space X, we denote by M(X) the set of all metrics on X that generate
the same topology as the original one on X.

In 1930, Hausdorff [45] proved the extension theorem stating that for every metrizable
space X, for every closed subset A of X and for every d ∈ M(A), there exists D ∈ M(X)
such that D|A2 = d (see Theorem 2.2.3). Hausdorff [45] made use of this extension
theorem to give a simple proof of the Niemytzki–Tychonoff characterization theorem [86]
which states that a metrizable space X is compact if and only if all metrics in M(X) are
complete. Independently of Hausdorff’s paper [45], Bing [9] proved the extension theorem
for metrics in a context of metrization by coverings of topological spaces. Bacon [6] pointed
out that the Hausdorff metric extension theorem for complete metrics holds true.

The proof of Bing in [9] is done by constructing concrete extended metrics by using
coverings of spaces. In [45], Hausdorff regarded his extension theorem of metrics as a
theorem on extension of homeomorphisms between metrizable spaces. In [46], Hausdorff
proved a theorem on extending continuous maps, which contains the result in [45] as a
special case (see also [70], [1], or [55]).
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Some mathematicians gave proofs of the metric extension theorem by following Haus-
dorff’s argument in [46] of extending homeomorphism between metric spaces in order to
extend metrics. Arens [1] gave a proof using the Dugundji theorem on extension of maps
from metric spaces into locally convex linear spaces (see Theorem 2.7.10). Toruńczyk
[113] provided a simple proof of the Hausdorff extension theorem by using the Arens–Eells
embedding theorem (see Theorem 2.2.2).

As a previous research on the space M(X), we explain a result of a simultaneous
extension of metrics. For a metrizable space X, we define a function DX : M(X)2 → [0,∞]
by

DX(d, e) = sup
(x,y)∈X2

|d(x, y) − e(x, y)|.

The function DX is a metric on M(X) valued in [0,∞]. For every metrizable space X,
and for every closed subset A of X, Nguyen Van Khue and Nguyen To Nhu [68] constructed
a Lipschitz metric extensor from (M(A),DA) into (M(X),DX), and a monotone continuous
metric extensor from M(A) into M(X); moreover, if X is completely metrizable, then each
of these metric extensors maps any complete metric in M(A) into a complete metric in
M(X) (see Theorem 2.2.5). To obtain such metric extensors, they used the Dugundji
extension theorem. Their construction can be considered to use Hausdorff’s argument of
extending homeomorphisms to extend metrics.

A central idea of our interpolation theorem of metrics (Theorems 1.2.9 and 1.2.15) is
based on Hausdorff’s argument of extending homeomorphisms to extend metrics.

1.1.4 Theorems on topological distributions

We now introduce some notions of the theory of Baire spaces. Let X be a topological
space. A subset S of X is said to be nowhere dense if the complement of the closure of S
is dense in X. A subset S of X is said to be of first category or meager if S is the union
of countable nowhere dense subsets of X. A non-meager subset is called a set of second
category. Baire spaces are characterized as spaces whose all non-empty open subsets are
of second category. A subset S of X is said to be comeager or residual if the complement
of S is a meager subset of X. Note that, for a Baire space X, a subset S of X is residual
if and only if S contains a dense Gδ subset. Let P be a property on elements of X. Then
P is said to be typical or generic if the set {x ∈ X | x satisfies P } is residual.

The celebrated Baire category theorems state that complete metrizable spaces and
locally compact Hausdorff spaces are Baire (these results can be unified by the concept of
Čech complete spaces) (see [92], [32], [123], [105], or [66]). After the theory of Baire spaces
arose, many mathematicians have proven theorems on typicality of interesting (or singular)
mathematical objects in suitable spaces. The set of all Liouville numbers is dense Gδ in
R (see [92, Chapter 2]). The set of all normal real numbers are dense and of first category
in R (see [99]). Thom’s transversality theorem concerns typicality of certain smooth
mappings between smooth manifolds (see [39] and [50]). Banach [7] and Mazurkiewicz
[77] independently proved that continuous nowhere differentiable functions are typical in
C([0, 1]) (see also [61] and [92]). Bruckner–Garg [14] studied a residual set concerning level
sets of continuous real-valued functions on [0, 1]. Kato [63] studied topological distributions
of higher dimensional Bruckner–Garg type functions from compacta into manifolds. O’Neil
[89] investigated spaces of measures on the Euclidean spaces, and proved the typicality
of measures possessing large tangent measures. Chen–Rossi [18] proved the typicality of
compact subsets of [0, 1]N whose all tangent cones coincide with all compact subsets of
[0, 1]N , which can be considered as an analogue of O’Neil’s result for metric spaces. The
results mentioned above are only a few examples of typicality theorems.

6



Theorems 1.2.10 and 1.2.16, and their local versions (Theorems 1.2.11 and 1.2.17) in
this thesis are typicality theorems on spaces of metrics.

1.2 Main results

1.2.1 Pseudo-cones

To give a new lower estimation of the Assouad dimension, we introduce the notion of a
pseudo-cone, which can be regarded as a generalization of tangent and asymptotic cones.

In this thesis, for a metric space (X, d), and for a subset A of X, we denote the
restricted metric d|A2 by the same symbol d as the ambient metric d.

Definition 1.2.1 ([60]). Let (X, d) be a metric space. Let {Ai}i∈N be a sequence of
subsets of X, and let {ui}i∈N be a sequence in (0,∞). We say that a metric space (P, h)
is a pseudo-cone of X approximated by ({Ai}i∈N, {ui}i∈N) if GH((Ai, uid), (P, h)) → 0 as
i→ ∞, where GH is the Gromov–Hausdorff distance.

Remark 1.2.1. We emphasize that, in this thesis, we define the Gromov–Hausdorff distance
between not only compact metric spaces but also non-compact ones (see Section 2.4). Thus
GH is not necessarily a metric in the usual sense.

For instance, every closed ball centered at a based point of a tangent cone or an
asymptotic cone is a pseudo-cone. Indeed, if a pointed metric space (W,h,w) is a tangent
(resp. asymptotic) cone of a metric space (X, d) at p, then for every R ∈ (0,∞) the
closed ball (B(w,R), h) centered at w with radius R is a limit space of the sequence
{(B(pi, R/ri), rid)}i∈N in the Gromov–Hausdorff topology, where {pi}i∈N is a sequence in
X with pi → p and ri → ∞ (resp. 0) as i → ∞; in particular, the space (B(w,R), h) is a
pseudo-cone of (X, d) approximated by ({B(pi, R/ri)}i∈N, {ri}i∈N).

For a metric space (X, d), we denote by PC(X, d) the class of all pseudo-cones of X. By
using the notion of a pseudo-cone, we can formulate a generalization of the Mackay–Tyson
estimation of the Assouad dimension.

Theorem 1.2.1 ([60]). Let (X, d) be a metric space. Then for every (P, h) ∈ PC(X) we
have

dimA(P, h) ≤ dimA(X, d).

We also obtain a lower estimation by using ultralimits of metric spaces. The notion of
an ultralimit of metric spaces is a method of constructing a space behaving as a limit space
of a sequence of metric spaces (see Subsection 2.6). Let µ be a non-principal ultrafilter on
N. For a sequence {(Xi, di, pi)}i∈N of pointed metric spaces, we denote by limµ(Xi, di, pi)
the ultralimit of {(Xi, di, pi)}i∈N with respect to µ. The existence of an ultralimit is always
guaranteed. We obtain the following ultralimit analogue of Theorem 1.2.1:

Theorem 1.2.2 ([60]). Let (X, d) be a metric space. Let {Ai}i∈N be a sequence of subsets
of X, and let {ui}i∈N be a sequence in (0,∞). Take ai ∈ Ai for each i ∈ N. Let µ be a
non-principal ultrafilter on N. Then we have

dimA

(
lim
µ

(Ai, uid, ai), D

)
≤ dimA(X, d),

where D is a canonical metric on limµ(Ai, uid, ai).
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The lower Assouad dimension is a variation of the Assouad dimension, and it is used for
interpolation of the Assouad dimension. We also obtain similar estimations as Theorems
1.2.1 and 1.2.2 for the lower Assouad dimension (see Theorems 4.1.5 and 4.1.6).

The conformal Assouad dimension is studied as a variation of the ordinary Assouad
dimension invariant under quasi-symmetric maps in the conformal dimension theory (see
[76]). By comparing the conformal Assouad dimensions of metric spaces with each other,
we can distinguish their quasi-symmetric equivalent classes. In general, it seems to be
quite difficult to find the exact value of the conformal Assouad dimension.

For a metric space (X, d), we denote by KPC(X, d) the class of all pseudo-cones ap-
proximated by a pair of a sequence {Ai}i∈N of compact sets of X and a sequence {ui}i∈N
in (0,∞). Namely, members of KPC(X, d) are pseudo-cones approximated by compact
subsets. We obtain the following lower estimation of the conformal Assouad dimensions:

Theorem 1.2.3 ([60]). Let (X, d) be a metric space. Then for every (P, h) ∈ KPC(X, d)
we have

CdimA(P, h) ≤ CdimA(X, d),

where CdimA stands for the conformal Assouad dimension.

As a consequence of Theorem 1.2.3, for every metric space (X, d), we also give a
lower estimation of the conformal Assouad dimension of (X, d) by the conformal Assouad
dimensions of closed balls of ultralimits of scaled subsets of X (see Corollary 4.1.8).

The points of the proofs of Theorems 1.2.1, 1.2.2 and 1.2.3 are to utilize the stability of
the Assouad dimension under scaling of metrics, and to extract the arguments of Mackay
and Tyson [76] in their lower estimation by tangent cones.

We say that a topological space X is an (ω0 + 1)-space if X is homeomorphic to the
one-point compactification of the countable discrete topological space. This concept is
named after the ordinal space ω0 + 1. The space ω0 + 1 can be regarded as the one-point
compactification of the countable discrete space ω0. Note that an (ω0 + 1)-space has a
unique accumulation point.

By making use of universal metric spaces (see Section 2.5), we construct a metric
(ω0 + 1)-space containing all compact metric spaces as its pseudo-cones.

Theorem 1.2.4 ([60]). There exists a metric (ω0 + 1)-space X such that PC(X) contains
all compact metric spaces.

A metric space is said to be a length space if the distance of arbitrary two points in the
metric space is equal to the infimum of lengths of arcs joining the two points. A metric
space is said to be proper if all bounded closed sets in the metric space are compact.

Similarly to Theorem 1.2.4, by using universal metric spaces, we construct metric
spaces containing all proper length space as its tangent or asymptotic cones.

Theorem 1.2.5 ([60]). There exists a metric (ω0+1)-space (X, d) for which every pointed
proper length space (K, k, p) is a tangent cone of (X, d) at its unique accumulation point.

Theorem 1.2.6 ([60]). There exists a proper countable discrete metric space (X, d) for
which every pointed proper length space (K, k, p) is an asymptotic cone of X at some point.

The metric spaces stated in Theorems 1.2.4, 1.2.5 or 1.2.6 tell us that analogies of
Theorem 1.2.1 for the topological dimension, the Hausdorff dimension and the conformal
Hausdorff dimension are false (see Proposition 4.2.10). The author does not know whether
an analogy of Theorem 1.2.1 for the Assouad–Nagata dimension holds true or not.
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1.2.2 Tiling space

In this subsection, we develop Fraser–Yu’s characterization [35] to more general metric
spaces. To prove their characterization, Fraser and Yu essentially used the fact that the
Euclidean spaces have a tiling structure of congruent cubes. While referring to their
method, we introduce the notion of a tiling space. A tiling space is a pair of a metric
space and a family called a tiling structure. The class of tiling spaces includes the Eu-
clidean spaces, the p-adic numbers, the middle-third Cantor set, the Sierpiński gasket,
and various self-similar spaces appearing in fractal geometry. For a doubling tiling space,
we characterize metric subspaces possessing the same Assouad dimension as that of the
whole space.

We first define covering pairs as follows: For a set S, we say that a family of subsets
of S is a covering of S if the union of the family is equal to S. For a set X, we denote by
cov(X) the set of all coverings of X. We call a map P from N or Z to cov(X) a covering
structure on X. We denote by Pn the value of P at n. For T ∈ Pn and k ∈ N, we put
[T ]k = {A ∈ Pn+k | A ⊂ T }. We call a pair (X,P) of a set X and a covering structure P

on X a covering pair. We denote by dom(P) the domain of the map P. Note that dom(P)
is either N or Z. We next define tiling sets.

Definition 1.2.2 ([56]). Let (X,P) be a covering pair. Let N ∈ N. We say that (X,P)
is an N -tiling set if (X,P) satisfies the following:

(S1) for every pair n,m ∈ dom(P) with n < m, and for every A ∈ Pn, we have
card([A]m−n) = Nm−n and A =

∪
[A]m−n, where the symbol card stands for the

cardinality;

(S2) for every n ∈ dom(P), and for every pair A,B ∈ Pn, there exist m ∈ dom(P) and
C ∈ Pm such that A ∪B ⊂ C and m < n;

(S3) for every n ∈ dom(P), for all l,m ∈ N, and for each A ∈ Pn, we have

[A]m+l =
∪

T∈[A]m

[T ]l.

We say that (X,P) is a tiling set if it is an N -tiling set for some N . For a tiling set (X,P),
each member of Pn is called a tile of (X,P).

We next specialize the notion of a tiling set for metric spaces.

Definition 1.2.3 ([56]). Let N ∈ N and s ∈ (0, 1). Let (X, d) be a metric space. Let P

be a covering map on X, and assume that (X,P) is an N -tiling set. We say that the triple
(X, d,P) is an (N, s)-pre-tiling space if it satisfies the following:

(T1) there exist D1, D2 ∈ (0,∞) such that for every n ∈ dom(P), and for every A ∈ Pn,
we have D1 ≤ δ(A)/sn ≤ D2;

(T2) there exists E ∈ (0,∞) such that for every n ∈ dom(X), and for every A ∈ Pn, there
exists a point pA ∈ A satisfying that U(pA, Es

m) ⊂ A, where U(pA, Es
m) stands for

the open ball.

We also say that an (N, s)-pre-tiling space (X, d,P) is an (N, s)-tiling space if it satisfies:

(U) for every countable sequence {Ai}i∈N of tiles of (X, d,P), there exists a subsequence
{Aϕ(i)}i∈N such that the sequence {(Aϕ(i), (δ(Aϕ(i)))

−1d)}i∈N converges to the space
(T, (δ(T ))−1d) for some tile T of (X, d,P) in the sense of Gromov–Hausdorff.
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A triple (X, d,P) is said to be a tiling (resp. pre-tiling) space if it is an (N, s)-tiling (resp.
(N, s)-pre-tiling) space for some N and s.

Two metric spaces (X, d) and (Y, e) are said to be similar if there exists h ∈ (0,∞)
satisfying GH((X,hd), (Y, e)) = 0. Similarity is an equivalence relation on metric spaces.

Let (X, d) be a metric space. Let (X,P) be a tiling set. If the similarity classes of the
tiles of (X,P) is finite, then (X, d,P) satisfies the condition (U). Thus the condition (U)
is considered as a generalization of the finiteness of the similarity classes of tiles. There
exist a pre-tiling space failing the condition (U) (see Example 5.4.2), and a tiling space
whose tiles have infinite similarity classes (see Example 5.4.3).

To state our characterization of subsets of full Assouad dimension of tiling spaces,
we introduce the specialized notion of a pseudo-cone for tiling spaces. Let (X, d,P) be a
pre-tiling space, and let F be a subset of X. We also denote by TPC(F, d) the class of
all pseudo-cones approximated by ({Ai ∩ F}i∈N, {ui}i∈N), where {Ai}i∈N is a sequence of
tiles of (X,P) and {ui}i∈N is a sequence in (0,∞).

Let (X, d,P) be a tiling set. Let A be a tile of (X, d,P). We say that a subset F of
X satisfies the asymptotic Steinhaus property for A if for every ϵ ∈ (0,∞), and for every
finite subset S of A, there exist a finite subset T of F , and δ ∈ (0,∞) satisfying that
GH((T, d), (S, δd)) ≤ δ · ϵ.

Our characterization is the following:

Theorem 1.2.7 ([56]). Let (X, d,P) be a doubling tiling space. Then for every subset F
of X the following are equivalent:

(1) dimA(F, d) = dimA(X, d);

(2) there exists a tile A of (X, d,P) such that A ∈ PC(F, d);

(3) there exists a tile A of (X, d,P) such that A ∈ TPC(F, d);

(4) there exists a tile A of (X, d,P) such that A ∈ KPC(F, d);

(5) there exists a tile A of (X, d,P) such that F satisfies the asymptotic Steinhaus prop-
erty for A.

In Theorem 1.2.7, the assumption of the doubling property for X is necessary. Note
that the doubling property is equivalent to the finiteness of the Assouad dimension (see
Section 2.3). There exists a tiling space that is not doubling (see Example 5.4.1).

Remark 1.2.2. Let (X, d, P ) be a tiling space. If (X, d) is doubling, then for every tile
T ∈ P we have dimA(T, d) = dimA(X, d) (see Corollary 5.2.3). If (X, d) is not doubling,
then the equality does not necessarily hold. For example, the tiling space constructed
in Example 5.4.1 has infinite Assouad dimension, and possesses a tile of finite Assouad
dimension.

If a tiling space (X, d,P) satisfies that the conformal dimensions of all the tiles of
(X, d,P) and X are equal to dimA(X, d), then the condition CdimA(F, d) = dimA(X, d) is
equivalent to the conditions (1)–(5) stated in Theorem 1.2.7. The assumption mentioned
above seems to be quite strong. Indeed, the author does not know an example satisfying
the assumption except the Euclidean spaces. Therefore we do not treat with the conformal
dimensions of tiling spaces.

Attractors of iterated function systems on metric spaces are studied as canonical and
classical examples of fractals, and their Hausdorff dimensions are investigated (see, for
example, [34, Chapter 9], [100], and [101]).
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Definition 1.2.4 ([56]). Let (X, d) be a complete metric space. Let L ∈ (0,∞). A map
f : X → X is said to be an L-similar transformation on X if for all x, y ∈ X we have
dX(f(x), f(y)) = LdX(x, y). Let N ≥ 2 and let s ∈ (0, 1). We say that S is an (N, s)-
similar iterated function system on X if S consists of N many s-similar transformations
on X, say S = {Si}N−1

i=0 . A non-empty subset F of X is said to be an attractor of the

iterated function system S if F is compact and it satisfies F =
∪N−1
i=0 Si(F ). Since X is

complete, an attractor of S always uniquely exists (see [34, Chapter 9] for the Euclidean
setting). We write AS as the attractor of S. The iterated function system S is said to
satisfy the strong open set condition if there exists an open set V of X such that

(O1)
∪N−1
i=0 Si(V ) ⊂ V ;

(O2) The family {Si(V )}N−1
i=0 is mutually disjoint;

(O3) V ∩AS ̸= ∅.

We denote by WS the set of all words generated by {0, . . . , N − 1}. For every word
w = w0 · · ·wl, we put Sw = Swl

◦ · · · ◦ Sw0 , where each wi belongs to {0, . . . , N − 1}. We
define a covering map PS : N → cov(AS) by

(PS)n = {Sw(AS) | w ∈WS and |w| = n }, (1.2.1)

where |w| stands for the length of the word w. We denote by dS the metric d|(AS)2 on AS .

Similar iterated function systems provide us a plenty of tiling spaces.

Theorem 1.2.8 ([56]). Let N ∈ N≥2 and s ∈ (0, 1). Let S be an (N, s)-similar iterated
function system on a complete metric space satisfying the strong open set condition. Let
AS be the attractor of S, and PS the covering map defined by (1.2.1). Then the triple
(AS , dS ,PS) is an (N, s)-tiling space.

Due to Theorem 1.2.8, for instance, the middle-third Cantor set and the Sierpiński
gasket are tiling spaces for some suitable covering structures induced from iterated function
systems (see Subsection 5.3.3), and we can apply Theorem 1.2.7 to these metric spaces.

As a non-compact version of attractors, we introduce the notion of an extended at-
tractor. We also prove a similar result to Theorem 1.2.8 for extended attractors (Theorem
5.3.3).

1.2.3 Spaces of metrics

In this subsection, we explain our interpolation theorem and theorems on topological
distribution in spaces of metrics. Recall that, for a metrizable space X, the symbol M(X)
stands for the set of all metrics on X that generate the same topology as the original one
on X, and recall that the metric DX on M(X) is defined by

DX(d, e) = sup
(x,y)∈X2

|d(x, y) − e(x, y)|.

In the same way as ordinary metric spaces, the metric DX generates the topology of
M(X). In what follows, the space M(X) will be equipped with the topology induced from
DX . We first generalize the Hausdorff extension theorem to an interpolation theorem of
metrics preserving DX .

A family {Si}i∈I of subsets of a topological space X is said to be discrete if for every
x ∈ X there exists a neighborhood of x intersecting at most single member of {Si}i∈I .
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Theorem 1.2.9 ([59]). Let X be a metrizable space, and let {Ai}i∈I be a discrete family
of closed subsets of X. Then for every metric d ∈ M(X), and for every family {ei}i∈I of
metrics satisfying ei ∈ M(Ai), there exists a metric m ∈ M(X) satisfying the following:

(1) for every i ∈ I we have m|A2
i

= ei;

(2) DX(m, d) = supi∈I DAi(eAi , d|A2
i
).

Moreover, if X is completely metrizable, and if each ei ∈ M(Ai) is a complete metric, then
the metric m ∈ M(X) can be chosen as a complete one.

A central idea of the proof of Theorem 1.2.9 is a correspondence between a metric on
a metrizable space and a topological embedding from a metrizable space into a Banach
space. A metric d ∈ M(X) on a metrizable space X induces a topological embedding
from X into a suitable Banach space such as the Kuratowski or the Arens–Eells isometric
embedding (see Subsection 2.2.1). Conversely, a topological embedding F : X → V from a
metrizable space X into a Banach space V with a norm ∥∗∥V induces a metric m ∈ M(X)
on X defined by m(x, y) = ∥F (x) − F (y)∥V . To prove Theorem 1.2.9, we utilize this
correspondence to translate the statement of Theorem 1.2.9 into an interpolation problem
on topological embeddings into a Banach space. This idea is inspired by Hausdorff’s
method mentioned in Subsection 1.1.3. We then resolve such a problem on topological
embeddings by using the Michael continuous selection theorem (Theorem 2.7.3), and a
similar method to Kuratowski [70] (see also [46] and [1]) of converting a continuous function
into a topological embedding by extending a codomain.

For a topological space X, a subset of X is said to be Gδ if it is represented as the
intersection of countable family of open sets of X.

Our interpolation theorem (Theorem 1.2.9) enables us to investigate dense subsets in
the topology of the space (M(X),DX) for a metrizable space X. To describe our next
result precisely, we define a class of geometric properties that unify various properties
defined by finite subsets of metric spaces. We denote by P∗(N) the set of all non-empty
subsets of N. For a topological space T , we denote by F(T ) the set of all closed subsets of
T . For W ∈ P∗(N), and for a set S, we denote by Seq(W,S) the set of all finite injective
sequences {ai}ni=1 in S satisfying n ∈W .

Definition 1.2.5 ([59]). Let Q be an at most countable set, and let P be a topological
space. Let F : Q → F(P ) and G : Q → P∗(N) be maps. Let Z be a set. Let ϕ be a
correspondence assigning a pair (q,X) of q ∈ Q and a metrizable space X to a map

ϕq,X : Seq(G(q), X) × Z × M(X) → P.

We say that a sextuple (Q,P, F,G,Z, ϕ) is a transmissible paremeter if for every metrizable
space X, for every q ∈ Q, and for every z ∈ Z the following are satisfied:

(TP1) for every a ∈ Seq(G(q), X) the map ϕq,X(a, z) : M(X) → P defined by

ϕq,X(a, z)(d) = ϕq,X(a, z, d)

is continuous;

(TP2) for every d ∈ M(X), for every subset S of X and for every a ∈ Seq(G(q), S), we have
ϕq,X(a, z, d) = ϕq,S(a, z, d|S2).

We now define a property determined by a transmissible parameter.
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Definition 1.2.6 ([59]). Let G = (Q,P, F,G,Z, ϕ) be a transmissible parameter. We say
that a metric space (X, d) satisfies the G-transmissible property if there exists q ∈ Q such
that for every z ∈ Z and for every a ∈ Seq(G(q), X) we have ϕq,X(a, z, d) ∈ F (q). We
say that (X, d) satisfies the anti-G-transmissible property if (X, d) satisfies the negation of
the G-transmissible property; namely, for every q ∈ Q there exist an element z ∈ Z and a
sequence a ∈ Seq(G(q), X) satisfying ϕq,X(a, z, d) ∈ P \F (q). A property on metric spaces
is said to be a transmissible property (resp. anti-transmissible property) if it is equivalent
to a G-transmissible property (resp. anti-G-transmissible property) for some transmissible
parameter G.

Various properties appearing in metric geometry are transmissible properties.

Example 1.2.1. The following properties on metric spaces are transmissible properties
(see Section 6.2).

(1) the doubling property;

(2) the uniform disconnectedness;

(3) satisfying the ultratriangle inequality;

(4) satisfying the Ptolemy inequality;

(5) the Gromov Cyclm(0) condition;

(6) the Gromov hyperbolicity.

For our typicality theorems, we require the notion of singularity for transmissible
properties similarly to other typicality theorems.

Definition 1.2.7 ([59]). Let G = (Q,P, F,G,Z, ϕ) be a transmissible parameter. We say
that G is singular if for each q ∈ Q and for every ϵ ∈ (0,∞) there exist z ∈ Z and a finite
metrizable space (R, dR) such that

(1) δdR(R) ≤ ϵ, where δdR(R) stands for the diameter of R;

(2) card(R) ∈ G(q), where card stands for the cardinality;

(3) ϕq,R(R, z, dR) ∈ P \ F (q).

Remark that not all transmissible parameters are singular; especially, the Gromov
hyperbolicity does not have a singular transmissible parameter (see Proposition 6.3.15).

By Theorem 1.2.9, we obtain a theorem on dense Gδ subsets in spaces of metrics:

Theorem 1.2.10 ([59]). Let G be a singular transmissible parameter. Then for every
non-discrete metrizable space X, the set of all d ∈ M(X) for which (X, d) satisfies the
anti-G-transmissible property is dense Gδ in M(X).

Theorem 1.2.10 can be considered as a theorem on typicality in spaces of metrics.

Remark 1.2.3. Theorem 1.2.10 holds true for the space CM(X) of all complete metrics in
M(X) (see Theorems 6.2.7).

Our next result is based on the fact that for second countable locally compact space X
the space M(X) is a Baire space (see Lemma 3.4.7). For a property P on metric spaces, we
say that a metric space (X, d) satisfies local P if every non-empty open metric subspace of
X satisfies the property P . As a local version of Theorem 1.2.10, we obtain the following:
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Theorem 1.2.11 ([59]). Let X be a second countable, locally compact locally non-discrete
space. Then for every singular transmissible parameter G, the set of all metrics d ∈ M(X)
for which (X, d) satisfies the local anti-G-transmissible property is dense Gδ in M(X).

Note that all second countable locally compact spaces are metrizable, which is a con-
sequence of the Urysohn metrization theorem.

We can apply Theorems 1.2.10 and 1.2.11 to the properties (1)–(5) mentioned in Exam-
ple 1.2.1. Therefore we conclude that the set of all metrics not satisfying these properties
are dense Gδ in spaces of metrics (see Corollaries 6.3.16 and 6.3.17). For a metric inequal-
ity, we can show a stronger statement (see also Corollary 6.3.10).

1.2.4 Spaces of ultrametrics

Let X be a set. A metric d on X is said to be an ultrametric or a non-Archimedean metric
if for all x, y, z ∈ X we have

d(x, y) ≤ d(x, z) ∨ d(z, y), (1.2.2)

where the symbol ∨ stands for the maximum operator on R. The inequality (2.1.1) is
called the strong triangle inequality. We say that a set S is a range set if S is a subset
of [0,∞) and 0 ∈ S. For a range set S, we say that a metric d : X2 → [0,∞) on X
is S-valued if d(X2) is contained in S. Note that [0,∞)-valued ultrametrics are nothing
but ultrametrics. The notion of an S-valued ultrametric is studied as a special case and
a reasonable restriction of ultrametrics. For a countable range set R, Gao and Shao [38]
studied R-valued universal ultrametric spaces of Urysohn-type and their isometry groups.
Brodskiy, Dydak, Higes and Mitra [12] utilized ({0} ∪ { 3n | n ∈ Z })-valued ultrametrics
for their study on 0-dimensionality in categories of metric spaces.

The notion of an ultrametric can be considered as a 0-dimensional analogue of ordi-
nary metrics, and it is often expected to prove ultrametric versions of theorems on metric
spaces. For example, p-adic analysis and non-Archimedean functional analysis are ultra-
metric analogues of the ordinary analysis and functional analysis (see [67], [94], and [103]).
Studies of constructions of Urysohn ultrametric spaces (see [120], [38], and [121]) can be
considered as non-Archimedean analogues of Urysohn’s study of universal spaces [118]. In
this thesis, as realizations of such expectations, for every range set S, we provide S-valued
ultrametric versions of the Arens–Eells isometric embedding theorem [2] of metric spaces,
the Hausdorff extension theorem [45] of metrics, the Niemytzki–Tychonoff characteriza-
tion [86] of compactness, and the interpolation theorem of metrics (Theorem 1.2.9) and
theorems on dense Gδ subsets of spaces of metrics (Theorems 1.2.10 and 1.2.11).

Before stating our main results, we introduce some basic notions. Let R be a commu-
tative ring, and let V be an R-module. A subset S of V is said to be R-independent if for
every finite subset {f1, . . . , fn} of S, and for all N1, . . . , Nn ∈ R, the identity

∑n
i=1Nifi = 0

implies Ni = 0 for all i. A function ∥ ∗ ∥ : V → [0,∞) is said to be an ultra-norm on V if
the following are satisfied:

(1) ∥x∥ = 0 if and only if x = 0;

(2) for every x ∈ V , we have ∥ − x∥ = ∥x∥;

(3) for all x, y ∈ V , we have ∥x+ y∥ ≤ ∥x∥ ∨ ∥y∥.

The pair (V, ∥ ∗ ∥) is called an ultra-normed R-module (see also [122] and [94]). Note that
ultra-norms induce invariant metrics under addition (see Subsection 3.3.2).
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In 1956, Arens and Eells [2] established the result which today we call the Arens–Eells
embedding theorem (see Theorem 2.2.2), stating that for every metric space (X, d), there
exist a real normed linear space V and an isometric embedding I : X → V such that

(1) I(X) is closed in V ;

(2) I(X) is linearly independent in V .

In the study on free non-Archimedean topological groups and Boolean groups with
actions from topological groups, Megrelishvili and Shlossberg [78] proved an ultrametric
version of the Arens–Eells embedding theorem, stating that every ultrametric space is
isometrically embeddable into an ultra-normed Boolean group (a Z/2Z-module) as a closed
set of it, which is a consequence of their isometric embedding theorem compatible with
group actions. By introducing module structures into universal ultrametric spaces of
Lemin–Lemin type [74], we obtain a more general S-valued ultrametric version of the
Arens–Eells embedding theorem.

Theorem 1.2.12 ([58]). Let S be a range set possessing at least two elements. Let R be
an integral domain, and let (X, d) be an S-valued ultrametric space. Then there exist an
S-valued ultra-normed R-module (V, ∥ ∗ ∥), and an isometric embedding I : X → V such
that

(1) I(X) is closed in V ;

(2) I(X) is R-independent in V .

Moreover, if (X, d) is complete, then (V, ∥ ∗ ∥) can be chosen as a complete metric space.

Remark 1.2.4. Let R be an integral domain. Let tR be the trivial absolute value on R
defined by tR(x) = 1 if x ̸= 0; otherwise tR(x) = 0. Let (V, ∥ ∗ ∥) be an R-module
constructed in the proof of Theorem 1.2.12. Then the ultra-norm ∥ ∗ ∥ on V is compatible
with tR, i.e., for every r ∈ R and for every x ∈ V , we have ∥r · x∥ = tR(r)∥x∥. For
every finite field, there exist no absolute values on it except the trivial valuation. Thus
we can consider that Theorem 1.2.12 includes the Arens–Eells embedding theorem into
normed spaces over all finite fields. The author does not know whether such an embedding
theorem into normed spaces over all non-Archimedean valued fields holds true or not.

Remark 1.2.5. There are various isometric embeddings from an ultrametric space into a
metric space with algebraic structures. For instance, Schikhof [102] constructed an iso-
metric embedding from an ultrametric space into a non-Archimedean valued field. Timan
and Vestfrid [111] proved the existence of an isometric embedding from an ultrametric
space into a Hilbert space in a separable case. A. J. Lemin [73] proved the existence of
such an isometric embedding in a general setting. The papers [112], [120] and [37] also
contain results concerning this subject.

For a range set S, and for a topological spaceX, we denote by UM(X,S) the set of all S-
valued ultrametrics on X generating the same topology as X. We also denote by UM(X)
the set UM(X, [0,∞)). We say that a topological space X is S-valued ultrametrizable
(resp. ultrametrizable) if UM(X,S) ̸= ∅ (resp. UM(X) ̸= ∅). We say that X is completely
S-valued ultrametrizable (resp. completely ultrametrizable) if there exists a complete metric
d ∈ UM(X,S) (resp. d ∈ UM(X)).

We say that a range set S has countable coinitiality if there exists a non-zero strictly
decreasing sequence {ri}i∈N in S convergent to 0 as i→ ∞.
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Remark 1.2.6. For a range set S, and for a topological space X, it is worth clarifying a
relation between the ultrametrizability and the S-valued ultrametrizability. Proposition
3.3.10 states that these two properties are equivalent to each other if S has countable
coinitiality.

While referring to Toruńczyk’s proof [113] of the Hausdorff extension theorem by the
Arens–Eells embedding theorem, we prove an analogue of the Hausdorff extension theorem
for ultrametric spaces by using Theorem 1.2.12.

Theorem 1.2.13 ([58]). Let S be a range set. Let X be an S-valued ultrametrizable
space, and let A be a closed subset of X. Then for every e ∈ UM(A,S), there exists
D ∈ UM(X,S) with D|A2 = e. Moreover, if X is completely metrizable and e ∈ UM(A,S)
is complete, then D ∈ UM(X,S) can be chosen as a complete S-valued ultrametric.

Remark 1.2.7. There are several studies on extending a partial or continuous ultrametrics
(see [31], [107], [108], or [115]).

In 1928, Niemytzki and Tychonoff [86] proved that a metrizable space X is compact
if and only if all metrics in M(X) are complete. Hausdorff [45] gave a simple proof of
their characterization theorem by applying his extension theorem (Theorem 2.2.3). By
using Hausdorff’s argument and Theorem 1.2.13, we obtain an ultrametric version of the
Niemytzki–Tychonoff theorem.

Corollary 1.2.14 ([58]). Let S be a range set with the countable coinitiality. Then an
S-valued ultrametrizable space X is compact if and only if all metrics in UM(X,S) are
complete.

To state our future results, for a topological space X, and for a range set S, we define a
function UDS

X : UM(X,S)2 → [0,∞] by assigning UDS
X(d, e) to the infimum of ϵ ∈ S⊔{∞}

such that for all x, y ∈ X we have d(x, y) ≤ e(x, y) ∨ ϵ, and e(x, y) ≤ d(x, y) ∨ ϵ. The
function UDS

X is an ultrametric on UM(X,S) valued in CL(S)⊔{∞}, where CL(S) stands
for the closure of S in [0,∞). As is the case with DX , we can introduce a topology on
UM(X,S) induced from UDS

X . In what follows, the space UM(X,S) will be equipped with
the topology induced from UDS

X .

Remark 1.2.8. As a non-Archimedean analogue of the Gromov–Hausdorff distance, the
non-Archimedean Gromov–Hausdorff distance was introduced by Zarichnyi [124]. Qiu
[96] introduced the notion of a strong ϵ-isometry in the study on the non-Archimedean
Gromov–Hausdorff distance. This concept is an analogue for ultrametric spaces of the
notion of an ϵ-isometry in the study on the ordinary Gromov–Hausdorff distance (see
[15]). The metric UDS

X can be explained with the strong ϵ-isometries. Roughly speaking,
for a range set S, for an S-valued ultrametrizable space X, and for S-valued ultrametrics
d, e ∈ UM(X,S), the inequality UDS

X(d, e) ≤ ϵ is equivalent to the statement that the
identity maps 1X : (X, d) → (X, e) and 1X : (X, e) → (X, d) are strong ϵ-isometries.

By Theorems 1.2.12 and 1.2.13, and by tracing the proof of Theorem 1.2.9, we can
prove an ultrametric version of Theorem 1.2.9. For a range set S, and for a subset E of
S, we denote by supE the supremum of E taken in [0,∞], not in S. For C ∈ [1,∞),
we say that S is C-quasi-complete if for every bounded subset E of S, there exists s ∈ S
with supE ≤ s ≤ C · supE. We say that S is quasi-complete if S is C-quasi-complete
for some C ∈ [1,∞). For example, if a range set is closed or dense in [0,∞), then it is
quasi-complete. Note that a range set is 1-quasi-complete if and only if it is closed under
the supremum operator.
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Theorem 1.2.15 ([58]). Let C ∈ [1,∞), and let S be a C-quasi-complete range set. Let X
be an S-valued ultrametrizable space, and let {Ai}i∈I be a discrete family of closed subsets
of X. Then for every S-valued ultrametric d ∈ UM(X,S), and for every family {ei}i∈I
of S-valued ultrametrics satisfying ei ∈ UM(Ai, S) for all i ∈ I, there exists an S-valued
ultrametric m ∈ UM(X,S) with the following properties:

(1) for every i ∈ I we have m|A2
i

= ei;

(2) supi∈I UDS
Ai

(ei, d|A2
i
) ≤ UDS

X(m, d) ≤ C · supi∈I UDS
Ai

(ei, d|A2
i
).

Moreover, if X is completely metrizable, and if each ei ∈ UM(Ai, S) is complete, then the
metric m ∈ UM(X,S) can be chosen as a complete one.

In the proof of Theorem 1.2.9, we use the Michael selection theorem for paracompact
spaces. On the other hand, in order to prove Theorem 1.2.15, we use the 0-dimensional
Michael selection theorem.

The following concept is an S-valued ultrametric version of the singularity of the
transmissible parameters (compare with Definition 1.2.7).

Definition 1.2.8 ([58]). Let S be a range set. Let G = (Q,P, F,G,Z, ϕ) be a transmissible
parameter. We say that G is S-ultra-singular if for each q ∈ Q and for every ϵ ∈ (0,∞)

there exist z ∈ Z, a finite S-valued ultrametric space (R, dR), and an index R = {ri}card(R)
i=1

such that

(1) δdR(R) ≤ ϵ;

(2) card(R) ∈ G(q);

(3) ϕq,R
(
{ri}card(R)

i=1 , z, dR

)
∈ P \ F (q).

Similarly to Theorems 1.2.10 and 1.2.11, Theorem 1.2.15 enables us to prove theorems
on dense Gδ subsets of UM(X,S).

Theorem 1.2.16 ([58]). Let S be a quasi-complete range set with the countable coinitiality.
Let G be an S-ultra-singular transmissible parameter. Let X be a non-discrete S-valued
ultrametrizable space. Then the set of all d ∈ UM(X,S) for which (X, d) satisfies the
anti-G-transmissible property is dense Gδ in the space (UM(X,S),UDS

X).

Similarly to Theorem 1.2.11, in the proof of the following, we use the fact that for
second countable locally compact space X, the space UM(X,S) is Baire (see Lemma
3.4.7).

Theorem 1.2.17 ([58]). Let S be a quasi-complete range set with the countable coini-
tiality. Let X be a second countable, locally compact locally non-discrete S-valued ultra-
metrizable space. Then for every S-ultra-singular transmissible parameter G, the set of all
d ∈ UM(X,S) for which (X, d) satisfies the local anti-G-transmissible property is a dense
Gδ set in the space (UM(X,S),UDS

X).

For example, the doubling property is a transmissible property with an ultra-singular
transmissible parameter.

17



1.3 Organization

In Chapter 2, we prepare some notations, and review classical facts such as the Kura-
towski embedding theorem, the Hausdorff metric extension theorem, the Baire category
theorem, and the Michael continuous selection theorems. We also review basic properties
of the classical concepts such as the Gromov–Hausdorff distance, universal metric spaces,
ultralimits of sequences of metric spaces.

Chapter 3 is devoted to preparing basic statements concerning metrics or ultrametrics,
including the telescope construction, amalgamations of (ultra)metrics, and the statement
that M(X) and UM(X) are Baire if X is second countable locally compact.

In Chapter 4, we prove Theorems 1.2.1 and 1.2.2, which are lower estimations of the
Assouad dimensions by pseudo-cones and ultralimits, respectively. We also provide a lower
estimation of the conformal Assouad dimension (Theorem 1.2.3). By using universal metric
spaces for separable metric spaces (see Section 2.5), we construct metric spaces containing
large classes of metric spaces as pseudo-cones, tangent cones, asymptotic cones (Theorems
1.2.4, 1.2.5, and 1.2.6).

In Chapter 5, we prove Theorem 1.2.7, which is a generalization of Fraser–Yu’s char-
acterization of subsets of full Assouad dimension of the Euclidean spaces. We also prove
Theorem 1.2.8, stating that attractors of iterated function systems are tiling spaces, and
we introduce the notion of an extended attractor. We also provide counterexamples of
tiling spaces related to the doubling property, bi-Lipschitz maps, and similarity classes of
tiles.

In Chapter 6, we first prove an interpolation theorem of metrics preserving DX (The-
orem 1.2.9). As its application, we prove Theorem 1.2.10, which determines a topological
distribution of metrics with transmissible properties in spaces of metrics. We also prove
Theorem 1.2.11, which is a local version of Theorem 1.2.10.

In Chapter 7, we prove Theorem 1.2.12, which is an ultrametric version of the Arens–
Eells isometric embedding theorem. As an application of Theorem 1.2.12, we prove The-
orem 1.2.13, which is an extension theorem of ultrametrics. By using this extension theo-
rem, we can develop an ultrametric analogue of the theory of dense Gδ subsets of spaces
of metrics in Chapter 6. We prove an interpolation theorem of metrics preserving UDS

X

(Theorems 1.2.15), a theorem on dense Gδ subsets of spaces of ultrametrics (Theorem
1.2.16), and its local version (Theorem 1.2.17).
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Chapter 2

Preliminaries

In this thesis, we denote by N the set of all non-negative integers. For a subset E of the
set R of all real numbers (we intend that E is N, Z, or a range set), and for n ∈ E, we
denote by E≥n the set {x ∈ E | x ≥ n }. We also put E+ = {x ∈ E | x > 0 }. For a set
X, we denote by 1X the identity map of X. For n ∈ Z+, we denote by Xn the Cartesian
product of n many copies of the set X. Let X, Y be two sets. A map f : X2 → Y is said
to be symmetric if for all x, y ∈ X we have f(x, y) = f(y, x).

In this chapter, we prepare some notations and definitions, and we discuss basic or
classical facts on metric spaces.

2.1 Metrics and ultrametrics

In this section, we introduce the notions of metrics and ultrametrics again, and we prepare
some notations related to metric spaces.

Let X be a set. A function d : X2 → [0,∞) is said to be a metric on X if the following
three conditions are satisfied:

(M1) for all x, y ∈ X, the equality d(x, y) = 0 holds if and only if x = y;

(M2) d is a symmetric map;

(M3) for all x, y, z ∈ X, we have d(x, y) ≤ d(x, z) + d(z, y).

The condition (M3) is called the triangle inequality.
Recall that a function d : X2 → [0,∞) is said to be an ultrametric or a non-

Archimedean metric if d satisfies the conditions (M1) and (M2), and if for all x, y, z ∈ X
we have

d(x, y) ≤ d(x, z) ∨ d(z, y), (2.1.1)

where the symbol ∨ stands for the maximum operator on R. The inequality (2.1.1) is
called the strong triangle inequality. Recall that a set S is called a range set if S ⊂ [0,∞)
and 0 ∈ S. For a range set S, we say that a metric d : X2 → [0,∞) on X is S-valued if
d(X2) is contained in S. Note that [0,∞)-valued ultrametrics are nothing but ordinary
ultrametrics. Remark that the strong triangle inequality implies the triangle inequality.
In particular, all ultrametrics are metrics.

Let (X, d) be a metric space. Let A be a subset of X. We denote by δ(A) the diameter
of A, and we set α(A) = inf{ d(x, y) | x, y ∈ A and x ̸= y }. We denote by B(x, r) (resp.
U(x, r)) the closed (resp. open) ball centered at x with radius r. We also denote by

19



B(A, r) the set
∪
a∈AB(a, r). To emphasize a metric space under consideration, we often

use symbols δd(A), αd(A) instead of δ(A), α(A), respectively. To emphasize a metric
or a underlying set under consideration, we often denote the closed (resp. open) ball by
B(x, r; d) or B(x, r;X, d) (resp. U(x, r; d) or U(x, r;X, d)), respectively. We also use this
notation for the balls centered at subsets. A subset A of X is said to be r-separated if
α(A) ≥ r. A subset A of X is said to be separated if it is r-separated for some r.

Let p ∈ [1,∞]. For two metric spaces (X, d) and (Y, e), we denote by d ×p e the
ℓp-product metric defined by

(d×p e)((a, b), (c, d)) =

{
(d(a, c)p + e(b, d)p)1/p if p ∈ [1,∞);

d(a, c) ∨ e(b, d) if p = ∞.

It is well-known that d ×p e belongs to M(X × Y ) for any p ∈ [0,∞]. In the case of
ultrametrics, we obtain the following:

Lemma 2.1.1. Let S be a range set. Let (X, d) and (Y, e) be S-valued ultrametric spaces.
Then the metric d×∞ e belongs to UM(X × Y, S).

Let (X, d) be a metric space. For ϵ ∈ (0,∞), we define a function dϵ : X2 → [0,∞) by
dϵ(x, y) = (d(x, y))ϵ. If dϵ is a metric, then the metric space (X, dϵ) is called a snowflake
of (X, d).

Lemma 2.1.2. Let (X, d) be a metric space. Then the following hold:

(1) for every ϵ ∈ (0, 1), the function dϵ is a metric.

(2) if d is an ultrametric, then for every ϵ ∈ (0,∞) the function dϵ is an ultrametric.

2.2 Basic statements on metric spaces

2.2.1 Isometric embedding theorems into a Banach space

For a metric space (X, d), we denote by Cb(X) the Banach space of all bounded continuous
functions on X equipped with the supremum norm. The following theorem is known as the
Kuratowski embedding theorem [69], stating that every metric space can be isometrically
embedded into the Banach space of all bounded continuous functions on the metric space.
The proof of this theorem can be seen in, for example, [69], [32, Theorem 4.3.14], or [97,
Theorem 5.33].

Theorem 2.2.1. For every metric space (X, d), and for every point o ∈ X, the map
K : X → Cb(X) defined by K(x) = dx − do is an isometric embedding, where dx : X → R
is defined by dx(p) = d(x, p). Moreover, if (X, d) is bounded, then the map L : X → Cb(X)
defined by L(x) = dx is an isometric embedding.

The next is the Arens–Eells isometric embedding theorem [2], which states that every
metric space can be isometrically embedded into a Banach space as a closed and indepen-
dent set. The proof can be seen in [2], [113], or [83].

Theorem 2.2.2. For every metric space (X, d), there exist a real normed linear space
(V, ∥ ∗ ∥) and an isometric embedding I : X → V such that

(1) I(X) is closed in V ;

(2) I(X) is linearly independent in V .
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2.2.2 Extension theorems on metrics

The following celebrated theorem was first proven by Hausdorff [45] (cf., [46], [1], [9], [6],
[113]).

Theorem 2.2.3. Let X be a metrizable space, and let A be a closed subset of X. Then, for
every d ∈ M(A), there exists D ∈ M(X) such that D|A2 = d. Moreover, if X is completely
metrizable, and if d ∈ M(A) is a complete metric on A, then D ∈ M(X) can be chosen as
a complete metric on X.

Hausdorff [45] utilized Theorem 2.2.3 in order to give a simple proof of the following
Niemytzki–Tychonoff theorem.

Theorem 2.2.4. A metrizable space X is compact if and only if all metrics in M(X) are
complete.

Remark 2.2.1. Nomizu and Ozeki [87] proved that a second countable connected differ-
entiable manifold is compact if and only if all Riemannian metrics on the manifold are
complete, as a consequence of their study on the existence of complete Riemannian met-
rics. This characterization can be considered as an analogue of the Niemytzki–Tychonoff
theorem for Riemannian manifolds.

Nguyen Van Khue and Nguyen To Nhu [68] investigated a simultaneous extension of
metrics as an improvement of the Hausdorff extension theorem (Theorem 2.2.3).

Theorem 2.2.5. For every metrizable space X, and for every closed subset A of X, there
exist maps Φ1,Φ2 : M(A) → M(X) such that

(1) Φ1 and Φ2 are extensors; namely, for every d ∈ M(A), we have Φ1(d)|A2 = d and
Φ2(d)|A2 = d.

(2) Φ1 and Φ2 are continuous with respect to the topologies induced from DA and DX .

(3) Φ1 is 20-Lipschitz with respect to the metrics DA and DX .

(4) Φ2 preserves orders; namely, if d, e ∈ M(A) satisfy d ≤ e, then Φ2(d) ≤ Φ2(e).

(5) if X is completely metrizable, then Φ1 and Φ2 map any complete metric in M(A)
into a complete metric in M(X).

2.2.3 Baire spaces

A topological space X is said to be Baire if an intersection of every countable family of
dense open subsets of X is dense in X.

The following is well-known as the Baire category theorem.

Theorem 2.2.6. All completely metrizable spaces are Baire.

The following is known as the Alexandroff theorem. The proof can be seen in [123,
Theorem 24.12], [92, Theorem 12.1], or [105, Theorem 2.2.1].

Theorem 2.2.7. All Gδ subspaces of a completely metrizable space are completely metriz-
able.

By Theorem 2.2.7, we obtain the following:

Lemma 2.2.8. All Gδ subspaces of a completely metrizable space are Baire.

By the definition of a Baire space, we have:

Lemma 2.2.9. A topological space is a Baire space if and only if for every countable
family of dense Gδ subsets of the space, its intersection is dense.
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2.3 Assouad dimension

Let N ∈ Z+. A metric space (X, d) is said to be N -doubling if for every bounded subset
S of X there exists a subset F of X satisfying that S ⊂ B(F, δ(S)/2) and card(F ) ≤ N .
Note that if a metric space is N -doubling, then so are all metric subspaces of the metric
space. A metric space is said to be doubling if it is N -doubling for some N .

Let (X, d) be a metric space, and let S be a bounded subset of X. We denote by
Z(X,d)(S, r) the minimum integer N such that S can be covered by at most N many
bounded subsets of X with diameters at most r. We denote by A(X, d) the set of all
β ∈ (0,∞) for which there exists C ∈ (0,∞) such that for every bounded subset S of X,
and for every positive number r ∈ (0,∞), we have Z(X,d)(S, r) ≤ C · (δ(S)/r)β.

The Assouad dimension dimA(X, d) of a metric space (X, d) is defined as inf(A(X, d))
if the set A(X, d) is non-empty; otherwise, dimA(X, d) = ∞.

Let (X, d) be a metric space. We denote by B(X, d) the set of all β ∈ (0,∞) for
which there exists C ∈ (0,∞) such that every finite subset A of X satisfies the inequality
card(A) ≤ C · (δ(A)/α(A))β. We also denote by C(X, d) the set of all γ ∈ (0,∞) such
that there exists C ∈ (0,∞) such that every bounded separated subset M of X satisfies
the inequality card(M) ≤ C · (δ(M)/α(M))γ .

By definitions, we obtain the next two propositions.

Proposition 2.3.1. For every metric space X, the following are equivalent:

(1) (X, d) is doubling;

(2) A(X, d) is non-empty;

(3) B(X, d) is non-empty;

(4) C(X, d) is non-empty;

(5) dimA(X, d) <∞.

Proposition 2.3.1 implies that a metric spaces is not doubling if and only if it has
infinite Assouad dimension, and all bounded separated sets in a doubling space are finite.

The Assouad dimension can be calculated by B(X, d) and C(X, d).

Proposition 2.3.2. For every metric space X, we have

dimA(X, d) = inf(B(X, d)) = inf(C(X, d)).

The lower Assouad dimension dimLA(X, d) of (X, d) is defined as the supremum of all
β ∈ (0,∞) for which there exists C ∈ (0,∞) such that for every finite set S in X satisfies
the inequality card(S) ≥ C · (δ(S)/α(S))β.

Proposition 2.3.3. For every metric space X, we have dimLA(X, d) ≤ dimA(X, d).

The following is known as the Assouad embedding theorem [5]. The proof can be seen
in [48, Theorem 3.15].

Theorem 2.3.4. Let (X, d) be a doubling metric space. For every ϵ ∈ (0, 1), there exist
N ∈ R, a map f : X → RN and L ∈ (0,∞) such that for all x, y ∈ X we have

L−1 · d(x, y)ϵ ≤ dRN (f(x), f(y)) ≤ L · d(x, y)ϵ,

where dRN is the Euclidean metric.
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2.4 The Gromov–Hausdorff distance

In order to simplify our description, if there is no confusion, for a metic space (X, d), and
for a subset E of X, we often denote the restricted metric d|E2 on E by the same symbol d
as the ambient metric d. For a metric space (Z, h), and for subsets S, T of Z, we define the
Hausdorff distance H(S, T ;Z, h) between S and T in Z as the infimum of all r ∈ (0,∞) for
which S ⊂ B(T, r) and T ⊂ B(S, r). For two metric spaces (X, d) and (Y, e), the Gromov–
Hausdorff distance GH((X, d), (Y, e)) between (X, d) and (Y, e) is defined as the infimum
of all values H(i(X), j(Y );Z, h), where (Z, h) is a metric space and i : (X, d) → (Z, h) and
j : (Y, e) → (Z, h) are isometric embeddings. For a metric space (X, d), and for subsets
A,B of X, we use the notation GH(A,B) instead of GH((A, d), (B, d)).

To treat the Gromov–Hausdorff distance in terms of geometric maps, we use the so-
called approximation maps. For ϵ ∈ (0,∞), and for metric spaces (X, d) and (Y, e), a pair
(f, g) of maps f : X → Y and g : Y → X is said to be an ϵ-approximation if the following
three conditions are satisfied:

(1) for all x, y ∈ X, we have |d(x, y) − e(f(x), f(y))| < ϵ;

(2) for all x, y ∈ Y , we have |e(x, y) − d(g(x), g(y))| < ϵ;

(3) for all x ∈ X and y ∈ Y , we have d(g ◦ f(x), x) < ϵ and e(f ◦ g(y), y) < ϵ.

By the definition of the Gromov–Hausdorff distance, we obtain:

Proposition 2.4.1. Let (X, d) and (Y, e) be two metric spaces. Then for every k ∈ (0,∞)
we have GH((X, kd), (Y, ke)) = k · GH((X, d), (Y, e)).

The next two claims can be seen in Sections 7.3 and 7.4 in [15].

Lemma 2.4.2. Let (X, d) and (Y, e) be two metric spaces. Let ϵ ∈ (0,∞). If we have
GH((X, d), (Y, e)) ≤ ϵ, then there exists a 2ϵ-approximation between them.

Proposition 2.4.3. For all bounded metric spaces (X, d) and (Y, e), we have

|δd(X) − δe(Y )| ≤ 2 · GH((X, d), (Y, e)).

A triple (X, d, p) of a set X, a metric d on X, and a point p in X is called a pointed
metric space. We say that a sequence {(Xi, di, pi)}i∈N of pointed metric spaces converges
to (Y, e, q) in the pointed Gromov–Hausdorff topology if there exist a sequence {ϵi}i∈N in
(0,∞) convergent to 0, and a sequence {(fi, gi)}i∈N of ϵi-approximation maps between Xi

and Y such that fi(pi) = q and gi(q) = pi.
The Gromov–Hausdorff distance of snowflakes of two metric spaces is a snowflake of

the Gromov–Hausdorff distance of the original two spaces.

Proposition 2.4.4. Let ϵ ∈ (0, 1), and let (X, d) and (Y, e) be two metric spaces. Then
we have GH((X, dϵ), (Y, eϵ)) = GH((X, d), (Y, e))ϵ.

Proof. Let (Z, h) be a metric space. For all subsets A,B ⊂ Z, we have

H(A,B;Z, hϵ) = H(A,B;Z, h)ϵ.

This leads to the proposition.
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Let (X, d) be a metric space, and let ϵ ∈ (0,∞). We say that a subset S of X is an
ϵ-net if S is finite and B(S, ϵ) = X.

A metric space is said to be totally bounded if for each ϵ ∈ (0,∞) the metric space has
an ϵ-net. A metric space is totally bounded if and only if it is approximated by its finite
subset in the sense of Gromov–Hausdorff.

By the definitions of total boundedness and GH, we have:

Proposition 2.4.5. Let (X, d) be a totally bounded metric space, and let (Y, e) a metric
space. If GH((X, d), (Y, e)) ≤ ϵ, then there exists a finite subset E of Y satisfying that
GH((X, d), (E, e)) ≤ 2ϵ.

We say that a sequence {(Xi, di)}i∈N of metric spaces is uniformly precompact if for
every ϵ ∈ (0,∞) there exists M ∈ N such that for all i ∈ N, every ϵ-separated set in
(Xi, di) has at most M many elements. Note that if there exists N ∈ N such that for
each i ∈ N, the space (Xi, di) is N -doubling, then the sequence {(Xi, di)}i∈N is uniformly
precompact. We say that a sequence {(Xi, di)}i∈N of metric spaces is uniformly bounded
if there exists M ∈ (0,∞) such that supi∈N δdi(Xi) ≤M .

We now recall the following Gromov precompactness theorem (see Section 7.4 in [15],
or [48, Theorem 2.3]). This precompactness theorem is used to guarantee the existence of
pseudo-cones of doubling metric spaces (see Proposition 4.1.2).

Theorem 2.4.6. If a sequence {(Xi, di)}i∈N of compact metric spaces is uniformly pre-
compact and uniformly bounded, then there exists a subsequence of {(Xi, di)}i∈N convergent
to a compact metric space in the Gromov–Hausdorff convergence.

2.5 Universal metric spaces

Let C be a class of metric spaces. We say that a metric space (X, d) is C-universal, or
universal for C if every metic space (A, dA) in the class C can be isometrically embedded
into (X, d).

We denote by S the class of all separable metic spaces. We say that a metric space
(X, d) is injective for all finite metric spaces, or finitely injective if for every finite metric
space (F ⊔{p}, e), and for every isometric embedding I : (F, e|F 2) → (X, d), there exists a
isometric embedding J : (F ⊔{p}, e) → (X, d) satisfying that I|F = J . The so-called back-
and-forth argument implies that all finitely injective separable complete metric spaces are
isometric to each other. This unique metric space is called the Urysohn universal metric
space, which in this thesis we denote by (U, dU). The Urysohn universal metric space was
first constructed by Urysohn [118], and other constructions can be seen in, for example,
[48], [42], [65], [54], [79], or [51]. By the back-and-forth argument, we obtain:

Proposition 2.5.1. The Urysohn universal metric space (U, dU) is S-universal.

The proof of the following can be seen in [8] or [48].

Proposition 2.5.2. The space (C([0, 1]), ∥ ∗ ∥∞) of all real-valued continuous functions
on [0, 1] equipped with the supremum norm ∥ ∗ ∥∞ is S-universal.

A metric space (X, d) is said to be homogeneous if for all x, y ∈ X, there exists an
isometric bijection f : X → X such that f(x) = y. Since (C([0, 1]), ∥ ∗ ∥∞) is a Banach
space and its metric is invariant under the addition, the metric space (C([0, 1]), ∥ ∗ ∥∞) is
homogeneous.

24



From the back-and-forth argument, it follows that the Urysohn universal metric space
(U, dU) satisfies a stronger homogeneous property called ω-homogeneity or ultrahomogene-
ity : For every finite metric subspace F of (U, dU), and for every isometric embedding
I : F → U, there exists an isometric bijection J : U → U such that J |F = I. The proof of
this stroger homogeneity of (U, dU) can be seen in, for example, [79], or [51].

As a summary of argument discussed above, we obtain:

Corollary 2.5.3. The metric spaces (U, dU) and (C([0, 1]), ∥ ∗ ∥∞)) are homogeneous S-
universal separable complete metric spaces.

Remark 2.5.1. For every uncountable compact metrizable X, the space C(X) of all real-
valued continuous functions onX is S-universal, which follows from the Dugundji extension
theorem (see [28] or Theorem 2.7.10 in this thesis) and the facts that the Cantor set has
this property (see the proof of Theorem 3.6 in [48]) and every uncountable Polish space
has a subset homeomorphic to the Cantor set (see [66, Corollary 6.5] or [105, Theorem
2.6.3]).

By the definition of homogeneity, we obtain:

Proposition 2.5.4. Let (U, u) be a homogeneous S-universal metric space. Then for every
q ∈ U , and for every pointed separable metric space (X, d, x), there exists an isometric
embedding f : X → U such that f(x) = q.

The following is known as Fréchet’s embedding theorem (see [36], [48], [90], or [49]):

Theorem 2.5.5. The Banach space (ℓ∞, ∥ ∗ ∥∞) of all bounded sequences in R equipped
with the supremum norm ∥ ∗ ∥ is S-universal.

Remark that ℓ∞ is not separable in contrast to the spaces (U, dU) and (C([0, 1]), ∥∗∥∞).
There are several studies on constructions of universal spaces for not only ordinary

metrics but also ultrametrics. For each cardinal τ , Lemin and Lemin [74] constructed
a universal ultrametric space for the class of all ultrametric spaces of topological weight
τ , which we use in Chapter 7 in this thesis. Vaughan [119] discussed the minimality of
cardinals of universal ultrametric spaces for all ultrametric spaces of topological weight τ
by using a subset of Lemin–Lemin’s universal ultrametric spaces. Vestfrid [120], Gao and
Shao [38], and Wan [121] studied universal ultrametric spaces of Urysohn-type; namely,
universal ultrametric spaces satisfying the injectivity for all finite ultrametric spaces.

2.6 Ultralimits

Let µ be a set consisting of subsets of N. We say that µ is a filter on N if the following
are satisfied:

(1) ∅ ̸∈ µ;

(2) N ∈ µ;

(3) for all A,B ∈ µ, we have A ∩B ∈ µ;

(4) if A ∈ µ and B ⊂ N satisfy A ⊂ B, then B ∈ µ.

A set µ consisting of subsets of N is said to be an ultrafilter on N if it is a filter on N and
if for every subset A of N, either A or N \A is contained in µ. An ultrafilter on N is said
to be non-principal if it does not contain any finite subset of N. Let P (i) be a predicate
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with a single free variable i running in N. We say that P (i) holds true for µ-almost all i
if we have { i ∈ N | P (i) holds true } ∈ µ.

The axiom of choice guarantees the existence of a non-principle ultrafilter on N.

Lemma 2.6.1. There exists a non-principle ultrafilter on N.

Let µ be a non-principal ultrafilter on N. For a sequence {ai}i∈N in R, a real number
u is said to be a ultralimit of {ai}i∈N with respect to µ if for every ϵ ∈ (0,∞) we have
{ i ∈ N | |ai − u| < ϵ } ∈ µ. In other words, a real number u is an ultralimit of a sequence
{ai}i∈N if the sequence converges to u for µ-almost all i ∈ N. In this case, we write
limµ ai = u. Note that an ultralimit of a bounded sequence in R always uniquely exists.

Let S = {(Xi, di, pi)}i∈N be a sequence of pointed metric spaces. We put

B({(Xi, di, pi)}i∈N) =

{
{xi}i∈N ∈

∏
i∈N

Xi | sup
i∈N

di(pi, xi) <∞

}
.

Define an equivalence relation Rµ on B({(Xi, di, pi)}i∈N) in such a way that the relation
{xi}i∈NRµ{yi}i∈N holds if and only if limµ dXi(xi, yi) = 0. We denote by [{xi}i∈N] the
equivalence class of {xi}i∈N. Put

lim
µ

(Xi, di, pi) = B({(Xi, di, pi)}i∈N)/Rµ,

and pµ,S = [{pi}i∈N]. We define a metric mµ,S by

mµ,S(x, y) = lim
µ
dXi(xi, yi),

where x = [{xi}i∈N] and y = [{yi}i∈N]. We call (limµ(Xi, di, pi),mµ,S, pµ,S) the ultralimit
of the sequence S = {(Xi, di, pi)}i∈N of pointed metric spaces with respect to µ. Even if
a limit space of a given sequence of pointed metric spaces does not exist in the pointed
Gromov–Hausdorff topology, an ultralimit of the sequence always exists and behaves as a
limit space of the sequence.

The following can be seen in [11, I.5.52] or [62, Proposition 3.2].

Lemma 2.6.2. Let S = {(Xi, di, pi)}i∈N be a sequence of pointed compact metric spaces.
If the sequence {(Xi, di, pi)}i∈N converges to a pointed compact metric space (X,D, p) in
the pointed Gromov–Hausdorff topology , then the metric space (limµ(Xi, di, pi),mµ,S, pµ,S)
is isometric to (X,D, p).

For every uniformly bounded sequence {Xi}i∈N, and for every choice {pi}i∈N ∈
∏
i∈NXi

of base points, we have B({(Xi, pi)}i∈N) =
∏
i∈NXi. Therefore Lemma 2.6.2 implies:

Lemma 2.6.3. Let {(Xi, di)}i∈N be a uniformly bounded sequence of compact metric
spaces. If the sequence {(Xi, d)}i∈N converges to a compact metric space (L,D) in the
Gromov–Hausdorff sense, then for every choice {pi}i∈N ∈

∏
i∈NXi of base points, and

for every ultrafilter µ on N, the limit metric space (L,D) is isometric to the ultralimit of
{(Xi, di, pi)}i∈N with respect to the ultrafilter µ.

2.7 Continuous functions on metric spaces

A family consisting of subsets of a topological space is said to be locally finite if every
point in the space has a neighborhood intersecting at most finitely many members of the
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family. A topological space is said to be paracompact if every open covering of the space
has a refinement which is a locally finite open cover of the space.

The following is known as the Stone theorem on paracompactness of metric spaces,
proven in [109].

Theorem 2.7.1. All metrizable spaces are paracompact.

A topological space X is said to be 0-dimensional if for every pair of disjoint two closed
subsets A and B of X, there exists a clopen subset Q of X with A ⊂ Q and Q ∩ B = ∅.
Such a space is sometimes also said to be ultranormal. Note that a metric space is 0-
dimensional if and only if every finite open covering of the space has a refinement which is
a covering consisting of mutually disjoint finite open subsets. This characterization follows
from the Katětov–Morita theorem stating that for every metric space, the large inductive
dimension coincides with the covering dimension This coincidence theorem was originally
proven by Katětov [64] and Morita [84] independently (see also [93, Theorem 5.4], [17,
Theorem 18.7], or [85, Theorem II.7]).

The following was proven by de Groot [43] (see also [21]).

Proposition 2.7.2. All ultrametrizable spaces are 0-dimensional.

2.7.1 The Michael continuous selection theorems

In the mid-1950s, Michael generalized the Tietze–Uryson extension theorem of functions on
normal topological spaces as theorems on existence of selections of lower semi-continuous
set-valued maps on topological spaces satisfying various topological properties such as
normality, collectionwise normality, paracompactness, and ultraparacompactness (see, for
example, [80], [81], [82]. These papers are only a few parts of Michael’s numerous works).
Developments of selection theorems can be seen in [97].

Let X and Y be two topological spaces. Let S be a set consisting of subsets of Y . A
map ϕ : X → S is said to be lower semi-continuous if for every open subset O of Y the
set {x ∈ X | ϕ(x) ∩ O ̸= ∅ } is open in X. A map f : X → Y is said to be a selection of
ϕ if f(x) ∈ ϕ(x) for all x ∈ X. For a Banach space V , we denote by CC(V ) the set of all
non-empty closed convex subsets of V . Let Z be a metrizable space. We denote by C(Z)
the set of all non-empty closed subsets of Z.

The following two theorems are utilized for our studies on interpolation theorems
of metrics and ultrametrics. Theorem 2.7.3 is known as one of the Michael continuous
selection theorems proven in [80]. Theorem 2.7.4 is known as the 0-dimensional Michael
continuous selection theorem, which was stated in [82], essentially in [81]. The statements
of the two theorems in this thesis seem to be slightly different from the original ones. These
forms of the statements follows from Proposition 1.4 in [80], which states that problems
on existence of a selection of a set-valued map and problems of extending a selection on a
closed subset are equivalent.

Theorem 2.7.3. Let X be a paracompact Hausdorff space, and A a closed subsets of
X. Let V be a Banach space. Let ϕ : X → CC(V ) be a lower semi-continuous map. If
a continuous map f : A → V satisfies f(x) ∈ ϕ(x) for all x ∈ A, then there exists a
continuous map F : X → V satisfying that F |A = f and F (x) ∈ ϕ(x) for all x ∈ X.

Remark 2.7.1. The conclusion in Theorem 2.7.3 characterizes paracompactness (see [80]).

By Theorem 2.7.1, we can apply Theorem 2.7.3 to all metrizable spaces.
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Theorem 2.7.4. Let X be a 0-dimensional paracompact space, and let A be a closed
subsets of X. Let Z be a completely metrizable space. Let ϕ : X → C(Z) be a lower
semi-continuous map. If a continuous map f : A→ Z satisfies f(x) ∈ ϕ(x) for all x ∈ A,
then there exists a continuous map F : X → Z satisfying tha F |A = f and F (x) ∈ ϕ(x)
for all x ∈ X.

By Theorem 2.7.1 and Proposition 2.7.2, we can apply Theorem 2.7.4 to all ultra-
metrizable spaces.

Let V be an Abelian group. We say that a metric d on V is invariant, or invariant
under the addition if for all x, y, a ∈ V we have

d(x+ a, y + a) = d(x, y).

For example, for a normed or ultra-normed space (B, ∥ ∗ ∥B), the (ultra)metric dB
defined by dB(x, y) = ∥x− y∥B is invariant under the addition.

We now prove statements on the lower semi-continuity of concrete set-valued maps.

Proposition 2.7.5. Let (V, d) be a pair of an Abelian group and an invariant metric
under the addition. Let x, y ∈ V . Then for every r ∈ (0,∞) we have

H(B(x, r), B(y, r);V, d) ≤ d(x, y).

Proof. Since the metric d is invariant under the addition, for every point w ∈ B(y, r) we
obtain x+w−y ∈ B(x, r) and d(w, x+w−y) = d(x, y). Therefore, we also obtain the inclu-
sion B(y, r) ⊂ B(B(x, r), d(x, y)). In a similar way, we have B(x, r) ⊂ B(B(y, r), d(x, y)).
Thus, we conclude that H(B(x, r), B(y, r)) ≤ d(x, y).

Proposition 2.7.6. Let (V, d) be a pair of an Abelian group and an invariant metric
under the addition. Let X be a topological space. Let H : X → V be a continuous map
and r ∈ (0,∞). Then a map ϕ : X → C(V ) defined by ϕ(x) = B(H(x), r) is lower
semi-continuous.

Proof. For every open subset O of V , and for every point a ∈ X with ϕ(a)∩O ̸= ∅, choose
u ∈ ϕ(a) ∩ O and l ∈ (0,∞) with U(u, l) ⊂ O. From Proposition 2.7.5, it follows that
there exists a neighborhood N of a such that every x ∈ N satisfies

H(ϕ(x), ϕ(a);V, d) ≤ d(H(x),H(a)) < l.

Then for every x ∈ N , we have ϕ(x)∩U(u, l) ̸= ∅. Hence ϕ(x)∩O ̸= ∅. Therefore the set
{x ∈ X | ϕ(x) ∩O ̸= ∅ } is open in X. This leads to the proposition.

By letting V be a Banach or ultra-normed space in the statement of Proposition 2.7.6,
we obtain the following two corollaries. Note that all closed balls in a Banach space is
closed convex.

Corollary 2.7.7. Let X be a topological space. Let V be a Banach space. Let H : X → V
be a continuous map and r ∈ (0,∞). Then a set-valued map ϕ : X → CC(V ) defined by
ϕ(x) = B(H(x), r) is lower semi-continuous.

Corollary 2.7.8. Let X be a topological space. Let R be a commutative ring, and let
(V, ∥ ∗ ∥) be an ultra-normed R-module. Let H : X → V be a continuous map, and let
r ∈ (0,∞). Then a set-valued map ϕ : X → C(V ) defined by ϕ(x) = B(H(x), r) is lower
semi-continuous.
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2.7.2 The Dugundji extension theorem

Dugundji [28] proved an extension theorem on continuous maps from metric spaces to
locally convex linear spaces as a generalization of the Tietze–Urysohn extension theorem.

Theorem 2.7.9. Let X be a metrizable space, and let A be a closed subset of X. Let
E be a locally convex linear space. Then every continuous map f : A → E extends to a
continuous map F : X → E.

This theorem has applications for extensions of metrics. Arens [1] and Toruńczyk
[113] gave other proofs of the Hausdorff extension theorem (Theorem 2.2.3) by using
the Dugundji extension theorem. Nguyen Van Khue and Nguyen To Nhu [68] used the
Dugundji extension theorem to prove their extension theorem of metrics (Theorem 2.2.5).
In the previous research of extension of metrics, the Dugundji extension theorem was
frequently used. In this thesis, we use the Michael selection theorems instead of the
Dugundji extension theorem.

For a topological space X, we denote by Cb(X) the Banach space of all bounded
continuous real-valued functions on X equipped with the supremum norm. The following
is a form of the Dugundji extension theorem (see [28, Theorem 5.1]):

Theorem 2.7.10. Let X be a metrizable space, and let A be a closed subset of X. Then
there exists a linear map ϕ : Cb(A) → Cb(X) such that for every f ∈ Cb(A) we have
ϕ(f)|A = f and ∥f∥ = ∥ϕ(f)∥.

2.7.3 A retraction theorem for ultrametrizable spaces

For a topological space X, we say that a closed subset A of X is a retraction of X if there
exists a continuous function f : X → A such that f |A = 1A.

The following theorem was stated in [24, Theorem 1.1], and a Lipschitz version of it
was proven in [12, Theorem 2.9] with a simple proof.

Theorem 2.7.11. Every non-empty closed subset of an ultrametrizable space is a retrac-
tion of the whole space.

Let X be an ultrametrizable space, and let A be a closed subset of X. Let Y be a
topological space. By Theorem 2.7.11, there exists a retraction r : X → A. For every map
f : A→ Y , if we put F = f ◦ r, then F is a continuous extension of f .

Corollary 2.7.12. Let X be an ultrametrizable space, and let A be a non-empty closed
subset of X. Then, for every topological space Y , every continuous map from A to Y can
be extended to a continuous map from X to Y .
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Chapter 3

Basic statements on metrics and
ultrametrics

In this chapter, we review basic statements on metrics and ultrametrics.

3.1 Telescope construction

In this section, we introduce the telescope construction, originally defined in the author’s
paper [57]. In this thesis, this construction is used to show the existence of a metric
(ω0 + 1)-space with certain geometric properties.

In this thesis, we sometimes use the disjoint union
⨿
i∈I Ai of non-disjoint family

{Ai}i∈I . Whenever we consider the disjoint union
⨿
i∈I Ai of a family {Ai}i∈I of sets (this

family is not necessarily disjoint), we identify the family {Ai}i∈I with its disjoint copy
unless otherwise stated.

Definition 3.1.1 ([57]). We say that a triple B = (B, dB, b) is a telescope base if (B, dB)
is a metric space homeomorphic to the one-point compactification of N, and if b is a
bijective map b : N ∪ {∞} → B such that b∞ is the unique accumulation point of B. Let
B = (B, dB, b) be a telescope base. For n ∈ N we put

Rn(B) = sup{ r ∈ (0,∞) | U(bn, r) = {bn}}.

Note that Rn(B) is equal to the distance from bn to B \ {bn} with respect to dB.

Definition 3.1.2. Define a metric on N ∪ {∞} by

D(n,m) =

{
2−min{n,m} n ̸= m;

0 n = m,

where we consider that n < ∞ for all n ∈ N. The triple A =
(
N ∪ {∞}, D, 1N∪{∞}

)
is a

telescope base. Remark that Rn(A) = 2−n for all n ∈ N.

Let X = {(Xi, di)}i∈N be a countable family of metric spaces, and let B = (B, dB, b)
be a telescope base. We say that P = (X,B) is a compatible pair if for each n ∈ N we
have diam(Xn) ≤ Rn(B). Let P = (X,B) be a compatible pair. Put

T (P) = {∞} ⊔
⨿
i∈N

Xi,
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and define a function dP on T (P) by

dP(x, y) =


di(x, y) if x, y ∈ Xi for some i,

dB(bi, bj) if x ∈ Xi, y ∈ Xj for some i ̸= j,

dB(b∞, bi) if x = ∞, y ∈ Xi for some i,

dB(bi, b∞) if x ∈ Xi, y = ∞ for some i.

Then, we have:

Lemma 3.1.1. The function dP is a metric.

Proof. We first put X∞ = {∞}. By the definition, the function dP satisfies the conditions
(M1) and (M2) in the definition of a metric, thus it suffices to show that dP satisfies the
triangle inequality.

Let i, j, k ∈ N ⊔ {∞} be distinct numbers. In the case where x, y, z ∈ Xi, the triangle
inequality is satisfied since di is a metric. In the case where x ∈ Xi and y, z ∈ Xj , we have

dP(x, y) = dB(bi, bj) ≤ dB(bi, bj) + dj(y, z) = dP(x, z) + dP(z, y).

In the case where x, y ∈ Xi and z ∈ Xj , we have

dP(x, y) = di(x, y) ≤ δdi(Xi) ≤ Ri(B) ≤ dB(bi, bj) ≤ dP(x, z) + dP(z, y).

In the case where x ∈ Xi, y ∈ Xj , and z ∈ Xk, we have

dP(x, y) = dB(bi, bj) ≤ dB(bi, bk) + dB(bk, bj) = dP(x, z) + dP(z, y).

Since i, j, k are arbitrary, we conclude that dP is a metric.

Based on Lemma 3.1.1, we call the metric space (T (P), dP) the telescope metric space
of P. Note that this construction was first defined in [57].

By replacing “+” with “∨” in the proof of Lemma 3.1.1, we obtain the proof of the
following lemma first stated in [57, Lemma 3.1]:

Lemma 3.1.2. Let P = (X,B) be a telescope pair. If X and B consist of ultrametric
spaces, then the space (T (P), dP) is an ultrametric space.

In the case where X consists of finite metric spaces, we obtain:

Lemma 3.1.3. Let P = (X,B) be a telescope pair. If each member in X is a finite metric
space, then the space (T (P), dP) is a metric (ω0 + 1)-space.

3.2 Amalgamation methods

Amalgamation methods of metrics are ways to glue metrics together under a certain
condition. Amalgamation statements such as Propositions 3.2.1 and 3.2.2 are folklore in
the theory of metric spaces.
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3.2.1 Amalgamations of metrics

The following two propositions are known as amalgamations of metrics. The proofs can
be seen in, for example, [10] (cf., [118], [44]). For the sake of self-containedness, we give
proofs of these statements.

Proposition 3.2.1. Let (X, dX) and (Y, dY ) be metric spaces. If X∩Y ̸= ∅ and dX = dY
on (X ∩ Y )2, then there exists a metric h on X ∪ Y such that

(1) h|X2 = dX ;

(2) h|Y 2 = dY .

Proof. We define a symmetric function h : (X ∪ Y )2 → [0,∞) by

h(x, y) =


dX(x, y) if x, y ∈ X;

dY (x, y) if x, y ∈ Y ;

infz∈X∩Y (dX(x, z) + dY (z, y)) if (x, y) ∈ X × Y .

The assumption dX |(X∩Y )2 = dY |(X∩Y )2 implies that the function h is well-defined. By
the definition of h, the conditions (1) and (2) in the proposition are satisfied.

We next prove that h satisfies the triangle inequality. In the case where x, y ∈ X and
z ∈ Y , by the definition of h, for all a, b ∈ X ∩ Y we have

h(x, y) = dX(x, y) ≤ dX(x, a) + dX(a, b) + dX(b, y) = dX(x, a) + dY (a, b) + dX(b, y)

≤ (dX(x, a) + dY (a, z)) + (dY (z, b) + dX(b, y)).

Thus we obtain h(x, y) ≤ h(x, z) + h(z, y). In the case where x, z ∈ X and y ∈ Y , every
point a ∈ X ∩ Y satisfies

h(x, y) ≤ dX(x, a) + dY (a, y) ≤ dX(x, z) + dX(z, a) + dY (a, y).

Thus we have h(x, y) ≤ h(x, z) + h(z, y). By replacing the role of X with that of Y , we
conclude that h satisfies the triangle inequality, and hence it is a metric on X ∪ Y .

For a mutually disjoint family {Ti}i∈I of topological spaces, we consider that the space⨿
i∈I Ti is always equipped with the direct sum topology.

Proposition 3.2.2. Let (X, dX) and (Y, dY ) be metric spaces. If X ∩ Y = ∅, then for
every r ∈ (0,∞) there exists a metric h ∈ M(X ⊔ Y ) such that

(1) h|X2 = dX ;

(2) h|Y 2 = dY ;

(3) for all x ∈ X and y ∈ Y we have r ≤ h(x, y).

Proof. Take two fixed points a ∈ X and b ∈ Y . Take r ∈ (0,∞). We define a symmetric
function h : (X ∪ Y )2 → [0,∞) by

h(x, y) =


dX(x, y) if x, y ∈ X;

dY (x, y) if x, y ∈ Y ;

dX(x, a) + r + dY (b, y). if (x, y) ∈ X × Y .
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By this definition, we see that the conditions (1), (2) and (3) are satisfied.
We prove that the function h satisfies the triangle inequality. In the case where x, y ∈ X

and z ∈ Y , we have

h(x, y) = dX(x, y) ≤ dX(x, a) + dX(a, y)

≤ (dX(x, a) + r + dY (b, z)) + (dX(y, a) + r + dY (b, z) = h(x, z) + h(z, y).

Thus we obtain h(x, y) ≤ h(x, z) +h(z, y). In the case where x, z ∈ X and y ∈ Y , we have

h(x, y) = dX(x, a) + r + dY (b, y)

≤ dX(x, z) + dX(z, a) + r + dY (b, y) = h(x, z) + h(z, y).

Thus we obtain h(x, y) ≤ h(x, z) + h(z, y).
By replacing the role of X with that of Y , we conclude that h satisfies the triangle

inequality, and hence it belongs to M(X ⊔ Y ).

Let X and Y be sets, and let τ : X → Y be a bijection. For a metric d on Y , we denote
by τ∗d the metric on X defined by (τ∗d)(x, y) = d(τ(x), τ(y)). This metric is sometimes
called a pullback metric of d by τ . Note that the map τ is an isometry between (X, τ∗d)
and (Y, d).

The following proposition can be considered as a specific case of the realization of the
Gromov–Hausdorff distance of two metric spaces (see [15, Chapter 7]).

Proposition 3.2.3. Let X be a metrizable space. Assume that r ∈ (0,∞) and metrics
d, e ∈ M(X) satisfy DX(d, e) ≤ r. Put X0 = X, and let X1 be a set satisfying that
card(X1) = card(X0) and X0 ∩X1 = ∅. Let τ : X0 → X1 be a bijection. Then there exists
a metric h ∈ M(X0 ⊔X1) such that

(1) h|X2
0

= d;

(2) h|X2
1

= (τ−1)∗e;

(3) for every x ∈ X0 we have h(x, τ(x)) = r/2.

Proof. We define a symmetric function h : (X0 ⊔X1)
2 → [0,∞) by

h(x, y) =


d(x, y) if x, y ∈ X0;

(τ−1)∗e(x, y) if x, y ∈ X1;

infa∈X0(d(x, a) + r/2 + (τ−1)∗e(τ(a), y)) if (x, y) ∈ X0 ×X1.

By the definition, every point x ∈ X satisfies h(x, τ(x)) ≥ r/2, and

h(x, τ(x)) ≤ d(x, x) + r/2 + (τ−1)∗e(τ(x), τ(x)) = r/2.

Therefore every point x ∈ X satisfies h(x, τ(x)) = r/2.
We next prove that h satisfies the triangle inequality. In the case where x, y ∈ X0 and

z ∈ X1, all points a, b ∈ X0 satisfy

h(x, y) = d(x, y) ≤ d(x, a) + d(a, b) + d(b, y)

≤ d(x, a) + r + (τ−1)∗e(τ(a), τ(b)) + d(b, y)

≤ d(x, a) + r + (τ−1)∗e(τ(a), z) + (τ−1)∗e(τ(b), z) + d(b, y)

≤ (d(x, a) + r/2 + (τ−1)∗e(τ(a), z)) + (d(y, b) + r/2 + (τ−1)∗e(τ(b), z)).

33



Thus we obtain h(x, y) ≤ h(x, z) + h(z, y). In the case where x, z ∈ X0 and y ∈ X1, every
point a ∈ X0 satisfies

h(x, y) ≤ d(x, a) + r/2 + (τ−1)∗e(τ(a), y) ≤ d(x, z) + (d(z, a) + r/2 + (τ−1)∗e(τ(a), y)).

Thus h(x, y) ≤ h(x, z) +h(z, y). By replacing the role of X0 with that of X1, we conclude
that the metric h satisfies the triangle inequality, and hence it is a metric as required.

Lemma 3.2.4. Let {(Ai.ei)}i∈I be a family consisting of mutually disjoint metric spaces.
Then there exists a metric h ∈ M(

⨿
i∈I Ai) such that for every i ∈ I we have h|A2

i
= ei.

Proof. We may assume that I is an ordinal. By transfinite induction, we construct a
desired metric h as follows: Let a ∈ I + 1. Assume that for every b < a we already define
metrics {hb}b<a such that

(1) for every b < a, we have hb ∈ M(
⨿
i<bAi);

(2) if i < j < a, then for all x, y ∈ Ai we have hj(x, y) = hi(x, y);

(3) if i ̸= j, i, j < b, and x ∈ Ai and y ∈ Aj , then we have 1 ≤ hb(x, y).

If a = b+ 1, then we can define a metric ha ∈ M(
⨿
i<aAi) by using Proposition 3.2.2 for

X =
⨿
i<bAi, Y = Aa and r = 1. Next assume that a is a limit ordinal. We define a

function ha on
(⨿

i<aAi
)2

by
ha(x, y) = hi(x, y),

where i < a is the first ordinal with x, y ∈
⨿
k<iAk. By the inductive hypothesis (1), the

function ha is well-defined. From the hypotheses (2) and (3), it follows that ha is a metric
with ha ∈ M(

⨿
i<aAi). Put h = hI , then the lemma is proven.

Lemma 3.2.5. Let X be a metrizable space, and let {Ai}i∈I be a discrete family of closed
subsets of the space X. Let d ∈ M(X), and let {ei}i∈I be a family of metrics such that
ei ∈M(Ai). Put

η = sup
i∈I

DAi(eAi , d|A2
i
)

and assume that η < ∞. Let {Bi}i∈I be a family of mutually disjoint sets such that
card(Bi) = card(Ai) and X ∩ Bi = ∅ for all i ∈ I. For each i ∈ I, let τi : Ai → Bi be
a bijection. Let τ :

⨿
i∈I Ai →

⨿
i∈I Bi be a natural bijective map induced from {τi}i∈I .

Then there exists a metric h on X ⊔
⨿
i∈I Bi satisfying the following conditions:

(1) for every i ∈ I we have h|B2
i

= (τ−1
i )∗ei;

(2) h|X2 = d;

(3) for every x ∈
⨿
i∈I Ai we have h(x, τ(x)) = η/2.

Proof. By Proposition 3.2.3, for all i ∈ I, we find a metric li ∈ M(Ai ⊔Bi) such that

(1) li|A2
i

= d|A2
i
;

(2) li|B2
i

= (τ−1
i )∗ei;

(3) for all x ∈ Ai we have li(x, τ(x)) = η/2.
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By Lemma 3.2.4, we obtain a metric k ∈ M(
⨿
i∈I(Ai ⊔ Bi)) such that for each i ∈ I we

have
k|(Ai⊔Bi)2 = li.

Since we have

X ∩

(⨿
i∈I

(Ai ⊔Bi)

)
=
⨿
i∈I

Ai,

by Proposition 3.2.1, we obtain a metric h on X ⊔
⨿
i∈I Bi such that

(1) h|X2 = d;

(2) h|(⨿i∈I Bi)2 = k|(⨿i∈I Bi)2 .

By the definitions of metrics li and k, we see that h is a metric as required.

3.2.2 Amalgamations of ultrametrics

By replacing the symbol “+” with the symbol “∨” in the proofs of the statements in
Subsection 3.2.1, we can prove ultrametric analogues of the amalgamation statements
stated in the previous subsection.

The following is an ultrametric analogue of Proposition 3.2.1. The proof also can be
seen in, for example, [10, Theorem 2.2].

Proposition 3.2.6. Let S be a range set. Let (X, dX) and (Y, dY ) be two S-valued ultra-
metric spaces. If X ∩ Y = ∅, then for every r ∈ S+ there exists an S-valued ultrametric
h ∈ UM(X ⊔ Y, S) such that

(1) h|X2 = dX ;

(2) h|Y 2 = dY ;

(3) for all x ∈ X and y ∈ Y we have r ≤ h(x, y).

Proof. Take two fixed points a ∈ X and b ∈ Y . Take r ∈ (0,∞). We define a symmetric
function h : (X ∪ Y )2 → [0,∞) by

h(x, y) =


dX(x, y) if x, y ∈ X;

dY (x, y) if x, y ∈ Y ;

dX(x, a) ∨ r ∨ dY (b, y). if (x, y) ∈ X × Y .

Similarly to the proof of Theorem 3.2.1, then the conditions (1), (2) and (3) are satisfied,
and h is an S-valued ultrametric on X ⊔ Y .

As a consequence of Proposition 3.2.6, we can construct a one-point extension of an
S-valued ultrametric space.

Corollary 3.2.7. Let S be a range set possessing at least two elements. Let (X, d) be
an S-valued ultrametric space, and let o ̸∈ X. Then there exists an S-valued ultrametric
D ∈ UM(X ⊔ {o}, S) with D|X2 = d.

The following lemma is a specialized version of Proposition 3.2.2 for our study on
S-valued ultrametrics.

Lemma 3.2.8. Let S be a range set. Let (X, dX) and (Y, dY ) be S-valued ultrametric
spaces. Assume that
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(A) Z ̸= ∅;

(B) dX = dY on (X ∩ Y )2;

(C) there exists s ∈ S+ such that for every x ∈ X\(X∩Y ) we have infz∈X∩Y dX(x, z) = s.

Then there exists an S-valued ultrametric h on X ∪ Y such that

(1) h|X2 = dX ;

(2) h|Y 2 = dY .

Proof. We define a symmetric function h : (X ∪ Y )2 → [0,∞) by

h(x, y) =


dX(x, y) if x, y ∈ X;

dY (x, y) if x, y ∈ Y ;

infz∈X∩Y (dX(x, z) ∨ dY (z, y)) if (x, y) ∈ X × Y .

Since dX |(X∩Y )2 = dY |(X∩Y )2 , the function h is well-defined. By the definition, h satisfies
the conditions (1) and (2) in the statement. By a similar argument to Proposition 3.2.2,
we see that h satisfies the strong triangle inequality.

We now prove that h takes values in S. It suffices to show that all points x ∈ X\(X∩Y )
and y ∈ Y \ (X ∩ Y ) satisfy h(x, y) ∈ S. By the assumption (C) and the definition of
h, we obtain s ≤ h(x, y). If s = h(x, y), then h(x, y) is in S. If s < h(x, y), then by the
assumption (C), there exists z ∈ X ∩ Y with h(x, z) < h(x, y). Lemma 3.3.7 implies that
h(x, y) = h(z, y). Since h(z, y) = dY (z, y), we have h(x, y) ∈ S.

The following proposition is an ultrametric version of Proposition 3.2.3.

Proposition 3.2.9. Let S be a range set. Let X be an ultrametrizable space. Assume
that r ∈ S+ and d, e ∈ UM(X,S) satisfy UDS

X(d, e) ≤ r. Put X0 = X, and let X1 be a
set satisfying that card(X1) = card(X0) and X0 ∩X1 = ∅. Let τ : X0 → X1 be a bijective
map. Then there exists an ultrametric h ∈ UM(X0 ⊔X1, S) such that

(1) h|X2
0

= d;

(2) h|X2
1

= (τ−1)∗e;

(3) for every x ∈ X0 we have h(x, τ(x)) = r.

Proof. We define a symmetric function h : (X0 ⊔X1)
2 → [0,∞) by

h(x, y) =


d(x, y) if x, y ∈ X0;

(τ−1)∗e(x, y) if x, y ∈ X1;

infa∈X0(d(x, a) ∨ r ∨ (τ−1)∗e(τ(a), y)) if (x, y) ∈ X0 ×X1.

By the definition of h, every point x ∈ X satisfies h(x, τ(x)) ≥ r, and we have

h(x, τ(x)) ≤ d(x, x) ∨ r ∨ (τ−1)∗e(τ(x), τ(x)) = r.

Therefore every point x ∈ X satisfies h(x, τ(x)) = r.
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We now prove that h satisfies the strong triangle inequality. In the case where x, y ∈ X0

and z ∈ X1, by UDS
X(d, e) ≤ r all points a, b ∈ X0 satisfy

h(x, y) = d(x, y) ≤ d(x, a) ∨ d(a, b) ∨ d(b, y)

≤ d(x, a) ∨ r ∨ (τ−1)∗e(τ(a), τ(b)) ∨ d(b, y)

≤ d(x, a) ∨ r ∨ (τ−1)∗e(τ(a), z) ∨ (τ−1)∗e(τ(b), z) ∨ d(b, y)

≤ (d(x, a) ∨ r ∨ (τ−1)∗e(τ(a), z)) ∨ (d(y, b) ∨ r ∨ (τ−1)∗e(τ(b), z)).

Thus we obtain h(x, y) ≤ h(x, z) ∨ h(z, y). In the case where x, z ∈ X0 and y ∈ X1, every
point a ∈ X0 satisfies

h(x, y) ≤ d(x, a) ∨ r ∨ (τ−1)∗e(τ(a), y)

≤ d(x, z) ∨ (d(z, a) ∨ r ∨ (τ−1)∗e(τ(a), y)).

Thus h(x, y) ≤ h(x, z) ∨ h(z, y). By replacing the role of X0 with that of X1, we see
that h satisfies the strong triangle inequality. By the property (3), we also see that
h ∈ UM(X0 ⊔X1).

We next prove that h takes values in S. It suffices to show that for all (x, y) ∈ X0×X1,
we have h(x, y) ∈ S. The definition of h yields r ≤ h(x, y). If r = h(x, y), then h(x, y) is
in S. If r < h(x, y), then by h(x, τ(x)) = r, we have h(x, τ(x)) < h(x, y). From Lemma
3.3.7, it follows that h(x, y) = h(τ(x), y). Since h(τ(x), y) = (τ−1)∗e(τ(x), y), we conclude
that h is S-valued.

The next lemma is an ultrametric version of Lemma 3.2.4.

Lemma 3.2.10. Let S be a range set, and let s ∈ S+. Let {(Ai, ei)}i∈I be a mu-
tually disjoint family of S-valued ultrametric spaces. Then there exists an ultrametric
h ∈ UM(

⨿
i∈I Ai, S) such that

(1) for every i ∈ I we have h|A2
i

= ei;

(2) for all distinct i, j ∈ I, and for all x ∈ Ai and y ∈ Aj, we have s ≤ h(x, y).

Proof. We may assume that I is an ordinal. Similarly to the proof of Lemma 3.2.4, by
transfinite induction, Proposition 3.2.6 guarantees the existence of a sequence {hi}i<I+1

of S-valued ultrametrics such that

(1) for every a < I + 1 we have ha ∈ UM(
⨿
i<aAi, S);

(2) if i < j < a, then for all x, y ∈ Ai we have hj(x, y) = hi(x, y);

(3) if i ̸= j and x ∈ Ai and y ∈ Aj , then for every a < I + 1 with i < a and j < a, we
have s ≤ ha(x, y).

Put h = hI , then it is a desired S-valued ultrametric.

The following is an ultrametric analogue of Lemma 3.2.5. This lemma has a key role
in the proof of Theorem 1.2.15.

Lemma 3.2.11. Let S be a range set. Let X be an ultrametrizable space, and let {Ai}i∈I
be a discrete family of closed subsets of X. Let d ∈ UM(X,S), and let {ei}i∈I be a family of
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ultrametrics with ei ∈ UM(Ai, S) for all i ∈ I. Assume that supi∈I UDS
Ai

(eAi , d|A2
i
) < ∞.

Let η be a member in S+ such that

sup
i∈I

UDS
Ai

(eAi , d|A2
i
) ≤ η.

Let {Bi}i∈I be a family of mutually disjoint sets with card(Bi) = card(Ai) and X ∩Bi = ∅
for all i ∈ I. For each i ∈ I, let τi : Ai → Bi be a bijection. Let τ :

⨿
i∈I Ai →

⨿
i∈I Bi be

a natural bijective map induced from {τi}i∈I . Then there exists an S-valued ultrametric h
on X ⊔

⨿
i∈I Bi such that

(1) for every i ∈ I we have h|B2
i

= (τ−1
i )∗ei;

(2) h|X2 = d;

(3) for every x ∈
⨿
i∈I Ai we have h(x, τ(x)) = η.

Proof. By using Proposition 3.2.9, for every i ∈ I, we first obtain an S-valued ultrametric
li ∈ UM(Ai ⊔Bi, S) such that

(1) li|A2
i

= d|A2
i
;

(2) li|B2
i

= (τ−1
i )∗ei;

(3) for every x ∈ Ai we have li(x, τ(x)) = η.

By Lemma 3.2.10, we obtain an S-valued ultrametric k ∈ UM(
⨿
i∈I(Ai⊔Bi), S) such that

(1) for each i ∈ I we have k|(Ai⊔Bi)2 = li;

(2) for all distinct i, j ∈ I, and for all x ∈ Ai ⊔Bi and y ∈ Aj ⊔Bj , we have η ≤ h(x, y).

We see that

X ∩

(⨿
i∈I

(Ai ⊔Bi)

)
=
⨿
i∈I

Ai.

By the property (3) of the definition of h, the ultrametric k satisfies the assumptions
stated in Lemma 3.2.8. Therefore we obtain an S-valued ultrametric h on X ⊔

⨿
i∈I Bi

such that

(1) h|X2 = d;

(2) h|(⨿i∈I Bi)2 = k|(⨿i∈I Bi)2 .

By the definitions of li and k, we conclude that h is a desired S-valued ultrametric.

3.3 Basic properties of S-valued ultrametric spaces

In this section, we investigate basic properties on S-valued ultrametrics for a range set S.
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3.3.1 Modification of ultrametrics

A function ψ : [0,∞) → [0,∞) is said to be amenable if ψ−1({0}) = {0}. Pongsriiam and
Termwuttipong [95] proved the following (see [95, Theorem 9], and see also [27, Theorem
2.9]):

Theorem 3.3.1. Let ψ : [0,∞) → [0,∞) be a function. Then the following statements
are equivalent:

(1) ψ is increasing and amenable;

(2) for every set X, and for every ultrametric d on X, the function ψ◦d is an ultrametric
on X.

(3) for every set X with card(X) = 3, and for every ultrametric d on X, the function
ψ ◦ d is an ultrametric on X.

Remark 3.3.1. The condition (3) in Theorem 3.3.1 does not appear explicitly in the state-
ment of [95, Theorem 9]; however, the proof of [95, Theorem 9] contains it.

The following lemma is an application of Pongsriiam and Termwuttipong’s result for
topologically compatible ultrametrics, and it can be considered as an ultrametric analogue
of [23, Theorem 3.2].

Lemma 3.3.2. Let ψ : [0,∞) → [0,∞) be a function. Then the following statements are
equivalent:

(1) ψ is increasing, amenable, and continuous at the point 0.

(2) for every topological space X, and for every d ∈ UM(X), we have ψ ◦ d ∈ UM(X).

Proof. We first prove the implication (1) =⇒ (2). Take d ∈ UM(X). By Theorem 3.3.1,
we see that ψ ◦ d is an ultrametric on X. We now prove that ψ ◦ d induces the same
topology on X. Take x ∈ X and r ∈ (0,∞). Since ψ is continuous at 0, there exists
l ∈ (0,∞) with ψ(l) < r. Then, we have U(x, l; d) ⊂ U(x, r;ψ ◦ d). Since ψ is increasing,
we have U(x, ψ(r)/2;ψ ◦ d) ⊂ U(x, r; d). Since x ∈ X and r ∈ (0,∞) are arbitrary, we
conclude that ψ ◦ d ∈ UM(X).

We next prove the implication (2) =⇒ (1). By the equivalence of the conditions (1) and
(3) in Theorem 3.3.1, we see that ψ is increasing and amenable. In order to show that ψ is
continuious at 0, take an arbitrary strictly sequence {r(n)}n∈N with limn→∞ r(n) = 0. Put
r(∞) = 0. Put X = N ⊔ {∞}, and we consider that X is the one-point compactification
of N. Define an ultrametric d on X by

d(n,m) =

{
r(n) ∨ r(m) if n ̸= m;

0 if n = m.

Since d ∈ UM(X), the condition (2) implies that ψ ◦ d ∈ UM(X). Since the point ∞ is
the unique accumulation point of X, and since X is compact, for every ϵ ∈ (0,∞) the set
X \U(∞, ϵ;ψ ◦ d) is finite. Then, by d(∞,m) = r(m) for all m ∈ N, we conclude that for
all sufficiently large n ∈ N we have ψ(r(n)) < ϵ. Since {r(n)}n∈N is arbitrary, the function
ψ is continuous at 0.

Lemma 3.3.3. Let S be a range set. Let (X, d) be an S-valued ultrametric space. Let
ϵ ∈ S+. Then the function e : X2 → [0,∞) defined by e = min{d, ϵ} belongs to UM(X,S).

Proof. Applying Lemma 3.3.2 to the map ψ : [0,∞) → [0,∞) defined by ψ(x) = min{x, ϵ},
we obtain the lemma.
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3.3.2 Invariant metrics on modules

We here discuss ultra-norms on modules. Ultra-norms and invariant metrics are identical:

Lemma 3.3.4. Let R be a commutative ring and let V be an R-module. If ∥ ∗ ∥ is an
ultra-normed on V , then the metric d on V defined by d(x, y) = ∥x − y∥ is an invariant
ultrametric on V . Conversely, if d is an invariant ultrametric on V , then the function
∥ ∗ ∥ : V → [0,∞) defined by ∥x∥ = d(x, 0) is an ultra-norm on V .

Based on Lemma 3.3.4, in what follows, we will use a pair (V, d) of V and an invariant
ultrametric d on V , rather than a pair (V, ∥ ∗ ∥) of V and an ultra-norm ∥ ∗ ∥ on V .

By the definition of an ultra-norm, we obtain:

Lemma 3.3.5. Let R be a commutative ring, and let (V, d) be an ultra-normed R-module.
Then the addition + : V × V → V ; (x, y) 7→ x + y and the inversion m : V → V defined
as m(x) = −x are continuous maps with respect to the topology induced from d.

The next lemma is utilized in the proof of Theorem 1.2.12.

Lemma 3.3.6. Let R be a commutative ring, and let (V, d) be an ultra-normed R-module.
If for every non-zero r ∈ R and for every v ∈ V we have d(r · v, 0) = d(v, 0), then there
exists an ultra-normed R-module (W,D) which contains V as an R-submodule such that
d = D|V 2, and the metric space (W,D) is complete, and V is a dense subset of (W,D).

Proof. Let (W,D) be the completion of (V, d). We introduce an R-module structure into
the completion (W,D) of (V, d). For all x, y ∈ W , take sequences {xn}n∈N and {yn}n∈N
in V such that xn → x and yn → y as n→ ∞. Then we define an addition on W by

x+ y = lim
n→∞

(xn + yn).

We now check the well-definedness of this addition. Let {zn}n∈N and {wn}w∈N be sequences
such that zn → x and wn → y as n→ ∞. Then we have

∥(xn + yn) − (zn + wn)∥ ≤ ∥xn − zn∥ ∨ ∥yn − wn∥.

where ∥ ∗ ∥ is an ultra-norm induced from d. Since ∥xn− zn∥ ∨ ∥yn−wn∥ → 0 as n→ ∞,
we see that the addition is well-defined.

For every r ∈ R, we define a scalar multiplication on W by

r · x = lim
n→∞

r · xn.

Take a sequence {yn}n∈N such that yn → x as n→ ∞. Then

d(r · xn, r · yn) = d(r · (xn − yn), 0) = d(xn − yn, 0),

and hence d(r · xn, r · yn) → 0 as n → ∞. Thus this scalar multiplication is well-defined.
By these definitions, (W,D) becomes an ultra-normed R-module which contains V as an
R-submodule. This finishes the proof.

3.3.3 Basic properties of S-valued ultrametric spaces

The next lemma states that every triangle in an ultrametric space is isosceles, and the
side-length of the legs of the isosceles triangle is equal to or greater than the side-length
of the base.
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Lemma 3.3.7. Let X be a set, and let w : X2 → R be a symmetric map. Then w
satisfies the strong triangle inequality if and only if for all points x, y, z ∈ X the inequality
w(x, z) < w(y, z) implies the equality w(y, z) = w(x, y).

Proof. We first assume that w satisfies the strong triangle inequality. If w(x, z) < w(y, z),
then the inequality w(y, z) ≤ w(y, x) ∨ w(x, z) implies w(y, z) ≤ w(x, y). By using
w(x, y) ≤ w(x, z) ∨ w(z, y) again, we have w(x, z) = w(x, y).

We next assume that w satisfies the condition stated in the lemma. Suppose that there
exist x, y, z ∈ X such that w(y, z) > w(y, x) ∨ w(x, z). Then by the assumption, we have
w(y, z) = w(x, y). This contradicts w(y, z) > w(y, x).

The strong triangle inequality implies the following (see (12) in [21, Theorem 1.6]):

Proposition 3.3.8. Let S be a range set, and let (X, d) be an S-valued ultrametric space.
Then the completion of (X, d) is an S-valued ultrametric space.

Remark 3.3.2. By Proposition 3.3.8, we see that for every separable ultrametric space
(X, d), the set { d(x, y) | x, y ∈ X } of values of the metric d is countable. This phenomenon
is a reason why we consider S-valued ultrametrics for a range set S.

We now prove that for every range set S with the countable coinitiality, ultrametriz-
ability and S-valued ultrametrizability are equivalent to each other. Recall that a range set
S has countable coinitiality if there exists a non-zero strictly decreasing sequence {ri}i∈N
in S convergent to 0.

Lemma 3.3.9. Let S be a range set with the countable coinitiality. Let {r(i)}i∈N be a
strictly decreasing sequence in S such that limi→∞ r(i) = 0. Put T = {0}∪ { r(i) | i ∈ N }.
Then, for every topological space X, from UM(X,S) ̸= ∅ it follows that UM(X,T ) ̸= ∅.

Proof. Take d ∈ UM(X,S). Define a function ψ : [0,∞) → [0,∞) by

ψ(x) =


r(1) if r(1) < x;

r(n) if r(n+ 1) < x ≤ r(n);

0 if x = 0.

Thus, ψ is increasing, amenable and continuous at 0. Put e = ψ ◦ d. Since ψ([0,∞)) = T ,
by Lemma 3.3.2 we have e ∈ UM(X,T ).

Proposition 3.3.10. Let S be a range set with the countable coinitiality, and let X be a
topological space. Then X is ultrametrizable if and only if X is S-valued ultrametrizable.

Proof. It suffices to show that if X is ultrametrizable, then we have UM(X,S) ̸= ∅. Let
{r(i)}i∈N be a strictly decreasing sequence in S such that r(i) → 0 as i → ∞. Put
T = {0} ∪ { r(i) | i ∈ N }, and put A = {0} ∪ { 2−i | i ∈ N }. Then there exists an
increasing amenable function ψ : [0,∞) → [0,∞) which is continuous at 0 and satisfies
ψ(A) = T . Since UM(X) ̸= ∅, Lemma 3.3.9 implies that UM(X,A) ̸= ∅. Thus, by
Lemmas 3.3.2 and ψ(A) = T , we have UM(X,T ) ̸= ∅. From UM(X,T ) ⊆ UM(X,S), the
proposition follows.

Remark 3.3.3. If S does not have countable coinitiality, Proposition 3.3.10 does not hold
true. In this case, all S-valued ultrametrizable spaces are discrete (see Lemma 3.3.13).

We now clarify a relation between complete S-valued ultrametrizability for a range
set S and complete metrizability. The proofs of the following lemma and proposition
are adapted from [123, Theorem 24.12] or [105, Theorem 2.2.1] for the case of S-valued
ultrametrics.
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Lemma 3.3.11. Let S be a range set with the countable coinitiality. Let X be a completely
S-valued ultrametrizable, and let G be an open subset of X. Then G is completely S-valued
ultrametrizable.

Proof. Sine X is 0-dimensional, and since all open sets of metric spaces are Fσ in the
whole space, there exists a sequence {On}n∈N of clopen sets of X such that

(1) for each n ∈ N, we have On ⊂ On+1;

(2) G =
∪
n∈NOn.

Take a sequence of {an}n∈N in the field Q2 of all 2-adic numbers such that for each
m ∈ N the sum

∑∞
i=m ai converges to a non-zero 2-adic number (for example, we can take

an = 2n − 2n+1). Define a function F : X → Q2 by F (x) =
∑∞

i=1 ai · χOi(x), where χOi is
the characteristic function of Oi. From the definition of {On}n∈N and the assumption on
{an}n∈N, it follows that the function F is continuous. By the assumption on {an}n∈N, for
every x ∈ G, we have F (x) ̸= 0 and F |X\G = 0. By using the assumption on X, take a
complete S-valued ultrametric d ∈ UM(X,S). We denote by v2 : Q2 → Z⊔{∞} the 2-adic
valuation on Q2. Take a non-zero strictly decreasing sequence {r(i)}i∈N in S convergent
to 0 as i→ ∞. We put r(∞) = 0. Then a metric W : (Q2)

2 → S defined by

W (x, y) = r(v2(x− y) ∨ 0)

belongs to UM(Q2, S), and it is complete. Define a metric D on G by

D(x, y) = W

(
1

F (x)
,

1

F (y)

)
∨ d(x, y).

Since the function 1/F is continuous on G, we have D ∈ UM(G,S). We next show that D
is complete. Assume that {xn}n∈N is Cauchy in (G,D). Then {1/F (xn)}n∈N and {xn}n∈N
are Cauchy in (Q2,W ) and (X, d), respectively. Thus, there exist A ∈ Q2 and B ∈ X
such that 1/F (xn) → A in (Q2,W ), and xn → B in (X, d) as n → ∞. If B ̸∈ G, then we
have F (xn) → 0, and hence we also have F (xn)(1/F (xn)) → 0 · B = 0 as n → ∞. This
contradicts to 0 ̸= 1 in Q2. Thus B ∈ G, and hence the metric D is complete. Therefore
we conclude that G is completely S-valued ultrametrizable.

By using the amalgamation lemma (Lemma 3.2.10), we obtain another proof of Lemma
3.3.11. Remark that, in the following proof, the assumption of the countable coinitiality
of S is not used.

Another proof of Lemma 3.3.11. Similarly to the previous proof (put Qn = On \ On−1),
we obtain a sequence {Qn}n∈N of clopen subsets of X with

(1) if n ̸= m, then Qn ∩Qm = ∅;

(2) G =
∪
n∈NQn.

Note that by (2) the space G is homeomorphic to the direct sum space
⨿
i∈I Qi. Let

d ∈ UM(X,S) be a complete ultrametric on X. Then, for each n ∈ N, since Qn is closed,
the restricted metric d|Q2

n
is complete. By Lemma 3.2.10, we obtain a complete S-valued

ultrametric in UM(G,S).

Proposition 3.3.12. Let S be a range set with the countable coinitiality. A topological
space X is completely S-valued ultrametrizable if and only if X is completely metrizable
and S-valued ultrametrizable.
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Proof. It suffices to show that if X is completely metrizable and S-valued ultrametrizable,
then X is completely S-valued ultrametrizable.

Take a non-zero strictly decreasing sequence {r(i)}i∈N in S convergent to 0 as i→ ∞.
We put T = {0} ∪ { r(i) | i ∈ N }. Then T is a range set with T ⊂ S. Note that T has
countable coinitiality and it is a closed set of [0,∞). By Proposition 3.3.10, we can take an
ultrametric d ∈ UM(X,T ). Let (Y,D) be a completion of (X, d). From Proposition 3.3.8,
it follows that the space (Y,D) is a T -valued ultrametric space. Since X is completely
metrizable, X is Gδ in Y (see [32, Theorem 4.3.24], or [92, Theorem 12.3]). Thus there
exists a sequence {Gn}n∈N of open sets in Y such that X =

∩
n∈NGn. By Lemmas 3.3.3

and 3.3.11, we can take a sequence {en}n∈N of complete T -valued ultrametrics such that
en ∈ UM(Gn, T ) and en(x, y) ≤ r(n) for all x, y ∈ Gn and for all n ∈ N. Define an
S-valued ultrametric h ∈ UM(X,S) by h(x, y) = supn∈N en(x, y). Then h is complete.
Since T is a closed set of [0,∞), we have h ∈ UM(X,T ). Since UM(X,T ) ⊂ UM(X,S),
we obtain a complete S-valued ultrametric h ∈ UM(X,S).

If a range set does not have countable coinitiality, we obtain:

Lemma 3.3.13. Let S be a range set without the countable coinitiality. Then every S-
valued ultrametric space (X, d) is a complete metric generating the discrete topology.

Proof. Since S does not have countable coinitiality, there exists r ∈ [0,∞) such that
[0, r)∩S = {0}. Thus for every x ∈ X we have U(x, r) = {x}. This implies the lemma.

Lemma 3.3.13 and Proposition 3.3.12 yields the following (see [58, Proposition 2.17]):

Proposition 3.3.14 ([58]). For a range set S, a topological space is completely S-valued
ultrametrizable if and only if it is completely metrizable and S-valued ultrametrizable.

Since every Gδ subset of every completely metrizable space is complete metrizable (see
Theorem 2.2.7), Proposition 3.3.14 implies:

Corollary 3.3.15. Let S be a range set. If X is a completely S-valued ultrametrizable
space, then so is every Gδ subset of X.

3.4 Function spaces

In this section, we investigate function spaces which contain spaces of metrics or ultra-
metrics.

We first discuss the basic properties on a specific ultrametric uS on a range set S.
By using these properties, we prove Lemma 3.4.7, stating that spaces of metrics and
ultrametrics are Baire spaces.

We define an ultrametric uS on a range set S by assigning uS(x, y) to the infimum of
ϵ ∈ (0,∞) such that x ≤ y ∨ ϵ and y ≤ x∨ ϵ. We denote by dE the Euclidean metric on S
defined by dE(x, y) = |x− y|. By the definition of uS , we obtain:

Lemma 3.4.1. Let S be a range set. Then for all distinct x, y ∈ S we have uS(x, y) = x∨y.
Hence uS is an S-valued ultrametric on S.

By the definitions of dE and uS , we have:

Lemma 3.4.2. Let S be a range set. Then for all a, b ∈ S we have

dE(a, b) ≤ uS(a, b).

Moreover, the identity map 1S : (S, uS) → (S, dE) is continuous.
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Lemma 3.4.3. For every range set S, the space (S, uS) is complete.

Proof. Let {an}n∈N be a Cauchy sequence in (S, uS). Assume that there exists a ∈ S
satisfying that the set {n ∈ N | an = a } is infinite. Since {an}n∈N is Cauchy, it converges
to the point a. Assume next that for every a ∈ S, the set {n ∈ N | an = a } is finite. For
every ϵ ∈ (0,∞), we can take N ∈ N such that for all n,m > N , we have uS(an, am) ≤ ϵ.
By the assumption on finiteness, for every n ∈ N , there exists m > N with an ̸= am.
Thus by Lemma 3.4.1 we have an ≤ ϵ. This implies that an → 0 as n → ∞. Therefore
the space (S, uS) is complete.

Let S be a range set. Let H be a topological space, and let C(H,S) be the set of all con-
tinuous functions from H into S, where S is equipped with the relative Euclidean topology.
We define an ultrametric USH on C(H,S) by USH(f, g) = min {1, supx∈H uS(f(x), g(x))}.
We also define a metric EH on C(T, [0,∞)) by EH(f, g) = min {1, supx∈H |f(x) − g(x)|}.

Remark 3.4.1. Let S be a range set. The spaces
(
UM(X,S),UDS

X

)
and (M(X),DX) can be

considered as topological subspaces of the spaces
(
C(X2, S),USX2

)
and (C(X2, [0,∞)), EX2),

respectively, by the definitions of these metrics. Namely,

(1) for every S-valued ultrametrizable spaceX, the set UM(X,S) is a subset of C(X2, S),
and the metrics USX2 and UDS

X generate the same topology on UM(X,S).

(2) for every metrizable space X, we have M(X) ⊂ C(X2, [0,∞)), and the metric EX2

on M(X) generates the same topology as that induced from DX .

By the definitions of EH and USH , and by Lemma 3.4.2, we have:

Lemma 3.4.4. Let S be a range set. Let H be a topological space. Then for all maps
f, g ∈ C(H,S) we have

EH(f, g) ≤ USH(f, g).

Moreover, the inclusion map (C(H,S),USH) → (C(H, [0,∞)), EH) is continuous.

Lemma 3.4.5. For every topological space H, the space (C(H, [0,∞)), EH) is complete.

Proof. Take a Cauchy sequence {fn}n∈N in C(H, [0,∞)). For every x ∈ H, the sequence
{fn(x)}n∈N is Cauchy in [0,∞). Thus, it has a limit, say F (x). By the definition, for
every x ∈ H we have limn→∞ supx∈H |F (x)− fn(x)| = 0. We now prove that the function
F : H → [0,∞) is continuous. Fix a ∈ H. For every ϵ ∈ (0,∞), take N ∈ N with
supx∈H |F (x) − fN (x)| < ϵ, and take a neighborhood V of a such that every point p ∈ V
satisfies the condition |fN (p) − fN (a)| < ϵ. Then, for every p ∈ V we have

|F (p) − F (a)| ≤ |F (p) − fN (p)| + |fN (p) − fN (a)| + |fN (a) − F (a)|
≤ |fN (p) − fN (a)| + 2 sup

x∈H
|F (x) − fN (x)| ≤ 3ϵ.

Therefore F : H → [0,∞) is continuous, and hence F ∈ C(H, [0,∞)), which means that
the metric space (C(H, [0,∞)), EH) is complete.

Similarly to Lemma 3.4.3, Lemmas 3.4.4 and 3.4.5 lead to the following:

Lemma 3.4.6. Let S be a range set. Let H be a topological space. Then the ultrametric
space (C(H,S),USH) is complete.
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Proof. Let {fn}n∈N be a Cauchy sequence in C(H,S). Then for every x ∈ H, we find that
{fn(x)}n∈N is Cauchy in (S, uS). By Lemma 3.4.3, {fn(x)}n∈N have a limit, say F (x).
By Lemma 3.4.4, the sequence {fn}n∈N is also Cauchy in (C(H, [0,∞)), EH), and it has
a limit G ∈ (C(H, [0,∞)), EH). Note that G is continuous. Lemma 3.4.3 yields F = G.
Therefore {fn}n∈N has a limit in C(H,S). This finishes the proof.

The following is a summarized statement of [59, Lemma 5.1] and [58, Lemma 7.6].

Lemma 3.4.7 ([59, 58]). Let X be a second countable locally compact space. Then the
following hold:

(1) the space M(X) is a Baire space;

(2) if S is a range set, then the space M(X,S) is a Baire space.

Proof. We first prove the former part. Lemma 3.4.5 implies that (C(X2, [0,∞)), EX2) is
completely metrizable. Thus, by Lemma 2.2.8, in order to prove the lemma, it suffices to
show that the space M(X) is a Gδ subset of the space (C(X2, [0,∞)), EX2).

We denote by P the set of all f ∈ C(X2, [0,∞)) such that

(1) for every x ∈ X we have f(x) ≥ 0 and f(x, x) = 0;

(2) for all x, y ∈ X we have f(x, y) = f(y, x);

(3) for all x, y, z ∈ X we have f(x, y) ≤ f(x, z) + f(z, y).

Namely, P is the set of all continuous pseudo-metrics on X. Note that P is a closed subset
in the metric space (C(X2, [0,∞)), EX2). Since all closed subsets of a metric space are Gδ
in the whole space, the set P is Gδ in the metric space (C(X2, [0,∞)), EX2).

Now we take a sequence {Dn}n∈N of compact subsets of X2 with
∪
n∈NDn = X2 \∆X ,

where ∆X = { (x, x) ∈ X2 | x ∈ X }, and take a sequence {Kn}n∈N of compact subsets
of X satisfying that Kn ⊂ INT(Kn+1) and

∪
n∈NKn = X, where INT means the interior.

For every n ∈ N, let Ln be the set of all f ∈ C(X2, [0,∞)) for which there exist c ∈ (0,∞)
and N ∈ N such that for each k > N we have

inf
x∈Kn

inf
y∈X\Kk

f(x, y) > c.

For each n ∈ N, let En be the set of all f ∈ C(X2, [0,∞)) such that for each (x, y) ∈ Dn

we have 0 < f(x, y). Note that each Ln and each En are open in (C(X2, [0,∞)), EX2).
We now prove that

M(X) = P ∩

(∩
n∈N

Ln

)
∩

(∩
n∈N

En

)
.

Take d ∈ M(X). Since d is a metric, we have d ∈ P and d ∈
∩
n∈NEn. By the inclusion

Kn ⊂ INT(Kn+1), and by d ∈ M(X), for every N ∈ N and for every k > N we have

0 < d(KN , X \ INT(KN+1)) ≤ d(KN , X \KN+1) ≤ d(KN , X \Kk).

Thus d ∈
∩
n∈N Ln, and hence we obtain

M(X) ⊂ P ∩

(∩
n∈N

Ln

)
∩

(∩
n∈N

En

)
.
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Next take d ∈ P ∩
(∩

n∈N Ln
)
∩
(∩

n∈NEn
)
. Since d ∈ P ∩

(∩
n∈NEn

)
, the function d

is continuous on X2 and it satisfies all the conditions of the definition of a metric on X.
We show that for every metric e ∈ M(X), the metric d is topologically equivalent to e.
Since d is continuous on X2, the metric d generates a weaker topology than that of (X, e).
Namely, if xn → a in (X, e), then xn → a in (X, d). Assume next that xn → a in (X, d).
Since {Kn}n∈N is a covering of X, there exists M ∈ N such that a ∈ KM . If there exist
infinitely many i satisfying (X \Ki) ∩ {xn | n ∈ N } ̸= ∅, then we have

lim inf
i→∞

d(KM , X \Ki) ≤ lim
j→∞

d(a, xj) = 0.

This contradicts d ∈
∩
n∈N Ln. Hence there exists m ∈ N such that {xn}n∈N is contained

in Km. If there exists r ∈ (0,∞) such that infinitely many n satisfying e(xn, a) ≥ r, then
by the compactness of the subset Km, there exists a convergent subsequence {xψ(n)}n∈N
in (X, e) with e(xψ(n), a) ≥ r. Since d generates a weaker topology than that of (X, e),
and since xn → a in (X, d), the limit point of {xψ(n)}n∈N in (X, e) coincides with the point
a. This is a contradiction. Thus d generates the same topology as e, and hence we obtain

M(X) ⊃ P ∩

(∩
n∈N

Ln

)
∩

(∩
n∈N

En

)
.

Thus M(X) is Gδ in (C(X2, [0,∞)), EX2). This finishes the proof of the former part.
We next prove the latter part. By Lemma 3.4.6, the metric space (C(X2, S),USX2) is

completely metrizable. Thus by Lemma 2.2.8, to prove the lemma, it suffices to show that
UM(X,S) is Gδ in (C(X2, S),USX2). Let Q be the set of all f ∈ C(X2, [0,∞)) such that

(1) for every x ∈ X we have f(x) ≥ 0 and f(x, x) = 0;

(2) for all x, y ∈ X we have f(x, y) = f(y, x);

(3) for all x, y, z ∈ X we have f(x, y) ≤ f(x, z) ∨ f(z, y).

Namely, Q is the set of all continuous pseudo-ultrametrics on X. The set Q is a closed
subset in the metric space (C(X2, [0,∞)), EX2). Since all closed subsets of a metric space
are Gδ in the whole space, the set Q is Gδ in the metric space (C(X2, [0,∞)), EX2).

Similarly to the proof of the former part, we obtain

UM(X) = Q ∩

(∩
n∈N

Ln

)
∩

(∩
n∈N

En

)

as subsets of (C(X2, [0,∞)), EX2); namely, UM(X) is a Gδ subset of (C(X2, [0,∞)), EX2).
Since the inclusion map from (C(X2, S),USX2) into (C(X2, [0,∞)), EX2) is continuous
(Lemma 3.4.4), and since UM(X,S) = UM(X) ∩ C(X2, S), we conclude that UM(X,S)
is Gδ in the space (C(X2, S),USX2). This completes the proof of the lemma.

Remark 3.4.2. Let X be a metrizable space. The metric DX on M(X) is not complete.
There exists a sequence of metrics convergent to the zero function on X2. Similarly, the
ultrametric UDS

X on UM(X) is not complete.

Remark 3.4.3. The definition of ultrametrics uS and UDS
X are inspired by the notion of

the difference-completeness (see [22, Definition 4.8]).
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Chapter 4

Pseudo-cones and Assouad
dimensions

In this chapter, we prove lower estimations of the Assouad dimensions (Theorems 1.2.1,
1.2.2 and 1.2.3), and prove the existence of metric spaces containing large classes of metric
spaces as its pseudo-cones, tangent or asymptotic cones (Theorems 1.2.4, 1.2.5 and 1.2.6).

4.1 Lower estimations of the Assouad dimensions

In this section we prove Theorems 1.2.1, 1.2.2 and 1.2.3.

4.1.1 Basic properties of pseudo-cones

We here observe some properties of pseudo-cones of metric spaces.
By Proposition 2.4.1, we have:

Proposition 4.1.1. Let (X, d) be a metric space. If (A, a) ∈ PC(X, d), then for every
k ∈ (0,∞) the metric space (A, ka) is in PC(X, d).

Applying Gromov’s precompactness theorem (Theorem 2.4.6), we obtain:

Proposition 4.1.2. Let (X, d) be a doubling metric space. Let {(Ai, d)}i∈N be a sequence
of compact sets of X. If {(Ai, uid)}i∈N is uniformly bounded for a sequence {ui}i∈N in
(0,∞), then there exists a convergent subsequence {(Aϕ(i), uϕ(i)d}i∈N) of {(Ai, d)}i∈N in
the sense of Gromov–Hausdorff.

Let (X, d) be a proper metric space, and p ∈ X. A pointed metric space (Y, e, y) is
said to be a tangent (resp. asymptotic) cone of X at p if there exist a sequence {pi}i∈N in
X convergent to p as i → ∞, and a sequence {ri} in (0,∞) convergent to 0 (resp. ∞) as
i → ∞ such that for every R ∈ (0,∞) we have (B(pi, R/ri), rid, pi) → (B(y,R), e, y) as
i→ ∞ in the pointed Gromov–Hausdorff topology (see Section 8.1 in [15]).

By the definitions of a tangent cone and an asymptotic cone, we obtain:

Proposition 4.1.3. Let (X, d) be a proper metric space, and let (Y, e, y) be a tangent or
asymptotic cone of X. Then for every R ∈ (0,∞) we have (B(y,R), e) ∈ PC(X, d).

4.1.2 Theorems on lower estimations

We first prove Theorem 1.2.1.
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Proof of Theorem 1.2.1. Let (X, d) be a metic space, and let (P, e) ∈ PC(X, d). We
assume that the space (P, e) is approximated by ({(Ai, d)}i∈N, {ui}i∈N). Suppose that
dimA(X, d) < dimA(P, e). Take β ∈ B(X, d) such that dimA(X, d) < β < dimA(P, e).
Since β ∈ B(X, d), there exists M ∈ (0,∞) such that every finite set T of X satisfies the
inequality card(T ) ≤M · (δd(T )/αd(T ))β.

Put C = 4β(M+1). From β < dimA(P, e), it follws that β ̸∈ B(P, e). Thus there exists
a finite set S of P with card(S) > C · (δe(S)/αe(S))β. Since GH((Ai, uid), (P, e)) → 0
as i → ∞, we can take N ∈ N such that GH((AN , uNd), (P, e)) < αe(S)/20. By Lemma
2.4.2, there exists an (αe(S)/10)-approximation (f, g) between (AN , uNd) and (P, e). For
each x ∈ S, take tx ∈ AN such that tx ∈ B(g(x), αe(S)/10;AN , uNd). Note that if x ̸= y,
then tx ̸= ty by the definition. Put T = { tx | x ∈ S }. For all x, y ∈ S, we obtain

uNd(tx, ty) ≤ e(x, y) + 3αe(S)/10 ≤ 2δe(S),

and
uNd(tx, ty) ≥ e(x, y) − 3αe(S)/10 ≥ 2−1αe(S).

Thus, we have δd(T ) ≤ 2u−1
N δe(S) and αd(T ) ≥ 2−1u−1

N αe(S), and hence

card(T ) = card(S) > C(δe(S)/αe(S))β

= 4−βC(2u−1
N δe(S)/2−1u−1

N αe(S))β ≥ 4−βC(δd(T )/αd(T ))β.

On the other hand, we also have card(T ) ≤ M(δd(T )/αd(T ))β. These inequalities imply
4−βC < M . This is a contradiction. This finishes the proof of Theorem 1.2.1.

Since every metric space (X, d) belongs to PC(X, d), by Theorem 1.2.1 we obtain:

Corollary 4.1.4. Let (X, d) and (Y, e) be two metric spaces. If GH(((X, d), (Y, e)) = 0,
then dimA(X, d) = dimA(Y, e).

This corollary slightly generalizes the fact that the Assouad dimensions of a metric
space and its completion are identical.

By a similar method to Theorem 1.2.1, we obtain the following. The definition of the
lower Assouad dimension dimLA can be seen in Section 2.3.

Theorem 4.1.5 ([60]). Let (X, d) be a metric space. Then every (P, e) ∈ PC(X, d) satisfies

dimLA(X, d) ≤ dimLA(P, e).

Next we prove Theorem 1.2.2.

Proof of Theorem 1.2.2. Let (X, d) be a metric space. Let {Ai}i∈N be a sequence of subsets
of X, and let {ui}i∈N be a sequence in (0,∞). Let µ be a non-principal ultrafilter on N.
Take ai ∈ Ai. Put T = {(Ai, uid, ai)}, and P = limµ(Ai, uid, ai) and D = mµ,T.

Assume that dimA(X, d) < dimA(P,D). Let β ∈ B(X, d), M ∈ (0,∞), C = 4β(M +1)
and S ⊂ P be the same objects as in the proof of Theorem 1.2.1. We may assume
that S = {[x1,i], [x1,i] . . . , [xn,i]}. Put Si = {x1,i, . . . , xn,i} ⊂ Ai for each i ∈ N. By the
definition of an ultralimit, for µ-almost all i ∈ N, and for all k, l ∈ {1, . . . , n} we have

|uid(xk,i, xl,i) −D([xk,i], [xl,i])| < αD(S)/2.

Then for such µ-almost all i ∈ N we also have δd(Si) ≤ 2u−1
i δD(S) and αd(Si) ≥ 2−1u−1

i .
Since card(Si) = card(S), by a similar argument to the proof of Theorem 1.2.1, we obtain
4−βC < M . This is a contradiction. This finishes the proof of Theorem 1.2.2.
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By a similar method to the proof of Theorem 1.2.2, we obtain:

Theorem 4.1.6 ([60]). Let X be a metric space. Let {Ai}i∈N be a sequence of subsets
of X, and let {ui}i∈N be a sequence in (0,∞). Take ai ∈ Ai for each i ∈ N. Put
S = {(Ai, uid, ai)}. Then for every non-principal ultrafilter µ on N we have

dimLA(X, d) ≤ dimLA

(
lim
µ

(Ai, uid, ai),mµ,S

)
.

4.1.3 Conformal Assouad dimension

Let η : [0,∞) → [0,∞) be a homeomorphism. Let (X, d) and (Y, e) be two metric spaces.
A homeomorphism f : X → Y is said to be η-quasi-symmetric if the following holds:

(QS) for all x, y, z ∈ X and for all t ∈ [0,∞), the inequality dX(x, y) ≤ tdX(x, z) implies
that dY (f(x, f(y))) ≤ η(t)dY (f(x), f(z)).

A homeomorphism f : X → Y is quasi-symmetric if it is η-quasi-symmetric for some
homeomorphism η : [0,∞) → [0,∞). Note that the inverse of a quasi-symmetric map is
also quasi-symmetric.

For a metric space X, the conformal Assouad dimension CdimAX of X is defined as
the infimum of all the Assouad dimensions of all quasi-symmetric images of X.

In the proof of Theorem 1.2.3, we use the following theorem due to Tukia and Väisälä
(see [114, Theorem 2.21]).

Theorem 4.1.7. If a map f : (X, d) → (Y, e) between metric spaces satisfies the condition
(QS), then f is either a constant map or a quasi-symmetric embedding.

We now prove Theorem 1.2.3.

Proof of Theorem 1.2.3. Let (X, d) be a metric space, and (P, h) ∈ KPC(X). Since the
doubling property is invariant under quasi-symmetric maps, every non-doubling space has
infinite conformal Assouad dimension. Thus we may assume that X is doubling. Take
a metric space (Y, e) and an η-quasi-symmetric map f : X → Y . We may assume that
P is compact and P has at least two elements. We assume that P is approximated by
({Ai}i∈N, {ui}i∈N), where {Ai}i∈N is a sequence of compact sets in X. By Proposition
2.4.3, we have supi δuid(Ai) <∞. For each i ∈ N, put Bi = f(Ai) and vi = (δe(Bi))

−1. By
Proposition 4.1.2, by choosing a suitable subsequence if necessary, we find a limit compact
metric space (Q, l) ∈ KPC(Y, e) of the sequence {(Bi, vie)}i∈N.

Let µ be a non-principal ultrafilter on N. For each i ∈ N take ai ∈ Ai. Put bi = f(ai),
and put S = {(Ai, uid, ai)} and T = {(Bi, vie, bi)}i∈N.

By applying Lemma 2.6.3 to the sequences {(Ai, uid, ai)}i∈N and {(Bi, vie, bi)}i∈N, we
see that (P, h) = (limµ(Ai, uid, ai),mµ,S) and (Q, l) = (limµ(Bi, vie, bi),mµ,T). Since f is
continuous and δvie(Bi) = 1 for all i ∈ N, the map f : X → Y induces a map F : P → Q
defined by F ([{xi}i∈N]) = [{f(xi)}i∈N]. Replacing the role of f with that of f−1, we obtain
the inverse of F . Thus F is a bijection.

To prove that F satisfies the condition (QS), we assume that h(x, y) ≤ th(x, z), where
x = [{xi}i∈N], y = [{yi}i∈N], z = [{zi}i∈N]. By the definition of an ultralimit, for every
ϵ ∈ (0,∞), and for µ-almost all i ∈ N, we have

uid(xi, yi) < (t+ ϵ)uid(xi, zi).
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Thus, since f is η-quasi-symmetric, for µ-almost all i ∈ N we obtain

vie(f(xi), f(yi)) < η(t+ ϵ)vie(f(xi), f(zi)).

Then we also obtain
l(F (x), F (z)) < η(t+ ϵ)l(F (x), F (z)).

By letting ϵ → 0, we obtain l(F (x), F (z)) ≤ η(t)l(F (x), F (z)). Since F is bijective
and non-constant, by Theorem 4.1.7 we see that F is an η-quasi-symmetric map. Thus
CdimA(P, h) ≤ dimA(Q, l). Theorem 1.2.1 implies dimA(Q, l) ≤ dimA(Y, e), and hence
CdimA(P, h) ≤ dimA(Y, e). Since the metric space (Y, e) is arbitrary, we conclude that
CdimA(P, h) ≤ CdimA(X, d). This leads to Theorem 1.2.3.

As a corollary of Theorem 1.2.3, we obtain:

Corollary 4.1.8 ([60]). Let (X, d) be a metric space. Let {Ai}i∈N be a sequence of subsets
of X, and let {ui}i∈N be a sequence in (0,∞). Let µ be a non-principal ultrafilter on N.
Take pi ∈ Ai for each i ∈ N. Put U = {(Ai, uid, pi)}i∈N, and put

(Y, e, q) = (lim
µ

(Ai, uid, pi),mµ,U, pµ,U).

Then for every R ∈ (0,∞) we have

CdimA(B(q,R;Y, e), e) ≤ CdimA(X, d).

Proof. Since the Assouad dimension of the completion of X coincides with that of the orig-
inal space, we may assume that X is doubling and complete. Note that limµ(Ai, uid, pi) is
isometric to limµ(CL(Ai), uid, pi) with respect to the canonical metrics on the ultralimits,
where CL stands for the closure operator of X. Thus, we may assume that each Ai is
closed. We also note that each Ai is doubling and complete, and hence it is proper.

Put

S =

{
{xi}i∈N ∈

∏
i∈N

Ai | uid(pi, xi) < 2R

}
/Rµ,

and

T =

{
{xi}i∈N ∈

∏
i∈N

Ai | uid(pi, xi) ≤ 2R

}
/Rµ.

By the definition of an ultralimit, we have B(p,R;mµ,U) ⊂ S and S ⊂ T and

T = lim
µ

(B(pi, 2R;Ai, uid), uid, pi).

Since (Ai, d) is proper, the ball B(pi, R;Ai, uid) is compact. Thus Theorem 1.2.3 implies

CdimA(T, dT ) ≤ CdimA(X, d),

where dT is the canonical metric on T as an ultralimit. By the monotonicity of the
conformal Assouad dimension, we have CdimA(B(pi, R;Ai, uid), dT ) ≤ CdimA(T, dT ), and
hence

CdimA(B(pi, R;Ai, uid), dT ) ≤ CdimA(X, d).

Since dT and e coincide on B(pi, R;Ai, uid), we obtain the corollary.
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4.2 Examples of metric spaces with large cones

In this section, we prove Theorems 1.2.4, 1.2.5 and 1.2.6. We construct examples contain-
ing large classes of metric space as their pseudo-cones, tangent or asymptotic cones.

4.2.1 Proof of Theorem 1.2.4

We construct a metric (ω0 + 1)-space containing all compact metric spaces as its pseudo-
cones. Recall that the symbol S stands for the class of all separable metric spaces. By the
virtue of the telescope construction (see Section 3.1), and by the existence of separable
S-universal metric space (see Section 2.5), we can prove Theorem 1.2.4.

Proof of Theorem 1.2.4. In order to construct a desired space, we use the telescope con-
struction (see Section 3.1). Let (U, u) be a separable S-universal metric space. Let Q be
a countable dense set of U , and let {Ki}i∈N be the set of all finite subsets of Q. Put
J = {(Ki, (2

iδu(Ki))
−1u)}. Then J = (J,A) is a compatible pair, where A is a tele-

scope base defined in Definition 3.1.2. Put (X, d) =
(
T (J), dT (J)

)
. Then, Lemma 3.1.3

implies that the metric space (X, d) is an (ω0 + 1)-metric space, and the point ∞ is its
unique accumulation point. Let (K, k) be any compact metric space. Since (K, k) can
be isometrically embedded into (U, u), there exists a monotone injective map ϕ : N → N
such that H(Kϕ(i),K;U, u) → 0 as i → 0. By the definition of a telescope space, for
each i ∈ N we have Kϕ(i) ⊂ X. Thus (K, k) is a pseudo-cone of (X, d) approximated by

({(Kϕ(i))}i∈N, {2ϕ(i)δu(Kϕ(i))}i∈N). This finishes the proof of Theorem 1.2.4.

By a similar argument, we also obtain:

Proposition 4.2.1. Let (U, u) be a separable S-universal metric space. If Q is a countable
dense set of U , then we have PC(Q,u) = S.

4.2.2 Proofs of Theorems 1.2.5 and 1.2.6

By an argument using arcs in a length space, we obtain the following estimation of the
Hausdorff distance between concentric balls in a length space.

Proposition 4.2.2. Let (X, d) be a length space. Then all p ∈ X and r,R ∈ (0,∞) satisfy

H(B(p, r), B(p,R);X, d) ≤ |r −R|.

The following proposition plays a key role in the proof of Theorems 1.2.5 and 1.2.6.

Proposition 4.2.3. Let (U, u) be a separable metric space, and let Q be a countable dense
subset of U . Let (K, e) be a length metric subspace of (U, u), and let p ∈ K. For all
i, k ∈ N, put lk,i = k · 2−i. Assume that a sequence {Ai}i∈N of subsets of Q satisfies the
following for all i ∈ N:

(A1) p ∈ Ai;

(A2) for each k ∈ {0, . . . , 22i} we have H(B(p, lk,i;K, e), B(p, lk,i;Ai, u);U, u) ≤ 2−i.

Then for every R ∈ (0,∞), the sequence {(B(p,R;Ai, u), u, p)}i∈N converges to the metric
space (B(p,R;K), p) in the pointed Gromov–Hausdorff topology.
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Proof. Take N ∈ N with R < 22N . Then for each i ≥ N , we can take k ∈ {0, . . . , 22i} with

lk,i ≤ R < lk+1,i.

By the condition (A2), for m ∈ {k, k + 1}, we see that

H(B(p, lm,i;Ai.u), B(p, lm,i;K, e);U, u) ≤ 2−i.

Thus, we have
B(p, lk,i;K, e) ⊂ B(B(p, lk,i;Ai, u), 2−i;U, u), (4.2.1)

and
B(p, lk+1,i;Ai, u) ⊂ B(B(p, lk+1,i;K, e), 2

−i;U, u). (4.2.2)

Since for m ∈ {k, k+1} we have |R−lm,i| ≤ 2−i, by Proposition 4.2.2, for m ∈ {k, k+1}
we have

H(B(p,R;K, e), B(p, lm,i;K, e);U, u) ≤ 2−i.

Thus we obtain
B(p,R;K, e) ⊂ B(B(p, lk,i;K, e), 2

−i;U, u), (4.2.3)

and
B(p, lk+1,i;K, e) ⊂ B(B(p,R;K, e), 2−i;U, u). (4.2.4)

Since B(p, lk,i;Ai, u) ⊂ B(p,R;Ai, u), by (4.2.1) and (4.2.3), we obtain

B(p,R;K, e) ⊂ B(B(p,R;Ai, u), 2−i+1;U, u). (4.2.5)

Since B(p,R;Ai, u) ⊂ B(p, lk+1,i;Ai, u), by (4.2.2) and (4.2.4), we obtain

B(p,R;Ai, u) ⊂ B(B(p,R;K, e), 2−i+1;U, u). (4.2.6)

Then, the inclusions (4.2.5) and (4.2.6) imply that

H(B(p,R;K, e), B(p,R;Ai, u);U, u) ≤ 2−i+1.

Hence we conclude that the sequence {(B(p,R;Ai), u, p)}i∈N converges to (B(p,R;K), e, p)
in the pointed Gromov–Hausdorff topology.

We now prove Theorem 1.2.5.

Proof of Theorem 1.2.5. Let (K, k, p) be a pointed proper length space. We may assume
that (K, k) has at least two elements. Let (U, u) be a separable homogeneous S-universal
metric space. For instance, the space (C([0, 1]), ∥ ∗ ∥∞) or (U, dU) can be chosen as (U, u)
(see Corollary 2.5.3). Let Q be a countable dense subset of U . Let I = {Fi}i∈N be a
sequence consisting of all finite subsets of Q, and we may assume that for every finite
subset A of Q there exists infinitely many n ∈ N such that Fn = A. By Proposition 2.5.4,
we may assume that K ⊂ U , u|K2 = k, and p ∈ Q.

For each i ∈ N, set ri = (i+1)!·δ(Fi). Put J = {(Fi, (ri)
−1u)}i∈N. Then J = (J,A) is a

compatible pair, where A is a telescope base in Definition 3.1.2. Put (X, d) = (T (J), dT (J)).
The space X is a metric (ω0 + 1)-space, and ∞ is its unique accumulation point.

Since (K, k) is proper, we can take a sequence {Ai}i∈N of finite subsets of Q satisfying
the conditions (A1) and (A2) in Proposition 4.2.3. By the definitions of I = {Fi}i∈N and
the space (T (J), dT (J)), there exists a strictly increasing map ϕ : N → N such that the
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metric subspace (Fϕ(i), rϕ(i)d) of (X, rϕ(i)d) is isometric to (Ai, u) for each i ∈ N. Let

qi ∈ Fϕ(i) be a point corresponding to p ∈ Ai. Note that rϕ(i) · 2−ϕ(i)+1 → ∞ as i→ ∞.
To prove that (K, k, p) is a tangent cone of (X, d), we show that for each R ∈ (0,∞),

the sequence {(B(qi, R/ri;X, d), rid, qi)}i∈N converges to the space (B(p,R;K, k), k, p) in
the pointed Gromov–Hausdorff topology. By the definition of {ri}i∈N, we can take N ∈ N
such that if i > N , then we have R < rϕ(i) · 2−ϕ(i)+1. By the definition of (X, d), and by

R < rϕ(i) ·2−ϕ(i)+1 for each i > N , the pointed metric space (B(qi, R/rϕ(i);X, d), rϕ(i)d, qi)
is isometric to (B(p,R;Fϕ(i), u), u, p). From Proposition 4.2.3, it follows that the sequence
{(B(qi, R/rϕ(i);X), rϕ(i)d, qi)}i∈N converges to (B(p,R;K), k, p) in the pointed Gromov–
Hausdorff topology. Since qi → ∞ in X as i→ ∞, we conclude that (K, k, p) is a tangent
cone of X at ∞. This completes the proof of Theorem 1.2.5.

We next prove Theorem 1.2.6. As a core part to construct a metric space mentioned
in Theorem 1.2.6, we begin with the following elementary lemma on a surjective map
between countable sets, which states the existence of a polite indexing of a countable set.

Lemma 4.2.4. There exists a surjective map C : N → N2 × Z satisfying the following:

(B1) C(0) = (0, 0, 0);

(B2) for every n ∈ N and for every i ∈ {1, 2, 3}, we have |πi(C(n)) − πi(C(n + 1))| ≤ 1,
where πi is the i-th projection;

(B3) for every (x, y, z) ∈ N2 × Z, the set C−1(x, y, z) is infinite.

Proof. Take a surjective map A : N → N2 × Z satisfying the conditions (B1) and (B2).
Define a map H : N → N by H(n) = mink∈N |n− k2|. Then H satisfies the following:

(1) H(0) = 0;

(2) for every n ∈ N, the set H−1(n) is infinite;

(3) for every n ∈ N, we have |H(n) −H(n+ 1)| ≤ 1.

Then the map A ◦H : N → N2 × Z satisfies the conditions (B1), (B2) and (B3).

By the conditions (B1) and (B2), we inductively obtain:

Lemma 4.2.5. If a map C : N → N2 ×Z satisfies the conditions (B1) and (B2), then we
have |πi(C(n))| ≤ n for all n ∈ N and for all i ∈ {1, 2, 3}.

We now show the existence of a metric space containing all proper length space as
its asymptotic cones. Such a space is constructed as follows: Let (U, u) be a separable
homogeneous S-universal metric space (see Corollary 2.5.3), and let Q be a countable dense
subset of U . For each (j, k) ∈ N × Z, let I(j,k) = {F(i,j,k)}i∈N be a sequence consisting of
all finite subsets of Q satisfying the following three conditions for all (i, j, k) ∈ N2 × Z:

(C1) q ∈ F(i,j,k);

(C2) 2−k ≤ δu(F(i,j,k)) < 2−k+1;

(C3) 2−j ≤ αu(F(i,j,k))/δu(F(i,j,k)) < 2−j+1.
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Take a surjective map C : N → N2 × Z stated in Lemma 4.2.4. For each i ∈ N, define
Gi = FC(i). Put J = {Gi}i∈N. Then J consists of all finite subsets of Q containing q.

For each i ∈ N, let ai = (α(Gi))
−1 · 2i

2
. Put

X = {q} ⊔
⨿
i∈N

(Gi \ {q}),

and define a metric dX : X ×X → [0,∞) on X by

dX(x, y) =

{
aidGi(x, y) if x, y ∈ Gi for some i ∈ N;

aidGi(x, q) + ajdGj (q, y) if x ∈ Gi and y ∈ Gj for some i ̸= j.

This construction can be considered as a specialized version of amalgamation methods
(see Section 3.2). Note that the metric space (X, dX) is countable, proper, and discrete.

We are going to prove that every pointed proper length space is an asymptotic cone of
X. To simplify our notation, for R ∈ (0,∞), and for i ∈ N, put Bi(R) = B(q, aiR;X, dX).
By the definition of dX , the space (Bi(R), a−1

i dX) contains an isometric copy of the metric
space (B(q,R;Gi, u), u) containing p, say Si(R). We also put Ti(R) = Bi(R)\Si(R). Note
that Si(R) ⊂ Gi and p ∈ Si(R). We next prove some properties of (X, dX).

Lemma 4.2.6. Let R ∈ (0,∞). If i ∈ N satisfies 2i+1δ(Gi) > R, then for every k > i we
have Bi(R) ∩Gk = ∅.

Proof. For every x ∈ Gk, we see that dX(q, x) ≥ 2k
2 ≥ 2(i+1)2 . Lemma 4.2.5 implies

2(i+1)2/ai = 2(i+1)2−i2α(Gi) ≥ 22i+12−π2(C(i))δ(Gi) ≥ 2i+1δ(Gi) > R.

Hence aiR < 2(i+1)2 . This leads to the conclusion.

By Lemma 4.2.6 and by the definition of Ti(R), we obtain:

Corollary 4.2.7. For every R ∈ (0,∞), if i ∈ N satisfies 2i+1δ(Gi) > R, we have

Ti(R) ⊂
i−1∪
j=0

Gj .

Lemma 4.2.8. For every i ≥ 1, we have α(Gi)/α(Gi−1) < 16.

Proof. By the conditions (B2), (C2) and (C3), we obtain

α(Gi)/α(Gi−1) < 2−π2(C(i))+1+π2(C(i−1))δ(Gi)/δ(Gi−1) ≤ 4 · δ(Gi)/δ(Gi−1)

< 4 · 2−π3(C(i))+1+π3(C(i−1)) ≤ 16.

This proves the lemma.

Lemma 4.2.9. Assume that i ∈ N and R ∈ (0,∞) satisfy 2i+1δ(Gi) > R. Then for all
x ∈ Ti(R), we have (ai)

−1dX(q, x) < 32 · 2−i. In particular, we have

H(Bi(R), Si(R);Bi(R), (ai)
−1dX) ≤ 32 · 2−i.

Proof. By Corollary 4.2.7, we have (ai)
−1dX(p, x) ≤ ai−1δ(Gi−1)/ai. Thus, Lemmas 4.2.8

and 4.2.5 imply

ai−1δ(Gi−1)/ai = 2(i−1)2−i2δ(Gi−1)(α(Gi)/α(Gi−1)) < 16 · 2−π3(C(i−1))+1−2i+1 ≤ 32 · 2−i.

This shows the former part of the lemma. From the former part and the facts that
q ∈ Si(R) and Si(R) ⊂ Bi(R), the latter part follows.
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We now prove Theorem 1.2.6.

Proof of Theorem 1.2.6. We first show that the metric space (X, dX) constructed above
is a desired space. Let (K, k, p) be a pointed proper length space. By Proposition 2.5.4,
we may assume that K ⊂ U , u|K2 = k, and p = q. Since (K, k) is proper, we can
take a sequence {Ai}i∈N of finite subsets of Q satisfying the conditions (A1) and (A2) in
Proposition 4.2.3. By the definition of J = {Gi}i∈N, and by the condition (B3), there
exists a strictly increasing map ϕ : N → N such that Gϕ(i) = Ai for every i ∈ N.

We next show that for each R ∈ (0,∞), the sequence {(Bϕ(i)(R), (aϕ(i))
−1dX , q)}i∈N

converges to (B(q,R;K, k), k, q) in the pointed Gromov–Hausdorff topology. Note that,
by the conditions (C2) and (C3) and Lemma 4.2.5, we have ai → ∞ as i→ ∞.

By the definition of dX , we have δ(Gϕ(i)) · 2ϕ(i)+1 → ∞ as i→ ∞. Hence we can take

N ∈ N such that for every i ≥ N , we have R < δ(Gϕ(i)) · 2ϕ(i)+1. Lemma 4.2.9 yields

H(Bϕ(i)(R), Sϕ(i)(R);Bϕ(i)(R), (aϕ)−1dX) < 32 · 2−ϕ(i) ≤ 32 · 2−i. (4.2.7)

Since the metric space (Sϕ(i)(R), dX) is isometric to (B(q,R;Ai;u), u), by Proposition
4.2.3, the sequence {(Bϕ(i)(R), (aϕ(i))

−1dX , q)}i∈N converges to the pointed metric space
(B(q,R;K, k), k, q). By this convergence, and by the inequality (4.2.7), the sequence
{(Bϕ(i)(R), (aϕ(i))

−1dX , q)}i∈N converges to the pointed metric space (B(q,R;K, k), k, q)
in the pointed Gromov–Hausdorff topology. Therefore (K, k, p) is an asymptotic cone of
X. This completes the proof of Theorem 1.2.6.

Remark 4.2.1. Let (X, d) be a metric space mentioned in Theorems 1.2.4, 1.2.5, 1.2.6 or
Proposition 4.2.1. By Theorem 1.2.1 and Proposition 4.1.3, we obtain dimA(X, d) = ∞.

All metric (ω0+1)-spaces and all countable metic spaces have the topological dimension
0, and have the Hausdorff dimension 0. Thus, Theorems 1.2.4, 1.2.5, 1.2.6 or Proposition
4.2.1 tells us that analogues of Theorem 1.2.1 for the topological dimension, the Hausdorff
dimension and the conformal Hausdorff dimension are false. More precisely, we have:

Proposition 4.2.10. There exists a metric space X such that for some (P, h) ∈ PC(X, d)
we have

(1) dimT (X, d) < dimT (P, h);

(2) dimH(X, d) < dimH(P, h);

(3) CdimH(X, d) < CdimH(P, h),

where dimT , dimH and CdimH stand for the topological dimension, the Hausdorff dimen-
sion and the conformal Hausdorff dimension, respectively.

Remark 4.2.2. Chen–Rossi [18] studied a metric space containing a vast class of met-
ric spaces as tangent cones of it. They constructed a compact subset X of RN with
dimH(X, dRN ) = 0 that contains all similarity classes of compact subsets of [0, 1]N as
tangent cones at countable dense subset of X (see [18, Corollary 5.2]). Erdös–Kakutani
[33] constructed a perfect subset of R of measure 0 containing some similarity copies of all
finite subsets of R. Holsztynski [52] constructed, for all n ∈ N, a metric d ∈ M(Rn) such
that all finite metric spaces can be isometrically embedded into (Rn, d) (see [91] for a de-
tailed construction). The metric spaces mentioned above are examples failing an analogy
of Theorem 1.2.1 for the Hausdorff dimension and the conformal Hausdorff dimension.
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Chapter 5

Tiling spaces

In this chapter, we investigate basic geometric properties of spaces with tiling structure,
and we prove Theorem 1.2.7. We prove Theorem 1.2.8, stating that attractors of iterated
function systems are tiling spaces, and by using this, we give some examples of tiling
spaces. We also provide counterexamples related to the assumption on Theorem 1.2.7,
bi-Lipschitz images of tiling spaces, and similarity classes of tiles.

5.1 Properties of spaces with tiling structures

We discuss basic properties of tiling sets, and (pre-)tiling spaces.

5.1.1 Basic properties of tiling spaces

Proposition 5.1.1 ([56]). Let (X,P) be a tiling set. Then for all n,m ∈ dom(P) with
n < m, and for every tile A ∈ Pm, there uniquely exists a tile B ∈ Pn with A ⊂ B.

Proof. Let (X, d,P) be an N -tiling set for some N . Suppose that there exist two distinct
tiles B,C ∈ Pn such that A ⊂ B ∩ C. By the condition (S2), there exist k ∈ dom(P) and
D ∈ Pk such that B∪C ⊂ D and k < n. The condition (S1) yields card([D]m−k) = Nm−k.

Put [D]n−k = {Ti}N
n−k

i=1 . We may assume that T1 = B and T2 = C. The condition

(S3) yields [D]m−k =
∪Nn−k

i=1 [Ti]m−n. By A ⊂ B ∩C, we have A ∈ [T1]m−n ∩ [T2]m−n, and

[D]m−k = ([T1]m−n \ {A}) ∪
Nn−k∪
i=2

[Ti]m−n.

Since the condition (S1) yields card([Ti]m−n) = Nm−n for all i ∈ {1, . . . , Nn−k}, we obtain

card([D]m−k) ≤ (card([T1]m−n) − 1) +
Nn−k∑
i=2

card([Ti]m−n = Nm−k − 1 < Nm−k.

This is a contradiction. Then we obtain the proposition.

By the conditions (S2) and (T1), we have the following propositions:

Proposition 5.1.2 ([56]). If a pre-tiling space (X, d,P) is bounded as a metric space, then
we have dom(P) = N and P0 = {X}.
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Proof. By the condition (T1) and the boundedness of X, the tiling index dom(P) must be
N. Suppose that P0 has two distinct elements. Then this contradicts the condition (S2)
and dom(P) = N. Therefore P0 = {X}.

Proposition 5.1.3 ([56]). Let (X, d,P) be a pre-tiling space. Then the metric space (X, d)
is bounded if and only if dom(P) = N. Equivalently, the metric space (X, d) is unbounded
if and only if dom(P) = Z.

Proof. By Proposition 5.1.2, it suffices to show that if dom(P) = N, then X is bounded.
This holds true by the condition (T1).

For a subset A of a metric space X, we denote by INT(A) the interior of A in X.

Lemma 5.1.4 ([56]). For every pre-tiling space (X, d,P), and for every distinct pair of
A,B ∈ Pn we have INT(A) ∩ INT(B) = ∅.

Proof. If for some distinct A,B ∈ Pn we have INT(A) ∩ INT(B) ̸= ∅, then, by the
condition (T1), there exist k ∈ dom(P) and C ∈ Pk such that C ⊂ INT(A) ∩ INT(B).
This contradicts Proposition 5.1.1.

Lemma 5.1.5 ([56]). All bounded pre-tiling spaces are totally bounded.

Proof. Let (X, d,P) be a bounded (N, s)-pre-tiling space, and let D2 be a constant ap-
peared in the condition (T1) for (X, d,P). Proposition 5.1.3 implies dom(P) = N. For
each n ∈ N, and for each A ∈ [X]n, take a point qA ∈ A. The conditions (S1) and (T1)
for (X, d,P) imply that the set { qA ∈ X | A ∈ [X]n } is a (D2s

n)-net of X.

Since a totally bounded complete metric space is compact, we have:

Corollary 5.1.6 ([56]). All bounded complete pre-tiling spaces are compact.

Since a totally bounded metric space is separable, we obtain:

Corollary 5.1.7 ([56]). All bounded pre-tiling spaces are separable.

We next show the countability of tiling structures.

Proposition 5.1.8 ([56]). For every pre-tiling space (X, d,P), each Pn is countable.

Proof. By Propositions 5.1.2 and 5.1.3, we may assume that X is unbounded. Take
a sequence {Ti}i∈N of tiles of (X, d,P) such that for all i ∈ N we have Ti ∈ P−i and
Ti ⊂ Ti+1. From the condition (S2) and Proposition 5.1.1, it follows that X =

∪
i∈N Ti.

Then we obtain Pn =
∪

−i≤n[Ti]n+i. This shows the proposition.

By Propositions 5.1.7 and 5.1.8, we obtain:

Corollary 5.1.9 ([56]). All pre-tiling spaces are separable.
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5.1.2 Bi-Lipschitz maps and tiling spaces

Let (X, dX) and (Y, dY ) are metric spaces. Let f : (X, dX) → (Y, dY ) be a map. Let
L ∈ [1,∞) and γ ∈ (0,∞). We say that f is (L, γ)-homogeneously bi-Hölder if for all
x, y ∈ X we have

L−1 · dX(x, y)γ ≤ dY (f(x), f(y)) ≤ L · dX(x, y)γ .

A map is said to be homogeneously bi-Hölder if it is an (L, γ)-homogeneously bi-Hölder
map for some L and γ. A map is L-bi-Lipschitz if it is (L, 1)-homogeneously bi-Hölder.

Remark 5.1.1. Let (X, d) be an ultrametric space. For every γ ∈ (0,∞), the function dγ is
also an ultrametric. Thus the identity map 1X : (X, d) → (X, dγ) is (1, γ)-homogeneously
bi-Hölder for any γ ∈ (0,∞).

Lemma 5.1.10 ([56]). Let f : X → Y be a surjective (L, γ)-homogeneously bi-Hölder
map between metric spaces. Then every point x ∈ X and every number r ∈ (0,∞) satisfy

f(B(x, r)) ⊂ B(f(x), Lrγ) ⊂ f(B(x, L2/γr)).

Lemma 5.1.10 implies that a pre-tiling structure is invariant under homogeneously
bi-Hölder maps.

Proposition 5.1.11 ([56]). Every homogeneously bi-Hölder image of an arbitrary pre-
tiling space is a pre-tiling space. More precisely, the image of an arbitrary (N, s)-pre-tiling
space under an (L, γ)-homogeneously bi-Hölder map is an (N, sγ)-pre-tiling space.

Since bi-Lipschitz maps are homogeneously bi-Hölder, we have:

Corollary 5.1.12 ([56]). Every bi-Lipschitz image of an arbitrary (N, s)-pre-tiling space
is an (N, s)-pre-tiling space.

In spite of the virtue of Proposition 5.1.11, a homogeneously bi-Hölder image of a tiling
space is not always a tiling space (see Example 5.4.2).

Proposition 2.4.4 implies that specific bi-Hölder images of tiling spaces are tiling spaces.

Proposition 5.1.13 ([56]). Let (X, d,P) be an (N, s)-tiling space and let ϵ ∈ (0, 1). Then
(X, dϵ,P) is an (N, sϵ)-tiling space.

Let (X, d) be a metric space, and let P : dom(P) → cov(X) be a map. Define a map
PC : dom(P) → cov(X) by PCn = {CL(A) | A ∈ Pn }, where CL is the closure operator in
X. The following proposition allows us to assume that tiles of pre-tiling spaces are closed.

Proposition 5.1.14 ([56]). Let (X, d,P) be an (N, s)-pre-tiling space. Then (X, d,PC) is
also an (N, s)-pre-tiling space. Moreover, if (X, d,P) satisfies the condition (U), then so
does (X, d,PC).

Proof. By the definition of PC , the condition (S3) is satisfied. From Lemma 5.1.4 and
the condition (T2), it follows that for each pair n,m ∈ dom(P) with n < m and for
each A ∈ Pn, if two tiles S, T ∈ [A]m−n satisfy S ̸= T , then CL(S) ̸= CL(T ). Thus the
condition (S1) is satisfied. By the equality CL(A∪B) = CL(A)∪CL(B), the condition (S2)
is satisfied. Then the pair

(
X,PC

)
is an N -tiling set. By the facts that δ(A) = δ(CL(A))

and that if A ⊂ B, then CL(A) ⊂ CL(B), we conclude that the triple
(
X, d,PC

)
is a

pre-tiling space. Since for every subset A of X we have GH(A,CL(A)) = 0, we obtain the
latter part of the proposition.
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Let (X, d) be a metric space. We say that a covering pair (X,P) is self-similar if there
exists s ∈ (0, 1) such that for each n ∈ dom(P), for each A ∈ Pn and for each B ∈ Pn+1,
we have GH((A, sd), (B, d)) = 0. By the definition of the self-similarity, we have:

Lemma 5.1.15 ([56]). Let (X, d) be a metric space. If a covering pair (X,P) is self-
similar, then (X, d,P) satisfies the conditions (T1) and (U).

For a product of pre-tiling spaces, we obtain:

Proposition 5.1.16 ([56]). Let p ∈ [1,∞]. Let (X, d,P) and (Y, e,Q) be (N, s)-pre-tiling
spaces with dom(P) = dom(Q). Define a covering structure R : dom(P) → cov(X) by

Rn = {A×B | A ∈ Pn, B ∈ Qn }.

Then the triple (X × Y, d×p e,R) is a (N2, s)-pre-tiling space.

Proof. Since (X, d,P) and (Y, e,Q) satisfy the conditions (S1), (S2) and (S3), so does
(X×Y, d×p e,R). By the definition of ℓp-product metrics, we see that the conditions (T1)
and (T2) are satisfied. Hence the triple (X×Y, d×p e,R) is a (N2, s)-pre-tiling space.

Remark 5.1.2. The author does not know whether it is true that if X and Y satisfy (U),
then so does X ×p Y for any p ∈ [1,∞].

5.2 Tiling spaces and the Assouad dimension

In this section, we prove Theorem 1.2.7.

5.2.1 Proof of Theorem 1.2.7

Proposition 5.2.1 ([56]). Let (X, d,P) be a doubling pre-tiling space. Then for every
W ∈ (0,∞), there exists MW ∈ N≥1 such that for each m ∈ dom(P) and for each subset
S of X with δ(S) ≤Wsm, we have card({A ∈ Pm | A ∩ S ̸= ∅ }) ≤MW .

Proof. Let D2 and E be constants appearing in the conditions (T1) and (T2) for (X, d,P).
Let W ∈ (0,∞), and take m ∈ dom(P) and a subset S of X satisfying δ(S) ≤ Wsm. For
each A ∈ Pm satisfying A ∩ S ̸= ∅, let pA ∈ A be a point appearing in the condition
(T2) for (X, d,P). Set Z = { pA ∈ X | A ∈ Pm, A ∩ S ̸= ∅ }. By Lemma 5.1.4 and the
condition (T2), we have card(Z) = card({A ∈ Pm | A ∩ S ̸= ∅ }) and α(Z) ≥ Esm. The
condition (T2) implies that δ(A) ≤ D2s

m for every A ∈ Pm. For any point x ∈ S, we have
Z ⊂ B(x, (D2 + W )sm). Thus we have δ(Z) ≤ 2(D2 + W )sm. By Proposition 2.3.1, we
can take γ ∈ C(X, d). Then for some C ∈ (0,∞) we obtain

card({A ∈ Pm | A ∩ S ̸= ∅ }) ≤ C ·
(
δ(Z)

α(Z)

)γ
≤ C ·

(
2(D2 +W )

E

)γ
.

If we put MW = C · (2(D2 +W )/E)γ , then the proposition is proven.

Definition 5.2.1 ([56]). Let (X, d,P) be a pre-tiling space, and let F be a subset of X.
For each pair n,m ∈ dom(P) with n < m and for each B ∈ Pn, we put

QF
n,m(B) = {A ∈ Pm | A ∩ F ̸= ∅, A ⊂ B }. (5.2.1)
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Lemma 5.2.2 ([56]). Let (X, d,P) be a doubling pre-tiling space. Let F be a subset of
X. Let Λ be the infimum of all β ∈ (0,∞) for which there exists C ∈ (0,∞) such that for
every pair n,m ∈ dim(P) with n < m and for every B ∈ Pn we have

QF
n,m(B) ≤ C(sn−m)β. (5.2.2)

Then we have
dimA F = Λ.

Proof. Let (X, d,P) be a doubling (N, s)-pre-tiling space, and let D1 and D2 be constants
appearing in the condition (T1) for (X, d,P). Take β ∈ (0,∞) satisfying (5.2.2) with
Λ < β . Let S ⊂ F be a bounded set. Take n ∈ dom(P) with D1s

n−1 ≤ δ(S) < D1s
n.

Let r ∈ (0,∞), and take m ∈ dom(P) with sm−1 ≤ r < sm. Take a constant MD1 stated
in Proposition 5.2.1 for W = D1. Then S can be covered at most MD1 many members in
Pn, and hence by (5.2.2), the set S also can be covered by at most MD1C(sn−m)β many
members in Pm. In particular, we have

Z(X,d)(S, r) ≤MD1C(sn−m)β ≤MD1D
−β
1 Csβ · (δ(S)/r)β.

This implies β ∈ A(X, d). Hence, dimA F ≤ Λ.
We next prove the opposite inequality. Take β ∈ A(X, d) and B ∈ Pn. The set B ∩ F

is a bounded set of X with δ(B ∩ F ) ≤ D2s
n. Thus B ∩ F can be covered by at most

C(sn−m)β many bounded sets with diameters at most D2s
m. Write these bounded sets as

A1, A2, . . . , AN , where N ≤ C(sn−m)β. Take a constant MD2 stated in Proposition 5.2.1
for W = D2. Then each Ai can be covered by at most MD2 many members in Pm. Hence
we have QF

n,m(B) ≤MD2 · C · (sn−m)β. This implies Λ ≤ dimA(F ).

Applying Lemma 5.2.2 to a pre-tiling space or to a tile of it, we obtain:

Corollary 5.2.3 ([56]). Let (X, d,P) be a doubling (N, s)-pre-tiling space. Then for every
tile T of (X, d,P) we have

dimA T = dimAX = log(N)/ log(s−1).

By using the condition (U), we obtain the following lemma:

Lemma 5.2.4 ([56]). Let (X, d,P) be a doubling tiling space. Let F be a subset of X.
Let D2 be a constant appearing in the condition (T1) for (X, d,P). If TPC(F ) contains
no tiles of (X, d,P), then there exists k ∈ N such that for each n ∈ dom(P) and for each
B ∈ Pn we have GH(B,B ∩ F ) > D2s

n+k.

Proof. Suppose that for each k ∈ N there exist nk ∈ dom(P) and Bk ∈ Pnk
such that the

inequality GH(Bk, Bk ∩ F ) ≤ D2s
nk+k holds. By the condition (T1), we have

GH(Bk, Bk ∩ F ) ≤ (D2/D1)s
k · δ(Bk), (5.2.3)

where D1 is a constant appearing in the condition (T1) for (X, d,P). By the condition (U),
there exists a subsequence {Bϕ(k)}k∈N of the sequence {Bk}k∈N such that the sequence
{(Bϕ(k), δ(Bϕ(k))

−1d)}k∈N converges to (T, (δ(T ))−1d) for some tile T of (X,P ). From the
inequality (5.2.3), it follows that

GH((Bϕ(k), δ(Bϕ(k)))
−1d), ((Bϕ(k) ∩ F ), δ(Bϕ(k)))

−1d) ≤ (D2/D1)s
ϕ(k).

By sϕ(k) → 0 as k → ∞, we conclude that T ∈ TPC(X, d). This is a contradiction.
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We next prove the following:

Lemma 5.2.5 ([56]). Let (X, d,P) be a doubling (N, s)-tiling space. Let F be a subset of
X. If TPC(F, d) contains no tiles of (X, d,P), then we have dimA F < log(N)/ log(s−1).

Proof. Let D1 and D2 be constants appearing in the condition (T1) for (X, d,P). Set

d = log(N)/ log(s−1).

Take k ∈ N stated in Lemma 5.2.4. Put L = sk. By Lemma 5.2.4, for each n ∈ dom(P)
and for each B ∈ Pn, we have dH(B,B ∩ F ;X) > D2s

n+k. Thus we can take a point
x ∈ B such that for every y ∈ F we have dX(x, y) > D2s

n+k. Take C ∈ [B]k with x ∈ C,
then by the condition (T1) we have C ∩ F = ∅. Therefore we obtain the following claim:

Sublemma 5.2.6. For each n ∈ dom(P) and for each B ∈ Pn, there exists C ∈ Pn+k
with C ⊂ B and C ∩ F = ∅.

Fix a, b ∈ dom(P) with a > b and B ∈ Pb. Take v ∈ N such that

D1s
b+k(v+1) ≤ D2s

a < D1s
b+kv. (5.2.4)

Since D2s
a < D1s

b+kv, we have b+ kv < a. Hence for each A ∈ Pb+kv the set [A]a−(b+kv)

is non-empty. Let W be the set of all words generated by {0, . . . , Nk − 1} whose length
is at most v. Note that W contains the empty word. For w ∈ W , we denote by |w| the
length of the word w. For u, v ∈W , we denote by uv the word product of u and v.

Let the set
∪v
i=0[B]ki be indexed by W , say {Tw}w∈W such that for each w ∈ W we

have Tw ∈ [B]k|w|, and such that if |w| < v − 1, then Tw0 ∩ F = ∅. This is possible by
Sublemma 5.2.6. For each i ∈ {1, . . . , v}, define a set Hi by

Hi = {w0 | w ∈W , |w| = i− 1 and all entries of w are not 0 }.

Put Rw = [Tw]a−(b+k|w|). Remark that Rw = {A ∈ Pa | A ⊂ Tw }. Put H =
∪v
i=1Hi.

Note that for all distinct v, w ∈ H, the sets Rv and Rw are disjoint.
Let G =

∪
w∈H Rw. We find that G =

⨿v
i=1

⨿
w∈Hi

Rw. Let QF
b,a(B) be the quantity

defined in Definition 5.2.1. Then we have QF
b,a(B) ≤ card([B]a−b) − card(G). Since

d = log(N)/ log(s−1), we obtain the equalities card(Rw) = Na−b−k|w| = s−d(a−b−k|w|) and
card(Hi) = (Nk − 1)i−1 = (L−d − 1)i−1. By these equalities, we obtain

card(G) = card

 v⨿
i=1

⨿
w∈Hi

Rw

 =
v∑
i=1

card

 ⨿
w∈Hi

Rw

 =
v∑
i=1

∑
w∈Hi

s−d(a−b−k|w|)

=
v∑
i=1

∑
w∈Hi

s−d(a−b−ki) =
v∑
i=1

sd(b−a)skdi(L−d − 1)i−1 = sd(b−a)
v∑
i=1

Ldi(L−d − 1)i−1.

Since for each w ∈ H we have Tw ∩ F = ∅, by the definition (5.2.1) of QF
b,a(B) we obtain

QF
b,a(B) ≤ Na−b − card(G) = (sb−a)d

(
1 −

v∑
i=1

Lid(L−d − 1)i−1

)
.

Note that we have
v∑
i=1

Ldi(L−d − 1)i−1 = (L−d − 1)−1
v∑
i=1

(1 − Ld)i

= (Ld − 1)−1(1 − Ld)(1 − (1 − Ld)v)L−d = 1 − (1 − Ld)v.
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By (5.2.4), we have Lv+1 ≤ (D2/D1)s
a−b, then log((D2/D1)s

a−b)/ logL − 1 ≤ v, and
hence

QF
b,a(B) ≤ (sb−a)d(1 −

v∑
i=1

Ldi(L−d − 1)i−1) = (sb−a)d(1 − Ld)v

≤ (sb−a)d(1 − Ld)log((D2/D1)sa−b)/ logL−1

= (sb−a)d
1

1 − Ld
((D1/D2)s

b−a)− log(1−Ld)/ logL

=

(
1

1 − Ld

(
D1

D2

)− log(1−Ld)/ logL
)

· (sb−a)d−log(1−Ld)/ logL.

By Lemma 5.2.2, we obtain dimA(F ) ≤ d− log(1−Ld)/ logL < d. Thus we conclude that
dimA(F ) < d. This finishes the proof.

Lemma 5.2.7 ([56]). Let (X, d,P) be a pre-tiling space. Then the following are equivalent:

(1) there exists a tile A of (X, d,P) such that A ∈ PC(X, d);

(2) there exists a tile of A of (X, d,P) such that F satisfies the asymptotic Steinhaus
property for A.

Proof. We first show that (2) =⇒ (1). Take a tile A of (X, d,P) stated in the condition
(2). For each n ∈ N≥1, take a (1/n)-net Sn of A. By the condition (2), we can take
a finite subset Tn of F and δn ∈ (0,∞) satisfying that GH((Tn, d), (Sn, δnd)) < δn/n.
Set un = δ−1

n , then we obtain the estimation GH((Tn, und), (Sn, d)) ≤ 1/n. Hence
GH((Tn, und), (A, d)) → 0 as n→ ∞. This implies (A, d) ∈ PC(X, d).

We next show (1) =⇒ (2). Take a tile A of (X, d,P) stated in the condition (1). Take
a finite subset S of A. Since (A, d) ∈ PC(F, d), there exist a sequence {Tn}n∈N of subsets
of F and a sequence {un}n∈N in (0,∞) such that limn→∞ GH((Tn, und), (A, d)) = 0. By
Lemma 5.1.5, the tile A is totally bounded. Then, by Proposition 2.4.5, for each ϵ ∈ (0,∞),
we can take a finite subset YN of TN such that GH((Yn, und), (A, d)) < ϵ. Since S is finite,
we can take a subset UN of YN such that GH((UN , d), (S, u−1

n d)) < u−1
n ·ϵ. Thus F satisfies

the asymptotic Steinhaus property for A.

We now prove Theorem 1.2.7.

Proof of Theorem 1.2.7. By the definitions, the implications (3)=⇒ (2) and (4) =⇒ (2) are
true. Theorem 1.2.1 implies that (2) =⇒ (1). Lemma 5.2.5 is equivalent to the implication
(1) =⇒ (3). Lemma 5.2.7 states that the equivalence (2) ⇐⇒ (5) is true. Therefore it
suffices to show the implication (2) =⇒ (4).

Let (X, d,P) be a doubling tiling space. By Lemma 5.1.5, every tile of a tiling space
is totally bounded. From this property and Proposition 2.4.5, it follows that a tile of
(X, d,P) in PC(F, d) is approximated by a sequence of scalings of finite sets of F in the
sense of Gromov–Hausdorff. This completes the proof of Theorem 1.2.7.

5.3 Tiling spaces induced from iterated function systems

In this section, we prove Theorem 1.2.8, stating that attractors of iterated function systems
are tiling spaces, and we introduce the notion of an extended attractor.
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5.3.1 Attractors

In this subsection, we prove Theorem 1.2.8. Before proving it, we prepare or recall the
notation which we use in this subsection. Let (X, d) be a complete metric space. Let
N ∈ N≥2 and s ∈ (0, 1). Let S = {Si}N−1

i=0 be an (N, s)-similar iterated function system
on X. Assume that the attractor AS of S satisfies the strong open set condition. Let V
be an open set appearing in the strong open set condition. Let W be the set of all words
generated by {0, . . . , N − 1}. For every q ∈ AS , and for each w ∈W , put qw = Sw(q). We
also put dS = d|AS . Let PS be the map defined in Definition 1.2.4.

We first prove that (AS , dS ,PS) is an N -tiling set.

Lemma 5.3.1. The covering pair (AS ,PS) is an N -tiling set.

Proof. By the definition of PS , we see that the condition (S3) is satisfied. We next verify
that the condition (S1) is satisfied. Take q ∈ AS ∩V . For each pair n,m ∈ N with n < m,
and for each B ∈ Pn, by the definitions of attractors and P, we have B =

∪
[B]m−n.

We now prove card([B]m−n) = Nm−n. By the definition of PS , we have

[B]m−n = {Sw(B) | w ∈W and |w| = m− n }.

Write B = Sv(AS), where v ∈W . By the condition (O2) in the strong open set condition,
the family {Svw(V ) | w ∈W and |w| = m− n } is disjoint. This implies that if w ̸= w′

with |w| = |w′| = m − n, then we have qvw ̸= qvw′ . Therefore we see that the set
{ qvw ∈ AS | w ∈W and |w| = m− n } has cardinality Nm−n. Since for each w ∈W with
|w| = m− n we have qvw ∈ Svw(V ) ∩ Svw(AS), we obtain card([B]m−n) = Nm−n.

By the boundedness of AS , the pair (AS ,PS) satisfies the condition (S2). Therefore
the pair (AS ,PS) is an N -tiling set.

We next prove that (AS , dS , PS) is an (N, s)-tiling space.

Lemma 5.3.2. The attractor AS of S is contained in CL(V ). Moreover, for every word
w ∈W , the inclusion Sw(AS) ⊂ CL(Sw(V )) is satisfied.

Proof. Take q ∈ AS ∩V . Put M0 = {q}, and for each n ∈ N≥1 put Mn =
∪N−1
i=0 Si(Mn−1).

Then Mn converges to AS in the Hausdorff topology, in particular, CL(
∪
n∈NMn) = AS .

By the definition of Mn, for each n ∈ N we have Mn ⊂ V . Thus AS ⊂ CL(V ). Since Sw is
a topological embedding for any w ∈W , the latter part follows from the former one.

We now prove Theorem 1.2.8.

Proof of Theorem 1.2.8. Since (AS , dS ,PS) is self-similar, by Lemma 5.1.15 the triple
(AS , dS ,PS) satisfies the conditions (T1) and (U). It suffices to show that (AS , dS ,PS)
satisfies the condition (T2). By AS ∩ V ̸= ∅, we can take q ∈ AS ∩ V . Then there exists
E ∈ (0,∞) such that U(q, E) ⊂ V . Since S consists of s-similar transformations, for each
w ∈ W we have B(qw, Es

|w|) ⊂ Sw(V ). Lemma 5.3.2 implies that for each w ∈ W we
have Sw(AS) ⊂ CL(Sw(V )), thus the ball B(qw, Es

|w|) in X meets only Sw(AS). Hence
the ball B(qw, Es

|w|) in AS is a subset of Sw(AS). Therefore we conclude that (AS , PS)
satisfies the condition (T2). This completes the proof of Theorem 1.2.8.

Remark 5.3.1. An iterated function system S on a metric space is said to satisfy the open
set condition if S satisfies the conditions (O1) and (O2) in the strong open set condition.
Schief [100] proved that the open set condition implies the strong open set condition in
the Euclidean setting. Schief [101] also proved that the implication mentioned above does
not always hold in a general setting (see [101, Example 3.1]).
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5.3.2 Extended attractors

We define unbounded tiling spaces induced from similar iterated function systems.

Definition 5.3.1 ([56]). Let N ∈ N≥2 and s ∈ (0, 1). Let S be an (N, s)-similar iter-
ated function system on a complete metric space with the strong open set condition, say
S = {Si}N−1

i=0 . Define a sequence {(Fk, ek)}k∈N of metric spaces by (Fk, ek) = (AS , s
−kdS),

where AS is the attractor of S. Note that for each k ∈ N, each Si is an s-similar trans-
formation on Fk. By the definition of AS , we find that (S0(Fk+1), ek+1) is isometric to
(Fk, ek). Thus we can identify Fk with S0(Fk+1), and we may consider that Fk ⊂ Fk+1 for
each k ∈ N. Put ES =

∪
k∈N Fk. The metric dS on ES is naturally obtained by identifying

Fk with S0(Fk+1). Note that ES is unbounded. Let W be the set of all words generated
by {0, . . . , N − 1}. Define a map QS : Z → cov(ES) by

(QS)n = {Sw(Fk) | w ∈W and |w| − k = n }. (5.3.1)

We call ES an extended attractor of S.

Similarly to Theorem 1.2.8, we obtain the following:

Theorem 5.3.3 ([56]). For N ∈ N≥2 and s ∈ (0, 1), let S be an (N, s)-similar iterated
function system on a complete metric space satisfying the strong open set condition. Let
ES be the extended attractor of S, and QS the map defined by (5.3.1). Then (ES , dS ,QS)
is an unbounded (N, s)-tiling space.

Proof. Since all the tiles of (ES , dS ,QS) are similar to AS , by a similar argument to Lemma
5.3.1, we see that the condition (S1) is satisfied. Lemma 5.1.15 implies that (ES , dS ,QS)
satisfies the conditions (T1) and (U). By ES =

∪
k∈N Fk, and by the definition of QS , the

conditions (S2) and (S3) are satisfied. Thus (ES ,QS) is an N -tiling set. Similarly to the
proof of Theorem 1.2.8, we see that the condition (T2) is satisfied. Therefore (ES , dS ,QS)
is an (N, s)-tiling space.

5.3.3 Examples of attractors

In this subsection, we see that classical examples of fractals are tiling spaces.

Example 5.3.1 (The middle-third Cantor set). Let C be the middle-third Cantor set
(this is also just called the Cantor set). For each i ∈ {0, 1}, define a map fi : R → R by

fi(x) =
1

3
x+

2

3
i.

Put S = {f0, f1}. Hence S is a (2, 3−1)-similar iterated function system on R, and the
middle-third Cantor se C is the attractor of S. Since the open set (0, 1) of R satisfies the
conditions (O1), (O2) and (O3), the iterated function system S satisfies the strong open
set condition. Let PS : N → C be the map defined in Definition 1.2.4. Theorem 1.2.8
implies that (C, dS ,PS) is a (2, 3−1)-tiling space.

Example 5.3.2 (The Sierpiński gasket). Referring to the cubic roots of unity in the
complex plane, put w0 = (1, 0), w1 = 2−1(−1,

√
3) and w2 = 2−1(−1,−

√
3). For each

i ∈ N, we define a map fi : R2 → R2 by

fi(x) =
1

2
x+

1

2
wi.
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Put S = {f0, f1, f2}. Hence S is a (3, 2−1)-similar iterated function system on R2. The
attractor AS of S is the so-called Sierpiński gasket. Let V be the interior of the triangle
with vertices {w0, w1, w2}, then V satisfies the conditions (O1), (O2) and (O3). Thus S
satisfies the strong open set condition. Let PS : N → cov(AS) be the map defined in
Definition 1.2.4. Then Theorem 1.2.8 implies that (AS , dS ,PS) is a (3, 2−1)-tiling space.

Example 5.3.3 (Euclidean spaces). Consider the N -dimensional normed vector space
RN with the ℓp-Euclidean metric, where p ∈ [1,∞].

Let A = { v ∈ RN | the entries of v are 0, 1 or −1 }. Since A has cardinality 3N , it

can be indexed by {1, . . . , 3N}, say A = {v(i)}3Ni=1. For each i ∈ {1, . . . , 3N}, define a
(1/3)-similar transformation fi : RN → RN by

fi(x) =
1

3
x+

1

3
v(i).

Put S = {fi}3
N

i=1. Then S is a (3N , 3−1)-similar iterated function system on RN , and
[−2−1, 2−1]N is the attractor of S. Since the open set (−2−1, 2−1)N of RN satisfies the
conditions (O1), (O2) and (O3), the iterated function system S satisfies the strong open
set condition. Let PS : N → cov([−2−1, 2−1]N ) be the map defined in Definition 1.2.4,
then this map is described as (PS)n = { 3−nv + 3−n[−2−1, 2−1]N | v ∈ ZN }. Theorem
1.2.8 implies that ([−2−1, 2−1]N , dRN ,PS) is a (3N , 3−1)-tiling space.

We next consider the extended attractor ES of the iterated function system S. Since

RN =
∪
i∈N

[−2−1 · 3i, 2−1 · 3i]N ,

the space ES is isomeric to RN with the ℓp-Euclidean metric. Under a natural identification
between ES and RN , the map QS : Z → cov(RN ) defined in Definition 5.3.1 can be
described as (QS)n = { 3−nv + 3−n[−2−1, 2−1]N | v ∈ ZN }. Theorem 5.3.3 implies that
the extended attractor (RN , dRN ,QS) is a (3N , 3−1)-tiling space.

Applying Theorem 1.2.7 to the tiling space (RN , dRN ,QS) discussed in Example 5.3.3,
we obtain the Fraser–Yu characterization in [35] in a slightly different formulation:

Corollary 5.3.4. For every subset F of RN , the following are equivalent:

(1) dimA(F, dRN ) = N ;

(2) [0, 1]N ∈ PC(F, dRN );

(3) [0, 1]N ∈ TPC(F, dRN );

(4) [0, 1]N ∈ KPC(F, dRN );

(5) F satisfies the asymptotic Steinhaus property for [0, 1]N .

Proof. Let QS be the map described in Example 5.3.3. Since all the tiles of (RN , dRN ,QS)
are similar to [0, 1]N , Theorem 1.2.7 leads to the claim.

Example 5.3.4 (p-adic numbers). Let p be a prime number and let Qp be the set of all
p-adic numbers. Let vp : Qp → Z∪{∞} be the p-adic valuation. Let s ∈ (0, 1), and define
dQp(x, y) = svp(x−y), then dQp is an ultrametric on Qp generating the same topology as
Qp. For each k ∈ {0, . . . , p− 1}, define an s-similar transformation fk : Qp → Qp by

fk(x) = xp+ k.
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Put S = {fk}p−1
k=0. Then S is a (p, s)-similar iterated function system on Qp. We see that

the ball B(0, 1) centered at 0 with radius 1 in Qp is the attractor of S. Since for each
k ∈ {0, . . . , p−1} we have fk(B(0, 1)) = B(k, s), and since dQp is an ultrametric, the open
set B(0, 1) satisfies the conditions (O1), (O2) and (O3). Thus the iterated function system
S satisfies the strong open set condition. Let PS : N → cov(B(0, 1)) be the map defined
in Definition 1.2.4, then this map can be described as (PS)n = {B(a, s−n) | a ∈ Qp }. By
Theorem 1.2.8, we conclude that (B(0, 1), dQp ,PS) is a (p, s)-tiling space.

We next consider the extended attractor of S. Since

Qp =
∪
i∈N

B(0, s−i),

the space ES is isometric to Qp. Under a natural identification between ES and Qp, we can
describe the map QS : Z → cov(Qp) in Definition 5.3.1 as (QS)n = {B(a, s−n) | a ∈ Qp }.
Theorem 5.3.3 implies that (Qp, dQp ,QS) is a (p, s)-tiling space. By Corollary 5.2.3, we
obtain the equality dimAQp = log(p)/ log(s−1).

5.4 Counterexamples

In this section, we construct examples of (pre-)tiling space related to the doubling property,
bi-Lipschitz maps, and similarity classes of tiles.

5.4.1 A non-doubling tiling space

We first provide a tiling space that is not doubling.

Example 5.4.1 ([56]). Let N ∈ N≥2, and let s ∈ (0, 1). We denote by T the set of all
sequences x : N → {0, . . . , N − 1} satisfying that x0 ∈ {0, . . . , N − 2}. The set T can be
described as

T = {0, . . . , N − 2} ×
∞∏
n=1

{0, . . . , N − 1}.

For x, y ∈ T , define a valuation v : T × T → N ∪ {∞} by

v(x, y) =

{
min{n ∈ N | xn ̸= yn } if x ≠ y,

∞ if x = y.

For each i ∈ N, let Ti be a copy of T . Define a metric di on Ti by di(x, y) = sv(x,y)+i.
Recall that, in this thesis, whenever we consider the disjoint union

⨿
i∈I Ai of a family

{Ai}i∈I of sets, we identify the family {Ai}i∈I with its disjoint copy. Under this identifi-
cation, we may assume that Ti ∩ Tj = ∅ for all distinct i, j ∈ N.

For each i ∈ N, the symbol oi stands for the sequence whose all entries are 0 in Ti. For
each k ∈ N, put Ok =

⨿
i=k{oi}, and put

X(k) =

 ⨿
i∈N≥k

Ti

 /O(k).

Namely, X(k) is the set constructed by identifying the zero sequences in the direct sum
set

⨿
i∈N≥k

Ti. Set X = X(0). We may consider that X(k + 1) ⊂ X(k) and Tk ⊂ X for
all k ∈ N . The symbol o stands for the zero sequence in X, which is also the identified
point in X.
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We define a function dX : X2 → [0,∞) by

dX(x, y) =

{
di(x, y) if x, y ∈ Ti for some i,

di(x, o) + dj(o, y) if x ∈ Ti and y ∈ Tj for some i ̸= j.

The function dX is a metric on X (see Proposition 3.2.1).
We next define a tiling structure on X. Let W be the set of all words whose 0-th entry

is in {0, . . . , N − 2} and other entries are in {0, . . . , N − 1}. Remark that the set W does
not contain the empty word. For each word w = w0 · · ·wl ∈W , we define

(Ti)w = {x ∈ Ti | x0 = w0, . . . , xl = wl },

where w0 ∈ {0, . . . , N − 2} and wi ∈ {0, . . . , N − 1} (i ≥ 1). For each k ∈ N and for each
l ∈ N≥1, we define a family Sk,l by

Sk,l = { (Tk)w | w ∈W and |w| = l }.

We define a map P : N → cov(X) by

Pn = {X(n)} ∪
∪

k+l=n

Sk,l.

We now show that (X, dX ,P) is an N -tiling set. By the definition of P, the condition
(S3) is satisfied. For each w ∈W , we have (Ti)w =

∪N−1
v=0 (Ti)wv. For each n ∈ N, we have

X(n) = X(n+ 1) ∪
N−2∪
v=0

(Tn)v.

Thus, the conditions (S1) is satisfied. By the boundedness of X, the condition (S2) is
satisfied. Thus, the pair (X,P) is an N -tiling set.

We next show that (X, dX ,P) is an (N, s)-tiling space. By the definition of the metric
dX , for each n ∈ N, and for all k ∈ N and l ∈ N≥1 with k+ l = n, for each (Ti)w ∈ Sk,l, we
have δ((Ti)w) = s−n and δ(X(n)) = s−n + s−n−1. Then by s−n ≤ s−n + s−n−1 ≤ 2s−n,
the condition (T1) is satisfied. By the definition of {Ti}i∈N, for every a ∈ Ti we have
(Ti)w = B(a, s−n). For every a ∈ (Tn)1 we also have

B(a, s−n−1) ⊂ Tn ⊂ X(n).

Then the condition (T2) is satisfied. For each n ∈ N, the spaces sX(n) and X(n+ 1) are
isometric to each other. For all i, j ∈ N and for all u, v ∈ W , the spaces (Ti)u and (Tj)v
are similar. Thus the tiles of (X, dX ,P) have only two similarity classes, and hence the
condition (U) is satisfied. Therefore (X, dX ,P) is an (N, s)-tiling space.

For each n ∈ N, we have the equality card({A ∈ Pn | o ∈ A }) = (n− 1)(N − 1) +N .
By Proposition 5.2.1, and by (n − 1)(N − 1) + N → ∞ as n → ∞, we conclude that
(X, dX) is not doubling.

Remark 5.4.1. Due to Brouwer’s topological characterization of the Cantor set (see [13],
or [66, Theorem 7.4]), the space X constructed in Example 5.4.1 is homeomorphic to the
middle-third Cantor set. Indeed, the space X is topologically 0-dimensional and compact,
and it has no isolated points.

Remark 5.4.2. In Example 5.4.1, by replacing the role of N with that of Z, we also obtain
an unbounded non-doubling (N, s)-tiling space that is not locally compact. Therefore
being a tiling space does not imply the local compactness.

Remark 5.4.3. The construction of Example 5.4.1 is inspired by constructions of hedgehog
spaces (see, for example, [117] or [110]).
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5.4.2 A bi-Lipschitz image of a tiling space

We next construct a pre-tiling space that is not a tiling space. The space constructed
below is also a bi-Lipschitz image of a tiling space.

Example 5.4.2 ([56]). Let 2N be the set of all sequences valued in {0, 1}. For x, y ∈ 2N,
define a valuation v : 2N × 2N → N ∪ {∞} by

v(x, y) =

{
min{n ∈ N | xn ̸= yn } if x ̸= y,

∞ if x = y.

For n ∈ N, set a(n) = (1 − 1/(n + 3))2−(n+3). Let dX be a metric on 2N defined by
dX(x, y) = a(v(x, y)). Let dY be a metric on 2N defined by dY (x, y) = 2−v(x,y). Then
the two metrics dX and dY are ultrametrics. Define two maps P,Q : N → cov(2N) by
Pn = {B(x, a(n)) | x ∈ X} and Qn = {B(x, 2−n) | x ∈ Y }. Then (2N, dX ,P) and
(2N, dY ,Q) are 2-tiling sets.

We now prove that (2N, dY ,Q) is a (2, 2−1)-tiling space. For each i ∈ {0, 1}, we define
a (1/2)-similar map fi : 2N → 2N by

(fi(x))j =

{
i if j = 0,

xj−1 if j ≥ 1,

where (fi(x))j is the j-th entry of fi(x). Then {f0, f1} is a (2, 2−1)-similar iterated function
system on (2N, dY ), and (2N, dY ) is the attractor of {f0, f1}. Since (2N, dY ) is the whole
space, the iterated function system {f0, f1} satisfies the strong open set condition. The
map P{f0,f1} : N → cov(2N) coincides with Q. Thus Theorem 1.2.8 implies that the triple

(2N, dY ,Q) is a (2, 2−1)-tiling space.
We now prove the following sublemma:

Lemma 5.4.1. The tiles of (2N, dX ,P) have infinitely many similarity classes.

Proof. Since dX is an ultrametric, we have δ(B(0, a(k))) = a(k) for all k ∈ N. Thus it
suffices to show that for all n,m ∈ N, if the metric spaces ((B(0, a(n))), (a(n))−1dX) and
((B(0, a(m))), (a(m))−1dX) are isometric to each other, then n = m.

For each k ∈ N, we put Sk = { (a(k))−1d(x, y) | x, y ∈ B(0, a(k)) }. Assume that
((B(0, a(n))), (a(n))−1dX) and ((B(0, a(m))), (a(m))−1dX) are isometric. Then the sets
Sn and Sm coincide with each other. Real numbers a(n + 1)/a(n) and a(m + 1)/a(m)
are the maximals of the sets Sn \ {1} and Sm \ {1}, respectively. Thus, we find that
a(n+ 1)/a(n) = a(m+ 1)/a(m). For k ∈ N we have

a(k + 1)

a(k)
=

1

2

(k + 2)(k + 4)

(k + 3)2
,

Then the equality a(n+ 1)/a(n) = a(m+ 1)/a(m) implies

(n+ 2)(n+ 4)

(n+ 3)2
=

(m+ 2)(m+ 4)

(m+ 3)2
,

and hence (m+ 3)3(n+ 2)(n+ 4) = (n+ 3)2(m+ 2)(m+ 4). Note that if a, b ∈ Z satisfy
a − b = 1, then a and b are coprime. Thus we see that (m + 3)2 divides (n + 3)2, and
(n + 3)2 divides (m + 3)2, which implies (n + 3)2 = (m + 3)2. Therefore n = m. This
finishes the proof of the lemma.
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Comparing the sets of values of the metrics, we see that the similarity classes of the
tiles of (2N, dX ,P) do not contain that of (2N, dY ,Q).

The identity map 12N : (2N, dX) → (2N, dY ) is bi-Lipschitz, in particular, the metric
space (2N, dX) is a bi-Lipschitz image of (2N, dY ). Since (2N, dY ,Q) is a (2, 2−1)-pre-tiling
space, by Corollary 5.1.12, so is (2N, dX ,P).

Take a sequence {Ai}i∈N of tiles of (2N, dX ,P) with Ai ∈ Pi. Since for all N ∈ N and for
all n ∈ N we have |a(n+N)/a(N) − 2−n| < 1/(N + 2), the sequence (AN , (δ(AN ))−1dX)
converges to the space (2N, dY ) in the of Gromov–Hausdorff topology. Thus (2N, dX ,P) is
a pre-tiling space which does not satisfy the condition (U).

In summary, the pre-tiling space (2N, dX ,P) is a non-tiling space which is a bi-Lipschitz
image of the tiling space (2N, dY ,Q).

5.4.3 A tiling space with infinitely many similarity classes of tiles

Combining the metric spaces provided in Example 5.4.2, we can construct a tiling space
whose tiles have infinitely many similarity classes.

Example 5.4.3 ([56]). Let (2N, dX ,P) and (2N, dY ,Q) be the pre-tiling space and the
tiling space constructed in Example 5.4.2, respectively. Put Z = 2N ⊔ 2N and define a
metric dZ on Z by

dZ(x, y) =


dX(x, y) if x, y ∈ X,

dY (x, y) if x, y ∈ Y ,

2 if x and y lie in distinct components.

Define a map R : N → cov(X ⊔ Y ) by R0 = {Z} for n = 0, and by Rn = Pn−1 ∪Qn−1

for n ∈ N≥1. Since (2N, dX ,P) and (2N, dY ,Q) are (2, 2−1)-pre-tiling spaces, (Z, dZ ,R) is
a (2, 2−1)-pre-tiling space.

We now prove that (Z, dZ ,R) satisfies the condition (U). Take an arbitrary sequence
{An}n∈N of tiles of (Z, dZ ,R). Then there exists a subsequence {Aϕ(i)}i∈N of {An}n∈N
consisting of either tiles of (2N, dX ,P) or that of (2N, dY ,Q). If {Aϕ(i)}i∈N consists of

tiles of (2N, dX ,Q), then by the argument in Example 5.4.2, there exists a subsequence
{Aψ(i)}i∈N of {Aϕ(i)}i∈N satisfying that (Aψ(i), δ(Aψ(i))

−1dX) converges to either (2N, dY )

or (T, δ(T )−1dX) for some tile T of (2N, dX ,P). In the case where {Aϕ(i)}i∈N consists of

tiles of (2N, dY ,Q), since (2N, dY ,Q) satisfies the condition (U), there exists a subsequence
{Aψ(i)}i∈N of {Aϕ(i)}i∈N satisfying that (Aψ(i), δ(Aψ(i))

−1dZ) converges to (T, δ(T )−1dY )

for some tile T of (2N, dY ,Q). Therefore (Z, dZ ,R) satisfies the condition (U).
As a summary, we obtain a (2, 2−1)-tiling space (Z, dZ ,R) whose tiles have infinitely

many similarity classes.
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Chapter 6

Spaces of metrics

In this chapter, we first prove Theorem 1.2.9. In Section 6.2, we next discuss the ba-
sic properties of transmissible properties, and we prove Theorems 1.2.10 and 1.2.11 as
applications of Theorem 1.2.9.

6.1 An interpolation theorem of metrics

In this section, we prove Theorem 1.2.9.

6.1.1 Proof of Theorem 1.2.9

Before proving Theorem 1.2.9, recall that a family of subsets of a topological space is said
to be discrete if every point in the space has a neighborhood intersecting at most a single
member of the family. By this definition, we obtain:

Proposition 6.1.1. For a discrete family of closed subsets of a topological space, its union
is closed.

Proof of Theorem 1.2.9. Let X be a metrizable space, and let {Ai}i∈I be a discrete family
of closed subsets of X. Take a metric d ∈ M(X), and a family {ei}i∈I such that ei ∈ M(Ai).

In the case of supi∈I DAi(ei, d|A2
i
) = ∞, by Lemma 3.2.4, we obtain a metric k in

M(
⨿
i∈I Ai) such that for every i ∈ I we have k|A2

i
= ei. Since k generates the same

topology as
⨿
i∈I Ai, and

⨿
i∈I Ai is closed in X (see Proposition 6.1.1), we can apply

Theorem 2.2.3 to the metric k, and hence there exists a metric r ∈ M(X) such that we
have r|A2

i
= ei for all i ∈ I. Then, Theorem 1.2.9 is proven in this case.

We next deal with the case of supi∈I DAi(ei, d|A2
i
) < ∞. Put η = supi∈I DAi(ei, d|A2

i
).

Let {Bi}i∈I and τ :
⨿
i∈I Ai →

⨿
i∈I Bi be the same family and map as in Lemma 3.2.5,

respectively. Put Z = X ⊔
⨿
i∈I Bi. By Lemma 3.2.5, we find a metric h on Z such that

(1) for every i ∈ I we have h|B2
i

= (τ−1
i )∗ei;

(2) h|X2 = d;

(3) for every x ∈
⨿
i∈I Ai we have h(x, τ(x)) = η/2.

We can take an isometric embedding H : Z → Y from (Z, h) into a Banach space
(Y, ∥ ∗ ∥Y ) (see Subsection 2.2.1). Define a map ϕ : Z → CC(Y ) by ϕ(x) = B(H(x), η/2).
Corollary 2.7.7 implies that the map ϕ is lower semi-continuous.

Define a map f :
∪
i∈I Ai :→ Y by f(x) = H(τ(x)). Then the map f is continuous.

By the property (3) of h, for every x ∈
∪
i∈I Ai we have f(x) ∈ ϕ(x). Due to the Stone
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theorem 2.7.1 and Proposition 6.1.1, the space X is paracompact and the set
∪
iıI Ai is

closed in X. Thus we can apply the Michael selection theorem 2.7.3 to the map f , and
hence we obtain a continuous map F : X → Y such that F |∪

i∈I Ai
= f and for every

x ∈
∪
i∈I A we have F (x) ∈ ϕ(x). Note that F (x) ∈ ϕ(x) means that

∥F (x) −H(x)∥Y ≤ η/2.

Let r ∈ M(X) be the metric constructed in the case of η = ∞. Put l = min{r, η/2}.
Note that l ∈ M(X). We consider that the product metric space Y ×X is equipped with
the metric dY ×∞ l, where dY is the metric induced by ∥ ∗ ∥Y .

Define a map E : X → Y ×X by

E(x) = (F (x), x).

Since the second component of E is the identity map, the map E is a topological embed-
ding. Take a fixed base point o ∈ X. We also define a map K : X → Y ×X by

K(x) = (H(x), o).

Then, by the definition of dY ×∞ l, the map K from (X, d) to (Y ×X, dY ×∞ l) is isometric.
Since for every x ∈ X we have ∥F (x) −H(x)∥Y ≤ η/2 and δl(X) ≤ η/2, we obtain

∥E(x) −K(x)∥ = ∥F (x) −H(x)∥Y ∨ l(x, o) ≤ η/2.

Define a function m : X2 → [0,∞) by m(x, y) = ∥E(x)−E(y)∥, then m is a metric on
X. Since E is a topological embedding, we see that m ∈ M(X). For every i ∈ I, and for
all x, y ∈ Ai, we have ∥F (x) − F (y)∥Y = ei(x, y) and l(x, y) ≤ r(x, y) = ei(x, y). Thus,

∥E(x) − E(y)∥ = ∥F (x) − F (y)∥Y ∨ l(x, y) = ei(x, y),

and hence m|A2
i

= ei. By the definition of DX , we have η ≤ DX(m, d). We also obtain

the opposite inequality DX(m, d) ≤ η; indeed, for all x, y ∈ X,

|m(x, y) − d(x, y)| =
∣∣∣∥E(x) − E(y)∥ − ∥K(x) −K(y)∥

∣∣∣
≤ ∥E(y) −K(y)∥ + ∥E(x) −K(x)∥ ≤ η/2 + η/2 = η.

Therefore we conclude that DX(m, d) = η. This proves the former part of Theorem 1.2.9.
By the latter part of Theorem 2.2.3, the metric l can be chosen as a complete one.

Then m becomes a complete metric. This leads to the latter part of Theorem 1.2.9.

In Theorem 1.2.9, by letting I be a singleton, we obtain the following:

Corollary 6.1.2. Let X be a metrizable space, and let A be a closed subset of X. Then
for every d ∈ M(X), and for every e ∈ M(A), there exists a metric m ∈ M(X) satisfying
the following:

(1) m|A2 = e;

(2) DX(m, d) = DA(e, d|A2).

Moreover, if X is completely metrizable, and if e ∈ M(A) is a complete metric, then the
metric m ∈ M(X) can be chosen as a complete one.
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6.2 Transmissible properties

In this section we discuss transmissible properties, and prove Theorem 1.2.10. We also
show that various properties in metric geometry are transmissible properties.

6.2.1 Proof of Theorem 1.2.10

By the condition (TP2) in Definition 1.2.5, we obtain the following:

Lemma 6.2.1. Let G be a transmissible parameter. If a metric space (X, d) satisfies the
G-transmissible property, then so does every metric subspace of (X, d).

By the virtue of Lemma 6.2.1, we use the word “transmissible”.

Corollary 6.2.2. Let G be a transmissible parameter. Let (X, d) be a metric space. If
there exists a subspace of (X, d) with the anti-G-transmissible property, then so does (X, d).

Let X be a metrizable space, and let G = (Q,P, F,G,Z, ϕ) be a transmissible param-
eter. For q ∈ Q, for a ∈ Seq(G(q), X) and for z ∈ Z, we denote by S(X,G, q, a, z) the set
of all d ∈ M(X) such that ϕq,X(a, z, d) ∈ P \ F (q). We also denote by S(X,G) the set of
all d ∈ M(X) such that (X, d) satisfies the anti-G-transmissible property.

Proposition 6.2.3. Let X be a metrizable space. Let G = (Q,P, F,G,Z, ϕ) be a transmis-
sible parameter. Then for all q ∈ Q, a ∈ Seq(G(q), X) and z ∈ Z, the set S(X,G, q, a, z)
is open in M(X).

Proof. Fix q ∈ Q, a ∈ Seq(G(q), X) and z ∈ Z. We see that

S(X,G, q, a, z) =
(
ϕq,X(a, z)

)−1
(P \ F (q)).

Since P \ F (q) is open in P , and since the map ϕq,X(a, z) : M(X) → P is continuous, the
set S(X,G, q, a, z) is open in M(X).

Corollary 6.2.4 ([59]). Let X be a metrizable space, and let G = (Q,P, F,G,Z, ϕ) be a
transmissible parameter. Then the set S(X,G) is Gδ in M(X). Moreover, if the set Q is
finite, then S(X,G) is open in M(X).

Proof. By the definitions of S(X,G) and S(X,G, q, a, z), we have

S(X,G) =
∩
q∈Q

∪
a∈Seq(G(q),X)

∪
z∈Z

S(X,G, q, a, z).

This equality together with Proposition 6.2.3 proves the lemma.

We say that a topological space is an (ω0 + 1)-space if it is homeomorphic to the
one-point compactification of the countable discrete topological space.

Lemma 6.2.5 ([59]). Let G be a transmissible parameter. Then G is singular if and
only if there exists a metric (ω0 + 1)-space with arbitrary small diameter satisfying the
anti-G-transmissible property.

Proof. Let G = (Q,P, F,G,Z, ϕ). First assume that there exists a metric (ω0 + 1)-space
with arbitrary small diameter satisfying the anti-G-transmissible property. By the defini-
tion of the anti-G-transmissible property, we see that G is singular.

We next assume that G is singular. Fix ϵ ∈ (0,∞). Take a surjective map θ : N → Q.
By the singularity of G, there exists a sequence {(Ri, di)}i∈N of finite metric spaces such
that for each i ∈ N there exists zi ∈ Z satisfying
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(1) δdi(Ri) ≤ ϵ · 2−i;

(2) card(Ri) ∈ G(θ(i));

(3) ϕθ(i),Ri

(
{ri,j}card(Ri)

j=1 , zi, di

)
∈ P \ F (θ(i)).

In order to construct a desired space, we use the telescope construction discussed in Sec-
tion 3.1. Let A =

(
N ∪ {∞}, D, 1N∪{∞}

)
be a telescope base defined in Definition 3.1.2.

Put R = {(Ri, di)}i∈N, and put B =
(
N ∪ {∞}, ϵ ·D, 1N∪{∞}

)
. Then L = (R,B) is

a compatible pair. By the properties (2) and (3) of {(Ri, di)}i∈N, the telescope metric
space (T (L), dT (L)) of L satisfies the anti-G-transmissible property. By Lemma 3.1.3,
(T (L), dT (L)) is an (ω0 + 1)-space.

Let G be a transmissible parameter. For a non-discrete metrizable space X, and for
an (ω0 + 1)-subspace R of X, we denote by T (X,R,G) the set of all d ∈ M(X) for which
(R, d|R2) satisfies the anti-G-transmissible property.

As a consequence of Corollary 6.1.2, we obtain the following:

Proposition 6.2.6. Let G = (Q,P, F,G,Z, ϕ) be a singular transmissible parameter.
Then for every non-discrete metrizable space X, and for every (ω0 + 1)-subspace R of X,
the set T (X,R,G) is dense in M(X).

Proof. Fix d ∈ M(X) and ϵ ∈ (0,∞). From the singularity of G, by Lemma 6.2.5, it
follows that there exists an (ω0 + 1)-metric space (L, e) satisfying the anti-G-transmissible
property and δe(L) < ϵ/2. Since R is an (ω0 + 1)-space, there exists an (ω0 + 1) subspace
S of R with δd(S) < ϵ/2. Let τ : S → L be a homeomorphism. By the definitions of S
and e, we have

DS(d|S2 , τ∗e) = sup
x,y∈S

|d(x, y) − τ∗e(x, y)| ≤ δd(S) + δτ∗e(S) ≤ ϵ.

By Corollary 6.1.2, we obtain a metric m ∈ M(X) such that m|S2 = τ∗e and DX(m, d) ≤ ϵ.
By Corollary 6.2.2, the metric space (X,m) satisfies the anti-G-transmissible property.
Since d and ϵ are arbitrary, we conclude that T (X,R,G) is dense in M(X).

Proof of Theorem 1.2.10. Let X be a non-discrete metrizable space, and let G be a sin-
gular transmissible parameter. Since X is non-discrete, there exists an (ω0 + 1)-subspace
R of X. By the definitions, we have T (X,R,G) ⊂ S(X,G). By Proposition 6.2.6 and
Corollary 6.2.4, the set S(X,G) is dense Gδ in M(X). This finishes the proof.

For a complete metrizable space X, we denote by CM(X) the set of all complete
metrics in M(X). From the latter part of Corollary 6.1.2, we deduce the following:

Theorem 6.2.7 ([59]). Let G be a singular transmissible parameter. For every non-
discrete completely metrizable space X, the set of all d ∈ CM(X) for which (X, d) satisfies
the anti-G-transmissible property is dense Gδ in CM(X).

6.2.2 Proof of Theorem 1.2.11

In this subsection, we prove Theorem 1.2.11.
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Proof of Theorem 1.2.11. LetX be a second countable, locally compact locally non-discrete
space, and let G be a singular transmissible parameter. Let G = (Q,P, F,G,Z, ϕ). Let S
be the set of all metrics d ∈ M(X) for which (X, d) satisfies the local anti-G-transmissible
property. Let {Ui}i∈N be a countable open base of X, and let {Ri}i∈N be a family of
(ω0 + 1)-subspaces of X with Ri ⊂ Ui. Since {Ui}i∈N is an open base of X, Lemma 6.2.1
implies that

S =
∩
i∈N

∩
q∈Q

∪
z∈Z

∪
a∈Seq(G(q),Ui)

S(X,G, q, a, z).

Corollary 6.2.4 implies that S is Gδ in M(X). For each i ∈ N, the set∩
q∈Q

∪
z∈Z

∪
a∈Seq(G(q),Ui)

S(X,G, q, a, z)

contains T (X,Ri,G). Proposition 6.2.6 implies that each T (X,Ri,G) is dense in M(X).
By the former part of Lemma 3.4.7, the space M(X) is a Baire space, and hence S is dense
Gδ in M(X) (see Lemma 2.2.9). This completes the proof.

6.3 Examples of transmissible properties

6.3.1 The doubling property

By the definitions of the topology of M(X), αd and δd, we obtain:

Lemma 6.3.1. Let X be a metrizable space. Fix a finite subset A of X. Then maps
B,D : M(X) → R defined by B(d) = αd(A) and D(d) = δd(A) are continuous.

Proposition 6.3.2 ([59]). The doubling property on metric spaces is a transmissible prop-
erty with a singular transmissible parameter.

Proof. Define a map D : (Q>0)
2 → F((R>0)

2) by

D((q1, q2)) = { (x, y) ∈ (R>0)
2 | x ≤ q1y

q2 },

and define a constant map GD : (Q>0)
2 → P(N)∗ by GD(q) = [2,∞). Put ZD = {1}. For

each metrizable space X, and for each q ∈ (Q>0)
2, define a map

ϕq,XD : Seq(G(q), X) × ZD × M(X) → R

by

ϕq,XD ({ai}Ni=1, 1, d) =

(
N,

δd({ ai | i ∈ {1, . . . , N} })

αd({ ai | i ∈ {1, . . . , N} })

)
.

Let DB = ((Q>0)
2, (R>0)

2, D,GD, {1}, ϕD). Then DB satisfies the condition(TP2) in
Definition 1.2.5. By Lemma 6.3.1, we see that DB satisfies the condition (TP1). Hence
DB is a transmissible parameter. The DB-transmissible property is equivalent to the
doubling property. We next prove that DB is singular. For q = (q1, q2) ∈ (Q>0)

2 and for
ϵ ∈ (0,∞), we denote by (Rq, dq) a finite metric space with card(Rq) > q1 + 1 on which
all distances of distinct two points are equal to ϵ. Then δdq(Rq) = ϵ, and

ϕq,Rq(Rq, 1, dq) = (card(Rq), 1) ̸∈ D(q).

74



We next show that the DB-transmissible property is equivalent to the doubling prop-
erty. This equivalence follows from the fact that a metric space (X, d) satisfies the DB-
transmissible property if and only if there exists q = (q1, q2) ∈ (Q>0)

2 such that for every
{ai}Ni=1 ∈ Seq([2,∞), X) we have

N ≤ q1

(
δd({ ai | i ∈ {1, . . . , N} })

αd({ ai | i ∈ {1, . . . , N} })

)q2
.

This finishes the proof.

6.3.2 Uniform disconnectedness

A metric space (X, d) is said to be uniformly disconnected if there exists δ ∈ (0, 1) such
that if a finite sequence {zi}Ni=1 in X satisfies max1≤i≤N−1 d(zi, zi+1) < δd(z1, zN ), then
we have z1 = z2 = · · · = zN . Note that a metric space is uniformly disconnected if and
only if it is bi-Lipschitz to an ultrametric space (see e.g., [76, Lemma 5.1.10]).

By the definition of the topology of M(X), we obtain:

Lemma 6.3.3. Let X be a metrizable space. Fix two points a, b in X. Then a map
f : M(X) → R defined by f(d) = d(a, b) is continuous.

Proposition 6.3.4 ([59]). The uniform disconnectedness on metic spaces is a transmis-
sible property with a singular parameter.

Proof. Define a map U : Q ∩ (0, 1) → F((R≥0)
2) by

U(q) = { (x, y) ∈ (R≥0)
2 | x ≥ qy },

and define a constant map GU : Q ∩ (0, 1) → P∗(N) by GU (q) = [2,∞). Put ZU = {1}.
For each metrizable space X, and for each q ∈ Q ∩ (0, 1), define a map

ϕq,XU : Seq(GU (q), X) × ZU × M(X) → (R≥0)
2

by

ϕq,XUD({ai}Ni=1, 1, d) =

(
max

1≤i≤N−1
d(ai, ai+1), d(a1, aN )

)
.

Let UD = (Q ∩ (0, 1), (R>0)
2, U,GU , {1}, ϕUD). Then UD satisfies the condition (TP2) in

Definition 1.2.5. By Lemma 6.3.3, we see that UD satisfies the condition (TP1). Hence
UD is a transmissible parameter, and the UD-transmissible property is equivalent to the
uniform disconnectedness on metric spaces. We next prove that UD is singular. For every
q ∈ Q ∩ (0, 1), take n ∈ N with 1/n < q. Put

Rq = { ϵ · i/n | i ∈ Z ∩ [0, n] },

and let dq be the relative metric on Rq induced from the Euclidean metric. Then we obtain
δdq(Rq) = ϵ, and

ϕ
q,Rq

UD ({ai}Ni=1, 1, dq) = (ϵ/n, ϵ) ̸∈ U(q).

We next show that the UD-transmissible property is equivalent to uniform disconnect-
edness. This equivalence follows from the fact that a metric space (X, d) satisfies the
DB-transmissible property if and only if there exists q ∈ Q ∩ (0, 1) such that for every
{ai}Ni=1 ∈ Seq([2,∞), X) we have

qd(a1, aN ) ≤ max
1≤i≤N−1

d(ai, ai+1).

This finishes the proof.
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6.3.3 Necessity of an assumption of Theorem 1.2.10

Let D be a metric on Z on which all distances of two distinct points in Z are equal to
1. Let R be the relative Euclidean metric on Z. Note that E,D ∈ M(Z). The following
proposition tells us that the assumption on discreteness in Theorem 1.2.10 is necessary.

Proposition 6.3.5. For the metric D and R on Z defined above, the following are satis-
fied:

(1) there exists a neighborhood U of R in M(Z) such that for every d ∈ U the space
(Z, d) is doubling.

(2) there exists a neighborhood U of D in M(Z) such that for every d ∈ U the space
(Z, d) is uniformly disconnected.

Proof. We first prove the statement (1). Put U = U(R, 1/2; M(Z),DZ). Take d ∈ U . Then
for every finite subset A of Z with cardinality at least 2, we have δd(A) ≤ δR(A)+1/2 and
αd(A) ≥ αR(A) − 1/2. Since 1 ≤ αR(A) and 1 ≤ δR(A), we have δd(A) ≤ (3/2)δR(A) and
αd(A) ≥ (1/2)αR(A). Since R is the relative 1-dimensional Euclidean metric, we have

card(A) ≤ 2 ·
(
δR(A)

αR(A)

)
,

and hence we obtain

card(A) ≤ 6 ·
(
δd(A)

αd(A)

)
.

This implies that d is doubling.
We next prove the statement (2). Put U = U(D, 1/2; M(Z),DZ). Take d ∈ U . Let

{zi}Ni=1 be a sequence in Z not consisting of a single point. Since D is an ultrametric, it
satisfies the uniform disconnectedness for δ = 1/2. Then we have

1

2
D(z1, zN ) < max

1≤i≤N−1
D(zi, zi+1).

Since DZ(d,D) ≤ 1/2, we have

1

2
d(z1, zN ) − 1

4
< max

1≤i≤N−1
d(zi, zi+1) +

1

2
.

Since 1/2 < max1≤i≤N−1 d(zi, zi+1), we also have

2

7
d(z1, zN ) < max

1≤i≤N−1
d(zi, zi+1).

Therefore we conclude that d is uniformly disconnected for δ = 2/7.

6.3.4 Rich pseudo-cones

Let F be the class of all finite metric spaces on which all distances are in rational numbers.
We denote by G the quotient class of F divided by the isometric equivalence. Note that G

is countable.
We say that a metric space (X, d) has rich pseudo-cones if F is contained in PC(X, d).

Proposition 6.3.6 ([59]). The rich pseudo-cones property on metric spaces is an anti-
transmissible property with a singular transmissible parameter.
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Proof. Let {(Fn, dn)}n∈N be a complete representation system of G. Let Fn = {fn,l}
card(Fi)
l=1 .

Define a function R : N2 → R by

R(n,m) = { y ∈ R | y ≥ 2−m },

and define a map GR : N2 → P∗(N) by GR(n,m) = {card(Fn)}.
For each k = (n,m) ∈ N2, for each metrizable space X, for each finite sequence

{ai}Mi=1 ∈ Seq(GR(k), X), and for all i, j ∈ {1, . . . ,M} we define a function

rki,j({ai}Mi=1) : (0,∞) × M(X) → R

by

rki,j({ai}Mi=1)(z, d) = |z−1d(ai, aj) − dn(fn,i, fn,j)|

if i, j ∈ {1, . . . ,M}; otherwise, we define rki,j({ai}Mi=1)(z, d) = 0. By Lemma 6.3.3, the map

rki,j({ai}Mi=1) is continuous.

Define a map ϕk,XR : Seq(G(k), X) × (0,∞) × M(X) → R by

ϕqR({ai}Mi=1, z, d) = max
i,j∈{1,...,M}

rki,j({ai}Mi=1)(z, d).

Let R = (N2,R, R,GR, (0,∞), ϕr). Then R satisfies the conditions (TP1) and (TP2) in
Definition 1.2.5, and hence it is a transmissible parameter.

For a metric space (X, d), the anti-R-transmissible property means that for every

n ∈ N, and for every m ∈ N, there exist a finite subspace A = {ai}card(Fn)
i=1 of X and a

positive number z ∈ (0,∞) such that for all i, j ∈ {1, . . . , card(Fn)} we have

|z−1d(ai, aj) − dn(fn,i, fn,j)| < 2−m;

in particular, GH((A, z−1d|A2), (Fn, dn)) < 2−(m+1). Thus F is contained in PC(X, d).
This implies that (X, d) has rich pseudo-cones. We next prove the opposite. If (X, d)
has rich pseudo-cones, then for every (F, dF ) ∈ F, and for every ϵ ∈ (0,∞), there exist
a positive number z ∈ (0,∞) and a subset A of X with card(A) = card(F ) such that
GH((A, z−1d|A2), (F, dF )) < ϵ. Thus (X, d) satisfies the anti-R-transmissible property.
We next prove that R is singular. For each (n,m) ∈ N2 and for each ϵ ∈ (0,∞), we put

(R, dR) = (Fn, (ϵ/δdn(Fn)) · dn).

Then we have δdR(R) = ϵ, and

ϕ
(n,m),R
R

(
{fn,l}

card(Fn)
l=1 , δdn(Fn)/ϵ, dR

)
= 0 ̸∈ R(n,m).

Therefore R is singular. This completes the proof.

Since every compact metric space is arbitrarily approximated by members of F in the
sense of Gromov–Hausdorff, we obtain:

Proposition 6.3.7. A metric space (X, d) has rich pseudo-cones if and only if PC(X, d)
contains all compact metric spaces.

From Theorem 1.2.10, we deduce the following:

Theorem 6.3.8. For every metrizable space X, the set of all metrics d ∈ M(X) for which
(X, d) has rich pseudo-cones is dense Gδ in M(X).
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Remark 6.3.1. Chen and Rossi [18] introduced the notion of a locally rich compact metric
space. They investigated distributions of locally rich metric spaces in a space of compact
metric spaces with respect to the Gromov–Hausdorff distance, and they also studied this
subject in the Euclidean setting in a space of compact subspaces. Let S be the set of all
compact subsets K of [0, 1]N whose tangent cones contain all similarity classes of compact
subsets of [0, 1]N for each point in K. They proved that the complement of S is of first
category in the space of all compact subsets of [0, 1]N (see [18, Theorem 3.6]). Theorems
1.2.10, 1.2.11, 1.2.16 and 1.2.17 are inspired by this result of Chen and Rossi.

6.3.5 Metric inequality

Let n ∈ N. We denote by P (n) the set of all point in R(n2) whose all coordinates are positive.
Let f : P (n) → R be a continuous function. We say that a metric space (X, d) satisfies the
(n, f)-metric inequality if for all n points {ai}ni=1 in X we have f({d(ai, aj)}i ̸=j) ≥ 0. We
say that a function f : P (n) → R is positively sub-homogeneous if there exists c ∈ [0,∞)
such that for every x ∈ P (n) and for every r ∈ (0,∞) we have f(r · x) ≤ rcf(x).

Proposition 6.3.9 ([59]). For n ∈ N, let f : P (n) → R be a continuous function. Then
satisfying the (n, f)-metric inequality on metric spaces is a transmissible property. More-
over, if f is positively sub-homogeneous, and if there exists a metric space not satisfying
the (n, f)-metric inequality, then satisfying the (n, f)-metric inequality on metric spaces
is a transmissible property with a singular transmissible parameter.

Proof. Let Q = {1} and define a map F : Q → F(R) by F (1) = [0,∞). Define a
map G : Q → P∗(N) by G(1) = {n}. For each metrizable space X, we define a map
ϕ1,X : Seq(n,X) × {1} × M(X) → R by

ϕ1,X({ai}ni=1, 1, d) = f({d(ai, aj)}i ̸=j).

Let G = ({1},R, F,G, {1}, ϕ). Then G is a transmissible parameter.
We next show the latter part. Since there exists a metric space not satisfying the (n, f)-

metric inequality, there exists a metric space (S, dS) with card(S) = n not satisfying the
(n, f)-metric inequality. Let c ∈ (0,∞) be a positive number such that for every x ∈ P (n),
and for every r ∈ (0,∞) we have f(r · x) ≤ rcf(x). Let S = {si}ni=1 and assume that
f({dS(si, sj)}i ̸=j) < 0. For every ϵ ∈ (0,∞), put (R, dR) = (S, ϵ · dS). Thus we have
δdR(R) = ϵ, and

ϕ1,R({si}ni=1, 1, dR) = f({ϵ · dS(si, sj)}) = ϵcf({dS(si, sj)}) < 0.

This implies that G is singular. This finishes the proof.

Combining Theorem 1.2.10, Corollary 6.2.4 and Proposition 6.3.9, we obtain the fol-
lowing corollary:

Corollary 6.3.10 ([59]). Let X be a non-discrete metrizable space. For a number n ∈ N,
let f : P (n) → R be a continuous function. If f is positively sub-homogeneous, and if there
exists a metric space not satisfying the (n, f)-metric inequality, then the set of all metrics
d in M(X) for which the space (X, d) does not satisfy the (n, f)-metric inequality is dense
open in M(X).

Proposition 6.3.11. Define a function f : P (3) → R by

f(x) = max{x1,2, x2,3} − x1,3.

Then the strong triangle inequality on metric spaces is equivalent to the (3, f)-metric in-
equality, and f is positively sub-homogeneous.
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We say that a metric space (X, d) satisfies the Ptolemy inequality if for all four points
a1, a2, a3, a4 in X we have

d(a1, a3)d(a2, a4) ≤ d(a1, a2)d(a3, a4) + d(a1, a4)d(a2, a3).

Proposition 6.3.12. Define a function f : P (4) → R by

f(x) = x2,3x1,4 + x1,2x3,4 − x1,3x2,4.

Then the Ptolemy inequality on metric spaces is equivalent to the (4, f)-metric inequality,
and f is positively sub-homogeneous.

Gromov [42] introduced the cycle condition for metric spaces as follows: Let m ∈ N
and κ ∈ R. Let (M(κ), dM(κ)) be the two-dimensional space form of constant curvature
κ. We say that a metric space (X, d) satisfies the Cyclm(κ) condition if for every map
f : Z/mZ → X there exists a map g : Z/mZ →M(κ) such that

(1) for all i ∈ Z/mZ, we have dM(κ)(g(i), g(i+ 1)) ≤ d(f(i), f(i+ 1));

(2) for all i, j ∈ Z/mZ with i− j ̸= ±1, we have dM(κ)(g(i), g(j)) ≥ d(f(i), f(j)), where
the symbol + stands for the addition of Z/mZ.

Proposition 6.3.13. For every m ∈ N, the Cyclm(0) condition can be represented by an
(m,C)-metric inequality for some positively sub-homogeneous function C.

Proof. For a map g : Z/mZ → R2, we define two functions C1,g, C2,g : P (m) → R by

C1,g(x) = min
i∈Z/mZ

{xi,i+1 − dM(0)(g(i), g(i+ 1))}, (6.3.1)

C2,g(x) = min
i,j∈Z/mZ, i−j ̸=±1

{dM(0)(g(i), g(j)) − xi,j}. (6.3.2)

We define a function C : P (m) → R by

C(x) = sup
g:Z/mZ→M(0)

{C1,g(x), C2,g(x)}.

Then C is continuous. For every r ∈ (0,∞) we have

C(r · x) = sup
g:Z/mZ→M(0)

{C1,g(r · x), C2,g(r · x)}

= r · sup
g:Z/mZ→M(0)

{C1,g/r(r · x), C2,g/r(r · x)}

= r · sup
g:Z/mZ→M(0)

{C1,g(x), C2g(x)}.

Thus the function C is positively sub-homogeneous.
If m many points a1, . . . , am in X satisfy the inequality C({d(ai, aj)}i ̸=j) ≥ 0, then

there exists a map g : Z/mZ → M(0) satisfying that C1,g({d(ai, aj)}i ̸=j) ≥ 0 and
C2,g({d(ai, aj)}i ̸=j) ≥ 0. These two inequalities are equivalent to the conditions (1) and
(2) in the Cyclm(0) condition, respectively. Therefore the Cyclm(0) condition is equivalent
to the (m,C)-metric inequality.

Gromov [40] introduced the notion which today we call the Gromov hyperbolicity. We
say that a metric space (X, d) is Gromov hyperbolic if there exists δ ∈ [0,∞) such that for
all four points a1, a2, a3, a4 in X we have

d(a1, a3) + d(a2, a4) ≤ max{d(a1, a2) + d(a3, a4), d(a1, a4) + d(a2, a3)} + 2δ,
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Proposition 6.3.14. Define a function f : P (4) → R by

f(x) = sup
δ∈[0,∞)

{max{x1,2 + x3,4, x1,4 + x2,3} + 2δ − (x1,3 + x2,4)}.

Then the Gromov hyperbolicity is equivalent to satisfying the (4, f)-metric inequality.

Since for every metrizable space X the set of all bounded metrics in M(X) is open in
M(X), and since every bounded metric space is Gromov hyperbolic, we obtain:

Proposition 6.3.15 ([59]). The Gromov hyperbolicity on metric spaces is not equivalent
to any transmissible property with a singular transmissible parameter.

As consequences of Theorems 1.2.10 and 1.2.11, we obtain:

Corollary 6.3.16. Let X be a non-discrete metrizable space. Then the following sets are
dense Gδ in the space M(X) of metrics:

(1) the set of all metric d ∈ M(X) for which (X, d) has infinite Assouad dimension;

(2) the set of all d ∈ M(X) for which (X, d) is not bi-Lipschitz embeddable into any
ultrametric space;

(3) the set of all d ∈ M(X) for which PC(X, d) contains all compact metric spaces;

(4) the set of all d ∈ M(X) for which (X, d) is not an ultrametric;

(5) the set of all d ∈ M(X) for which (X, d) is not a Ptolemaic metric;

(6) for each m ∈ N the set of all d ∈ M(X) for which (X, d) does not satisfy the Cyclm(0)
condition.

Corollary 6.3.17. Let X be a second countable locally compact, locally non-discrete
metrizable space. Then the following sets are dense Gδ in the space M(X) of metrics:

(1) the set of all metric d ∈ M(X) for which all non-empty open metric subspaces of
(X, d) have infinite Assouad dimension;

(2) the set of all d ∈ M(X) for which all non-empty open metric subspaces of (X, d) are
not bi-Lipschitz embeddable into any ultrametric space;

(3) the set of all d ∈ M(X) for which all non-empty open metric subspace of (X, d)
contain all compact metric spaces as its pseudo-cones;

(4) the set of all d ∈ M(X) for which all non-empty open metric subspaces of (X, d) are
not ultrametrics;

(5) the set of all d ∈ M(X) for which all non-empty open metric subspaces of (X, d) are
not Ptolemaic metrics;

(6) for each m ∈ N the set of all d ∈ M(X) for which all non-empty open metric
subspaces of (X, d) do not satisfy the Cyclm(0) condition.
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Chapter 7

Spaces of ultrametrics

In this chapter, we prove Theorem 1.2.12, which is an ultrametric version of the Arens–
Eells isometric embedding theorem. We also prove an extension theorem of ultrametrics
(Theorem 1.2.13) while referring to Toruńczyk’s proof of the Hausdorff extension theorem
with the Arens–Eells isometric embedding theorem. Due to Theorem 1.2.13, we can prove
an interpolation theorem of ultrametrics (Theorem 1.2.9), and theorems on topological
distributions of ultrametrics (Theorems 1.2.10 and 1.2.11).

7.1 An embedding theorem of ultrametric spaces

In this section, we prove Theorem 1.2.12.

7.1.1 Proof of Theorem 1.2.12

We first discuss general algebraic facts.

Lemma 7.1.1. Let R be a commutative ring, and let V be an R-module. Let P be an
R-independent set of V , and let Q be a subset of P . Let H be an R-submodule of V
generated by Q. Then H ∩ P = Q.

Proof. By the definition of H, first we have Q ⊂ H ∩P . Since P is R-independent, we see
that (P \ Q) ∩H = ∅. Thus every x ∈ H ∩ P must belong to Q, and hence we conclude
that H ∩ P ⊂ Q.

Let R be a commutative ring. Let X be a set, and let o ̸∈ X. We denote by F(R,X, o)
the free R-module M satisfying that

(1) X ⊔ {o} ⊂M ;

(2) o is the zero element of M ;

(3) X is an R-independent generator of M .

Note that by the construction of free modules generated by given sets, the module F(R,X, o)
uniquely exists up to isomorphism.

For two sets A, B, we denote by Map(A,B) the set of all maps from A into B. If R
is a commutative ring and V is an R-module, and if E is a set, then the set Map(E, V )
becomes an R-module with respect the coordinate-wise addition and scalar multiplication.
Note that the zero element of Map(E, V ) is the zero function of Map(E, V ); namely, the
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constant function valued at the zero element of V . In what follows, for a set E, and for
an R-module V , the set Map(E, V ) will be always equipped with this module structure.

We next discuss a construction of universal ultrametric spaces of Lemin–Lemin type
[74]. Let S be a range set. Let M be a set, and let o ∈ M be a fixed base point. A map
f : S+ → M is said to be eventually o-valued if there exists C ∈ S+ such that for every
q > C we have f(q) = o. We denote by L(S,M, o) the set of all eventually o-valued maps
from S+ to M . Define a metric ∆ on L(S,M, o) by

∆(f, g) = sup{ q ∈ S+ | f(q) ̸= g(q) }.

Note that ∆ takes values in the closure CL(S) of S in [0,∞).
The next lemma follows from the definitions of L(S,M, o) and ∆.

Lemma 7.1.2. For every range set S, for every set M and for every point o ∈ M , the
space (L(S,M, o),∆) is a complete CL(S)-valued ultrametric space.

Proof. For all f, g, h ∈ (L(S,M, o),∆), take q ∈ S+ with ∆(f, h) ∨ ∆(h, g) < q. Then we
have f(q) = h(q) and h(q) = g(q), a hence f(q) = g(q). Thus we have ∆(f, g) < q. This
implies that ∆(f, g) ≤ ∆(f, h) ∨ ∆(h, g), and hence ∆ is an S-valued ultrametric.

We next prove that (L(S,M, o),∆) is complete. Let {fi}i∈N be a Cauchy sequence
in L(S,M, o). Since {fi}i∈N is Cauchy, for every s ∈ S+, there exists α(s) ∈ N such
that for all m ≥ α(s), we have ∆(fα(s), fm) < s. We define a map F ∈ L(S,M, o) by
F (s) = fα(s)(s). Then, F is a limit of {fi}i∈N. This finishes the proof.

In the next theorem, we review the Lemin–Lemin construction [74] of embeddings into
their universal spaces in order to obtain more detailed information of their construction.
The condition (3) in Theorem 7.1.3 was first observed in [58].

Theorem 7.1.3. Let S be a range set. Let (X ⊔ {o}, d) be an S-valued ultrametric space
with o ̸∈ X. Let K be a set with X ⊔ {o} ⊂ K. Then there exists an isometric embedding
L : X ⊔ {o} → L(S,K, o) satisfying that

(1) for every q ∈ S+ we have L(o)(q) = o;

(2) for every x ∈ X the function L(x) is valued in X ⊔ {o};

(3) for all x, y ∈ X we have (0, d(x, y)] ∩ S+ = { q ∈ S+ | L(x)(q) ̸= L(y)(q) }.

Proof. Let X ⊔ {o} = {x(α)}α<κ be an injective index with x(0) = o, where κ is a
cardinal. By following the Lemin–Lemin’s way [74], we construct an isometric embedding
L : X ⊔ {o} → L(S,K, o) by transfinite induction. First put L(x(0)) = o. Let γ < κ.
Assume that an isometric embedding L : {x(α) | α < γ } → L(S,K, o) is already defined.
Set Dγ = inf{ d(x(α), x(γ)) | α < γ }.

Case 1. (There exists an ordinal β < γ with Dγ = d(x(β), x(γ)). ) We define an
eventually o-valued map L(x(γ)) : S+ → K by

L(x(γ))(q) =

{
x(γ) if q ∈ (0, Dγ ];

L(x(β))(q) if q ∈ (Dγ ,∞).

Case 2. (No ordinal β < γ satisfies Dγ = d(x(β), x(γ)). ) Take a sequence {αn}n∈N
with αn < γ and d(x(αn), x(γ)) < Dγ + 1/n for all n ∈ N. We define an eventually
o-valued map L(x(γ)) : S+ → K by

L(x(γ))(q) =

{
x(γ) if q ∈ (0, Dγ ];

L(x(αn))(q) if Dγ + 1/n < q.
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In the same way as [74], we see that the map L : X ⊔ {o} → L(S,K, o) is well-defined and
isometric, and the conditions (1) and (2) are satisfied.

We now prove the condition (3). Note that for each α < κ, the function L(x(α)) is
valued in {x(β) | β ≤ α }. Let γ < κ. Assume that for all α, β < γ, the condition (3) is
satisfied for x = x(α) and y = x(β). We prove that for every α < γ, the condition (3) is
satisfied for x = x(α) and y = x(γ).

In Case 1, by the definition of Dγ and β < γ, we have d(x(β), x(γ)) ≤ d(x(α), x(γ)).
This inequality and the strong triangle inequality (or Lemma 3.3.7) yield the inequality
d(x(α), x(β)) ≤ d(x(α), x(γ)). Thus, by the hypothesis of transfinite induction and the
definition of L(x(γ)), we conclude that the condition (3) is satisfied.

In Case 2, by the definition of Dγ , we have Dγ < d(x(α), x(γ)), and for all suffi-
ciently large n ∈ N, we obtain d(x(αn), x(γ)) < d(x(α), x(γ)). Lemma 3.3.7 implies that
d(x(αn), x(α)) = d(x(α), x(γ)). Since on the set (Dγ + 1/n, d(x(α), x(αn))] the function
L(x(γ)) coincides with L(x(αn)), by the hypothesis of transfinite induction we have

(Dγ + 1/n, d(x(α), x(γ))] ∩ S+ ⊂ { q ∈ S+ | L(x(α))(q) ̸= L(x(γ))(q) }.

By L(x(α))(S+) ⊂ {x(β) | β ≤ α } and L(x(γ))|(0,Dγ ] = x(γ), we also have

(0, Dγ ] ∩ S+ ⊂ { q ∈ S+ | L(x(α))(q) ̸= L(x(γ))(q) }.

These imply the condition (3) for x = x(α) and y = x(γ).

The following lemma plays a central role in the proof of our embedding theorem from
ultrametric spaces into ultra-normed modules.

Lemma 7.1.4. Let S be a range set. Let R be a commutative ring. If M is an R-module,
then the following are satisfied:

(1) the space L(S,M, 0) becomes an R-submodule of Map(S+,M);

(2) the ultrametric ∆ on L(S,M, 0) is invariant under the addition; namely, the space
(L(S,M, 0),∆) is ultra-normed;

(3) if M is torsion-free, and if R is an integral domain, then for every r ∈ R \ {0}, and
for every x ∈ L(S,M, o), we have ∆(r · x, 0) = ∆(x, 0).

Proof. By the definition of an eventually 0-valued map, the set L(S,M, 0) is closed under
the coordinate-wise addition and scalar multiplication. Thus the statement (1) follows
from L(S,M, 0) ⊂ Map(S+,M).

We prove the statement (2). For all f, g, h ∈ L(S,M, 0), and for every q ∈ S+, we have
f(q) ̸= g(q) if and only if f(q) +h(q) ̸= g(q) +h(q). Thus, the metric ∆ is invariant under
the addition. Similarly, since R is an integral domain, the statement (3) holds true.

Lemma 7.1.5 ([58]). Let R be a commutative ring. Let S be a range set. Let X be a set,
and let o ̸∈ X. Let (X ⊔ {o}, D) be an S-valued ultrametric space. Put M = F(R,X, o).
Let L : X ⊔ {o} → L(S,M, o) be an isometric embedding constructed in Theorem 7.1.3.
Then the image set L(X) of X under L is R-independent in the R-module L(S,M, o).

Proof. In this proof, we denote by 0M and by 0L the zero element o of R-modules M and
L(S,M, o), respectively. Let C = {x1, . . . , xn} be an arbitrary finite subset of X. Assume
that

∑n
i=1Ni · L(xi) = 0L, where Ni ∈ R for all i. Put

c = min{∆(L(x), L(y)) | x, y ∈ C ⊔ {o} and x ̸= y }.
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Since L is isometric, c ∈ S+. By the definition of ∆ and the conditions (1) and (3)
stated in Theorem 7.1.3, we see that for all i, j = 1, . . . , n, we have L(xi)(c) ̸= L(xj)(c),
and for all i we see that L(xi)(c) ̸= 0M . Since X is R-independent in F(R,X, o), the
set {L(x1)(c), . . . , L(xn)(c)} is R-independent in M . Since

∑n+1
i=1 Ni · L(xi)(c) = 0M , we

have Ni = 0 for all i. Thus {L(x1), . . . , L(xn)} is R-independent in L(S,M, o). Since
S = {x1, . . . , xn} is arbitrary, we conclude that L(X) is R-independent in L(S,M, o).

Lemma 7.1.6. Let R be a commutative ring. Let S be a range set. Let X be a set, and
let o ̸∈ X. Let (X ⊔ {o}, D) be an S-valued ultrametric space. Put M = F(R,X, o). Let
L : X ⊔ {o} → L(S,M, o) be an isometric embedding constructed in Theorem 7.1.3. Let Q
be an R-submodule of L(S,M, o) generated by L(X). Then the metric ∆|Q2 takes values
in the range set S.

Proof. In this proof, we denote by 0M the zero element o of M .
Since ∆ is invariant under the addition, it suffices to show that every point x in Q

satisfies ∆(x, 0L) ∈ S, where 0L is the zero function of L(S,N, o). Take x ∈ Q. Then there
exist a finite subset {x1, . . . , xn} of X and a finite subset {N1, . . . , Nn} of R \ {0} such
that x =

∑n
i=1Ni · L(xi). Let p0, p1, . . . , pk be a sequence in S such that

(1) p0 = 0;

(2) pj < pj+1 for all j;

(3) { d(xi, 0M ) | i = 1, . . . , n } ∪ { d(xi, xj) | i ̸= j } = {p1, . . . , pk}.

For l ∈ {0, . . . , k−1}, we put I(j) = (pj , pj+1]∩S, and we put I(k) = (pk,∞)∩S. By the
definition of {pj}kj=0, and by the properties (2) and (3) of the map L stated in Theorem
7.1.3, we obtain:

(A) for all a ∈ {1, . . . , n} we have L(xa) = 0M on I(k);

(B) for every a ∈ {1, . . . , n}, and for every j ∈ {0, . . . , k}, if there exists c ∈ I(j)
satisfying that L(xa)(c) = 0M , then we have L(xa) = 0M on I(j);

(C) for all a, b ∈ {1, . . . , n}, and for every j ∈ {0, . . . , k}, if there exists c ∈ I(j) satisfying
that L(xa)(c) = L(xb)(c), then we have L(xa) = L(xb) on I(j).

Suppose that ∆(x, 0) ̸∈ S. By using the property (A), take j ∈ {0, . . . , k − 1} such that
∆(x, 0) ∈ I(j). By the definition of ∆, there exists p ∈ I(j) with x(p) ̸= 0M , and we see
that x(pj+1) = 0M . Put q = pj+1. Take a subset {y1, . . . , ym} of {x1, . . . , xn} such that

(a) L(y1)(q), . . . , L(ym)(q) are not equal to the zero element 0M of M , and they are
different to each other;

(b) m is maximal in cardinals of all subsets of the set {x1, . . . , xn} satisfying the property
(a).

The properties (B) and (C) imply that the set {L(y1)|I(j), . . . , L(ym)|I(j)} is a maximal
R-independent subset of {L(x1)|I(j), . . . , L(xn)|I(j)} in the R-module Map(I(j),M). Then
there exists a subset {C1, . . . , Cm} of R such that

x|I(j) =

m∑
l=1

Cl · L(yl)|I(j).
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Since x(q) = 0M , we have

m∑
l=1

Cl · L(yl)(q) = 0M .

Since {L(y1)(q), . . . , L(ym)(q)} is a subset of X, it is R-independent in M . Thus we have
Cl = 0 for all l ∈ {1, . . . ,m}. This implies that x = 0M on I(j). This contradicts the
existence of p ∈ I(j) with x(p) ̸= 0M . Therefore, we conclude that ∆(x, 0L) ∈ S.

We recall that every free module on an integral domain is torsion-free.

Proof of Theorem 1.2.12. Let S be a range set. Let R be a commutative ring, and let
(X, d) be an ultrametric space.

We first deal with the case where (X, d) is complete. Take o ̸∈ X. Put M = F(R,X, o).
Applying Corollary 3.2.7 to (X, d) and o, then we obtain a one-point extension (X⊔{o}, D)
of (X, d). Let L : (X ⊔ {o}, D) → (L(S,M, o),∆) be an isometric embedding stated in
Theorem 7.1.3. Let Q be an R-submodule of L(S,M, o) generated by L(X), and let
(V,Ξ) be the completion of (Q,∆|Q2). By Lemmas 3.3.6, 7.1.6, and Proposition 3.3.8, the
ultrametric space (V,Ξ) is an S-valued ultra-normed R-module. Since complete metric
subspaces are closed in metric spaces, Lemma 7.1.5 implies that the space (V,Ξ) and the
map L : (X, d) → (V,Ξ) satisfy the conditions (1) and (2) stated in Theorem 1.2.12. This
also proves the latter part of the theorem.

In the case where (X, d) is not complete, let (Y, e) be the completion of (X, d). As in
the above, we can take an ultra-normed R-module (W,D) and an isometric embedding
I : Y → W satisfying the conditions (1) and (2) in Theorem 1.2.12. Let H be an R-
submodule of W generated by I(X). Since I(Y ) is R-independent, Lemma 7.1.1 yields
H ∩ I(Y ) = I(X). Thus I(X) is closed in H, and hence (H,D|H2) and I are desired ones.
This completes the proof of Theorem 1.2.12.

Remark 7.1.1. If a range set S is closed under the supremum operator, then we can replace
the assumption that R is an integral domain in the statement of Theorem 1.2.12 with the
condition that R is a commutative ring. In this case, the space (L(S,M, o),∆) is an
S-valued ultrametric space, and in the proof of Theorem 1.2.12, we can use the space
(L(S,M, o),∆) instead of the space (V,Ξ).

7.1.2 Ultrametrics taking values in general totally ordered sets

We say that an ordered set is bottomed if it has a minimal element. Let (T,≤T ) be a
bottomed totally ordered set. Let X be a set. A function d : X ×X → T is said to be a
(T,≤T )-valued ultrametric on X if the following are satisfied:

(1) for all x, y ∈ X we have d(x, y) = 0T if and only if x = y, where 0T stands for the
minimal element of (T,≤T );

(2) for all x, y ∈ X we have d(x, y) = d(y, x);

(3) for all x, y, z ∈ X we have d(x, y) ≤T d(x, z) ∨T d(z, y), where ∨T is the maximal
operator of (T,≤T ).

Such general ultrametric spaces, or general metric spaces on which distances are valued
in a totally ordered Abelian group are studied for a long time as a natural extension of
metric spaces (see e.g., [104], [19], [106], [88] and [20]).
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Amalgamation arguments and a one-point extension of ultrametrics (Subsection 3.2.2),
the construction of the universal ultrametric space of Lemin–Lemin-type mentioned in
Section 7.1, and the proof of Theorem 1.2.12 are still valid for (T,≤T )-valued ultrametric
spaces for all bottomed totally ordered set (T,≤T ). In this case, note that the ultramet-
ric ∆ on the space L(T,M, o) takes values in the Dedekind completion of (T,≤T ). For
simplicity, and for necessity of our study, we omit the details of the following:

Theorem 7.1.7 ([58]). Let (T,≤T ) be a bottomed totally ordered set. Let (X, d) be a
(T,≤T )-valued ultrametric space. Let R be an integral domain. Then there exist a (T,≤T )-
valued ultra-normed R-module (V, ∥ ∗ ∥) and an isometric embedding I : X → V such that

(1) I(X) is closed in V ;

(2) I(X) is R-independent in V .

Moreover, if (X, d) is complete, then (V, ∥ ∗ ∥) can be chosen as a complete (T,≤T )-valued
ultrametric space.

For a bottomed totally ordered set (T,≤T ), we define the coinitiality coi(T,≤T ) of T as
the minimal cardinal κ > 0 such that there exists a strictly decreasing map f : κ+ 1 → T
with f(κ) = 0T such that for every t ∈ T , there exists α < κ with f(α) ≤ t. The
coinitiality for ordered sets is the dual concept of the cofinality for ordered sets. Note
that a range set S has countable coinitiality if and only if coi(CL(S),≤) = ω0. Some
readers may think our results such as Corollary 1.2.14 and Theorems 1.2.13–1.2.17 in this
thesis can be generalized for (T,≤T )-valued ultrametrics for a bottomed totally ordered set
(T,≤T ). If coi(T,≤T ) = ω0, then it is possible to obtain analogues of our results for general
ultrametrics. However, in this case, the (T,≤T )-ultrametrizability is equivalent to the
ordinal ultrametrizability. Thus, it seems not to be a vast generalization. Unfortunately,
in the case of coi(T,≤T ) > ω0, it seems to be quite difficult to generalize our theory
of ultrametrics. Our proofs of Theorems 1.2.13–1.2.17 require extensions of continuous
maps on ultrametric spaces (Corollary 2.7.12). An analogue for (T,≤T )-valued ultrametric
spaces of Corollary 2.7.12 seems not to hold true.

7.2 An extension theorem of ultrametrics

In this section, as an application of Theorem 1.2.12, we prove Theorem 1.2.13, which is
an extension theorem of ultrametrics. By using this extension theorem, we can develop
an ultrametric analogue of the theory of spaces of metrics in Chapter 6, and we prove
Theorems 1.2.15 and 1.2.16, and 1.2.17.

In this section, by following the methods of Toruńczyk [113] and Hausdorff [45], we
prove Theorem 1.2.13 and Corollary 1.2.14, respectively. Since Toruńczyk’s proof of
Lemma in [113] on real linear spaces does not depend on the coefficient ring R, we can
apply that argument to all ultra-normed modules over all commutative rings. Toruńczyk’s
lemma in [113] relies upon the Dugundji extension theorem in the proof. Instead of that
extension theorem, we use Corollary 2.7.12, which is an extension theorem for continuous
functions on ultrametrizable spaces.

Lemma 7.2.1. Let R be a commutative ring. Let (E,DE) and (F,DF ) be two ultra-
normed R-modules. Let K and L be closed subsets of E and F , respectively. Let f : K → L
be a homeomorphism. Let g : K × {0} → {0} × L be a homeomorphism defined by
g(x, 0) = (0, f(x)), where we regard K ×{0} and {0}×L as subsets of E ×F and E ×F ,
respectively. Then there exists a homeomorphism h : E × F → E × F with h|K×{0} = g.
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Proof. By Corollary 2.7.12, we obtain a continuous map β : F → E which is an extension
of the map f−1 : L → K. Define a map J : E × F → E × F by J(x, y) = (x + β(y), y).
Lemma 3.3.5 implies that the addition and the inversion on E is continuous, and hence
J is continuous. The map Q : E × F → E × F defined by Q(x, y) = (x − β(y), y) is
also continuous, and it is the inverse map of J . Hence J is a homeomorphism. Similarly,
by Corollary 2.7.12, we obtain a continuous map α : E → F which is an extension of
f : K → L. Define a map I : E × F → E × F by I(x, y) = (x, y + α(x)). Then I is a
homeomorphism. Define a homeomorphism h : E × F → E × F by h = J−1 ◦ I. Since for
every x ∈ K we have I(x, 0) = (x, α(x)) = (x, f(x)), we obtain

h(x, 0) = J−1(x, f(x)) = Q(x, f(x)) = (x− β(f(x)), f(x))

= (x− f−1(f(x)), f(x)) = (0, f(x)) = g(x, 0),

and hence h is an extension of g. This completes the proof.

We now prove Theorem 1.2.13.

Proof of Theorem 1.2.13. Let S be a range set. Let X be an S-valued ultrametrizable
space, and let A be a closed subset of X. Let e ∈ UM(A,S). Take d ∈ UM(X,S).
Theorem 1.2.12 implies that there exist an S-valued ultra-normed Z-module (E,DE) and
a closed isometric embedding i : (X, d) → (E,DE). Similarly, there exist an S-valued
ultra-normed Z-module (F,DF ) and a closed isometric embedding j : (A, e) → (F,DF ).

Since A is closed in X, the set i(A) is closed in E. Since i and j are topological
embeddings, i(A) and j(A) are homeomorphic. Based on this observation, define a map
f : i(A) → j(A) by f = j ◦ (i|A)−1, and by applying Lemma 7.2.1 to f , we obtain a
homeomorphism h : E ×F → E ×F which is an extension of g : i(A)×{0} → {0}× j(A)
defined by g(i(a), 0) = (0, j(a)).

Let k : E → E × F be a natural embedding defined by k(x) = (x, 0). The map
H : X → E × F defined by H = h ◦ k ◦ i is a topological embedding. Note that H is
a closed map. Define a metric D on X by D(x, y) = (DE ×∞ DF )(H(x),H(y)). Since
H is a topological embedding, we have D ∈ UM(X,S). Since for every a ∈ A we have
H(a) = (0, j(a)), and since the map j : (A, ρ) → (F,DF ) is an isometric embedding, we
have D|A2 = e. This completes the proof of the former part.

We next show the latter part. Assume that X is completely metrizable, and the metric
e ∈ UM(A,S) is complete. Then by Proposition 3.3.14, we can choose d ∈ UM(X,S) as
a complete S-valued ultrametric. Thus, we can choose (E,DE) and (F,DF ) as complete
ultrametric spaces, and hence the metric space (X,D) can be regarded as a closed metric
subspace of the complete metric space (E ×F,DF ×∞DE). Therefore D is complete.

Remark 7.2.1. In the proof of Theorem 1.2.13, for simplicity, we use Z-modules. The proof
described above is still valid even if we use any integral domain as a coefficient ring.

We next prove Corollary 1.2.14, which characterizes the compactness on metric spaces
in terms of the completeness of ultrametrics.

Lemma 7.2.2. Let S be a range set with the countable coinitiality. Let M be a countable
discrete space. Then there exists a non-complete S-valued ultrametric d ∈ UM(M,S).

Proof. Take a non-zero strictly decreasing sequence {a(i)}i∈N in S convergent to 0 as
i→ ∞. We may assume that M = N. Define a metric d on M by

d(n,m) =

{
a(n) ∨ a(m) if n ̸= m;

0 if n = m.
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Then d is in UM(M,S), and it is non-complete. In particular, the sequence {n}n∈N is
Cauchy in (N, d), and it does not have any limit point in (M,d).

Proof of Corollary 1.2.14. Assume that X is not compact. Then there exists a closed
countable discrete subset M of X. By Theorem 1.2.13 and Lemma 7.2.2, we obtain an
S-valued ultrametric D ∈ UM(X,S) such that D|M2 is not complete. Since every closed
metric subspace of a complete metric space is complete, the metric D is not complete.
This leads to the corollary.

7.3 An interpolation theorem of ultrametrics

In this section, we prove Theorem 1.2.15.

7.3.1 Proof of Theorem 1.2.15

In the proof of Theorem 1.2.9, the author used the Michael continuous selection theorem
for paracompact spaces (Theorem 2.7.3). Instead of it, in order to prove Theorem 1.2.15,
we now use the 0-dimensional Michael continuous selection theorem (Theorem 2.7.4).

Proof of Theorem 1.2.15. Let C ∈ [1,∞), and let S be a C-quasi-complete range set. Let
X be an ultrametrizable space. Let {Ai}i∈I be a discrete family of closed subsets of X. Let
d ∈ UM(X,S), and let {ei}i∈I be a family of S-valued ultrametrics with ei ∈ UM(Ai, S).

In the case of supi∈I UDS
Ai

(ei, d|A2
i
) = ∞, by Lemma 3.2.10, we obtain an S-valued

ultrametric k ∈ UM(
⨿
i∈I Ai, S) such that k|A2

i
= ei for all i ∈ I. Since the metric k

generates the same topology as the direct sum space
⨿
i∈I Ai, and since

⨿
i∈I Ai is closed

in X (see Proposition 6.1.1), we can apply Theorem 1.2.13 to the S-valued ultrametric k,
and hence there exists an S-valued ultrametric r ∈ UM(X,S) such that for every i ∈ I we
have r|A2

i
= ei. Then in this case, Theorem 1.2.15 is proven.

We next deal with the case of supi∈I UDS
Ai

(ei, d|A2
i
) <∞. Let η ∈ S satisfy

sup
i∈I

UDS
Ai

(ei, d|A2
i
) ≤ η ≤ C · sup

i∈I
UDS

Ai
(ei, d|A2

i
).

Let {Bi}i∈I and τ :
⨿
i∈I Ai →

⨿
i∈I Bi be the same family and map as in Lemma 3.2.11,

respectively. Put Z = X ⊔
⨿
i∈I Bi. By Lemma 3.2.11, we find an S-valued ultrametric h

on Z such that

(1) for every i ∈ I we have h|B2
i

= (τ−1
i )∗ei;

(2) h|X2 = d;

(3) for every x ∈
⨿
i∈I Ai we have h(x, τ(x)) = η.

By Theorem 1.2.12, we can take an isometric embedding H from (Z, h) into a complete
S-valued ultra-normed Z-module (Y,DY ). Define a set-valued map ϕ : Z → C(Y ) by
ϕ(x) = B(H(x), η). By Corollary 2.7.8, the map ϕ is lower semi-continuous. We define a
map f :

∪
i∈I Ai → Y by fi(x) = H(τ(x)). Then f is continuous. By the property (3) of

h, for every x ∈
∪
i∈I Ai we have f(x) ∈ ϕ(x).

Since (Y,DY ) is complete, we can apply the 0-dimensional Michael continuous selection
theorem (Theorem 2.7.4) to the maps f and ϕ, and hence we obtain a continuous map
F : X → Y such that F |∪

i∈I Ai
= f and for every x ∈ X we have F (x) ∈ ϕ(x). Note that

F (x) ∈ ϕ(x) means that DY (F (x),H(x)) ≤ η.
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Let r ∈ UM(X,S) be the metric constructed in the case of supi∈I UDS
Ai

(ei, d|A2
i
) = ∞.

Put l = min{r, η}. Note that by Lemma 3.3.3, we have l ∈ UM(X,S).
Put D = DY ×∞ l. Then D is an S-valued ultrametric on Y ×X. Take a base point

o ∈ X. Define a map E : X → Y ×X by

E(x) = (F (x), x).

Since the second component of E is a topological embedding, so is E.
We also define a map K : X → Y ×X by

K(x) = (H(x), o).

Then, by the definition of the ultrametric D on Y ×X, the map K from (X, d) to (Y ×X,D)
is an isometric embedding. Since for every x ∈ X we have DY (F (x),H(x)) ≤ η and
l(x, o) ≤ η, we obtain

D(E(x),K(x)) = DY (F (x),H(x)) ∨ l(x, o) ≤ η.

Define a function m : X2 → [0,∞) by m(x, y) = D(E(x), E(y)), then m is an S-valued
ultrametric on X. Since E is a topological embedding, we see that m ∈ UM(X,S). We
have DY (F (x), F (y)) = ei(x, y) and l(x, y) ≤ r(x, y) = ei(x, y) for all i ∈ I, and for all
x, y ∈ Ai. Thus we obtain

D(E(x), E(y)) = DY (F (x), F (y)) ∨ l(x, y) = ei(x, y),

and hence m|A2
i

= ei. Moreover, we have supi∈I UDS
Ai

(ei, d|A2
i
) ≤ UDS

X(m, d). We also

obtain the inequality UDS
X(m, d) ≤ η; indeed, for all x, y ∈ X,

m(x, y) = D(E(x), E(y))

≤ D(E(x),K(x)) ∨D(K(x),K(y)) ∨D(K(y), E(y))

≤ D(K(x),K(y)) ∨ η = d(x, y) ∨ η,

and

d(x, y) = D(K(x),K(y))

≤ D(K(x), E(x)) ∨D(E(x), E(y)) ∨D(E(y),K(y))

≤ D(E(x), E(y)) ∨ η = m(x, y) ∨ η.

Therefore UDS
X(m, d) ≤ η, and hence we conclude that

sup
i∈I

UDS
Ai

(ei, d|A2
i
) ≤ UDS

X(m, d) ≤ C · sup
i∈I

UDS
Ai

(ei, d|A2
i
).

This completes the proof of the former part of Theorem 1.2.15.
By the latter part of Theorem 1.2.13, we can choose l as a complete S-valued ultra-

metric. Then m becomes a complete S-valued ultrametric. This leads to the proof of the
latter part of Theorem 1.2.15.

In Theorem 1.2.15, by letting I be a singleton, we obtain the following:

Corollary 7.3.1. Let C ∈ [1,∞), and let S be a C-quasi-complete range set. Let X be an
ultrametrizable space, and let A be a closed subset of X. Then for every d ∈ UM(X,S),
and for every e ∈ UM(A,S), there exists an ultrametric m ∈ UM(X,S) such that

(1) m|A2 = e;

(2) UDS
A(e, d|A2) ≤ UDS

X(m, d) ≤ C · UDS
A(e, d|A2).

Moreover, if X is completely ultrametrizable, and if e ∈ UM(A,S) is complete, then the
metric m ∈ UM(X,S) can be chosen as a complete one.
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7.4 Transmissible properties and ultrametrics

In this section, we discuss the S-ultra-singularity of transmissible parameters, and we
prove Theorem 1.2.16.

7.4.1 Transmissible properties on ultrametric spaces

By the definitions of DX and UDS
X , we obtain:

Lemma 7.4.1. Let S be a range set. For every ultrametrizable space X, and for all
d, e ∈ UM(X,S) we have

DX(d, e) ≤ UDS
X(d, e).

In particular, the identity map 1UM(X,S) : (UM(X,S),UDS
X) →

(
UM(X,S),DX |UM(X,S)2

)
is continuous.

Let S be a range set. Let X be an ultrametrizable space, and let G = (Q,P, F,G,Z, ϕ)
be a transmissible parameter. For q ∈ Q, for a ∈ Seq(G(q), X) and for z ∈ Z, we denote
by US(X,S,G, q, a, z) the set of all d ∈ UM(X,S) satisfying ϕq,X(a, z, d) ∈ P \ F (q).
We also denote by US(X,S,G) the set of all d ∈ UM(X,S) such that (X, d) satisfies the
anti-G-transmissible property.

Proposition 7.4.2. Let G = (Q,P, F,G,Z, ϕ) be a transmissible parameter. Let S be a
range set. Let X be an ultrametrizable space. Then for all q ∈ Q, for all a ∈ Seq(G(q), X),
and for all z ∈ Z, the set US(X,S,G, q, a, z) is open in (UM(X,S),UDS

X).

Proof. Fix q ∈ Q, a ∈ Seq(G(q), X) and z ∈ Z. Since the map ϕq,X(a, z) : M(X) → P
is continuous, Lemma 7.4.1 implies that the map ϕq,X(a, z)|UM(X,S) : UM(X,S) → P is
also continuous, where UM(X,S) is equipped with the topology induced from the metric
UDS

X . Since we have

US(X,S,G, q, a, z) = (ϕq,X(a, z)|UM(X,S))
−1(P \ F (q)),

the set US(X,S,G, q, a, z) is open in (UM(X,S),UDS
X).

Corollary 7.4.3 ([58]). Let S be a range set. Let G = (Q,P, F,G,Z, ϕ) be a transmissible
parameter. Let X be an S-valued ultrametrizable space. Then the set US(X,S,G) is Gδ
in UM(X,S). Moreover, if the set Q is finite, then US(X,S,G) is open in UM(X,S).

Proof. By the definitions of US(X,S,G) and US(X,S,G, q, a, z), we have

US(X,S,G) =
∩
q∈Q

∪
a∈Seq(G(q),X)

∪
z∈Z

US(X,S,G, q, a, z).

This equality together with Proposition 7.4.2 proves the lemma.

Lemma 7.4.4. Let S be a range set with the countable coinitiality. Then a transmissible
parameter G is S-ultra-singular if and only if there exists an S-valued ultrametric (ω0+1)-
space with arbitrary small diameter satisfying the anti-G-transmissible property.

Proof. Let G = (Q,P, F,G,Z, ϕ). First assume that there exists an ultrametric (ω0 + 1)-
space with arbitrary small diameter satisfying the anti-G-transmissible property. By the
definition of the anti-G-transmissible property, we see that G is S-ultra-singular.

Next assume that G is S-ultra-singular. Take a non-zero strictly decreasing sequence
{r(i)}i∈N convergent to 0 as i→ ∞. Fix ϵ ∈ (0,∞) and take a surjective map θ : N → Q.
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Take N ∈ N such that for every n > N we have r(n) < ϵ. Then there exists a sequence
{(Ri, di)}i∈N of finite ultrametric spaces such that for each i ∈ N there exist zi ∈ Z and

an index Ri = {ri,j}card(Ri)
j=1 satisfying

(1) δdi(Ri) ≤ r(N + i);

(2) card(Ri) ∈ G(θ(i));

(3) ϕθ(i),Ri

(
{ri,j}card(Ri)

j=1 , zi, di

)
∈ P \ F (θ(i)).

In order to construct a desired space, we use the telescope construction (see Section 3.1).
Put r(∞) = 0. Define a metric on {r(n) | n ∈ N ∪ {∞}} by

D(r(n), r(m)) =

{
r(n) ∨ r(m) n ̸= m;

0 n=m.

Let C = {r(n) | n ∈ N∪ {∞}} and let R = {(Ri, di)}i∈N. Then, the triple C = (C,D, 1C)
is a telescope base, and L = (R,C) is a compatible pair. By Lemma 3.1.3, the telescope
space (T (L), dL) of L is a metric (ω0 + 1)-space with δdT (L)

(T (L)) ≤ ϵ. By Lemma
3.1.2, and by the definition of dT (L), the metric dT (L) is an S-valued ultrametric. By the
properties (2) and (3) of {(Ri, di)}i∈N, the metric space (T (L), dL) satisfies the anti-G-
transmissible property.

Let S be a range set. Let G be a transmissible parameter. For a non-discrete ultra-
metrizable space X, and for an (ω0 + 1)-subspace R of X, we denote by UT (X,S,R,G)
the set of all d ∈ UM(X,S) for which (R, d|R2) satisfies the anti-G-transmissible property.

Corollary 7.3.1 and Lemma 7.4.4 imply the following:

Proposition 7.4.5. Let C ∈ [1,∞), and let S be a C-quasi-complete range set with
the countable coinitiality. Let G = (Q,P, F,G,Z, ϕ) be an S-ultra-singular transmissible
parameter. Then for every non-discrete ultrametrizable space X, and for every (ω0 + 1)-
subspace R of X, the set UT (X,S,R,G) is dense in the space (UM(X,S),UDS

X).

Proof. Let ϵ ∈ (0,∞) be an arbitrary number. Let d ∈ UM(X,S). Take an (ω0 + 1)-
subspace R of X with δd(R) ≤ ϵ. By Lemma 7.4.4, there exists an S-valued ultrametric
e ∈ UM(R,S) with δe(R) ≤ ϵ such that (R, e) satisfies the anti-G-transmissible property.
Since δd(R) ≤ ϵ and δe(R) ≤ ϵ, by the definition of UDS

R we have UDS
R(d|R2 , e) ≤ ϵ.

Applying Corollary 7.3.1 to d and e, we obtain m ∈ UM(X,S) satisfying that

(1) m|R2 = e;

(2) UDS
X(d,m) ≤ C · UDS

R(d|R2 , e) ≤ C · ϵ.

By Lemma 6.2.1, we see that (X,m) satisfies the anti-G-transmissible property. Since ϵ is
arbitrary, the proposition follows.

Proof of Theorem 1.2.16. Let C ∈ [1,∞), and let S be a C-quasi-complete range set
with the countable coinitiality. Let X be a non-discrete metrizable space, and let G
be an S-ultra-singular transmissible parameter. Since X is non-discrete, there exists an
(ω0 + 1)-subspace R of X. By the definitions, we have UT (X,S,R,G) ⊂ US(X,S,G).
From Proposition 7.4.5 and Corollary 7.4.3, it follows that US(X,S,G) is dense Gδ in
(UM(X,S),UDS

X). This finishes the proof.
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For a range set S, and for a complete metrizable space X, we denote by CUM(X,S)
the set of all complete metrics in UM(X,S). From the latter part of Corollary 7.3.1, we
deduce the following:

Theorem 7.4.6 ([58]). Let S be a quasi-complete range set with the countable coinitiality.
Let G be an S-ultra-singular transmissible parameter. Then for every non-discrete com-
pletely ultrametrizable space X, the set of all d ∈ CUM(X,S) for which (X, d) satisfies
the anti-G-transmissible property is dense Gδ in

(
CUM(X,S),UDS

X |CUM(X,S)2
)
.

7.4.2 Proof of Theorem 1.2.17

Proof of Theorem 1.2.17. Let S be a quasi-complete range set with the countable coini-
tiality. Let X be a second countable, locally compact locally non-discrete ultrametrizable
space, and let G be an S-ultra-singular transmissible parameter. Put G = (Q,P, F,G,Z, ϕ).
Let E be the set of all S-valued ultrametrics d ∈ UM(X,S) for which (X, d) satisfies the
local anti-G-transmissible property. Let {Ui}i∈N be a countable open base of X, and let
{Ri}i∈N be a family of (ω0 + 1)-subspaces of X with Ri ⊂ Ui. Since {Ui}i∈N is an open
base of X, by Lemma 6.2.1, we have

E =
∩
i∈N

∩
q∈Q

∪
z∈Z

∪
a∈Seq(G(q),Ui)

US(X,S,G, q, a, z).

Corollary 7.4.3 implies that E is Gδ in UM(X,S). By the definitions, for all i ∈ N, the set∩
q∈Q

∪
z∈Z

∪
a∈Seq(G(q),Ui)

US(X,S,G, q, a, z)

contains UT (X,S,Ri,G). From Proposition 7.4.5 it follows that each set UT (X,S,Ri,G)
is dense in UM(X,S). By the latter part of Lemma 3.4.7, the space UM(X,S) is a Baire
space. Since E is the intersection of countable dense Gδ sets in a Baire space UM(X,S),
the set E is dense Gδ in UM(X,S). This completes the proof.

7.5 Examples of S-singular transmissible properties

We show some examples of transmissible properties.
Similarly to Proposition 6.3.2, we obtain:

Proposition 7.5.1 ([58]). Let S be a range subset with the countable coinitiality. The
doubling property is a transmissible property with an S-ultra-singular parameter.

Let S be a range set, and let T be a range subset of S which is countable dense subset
of S. Let UT be the class of all finite ultrametric spaces on which all distances are in T .
We say that a metric space (X, d) has rich S-ultra-pseudo-cones if UT is contained in the
class PC(X, d) of all pseudo-cones of (X, d) for some countable dense range subset T of S.

Lemma 7.5.2. Let S be a range set, and let T be a countable dense range subset of S. Let
X be a finite discrete space, and let d ∈ UM(X,S). For every ϵ ∈ (0,∞), there exists a T -
valued ultrametric e ∈ UM(X,T ) such that for all x, y ∈ X we have |d(x, y)− e(x, y)| < ϵ.

Proof. Let a0, a1, . . . , am be a sequence in S with { d(x, y) | x, y ∈ X } = {a0, a1, . . . , am}.
We may assume that a0 = 0 and ai < ai+1 for all i. Put q0 = a0(= 0). Since T is dense in
S, we can take a sequence q1, . . . , qm in T+ such that |ai − qi| < ϵ and qi < qi+1 for all for
all i ∈ {1, . . . ,m}. Define a function e : X×X → T by putting e(x, y) = qi if d(x, y) = ai.
Lemma 3.3.2 implies that e is an ultrametric. By the definition, the ultrametric e satisfies
the conditions as required.
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Since every compact ultrametric space has an ϵ-net for all ϵ ∈ (0,∞), Lemma 7.5.2
implies that for every range set S, every compact S-valued ultrametric space is arbitrarily
approximated by members of UT in the sense of Gromov–Hausdorff for every countable
dense range subset T of S. Thus we have:

Corollary 7.5.3 ([58]). Let S be a range set. Let (X, d) be an S-valued ultrametric space.
Then the following are equivalent to each other:

(1) (X, d) has rich S-ultra-pseudo-cones;

(2) PC(X, d) contains all compact S-valued ultrametric spaces;

(3) PC(X, d) contains UT for all countable dense range subset T of the range set S.

In Proposition 6.3.6, it is proven that the rich pseudo-cones property is an anti-
transmissible property with a singular parameter. Similarly, we obtain:

Proposition 7.5.4 ([58]). Let S be a range set with the countable coinitiality. Then
the rich S-ultra-pseudo-cones property is an anti-transmissible property with an S-ultra-
singular transmissible parameter.

Similarly to Corollary 6.3.10, we have:

Proposition 7.5.5. Let S be a range set with the countable coinitiality. For n ∈ N, let
f : P (n) → R be a continuous function. Then satisfying the (n, f)-metric inequality on
metric spaces is a transmissible property. Moreover, if f is positively sub-homogeneous,
and if there exists an ultrametric space not satisfying the (n, f)-metric inequality, then
satisfying the (n, f)-metric inequality on metric spaces is a transmissible property with an
S-ultra-singular transmissible parameter.

We define continuous functions s, t : P (3) → R by

s(x1,2, x2,3, x3,1) = max{x1,2, x2,3, x3,1},

and
t(x1,2, x2,3, x3,1) = min{x1,2, x2,3, x3,1}.

We also define a function A : P (3) → R by

A(x1,2, x2,3, x3,1) =
2(s(x1,2, x2,3, x3,1))

2 − (t(x1,2, x2,3, x3,1))
2

2(s(x1,2, x2,3, x3,1))2
.

Note that A is continuous. For every α ∈ (0, π/3), we define functions fα, gα : P (3) → R
by

fα(x1,2, x2,3, x3,1) = cosα−A(x1,2, x2,3, x3,1),

and by
gα(x1,2, x2,3, x3,1) = A(x1,2, x2,3, x3,1) − cosα.

Note that for every α ∈ (0, π/3), the functions fα, gα are continuous and positively sub-
homogeneous.

Let (X, d) be an ultrametric space. For distinct three points x, y, z ∈ X, by the cosine
formula, the value A(d(x, y), d(y, z), d(z, x)) is equal to the cosine of the apex angle of
the triangle determined by {x, y, z} (the angle between the sides with equal length of the
triangle determined by {x, y, z}).
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By Lemma 3.3.7, the valueA(d(x, y), d(y, z), d(z, x)) is equal to or greater than cos(π/3).
An ultrametric space (X, d) satisfies the (3, fα)-metric inequality (resp. (3, gα)-metric in-
equality) if and only if an angle between the legs of every triangle in (X, d) is equal to or
greater than α (resp. less than α).

By Proposition 7.5.5, we have:

Proposition 7.5.6. Let S be a range set with the countable coinitiality. Let α ∈ (0, π/3).
Then the following two properties on ultrametric space are transmissible properties with
S-ultra-singuler parameters:

(1) an angle between the legs (apex angle) of every triangle in a space is equal to or
greater than α;

(2) an angle between the legs (apex angle) of every triangle in a space is equal to or less
than α.

As consequences of Theorems 1.2.16 and 1.2.17, we obtain:

Corollary 7.5.7. Let S be a range set with the countable coinitiality. Let X be a non-
discrete ultrametrizable space. Then the following sets are dense Gδ in the space UM(X,S)
of metrics:

(1) the set of all metrics d ∈ UM(X,S) for which (X, d) has infinite Assouad dimension;

(2) the set of all metrics d ∈ UM(X,S) for which PC(X, d) contains all compact S-valued
ultrametric spaces;

(3) for each α ∈ (0, π/3), the set of all metrics d ∈ UM(X,S) for which (X, d) contains
a triangle whose apex angle is less than α;

(4) for each α ∈ (0, π/3), the set of all metrics d ∈ UM(X,S) for which (X, d) contains
a triangle whose apex angle is greater than α.

Corollary 7.5.8. Let S be a range set with the countable coinitiality. Let X be a second
countable locally compact locally non-discrete ultrametrizable space. Then the following
sets are dense Gδ in the space UM(X,S) of metrics:

(1) the set of all metrics d ∈ UM(X,S) for which every non-empty open subspace of
(X, d) has infinite Assouad dimension;

(2) the set of all metrics d ∈ UM(X,S) for which every non-empty open subspace con-
tains all compact S-valued ultrametrics as its pseudo-cones;

(3) for each α ∈ (0, π/3), the set of all metrics d ∈ UM(X,S) for which every non-empty
open metric subspace f (X, d) contains a triangle whose apex angle is less than α;

(4) for each α ∈ (0, π/3), the set of all metrics d ∈ UM(X,S) for which every non-empty
open metric subspace of (X, d) contains a triangle whose apex angle is greater than
α.
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[116] P. Urysohn, Mémoire sur les multiplicités cantoriennes, Fund. Math. 7 (1925), 30–
137.

[117] , Beispiel eines nirgends separablen metrischen raumes, Fund. Math. 7
(1927), no. 1, 119–121.

[118] , Sur un espace métrique universel, Bull. Sci. Math. 51 (1927), 43–64 and
74–90.

[119] J. E. Vaughan, Universal ultrametric spaces of smallest weight, Proceedings of the
14th Summer Conference on General Topology and its Applications (Brookville,
NY, 1999), vol. 24, 1999, pp. 611–619 (2001).

[120] I. A. Vestfrid, On the universal spaces, Ukrainian Math. J. 46 (1994), no. 12, 1890–
1898.

[121] Z. Wan, A novel construction of Urysoh nuniversal ultrametric space via the
Gromov–Hausdorff ultrametric, arXiv:2007.08105., 2020.

[122] S. Warner, Topological fields, North Holland, Mathematics Studies, vol. 157, North-
Holland-Amsterdam, London, New York, Tokyo, 1993.

[123] S. Willard, General topology, Dover Publications, 2004; originally published by the
Addison-Wesley Publishing Company in 1970.

[124] I. Zarichnyi, Gromov-Hausdorff ultrametric, arXiv:math/0511436v1., 2005.

101


