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Abstract

Descent theory discusses twisted forms of a fixed object A defined over a base ring R, where

the twisted forms are R-objects which turn to be isomorphic to A after some faithfully flat base

extension of R. Here discussed is descent theory in the differential context in which everything

is equipped with a differential operator. We determine all twisted forms of those differential Lie

algebras over the differential field C(t) which are associated with complex simple Lie algebras;

this solves the problem raised by A. Pianzola. Our crucial technical ingredient is Hopf-Galois

Theory, a ring-theoretic counterpart of theory of torsors for group schemes; it plays an essential

role when we grasp the above-mentioned twisted forms from torsors. As an important result we

use Steinberg’s cohomology-vanishing theorem. But we prove that its differential analogue does

not hold.
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1 Introduction—problem and answer

Rings and algebras are supposed to be associative and containing 1, and their morphisms are sup-

posed to send 1 to 1. Moreover, rings, algebras and Hopf algebras are assumed to be commutative,

unless otherwise stated.

We let δ mean “differential” and use the symbol δ to indicate differential operators in general.

A δ-ring is thus a (commutative) ring R equipped with an additive operator δ : R → R satisfying

the Leibniz rule

δ(xy) = (δx)y + x(δy)

for all x, y ∈ R. It is called a δ-field if the ring is a field. The rational function field C(t) in one

variable is regarded as a δ-field with respect to the standard operator such that δt = 1 and δc = 0

for every c ∈ C. The field

CC(t) = { a ∈ C(t) | δa = 0 }

of constants is C. A δ-C(t)-Lie algebra is a Lie algebra g over C(t) which is equipped with an

additive operator δ : g→ g such that

δ(aX) = (δa)X + a(δX), δ[X,Y ] = [δX, Y ] + [X, δY ]

for all a ∈ C(t) and X,Y ∈ g. In the same way a δ-R-Lie algebra is defined for any δ-ring R.

Let g be a δ-C(t)-Lie algebra. Given a δ-ring map C(t) → R (that is, a ring map preserving the

δ-operator), the base extension g⊗C(t)R of g is naturally a δ-R-Lie algebra. A twisted form of g is

a δ-C(t)-Lie algebra f such that

g⊗C(t) R ' f⊗C(t) R as δ-R-Lie algebras

for some δ-ring map C(t)→ R with R 6= 0.

Let n ≥ 2. We can and do regard the C(t)-Lie algebra sln(C(t)) which consists of all traceless

matricesX =
(
xij
)
with xij ∈ C(t), as a δ-C(t)-Lie algebra with respect to the entry-wise δ-operator

δ
(
xij
)
:=
(
δxij

)
.

As an obvious generalization, one can replace sln(C) with a complex simple Lie algebra g0 (of

finite dimension), and regard C(t)-Lie algebra

g0(C(t)) = g0 ⊗C C(t) (1.1)

as a δ-C(t)-Lie algebra with the δ operating on the tensor factor C(t). The notation (1.1) is used

since g0 is seen to give the functor R 7→ g0 ⊗C R, and g0 ⊗C C(t) is then its value. A. Pianzola

raised the following problem, which we are going to solve.

Problem 1.1. Given a complex simple Lie algebra g0, describe all twisted forms of g0(C(t)).

Our interest in this problem or in studying twisted forms of Lie algebras in the differential

context comes from differential Galois Theory, in which examples of such twisted forms naturally

arise. In fact, given a homogeneous linear differential equation with coefficients in a differential
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field, say C(t), we have the Galois group of the equation, G0, which is an affine algebraic C-group.
In addition we naturally have an affine algebraic “differential” C(t)-group G, called the intrinsic

Galois group (or Katz group); see [6]. One sees that the Lie algebra Lie(G) of G is a δ-C(t)-Lie
algebra which is a twisted form of the δ-C(t)-Lie algebra Lie(G0) ⊗C C(t), where Lie(G0) is the

(complex) Lie algebra of G0.

Returning to the situation before, recall that the complex simple Lie algebras are classified,

labeled by their root systems

Aℓ (` ≥ 1), Bℓ (` ≥ 2), Cℓ (` ≥ 3), Dℓ (` ≥ 4), E6, E7, E8, F4, G2.

See [4, Chapter IV], for example. Let g0 be a complex simple Lie algebra, and let Γ denote the

automorphism group of the associated Dynkin diagram. Explicitly, the group is

Γ =


{1} type A1, Bℓ (` ≥ 2), Cℓ (` ≥ 3), E7, E8, F4 or G2;

Z2 type Aℓ (` ≥ 2), Dℓ (` ≥ 5) or E6;

S3 type D4

(1.2)

according to the type of g0; see [11, Table 3 on Page 298]. Here and in what follows Zn denotes the

cyclic group of order n. In addition, S3 denotes the symmetric group of degree 3. The action by

Γ naturally (up to conjugation) gives rise to automorphisms of g0, which forms a group naturally

identified with the group Out(g0) of outer-automorphisms of g0.

Roughly speaking, our answer, Theorem 1.4, to the problem tells that all non-trivial twisted

forms are obtained by the Galois descent (see [7, Section 18]) for which Γ (and its subgroups for

type D4) act as Galois groups. To make a precise statement we introduce below the notion of being

quasi-isomorphic.

Lemma 1.2. If g = (g, δ) is a δ-R-Lie algebra, then for any element D ∈ g,

δ + ad(D) : g→ g, X 7→ δX + [D,X]

is a δ-operator with which g is again a δ-R-Lie algebra.

Indeed, one sees, more generally, that for any R-linear derivation D : g → g, (g, δ + D) is a

δ-R-Lie algebra. Note that the inner derivation ad(D) above is R-linear.

Definition 1.3. Let R be as above, We say that two δ-R-Lie algebras g = (g, δ) and g′ = (g′, δ′)

are quasi-isomorphic, if there is an element D ∈ g such that

(g, δ + ad(D)) ' (g′, δ′) as δ-R-Lie algebras.

The condition is equivalent to saying that there is an element D′ ∈ g′ such that (g, δ) '
(g′, δ′ + ad(D′)), as is easily seen. It follows that the quasi-isomorphism gives an equivalence

relation among all δ-R-Lie algebras.
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Theorem 1.4. Suppose that g0 is a complex simple Lie algebra, and let Γ be the automorphism

group of the associated Dynkin diagram. Then a δ-C(t)-Lie algebra is a twisted form of g0(C(t)) if
and only if it is quasi-isomorphic to one of those listed below, according to the case Γ = {1}, Z2 or

S3; see (1.2).

(1) Case Γ = {1}: g0(C(t));

(2) Case Γ = Z2: (i) g0(C(t));

(ii) g0(L)
Γ, where L/C(t) is a quadratic field extension.

(3) Case Γ = S3: (i) g0(C(t));

(ii) g0(L)
Z2, where L/C(t) is a quadratic field extension;

(iii) g0(L)
Z3, where L/C(t) is a cubic Galois extension;

(iv) g0(L)
Γ, where L/C(t) is a Galois extension of fields with Galois group Γ(= S3).

We should immediately add some explanations about the statement above. First, any finite field

extension L/C(t) uniquely turns into an extension of δ-fields, whence g0(L) turns into a δ-L-Lie

algebra. Second, in (ii) of (2) and (iv) of (3) above, the group Γ is supposed to act diagonally

on g0(L) = g0 ⊗C L, as outer-automorphisms on g0, and as the Galois group on L. In addition,

g0(L)
Γ denotes the Γ-invariants in g0(L), which is in fact a δ-C(t)-Lie algebra by Galois descent;

see Section 4.3. Third, in (ii) of (3), we choose arbitrarily an order 2 subgroup Z2 of Γ (= S3), and

let it act on g0 by restriction. The δ-C(t)-Lie algebra g0(L)
Z2 which results in the same way as

above does not depend (up to isomorphism) on the choice since the order 2 subgroups are conjugate

to each other; on the other hand it may depend on L. Finally, in (iii) of (3), we suppose that Z3

is the unique order 3 subgroup of Γ (= S3), and let it act on g0 by restriction, again. We add

the following remark: there exist infinitely many quadratic and cubic Galois extensions over C(t),
as is easily seen, while the existence of a Galois extension over C(t) with Galois group S3 will

be ensured by Example 4.9. The theorem will be proved in the final Section 4, which contains as

well, explicit descriptions (see Section 4.6) of the non-trivial δ-C(t)-Lie algebras listed in (ii) of (2)

and (ii)-(iv) of (3). The preceding two sections provide preliminaries, some of which are beyond

what will be needed, but are of interest by themselves. Section 2 presents descent theory in the

differential context; Section 3 prepares technical tools mainly from Hopf-Galois Theory, which is

a ring-theoretic counterpart of theory of torsors for group schemes. In particular, Schauenburg’s

bi-Galois Theory [13] will play a role in two stages (see Sections 3.5 and 4.3), when we grasp the

twisted forms in question from δ-torsors.

In Case Γ = {1}, every twisted form of g0(C(t)) will be proved, as presented above, to be quasi-

isomorphic to g0(C(t)). In the epilogue we prove that among those twisted forms, there is one

which is not isomorphic to g0(C(t)). Thus “quasi-isomorphism” is not necessarily “isomorphism”.
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2 δ-R-Objects and Descent theory in differential context

Let R be a δ-ring. A δ-R-module is an R-moduleM equipped with an additive operator δ :M →M

satisfying

δ(xm) = (δx)m+ x(δm), x ∈ R, m ∈M.

All δ-R-modules form a symmetric tensor category δ-R-Modules with respect to the tensor product

M1 ⊗R M2, the unit object R and the obvious symmetry

M1 ⊗R M2 →M2 ⊗R M1, m1 ⊗m2 7→ m2 ⊗m1.

The δ-operator on M1 ⊗R M2 is given by

δ(m1 ⊗m2) = δm1 ⊗m2 +m1 ⊗ δm2.

The notion of δ-R-Lie algebra defined in the previous section is precisely a Lie algebra in

the category δ-R-Modules. In general, any linear object, such as algebra or Hopf algebra, in δ-

R-Modules is called a δ-R-object, so as δ-R-algebra or δ-R-Hopf algebra; important is the fact that

the structure is defined by morphisms of δ-R-Modules between tensor powers of the object. Given

a δ-R-algebra S, we have the base-extension functor

⊗RS : δ-R-Modules→ δ-S-Modules,

which induces base-extension functors for linear objects such as above.

We are concerned with descent theory (see [15], for example) in differential context. To make

this clearer, let us fix a δ-R-object A. A δ-R-object B is called an S/R-form of A, or a twisted

form of A split by S, if S is a δ-R-algebra such that

(i) S is faithfully flat as an R-algebra, and

(ii) A⊗R S ' B ⊗R S as δ-S-objects.

A δ-R-object B is called a twisted form of A, if there exists a δ-R-algebra S which satisfies (i) and

(ii) above.

The δ-automorphism-group functor of A is the functor

Autδ(A) : δ-R-Algebras→ Groups, T 7→ Autδ-T (A⊗R T ) (2.1)

from the category δ-R-Algebras of δ-R-algebras to the category Groups of groups, which associates

to each δ-R-algebra T , the automorphism-group Autδ-T (A⊗R T ) of the δ-T -object A⊗R T . When

constructing the 1st Amitsur cohomology (pointed) set as in [15, Section 17.6], replace faithfully

flat homomorphisms of rings and automorphism-group functors with our R → S (satisfying (i)

above) and Autδ(A), respectively. The resulting differential analogue is denoted by

H1
δ (S/R,Autδ(A)). (2.2)
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This is seen to classify the S/R-forms of A; to be more precise, there is a natural bijection from

H1
δ (S/R,Autδ(A)) to the set of all δ-R-isomorphism classes of the S/R-forms. An important con-

sequence is: if A′ is another δ-R-object of some distinct kind, which has the δ-automorphism-group

functor isomorphic to Autδ(A), then there is a one-to-one correspondence (up to isomorphism)

between the S/R-forms of A and S/R-forms of A′.

We remark that for any functor G : δ-R-Algebras → Groups, the cohomology set H1
δ (S/R,G)

is defined just as the one in (2.2). The set will appear in what follows (see (3.6)) only when G is

representable, and turns out, indeed, to be an automorphism-group functor.

Remark 2.1. We have used so far the base-on-right notation A⊗R T which denotes the extended

base on the right; it seemingly looks nicer than the base-on-left notation T ⊗RA. But we may and

do (when it is natural) use the latter notation.

Remark 2.2. We would like to clarify our use of the term “form”. In this Remark the differential

structure is ignored. Consider a faithfully flat homomorphism R → S of rings and an R-object

A. If R and S are fields, it is more conventional for experts in representation theory or physicists

to speak of R-form of the S-object A ⊗ S. For example, so3(R) is a real form of sl2(C). Our

terminology is that so3(R) is a twisted form, or a C/R-form of sl2(R). The terminology we have

chosen, namely an S/R-form or twisted form of the R-object A, is familiar in number theory and

algebraic geometry, and it is also the standard terminology in Grothendieck’s descent theory. The

base R is fixed, and the S can vary.

3 Affine δ-K-groups, their Lie algebras and torsors

In this section K denotes a δ-field. We assume that the characteristic charK of K is zero.

3.1 Affine δ-K-groups and their Lie algebras

An affine δ-K-group scheme is by definition a representable functor

G : δ-K-Algebras→ Groups (see (2.1));

this will be called an affine δ-K-group for short. Such a functor G is uniquely represented by a

δ-K-Hopf algebra, say H, and is presented so as G = Specδ(H) or Specδ-K(H). We say that G is

algebraic, or it is an affine algebraic δ-K-group, if H is finitely generated as a K-algebra. If one

forgets δ, then G = Spec(H) is an affine K-group, which has the Lie algebra

Lie(G) = Derϵ(H,K). (3.1)

Recall that this consists of all K-linear maps D : H → K that satisfy

D(ab) = D(a)ε(b) + ε(a)D(b), a, b ∈ H,
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where ε : H → K is the counit of H. This is in fact a δ-K-Lie algebra with respect to the operator

defined by

(δD)(a) := δ(Da)−D(δa), D ∈ Lie(G), a ∈ H.

Note that the canonical pairing H ⊗K Lie(G) → K is a morphism in δ-K-Modules. We have

dimK(Lie(G)) <∞, if G is algebraic.

Remark 3.1. The notion of being “algebraic” defined above would be rather restricted for those

who would like to work intensively in differential algebra. It should be distinguished from the more

natural (for those above) notion of being “δ-algebraic”, which will be discussed briefly in Section

3.3, being less crucial for our purpose though.

3.2 δ-K-Torsors and Galois δ-K-algebras

An affine δ-K-scheme is by definition a representable set-valued functor

X : δ-K-Algebras→ Sets.

It is uniquely represented by a δ-K-algebra, say A, being presented so as X = Specδ(A); it is said

to be algebraic if A is finitely generated as a K-algebra. The category of affine δ-K-schemes, whose

morphisms are natural transformations, has direct products. The direct product X1 × X2 of two

affine δ-K-schemes Xi = Specδ(Ai), i = 1, 2, is represented by A1⊗KA2. The notion of group object

of the category is naturally defined, and such an object is precisely an affine δ-K-group. Given an

affine δ-K-group G = Specδ(H), the notion of right (or left) G-equivariant objects is defined, as

well. Such an object is called a right (or left) G-equivariant δ-K-scheme. Giving such a δ-K-scheme

X = Specδ(A) is the same as giving a right (or left) H-comodule δ-K-algebra; it is an object A in

δ-K-Algebras equipped with a morphism A→ A⊗K H (or A→ H ⊗K A) in the category which

satisfy the co-associativity and the counit property. Obviously, G itself is G-equivariant on both

sides.

Let R be a δ-K-algebra. An affine δ-K-group or (equivariant or ordinary) δ-K-scheme X =

Specδ(A) has the base change XR = Specδ-R(A ⊗K R); it is by definition the functor T 7→ X(T )

defined on δ-R-Algebras, where each T ∈ δ-R-Algebras is regarded naturally as a δ-K-algebra.

We can discuss twisted forms of X; it is the same as discussing twisted forms of A.

Let G = Specδ(H) be an affine δ-K-group. A twisted form of the right G-equivariant δ-K-

scheme G is called a right δ-K-torsor for G. To be explicit it is a right G-equivariant δ-K-scheme

X such that XR ' GR as right G-equivariant δ-R-schemes for some non-zero δ-K-algebra R. Such

an X is uniquely represented by a right H-comodule δ-K-algebra B which is a twisted form of H.

Such a twisted form B is characterized as a right H-Galois δ-K-algebra [9, Section 8.1]; it is by

definition a non-zero right H-comodule δ-K-algebra B such that the δ-K-algebra map

ρ̃ : B ⊗K B → B ⊗K H, ρ̃(b⊗ c) = bρ(c) (3.2)

is an isomorphism. Here and in what follows, ρ : B → B ⊗K H denotes the structure map. Note

that ρ̃ is a δ-B-algebra isomorphism (with the base-on-left notation, see Remark 2.1), and B is
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split by B itself.

The analogous notions of left δ-K-torsors for G and of left H-Galois δ-K-algebras are defined

in the obvious manner, and those two are in one-to-one correspondence.

3.3 Affine δ-algebraic δ-K-groups

An δ-K-algebra A is said to be δ-finitely generated if it is generated as a K-algebra by finitely many

elements a1, . . . , an together with their iterated differentials δra1, . . . , δ
ran, r > 0. An extension

L/K of δ-fields said to be δ-finitely generated, if L is the quotient field of some δ-K-finitely generated

δ-K-subalgebra of L.

An affine δ-group G = Specδ(H) is said to be δ-algebraic if the δ-K-Hopf algebra H is δ-finitely

generated as a δ-K-algebra; see Remark 3.1. Obviously, “algebraic” implies “δ-algebraic”.

Lemma 3.2. Every right (or left) δ-K-torsor for an affine δ-K-group G is split by some δ-K-field.

It is split by a δ-finitely generated extension L/K of δ-fields, if G is δ-algebraic.

Proof. Suppose that B is a right H-Galois δ-K-algebra, as above. Choose arbitrarily a maximal

δ-stable ideal m of B, and construct R = B/m, a simple δ-K-ring. Since charK = 0, R is an

integral domain by [12, Lemma 1.17]. The quotient field L = Q(R) of R uniquely turns into a

δ-K-field. By applying L⊗B to ρ̃, it follows that B is split by L, proving the first assertion. If H

is δ-finitely generated, then B and R are so. It follows that the L/K above is δ-finitely generated,

proving the second.

Proposition 3.3. Suppose that A is δ-K-object of finite K-dimension. Then Autδ(A) is an affine

δ-algebraic δ-K-group, and every twisted form of A is split by some δ-finitely generated extension

L/K of δ-fields.

Proof. We have only to prove that Autδ(A) is an affine δ-algebraic δ-K-group, since the rest then

follows from the preceding Lemma.

Choose a K-basis v1, . . . , vn of A. Let

F = K[xij , x
′
ij , x

′′
ij , . . . , x

(r)
ij , . . . ]

denote the free δ-K-algebra in indeterminates xij , where 1 ≤ i, j ≤ n. Let

G = Fd (= F [1/d])

denote the localization by the determinant d = detX of the n × n matrix X =
(
xij
)
i,j

which

has the indeterminates above as entries. This G has the δ-operator uniquely extending the one

δx
(r)
ij = x

(r+1)
ij , r ≥ 0, on F . We have a G-linear bijection φ : A⊗K G→ A⊗K G determined by

φ(vj ⊗ 1) =

n∑
i=1

vi ⊗ xij , 1 ≤ j ≤ n.
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This is alternatively expressed as

φ(v1 ⊗ 1, . . . , vn ⊗ 1) = (v1, . . . , vn)⊗X

by matrix presentation; such presentation will be used in (3.3), (3.4) and (3.5), as well.

Let

H = G/a,

where a is the smallest δ-stable ideal of G such that the base extension φH : A⊗KH → A⊗KH of φ

along G→ G/a = H is an endomorphism of the δ-H-object A⊗K H; obviously, it is necessarily an

automorphism. This a is, in fact, given by the relations which ensure that φH commutes with the

structure maps of A (see [15, Section 7.6]), and with the δ-operator. Explicitly, the latter relation

for commuting with δ-operator is

XD = DX + δX, (3.3)

where D ∈Mn(K) is the matrix determined by

δ(v1, . . . , vn) = (v1, . . . , vn)D. (3.4)

We see that H represents the functor Autδ(A) regarded to be set-valued. In fact, for every

R ∈ δ-K-Algebras, we have the natural bijection

Specδ(H)(R)→ Autδ-R(A⊗K R), f 7→ the base extension of φH along f.

By Yoneda’s Lemma, H uniquely turns into a δ-K-Hopf algebra with respect to the familiar Hopf-

algebra structure

∆X = X ⊗X, εX = I, SX = X−1, (3.5)

where ∆, ε and S denote the coproduct, the counit and the antipode, respectively, and it represents

the group-valued functor Autδ(A). Since H is obviously δ-finitely generated, the desired result

follows.

For K as above, we choose and fix an extension U/K of δ-fields into which every δ-finitely

generated extension L/K of δ-fields can be embedded. There exists such an extension; a universal

extension [8, Chapter III, Section 7] over K is an example.

For an affine δ-algebraic δ-K-group G, we define H1
δ (K,G) by

H1
δ (K,G) := H1

δ (U/K,G). (3.6)

The δ-automorphism-group functor Autδ(G) : T 7→ Autδ-T (GT ) of the right G-equivariant δ-K-

scheme G is naturally isomorphic to G itself; Autδ-T (GT ) consists of the natural automorphisms

of the functor GT : δ-T -Algebras → Groups. This fact, combined with Lemma 3.2, shows that

H1
δ (K,G) classifies all right δ-K-torsors for G.

9



For a δ-K-object A of finite K-dimension, we define

H1
δ (K,Autδ(A)) := H1

δ (U/K,Autδ(A)).

This classifies all twisted forms of A, as is seen from Proposition 3.3.

3.4 δ-K-Bi-torsors and bi-Galois δ-K-algebras

Let G = Specδ(H) be an affine δ-K-group. Suppose that X = Specδ(B) is a right δ-K-torsor for

G, or in other words, B = (B, ρ) is a right H-Galois δ-K-algebra. Tracing the argument of [13]

modified into our differential situation, we see that there exists uniquely (up to isomorphism) a pair

(H ′, λ) of a δ-K-Hopf algebra H ′ and a left H ′-comodule δ-K-algebra structure λ : B → H ′ ⊗K B

such that (i) (B, λ) is a left H ′-Galois δ-K-algebra, and (ii) λ and ρ commute in the sense that

(λ⊗ idH) ◦ ρ = (idH′ ⊗ρ) ◦ λ. (3.7)

We say that B is an (H ′,H)-bi-Galois δ-K-algebra. Accordingly, we have uniquely a pair of an

affine δ-K-group G′ and its action on X from the left, such that (i) X is a left δ-K-torsor for G′, and

(ii) the actions on X by G′ and by G commute with each other. We say that X is a δ-K-bi-torsor.

We write

HB, GX (3.8)

for H ′, G′, respectively. If B (or equivalently, X) is trivial, or namely if B = H (or X = G), then

HB = H and GX = G. This, applied after base extension to B, shows the following; see the proof

of Proposition 3.5 below for detailed argument.

Proposition 3.4. HB and GX are B/K-forms of H and of G, respectively.

With K replaced by a non-zero δ-ring R, the results above remain true if the relevant δ-R-Hopf

algebra is flat over R. We remark that δ-R-torsors are then required, in addition to the ρ̃ being

isomorphic, to be faithfully flat over R.

3.5 Interpretation of H1
δ (K,G)→ H1

δ (K,Autδ(g))

Let G = Specδ(H) be an affine algebraic δ-K-group, and set g := Lie(G). Then g is a δ-K-Lie

algebra of finite K-dimension, whence the δ-automorphism-group functor Autδ(g) is an affine δ-

algebraic δ-K-group by Proposition 3.3. We see that the left adjoint action by G on g gives rise to

a morphism of affine δ-algebraic δ-K-groups

Ad : G→ Autδ(g),

which induces naturally a map between the cohomology sets

Ad∗ : H
1
δ (K,G)→ H1

δ (K,Autδ(g)). (3.9)
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Given a right δ-K-torsor X for G, we define

gX := Lie(GX). (3.10)

This is a twisted form of g = Lie(G), since GX is a twisted form of G; see Proposition 3.4.

Proposition 3.5. Ad∗ is interpreted in terms of twisted forms so as

[a right δ-K-torsor X for G] 7→ [gX], (3.11)

where [ ] indicates isomorphism classes.

Proof. In this proof we write ⊗ for ⊗K , and use the base-on-left notation for base extensions; see

Remark 2.1.

Suppose that X = Specδ(B) is a right δ-K-torsor for G, or in other words, B = (B, ρ) is a right

H-Galois δ-K-algebra.

Let γ ∈ G(B ⊗B). This gives the automorphism

`γ : (B ⊗B)⊗H ≃−→ (B ⊗B)⊗H

of the right ((B ⊗B)⊗H)-Galois δ-(B ⊗B)-algebra (B ⊗B)⊗H defined by

`γ((b⊗ c)⊗ h) = (b⊗ c)γ(h(1))⊗ h(2), b, c ∈ B, h ∈ H.

Here and in what follows, we let

∆(h) = h(1) ⊗ h(2), (∆⊗ id) ◦∆(h) = h(1) ⊗ h(2) ⊗ h(3)

denote the coproduct on H. The right co-adjoint action

Coad(γ) : (B ⊗B)⊗H ≃−→ (B ⊗B)⊗H

by γ is defined by

Coad(γ)((b⊗ c)⊗ h) = (b⊗ c)γ(h(1))γ−1(h(3))⊗ h(2).

This is an automorphism of the δ-(B ⊗B)-Hopf algebra (B ⊗B)⊗H. Note that `γ turns into an

isomorphism of left ((B ⊗ B) ⊗ H)-Galois δ-(B ⊗ B)-algebras, if one twists through Coad(γ) the

obvious co-action by (B ⊗B)⊗H on the domain. Explicitly, this means that

(Coad(γ) ⊗B⊗B `γ) ◦∆(B⊗B)⊗H = ∆(B⊗B)⊗H ◦ `γ on (B ⊗B)⊗H, (3.12)

where ∆(B⊗B)⊗H denotes the coproduct on (B ⊗B)⊗H.

Suppose that the γ above is a cocycle for computing H1
δ (B/K,G) which gives the B/K-form

11



B through ρ̃. This means that the commutative diagram

(B ⊗B)⊗B

(B ⊗B)⊗H (B ⊗B)⊗H

d1ρ̃

zzuu
uu
uu
uu d2ρ̃

$$I
II

II
II

I

ℓγ
//

of right ((B ⊗ B) ⊗H)-Galois δ-(B ⊗ B)-algebras, where di, i = 1, 2, denote the base extensions

along

B → B ⊗B, b 7→ 1⊗ b, b⊗ 1.

Recall that B is an (HB,H)-bi-Galois δ-K-algebra. By [13, Theorem 3.5], the Hopf algebra

HB consists of the elements
∑

i bi ⊗ ci in B ⊗B such that∑
i

(bi)(0) ⊗ (ci)(0) ⊗ (bi)(1)(ci)(1) =
∑
i

bi ⊗ ci ⊗ 1 in (B ⊗B)⊗H, (3.13)

where ρ(b) = b(0) ⊗ b(1). Moreover,

µ : B ⊗HB → B ⊗B, µ(b⊗ z) = bz (3.14)

is an isomorphism of left (B ⊗HB)-Galois δ-B-algebras. Define

ν := ρ̃ ◦ µ : B ⊗HB → B ⊗H.

Recall from Section 3.4 uniqueness of the pair (H ′, λ), and apply it first over B, and next over

B⊗B. Then one sees the following. First, there uniquely exists an isomorphism θ : B⊗HB → B⊗H
of δ-B-Hopf algebras such that

(θ ⊗ ν) ◦∆B⊗HB = ∆B⊗H ◦ ν,

where ∆B⊗HB and ∆B⊗H denote the coproducts on the δ-B-Hopf algebras. In fact, this θ is the

unique isomorphism between the two δ-B-Hopf-algebras that is compatible with their co-actions

on B ⊗B. (Notice that this θ ensures Proposition 3.4.) Next, the last commutative diagram, with

((B ⊗B)⊗H)(−) applied (see (3.8)), induces the commutative diagram

(B ⊗B)⊗HB

(B ⊗B)⊗H (B ⊗B)⊗H

d1θ

zzuu
uu
uu
uu d2θ

$$I
II

II
II

I

Coad(γ)
//

of δ-(B ⊗B)-Hopf algebras; notice from (3.12) that `γ induces Coad(γ).
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Notice from (3.1) that gX = Derϵ(H
B,K). Then one sees that θ induces an isomorphism

θ∗ : B ⊗ g
≃−→ B ⊗ gX

of δ-B-Lie algebras. Moreover, the last commutative diagram induces by duality the commutative

diagram

(B ⊗B)⊗ gX

(B ⊗B)⊗ g (B ⊗B)⊗ g

::
d1(θ∗)

uu
uu
uu
uu

dd
d2(θ∗)

II
II

II
II

oo

Ad(γ−1)

of δ-(B ⊗B)-Lie algebras, where the horizontal arrow indicates the left adjoint action by γ−1. We

may reverse the direction of the arrow, changing the label into the left adjoint action Ad(γ) by

γ. The result shows that Ad(γ), regarded as a cocycle for computing H1
δ (B/K,Autδ(g)), gives the

twisted form gX of g which is split by B, indeed.

Recall from (3.6) the definition H1(K,G) := H1(U/K,G). Let ψ is an element of H1(K,G).

Then this arises from a cocycle γ such as above, which gives a δ-K-torsor X = Specδ(B) for G,

through a δ-K-algebra map j : K → U . Thus, ψ is represented by the cocycle given as the

composite

H
γ−→ B ⊗B j⊗j−→ U ⊗ U .

This cocycle is seen to give the U/K-form B of the right H-comodule δ-K-algebra H. The argu-

ment in the preceding paragraphs shows that Ad∗(ψ) is represented by the base extension of the

automorphism Ad(γ) along the δ-K-algebra map j ⊗ j. This base extension is seen to be a cocycle

which gives the U/K-form gX of g. This completes the proof.

Let G = Specδ(H) be an affine algebraic δ-K-group with g = Lie(G), as above. Recall from

(3.1) that g = Derϵ(H,K).

Proposition 3.6. Regard H merely as the trivial right H-Galois K-algebra, forgetting δ on it.

(1) Given an element D ∈ g, define

δD : H → H, δD(h) = δh+D(h(1))h(2), (3.15)

where δ denotes the original operator on H. Then this is a δ-operator with which H is made

into a right H-Galois δ-K-algebra. Conversely, such a δ-operator uniquely arises in this way.

(2) Given an element D ∈ g, let XD denote the right δ-K-torsor for G which is represented by

the right H-Galois δ-K-algebra (H, δD) obtained above. Then the twisted form gXD of g is

the K-Lie algebra g equipped with the new δ-operator

δ + ad(D) : g→ g, z 7→ δz + [D, z],

where δ denotes the original operator on g. Thus gXD is quasi-isomorphic to the original g;

see Definition 1.3.
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Proof. (1) Suppose that δ1 is a desired operator, or namely, (H, δ1) is a right H-Galois δ-K-algebra.

Then one sees that δ1 − δ : H → H is a K-linear derivation and is at the same time a right H-

comodule map. It follows that δ1 is necessarily of the form δD with D ∈ g uniquely determined.

Such δD is seen to be a desired operator for any D, indeed.

(2) Let H ′ = H(H,δD). Then gXD = Derϵ(H
′,K). Using the uniqueness of the δ-K-Hopf algebra

H ′ in general, which was discussed in Section 3.4, we see that the present H ′ is the K-Hopf algebra

H equipped with the δ-operator

H → H, h 7→ δh+D(h(1))h(2) − h(1)D(h(2)).

This implies the desired result.

A simple consequence of the proposition above is the following.

Corollary 3.7. Let g be a δ-K-Lie algebra of finite K-dimension. Once the Lie algebra Lie(G) of

some affine algebraic δ-K-group G is shown to be a twisted form of g, then every δ-K-Lie algebra

quasi-isomorphic to Lie(G) is a twisted form of g, as well.

3.6 Differential δ-K-objects arising from C-linear objects

Let K be a δ-field of characteristic zero. Let

C = CK (= {x ∈ K | δx = 0 })

denote the field of constants in K, which is necessarily of characteristic zero. In this subsection we

let ⊗ denote the tensor product ⊗C over C.

Let A0 be a C-linear object. We can and do regard the base extension A0⊗K as a δ-K-object

with respect to the operator δ0 defined by

δ0 : A0 ⊗K → A0 ⊗K, a⊗ x 7→ a⊗ δx.

For every δ-K-algebra R, A0⊗R is similarly a δ-R-object, and is a base extension of the δ-K-object

A0 ⊗K above.

Proposition 3.8. If the automorphism-group functor Aut(A0) of A0 happens to be an affine C-

group, represented by a C-Hopf algebra H0, then the δ-automorphism-group functor Autδ(A0 ⊗K)

of the δ-K-object (A0⊗K, δ0) is an affine δ-K-group, represented by the δ-K-Hopf algebra H0⊗K.

Proof. Let R ∈ δ-K-Algebras. One sees that every automorphism of the δ-R-object A0 ⊗ R

restricts to an automorphism of A0 ⊗ CR over the C-algebra CR of constants in R, and so it

is uniquely presented as the base extension of the restriction. This shows Autδ-R(A0 ⊗ R) =

AutCR
(A0⊗CR); this last is naturally isomorphic to SpecC(H0)(CR) = Specδ-K(H0⊗K)(R). This

proves the proposition.

We remark that the proposition follows from the proof of Proposition 3.3 if (dimK(A0 ⊗K) =

) dimC A0 <∞. For the relation (3.3) turns into δX = O since D = O.
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Corollary 3.9. If dimC A0 <∞, then Autδ(A0 ⊗K) is an affine algebraic δ-K-group.

Proof. This follows from the proposition above, since Aut(A0) is an affine algebraic C-group under

the assumption; see [15, Section 7.6].

The following result would be worth presenting, though it is not essentially used in this paper.

Proposition 3.10. Assume dimC A0 <∞, and that the field C is algebraically closed. Then every

twisted form of the δ-K-object (A0 ⊗ K, δ0) is split by some (finitely generated) Picard-Vessiot

extension L over K.

Proof. By the preceding results the first assumption implies Aut(A0) = SpecC(H0) and Autδ(A0 ⊗
K) = Specδ-K(H0 ⊗K), where H0 is a finitely generated C-Hopf algebra.

Let B be a right (H0 ⊗ K)-Galois δ-K-algebra, and regard it as a twisted form of the right

(H0 ⊗ K)-comodule δ-K-algebra H0 ⊗ K. We should prove that this twisted form B is split by

some L/K as above. It suffices to prove that there exists a δ-K-algebra map from B to such an L,

since B is split by B, itself.

We have the δ-B-algebra isomorphism

ρ̃ : B ⊗K B
≃−→ B ⊗K (H0 ⊗K) = B ⊗H0

as in (3.2). Choose a simple quotient δ-K-algebra R of B, as in the proof of Lemma 3.2. Then

R is an integral domain by [12, Lemma 1.17], as before. This is finitely generated as a K-algebra

since B is such. The quotient field L = Q(R) of R uniquely turns into a δ-field, which is necessarily

a finitely generated extension over K. The second assumption above, combined with [2, Lemma

4.2], implies that the field CL of constants in L equals C. This L/K will be proved to be a desired

Picard-Vessiot extension by [2, Definition 1.8 and Theorem 3.11], if one sees that the canonical

δ-R-algebra map R ⊗ CR⊗KR → R ⊗K R which arises from the embedding CR⊗KR ↪→ R ⊗K R of

the constants into R ⊗K R is surjective. (By [2, Proposition 6.7] this canonical map is injective,

though this fact is not needed here.) Indeed, the desired surjectivity is seen from the commutative

diagram

B ⊗H0 B ⊗K B

R⊗ CR⊗KR R⊗K R.

≃
ρ̃−1

//

�� ����

//

Here the vertical arrow on the left-hand side naturally arises from the composite of ρ̃−1|H0 : H0 →
B ⊗K B with the natural surjection B ⊗K B → R⊗K R, which clearly takes values in CR⊗KR.

4 Proof of the theorem and computations

Throughout in this section we let K := C(t), and write ⊗ for ⊗K .

Suppose that we are in the situation of Section 1. Let g0 be a complex simple Lie algebra, and

let g = g0(K) denote the δ-K-Lie algebra as in (1.1).
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4.1 Two key facts

One key fact for us is the following description of the automorphism-group scheme Aut(g0) of g0.

Recall that the finite group Γ = Out(g0) of outer-automorphisms of g0 is explicitly given by (1.2);

this Γ will be identified with the associated, finite constant group scheme. Let G◦
0 be the adjoint

simple C-group associated with g0. A natural action by Γ on G◦
0 constitutes an affine algebraic

C-group
G0 = G◦

0 ⋊ Γ

of semi-direct product, so that

Lie(G0) = Lie(G◦
0) = g0,

and the adjoint action by G0 on g0 gives an isomorphism

Ad : G0
≃−→ Aut(g0) (4.1)

of affine algebraic C-groups. By restriction this Ad induces the identity Γ = Out(g0). Note that G◦
0

is the connected component of G0 containing the identity element. See [11, Chapter 4, Section 4,

1◦].

Suppose G0 = SpecC(H0), and define

G = Specδ-K(H0 ⊗C K).

Then one sees g = Lie(G). Moreover, it follows from (4.1) and Proposition 3.8 that the adjoint

action by G on g gives an isomorphism

Ad : G
≃−→ Autδ(g)

of affine algebraic δ-K-groups. This together with Proposition 3.5 prove the following.

Proposition 4.1. Every twisted form of the δ-K-Lie algebra g uniquely arises, as described by

(3.11), from a right δ-K-torsor for G.

Another key fact is the cohomology vanishing of the (non-differential) Amitsur 1st cohomology

due to Steinberg (see Serre [14, III, 2.3, Theorem 1′]),

H1(K,F) = 0, (4.2)

where F is a connected affine algebraic K-group. This is proved more generally when K is replaced

by a perfect field, say K ′, of dimension ≤ 1 [14, Definitoion on Page 78], and in addition, F

is assumed to be smooth if charK ′ > 0; note that every affine algebraic K-group is necessarily

smooth since charK = 0. One sees that K (= C(t)) is a (C1)-field by Tsen’s Theorem, whence K

is of dimension ≤ 1 by [14, Corollary on Page 80].
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4.2 Proof of Theorem 1.4, Part 1: Case Γ = {1}

In this case, G, regarded as an affine K-group, is connected. By (4.2) applied to this G, it follows

that every right δ-K-torsor for G, regarded as a right K-torsor, is trivial. Propositions 3.6 and 4.1

conclude the proof.

4.3 Galois descent

To proceed to Parts 2 and 3, suppose that we are now in Case Γ 6= {1}.
Note that Γ, regarded as a finite constant C-group scheme, is represented by the dual (CΓ)∗

of the group algebra CΓ; this (CΓ)∗ is the separable part π0(H0) of H0 [15, Page 49], that is,

the largest separable subalgebra (in fact, Hopf subalgebra) of the C-Hopf algebra H0. Suppose

G◦
0 = SpecC(J0), and define

H := H0 ⊗C K, J := J0 ⊗C K, Z := (CΓ)∗ ⊗C K (= (KΓ)∗),

which are naturally δ-K-Hopf algebras, such that G = Specδ(H), in particular. One sees that

Z ⊂ H is a δ-K-Hopf subalgebra, and

J = H/(Z+), (4.3)

where (Z+) is the ideal (in fact, δ-stable Hopf ideal) generated by the augmentation ideal Z+ =

Ker(ε : Z → K) of Z, that is, the kernel of the counit. Since Γ acts innerly on G◦
0 (⊂ G0) from

the right, it acts from the left on J as δ-K-Hopf-algebra automorphisms. The action gives rise by

adjoint to the co-action J → J ⊗ Z by Z = (KΓ)∗, so that the associated smash coproduct Z ▶<J

(see [9, Definition 10.6.1]) coincides with H. Here one should recall G0 = Γ⋉ G◦
0 (= G◦

0 ⋊ Γ).

Choose arbitrarily a right δ-K-torsor X = Specδ(B) for G = Specδ(H). In view of Proposition

4.1 we wish to describe the δ-K-Lie algebra gX (= Lie(GX)). Let H ′ := HB, or in other words,

suppose GX = Specδ(H
′), so that B is an (H ′,H)-bi-Galois δ-K-algebra. We are going to prove

the following.

Proposition 4.2. There is a finite-dimensional δ-K-Hopf subalgebra Z ′ of H ′ such that

(i) Z ′ is separable as a K-algebra;

(ii) the associated quotient δ-K-Hopf algebra

J ′ := H ′/(Z ′+) (cf. (4.3)) (4.4)

has the trivial separable part, π0(J
′) = K, or in other words, it includes no non-trivial

separable K-subalgebra.

This implies that the affine K-group Spec(H ′) includes Spec(J ′) as the connected component

containing the identity element, and thereby concludes

gX = the Lie algebra of the affine δ-K-group Specδ(J
′) (4.5)
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as δ-K-Lie algebras. Therefore, we aim first to prove the proposition above, and then to describe

the gX above.

Let ρ : B → B ⊗H denote the structure map on B, and define

R := ρ−1(B ⊗ Z).

Then this R is a right δ-K-Galois algebra for Z, or in other words, Specδ(R) is a right δ-K-torsor

for the finite constant δ-K-group scheme ΓK given by Γ; it arises from the the right δ-K-torsor

X = Specδ(B) for G through the restriction map H1
δ (K,G) → H1

δ (K,ΓK) which is defined in the

differential situation, as well, just as in the ordinary situation. Note that R is naturally a δ-K-

algebra of finite K-dimension, and is a Galois K-algebra with Galois group Γ in the classical sense

that the K-algebra map R ⋊ Γ→ EndK(R) which arises from the natural module-action on R by

the semi-direct product R⋊Γ is an isomorphism. Note that R⋊Γ is naturally a non-commutative

δ-K-algebra with Γ (= {1} × Γ) included in constants. A δ-(R ⋊ Γ)-module is thus an R-module

M equipped with an additive operator δ and a Γ-action of K-linear automorphisms, such that

δ(γm) = γ(δm), δ(am) = (δa)m+ a(δm), γ(am) = (γa)(γm),

where γ ∈ Γ, a ∈ R andm ∈M . We call this a (δ,Γ)-R-module, to treat δ and Γ on an equality, and

let (δ,Γ)-R-Modules denote the category of those modules. The classical Galois Descent Theorem

(see [7, Section 18]) tells us that the functor M 7→ MΓ, Γ-invariants in M , gives the category

equivalence

(δ,Γ)-R-Modules
≈−→ δ-K-Modules,

whose quasi-inverse is given by the base-extension functor ⊗KR. In fact, this is a symmetric tensor

equivalence, so that there is induced the category equivalence between their (commutative-)algebra

objects, or between any other kind of linear objects. The category on the left-hand side has the

tensor product ⊗R, the unit object R and the obvious symmetry, while the category on the right-

hand side has the tensor product ⊗K , the unit object K and the obvious symmetry. A commutative

algebra in (δ,Γ)-R-Modules will be called a (δ,Γ)-R-algebra; it descends to a δ-K-algebra by the

category equivalence above. Similarly, a (δ,Γ)-R-Hopf or Lie algebra is defined, and it descends to

a δ-K-object.

We have the commutative diagram

B ⊗B B ⊗H

R⊗R R⊗ Z

R

≃
ρ̃

//

?�

OO

?�

OO

≃
//

mult
��=

==
==

==
=

idR⊗ ϵ
����
��
��
��

of δ-K-algebras, where the upper horizontal arrow indicates the isomorphism ρ̃ (see (3.2)) associated
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with the structure map ρ : B → B ⊗ H on B, and the lower one is the analogous isomorphism

for the right Z-Galois δ-K-algebra R. In addition, mult : R ⊗ R → R indicates the multiplication

x ⊗ y 7→ xy. By the base extensions along the two diagonal arrows mult : R ⊗ R → R and

idR⊗ ε : R⊗H → R, the ρ̃ induces the isomorphism

B ⊗R B
≃−→ B ⊗ J = B ⊗R (J ⊗R). (4.6)

Recall that Γ acts on J as δ-K-Hopf algebra automorphisms. Then one sees that J ⊗ R is a

(δ,Γ)-R-Hopf algebra, and hence descends to a δ-K-Hopf algebra

J := (J ⊗R)Γ.

The composite

B → B ⊗H → B ⊗ J = B ⊗R (J ⊗R)

of the structure map on B with the natural surjection onto B⊗R (J⊗R) is a (δ,Γ)-R-algebra map,

and hence descends to a δ-K-algebra map BΓ → BΓ ⊗ J , which we call %.

Lemma 4.3. BΓ is a right J -Galois δ-K-algebra by the % above.

Proof. One sees that % satisfies the co-associativity and the counit property since the last composite

does. One sees that (4.6) is an isomorphism of (δ,Γ)-R-algebras, and descends to %̃ : BΓ ⊗ BΓ →
BΓ ⊗ J , which is, therefore, an isomorphism.

Recall H ′ = HB. Define Z ′ := ZR, so that R is a (Z ′, Z)-bi-Galois δ-K-algebra.

Lemma 4.4. Z ′ is a finite-dimensional δ-K-Hopf subalgebra of H ′ which has the property (i) of

Proposition 4.2, that is, Z ′ is separable as a K-algebra.

Proof. By (3.13) we have Z ′ ⊂ H ′. This inclusion is compatible with the Hopf-algebra structure

maps, as is seen from the construction of HB given in [13, Theorem 3.5]. To verify this here only

for the coproduct, recall from (3.14) that H ′ ⊂ B ⊗ B gives rise to a left B-linear isomorphism

B ⊗H ′ = B ⊗B. Therefore, we have

H ′ ⊗H ′ ⊂ B ⊗H ′ ⊗H ′ = B ⊗B ⊗H ′ = B ⊗B ⊗B.

The construction cited above tells us that the coproduct on H ′ is the restriction of

B ⊗B → B ⊗B ⊗B, b⊗ c 7→ b⊗ 1⊗ c.

This, combined with the analogous restriction of R⊗R→ R⊗R⊗R to the coproduct Z ′ → Z⊗Z ′,

shows the desired compatibility, as is verified by a commutative diagram in cube.

The K-algebras Z, R and Z ′ turn to be mutually isomorphic after base extension to some

algebraically closed field. It follows that Z ′ is finite-dimensional separable, since Z is.

Define J ′ := H ′/(Z ′+), as in (4.4). The proof of Proposition 4.2 completes by proving the next

lemma. The following proposition describes the δ-K-Lie algebra gX; see (3.10).
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Lemma 4.5. BΓ is a (J ′,J )-bi-Galois δ-K-algebra, and J ′ has the property (ii) of Proposition

4.2, that is, π0(J
′) = K.

Proof. The same argument as proving Lemma 4.3 shows that BΓ is a left J ′-Galois δ-K-algebra.

Here one should notice that Γ acts (or Z co-acts) trivially on H ′, and hence on J ′. Indeed, BΓ is

bi-Galois, since the structure maps

H ′ ⊗B ← B → B ⊗H

on B commute with each other (see (3.7)), and hence those on BΓ do.

Note that π0(J) (= π0(J0)⊗C K) equals K. This is equivalent to saying that the K-algebra J

contains no non-trivial idempotent even after base extension to some (or any) algebraically closed

field. It follows that J and J ′ have the same property, since J and J , as well as J and J ′, are

mutually isomorphic after base extension such as above.

Since g0(R) = g0 ⊗C R, on which Γ acts diagonally, is a (δ,Γ)-R-Lie algebra, it descends to

g0(R)
Γ, a δ-K-Lie algebra. Our aim of this subsection is achieved by the following.

Proposition 4.6. The δ-K-Lie algebra gX is quasi-isomorphic to g0(R)
Γ.

Proof. Recall (4.5) and the result of Proposition 4.2 that BΓ is a (J ′,J )-bi-Galois δ-K-algebra.

By Steinberg’s Cohomology-Vanishing (4.2) applied to the connected affine K-group Spec(J ), we
see that the right J -Galois K-algebra BΓ is isomorphic to J . This together with Proposition 3.6

prove the desired result.

We add an important consequence.

Corollary 4.7. The twisted forms of g0(K) are precisely the δ-K-Lie algebras quasi-isomorphic to

g0(R)
Γ, where R ranges over all right (KΓ)∗-Galois δ-K-algebras.

Proof. By Propositions 4.1 and 4.6, every twisted form is quasi-isomorphic to some g0(R)
Γ. Con-

versely, any g0(R)
Γ is clearly a twisted form, whence any one that is quasi-isomorphic to g0(R)

Γ

is, as well, by (4.5) and Corollary 3.7.

Before proceeding we make the following remark: given an integer n ≥ 2, let Λn = K×/(K×)n

denote the quotient group of the multiplicative group K× by the subgroup of all n-th powers. This

is an infinite group, as will be seen below. Removing the identity element, let Λ+
n = Λn \ {1}.

Needed here is the set only in n = 2, 3. The set Λ+
2 parametrizes the quadratic field extensions

over K, while the set Λ+
3 modulo the equivalence relation x ∼ x±1 parametrizes the cubic Galois

field extensions over K. Therefore, these two classes of field extensions both consist of infinitely

many ones.

We show that Λ+
n , n ≥ 2, is infinite. To the contrary suppose that it has finitely many generators

a1, ..., ar, each of which may be supposed to be a polynomial by multiplying the denominator by

the n-th power of some polynomial. We can choose a complex number α which is not a root of any

ak, 1 ≤ k ≤ r. Since t− α ∈< a1, ..., ar >= Λ+
n , we have a1

i1 ...ar
irbn = (t− α)cn in C[t] for some

non-zero polynomials b, c. The multiplicity of t−α in a1
i1 ...ar

irbn is a multiple of n, while the one

in (t− α)cn is congruent to 1 modulo n. This contradicts the last equation.
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4.4 Proof of Theorem 1.4, Part 2: Case Γ = Z2

In this case, the right (KΓ)∗-Galois δ-K-algebras R are precisely

(i) the trivial one (KΓ)∗ (equipped with the obvious δ-operator), and

(ii) the quadratic field extensions over K (equipped with the δ-operator uniquely extending the

one on K).

By Corollary 4.7 it remains to show that for R = (KΓ)∗ in (i), we have g0(R)
Γ ' g0(K). Let

Map(Γ, g0(K)) denote the Γ-set of all maps Γ→ g0(K), equipped with the action

γf : γ′ 7→ f(γ′γ),

where γ, γ′ ∈ Γ and f ∈ Map(Γ, g0(K)). Regard this naturally as the direct product of #Γ-copies

of the δ-K-Lie algebra g0(K). Then we see that associating to x ⊗ a ∈ g0 ⊗C (KΓ)∗, the map

γ 7→ γx⊗ a(γ) gives a Γ-equivariant isomorphism

g0(R)
≃−→ Map(Γ, g0(K))

of δ-K-Lie algebras, whose restriction to the Γ-invariants is the desired g0(R)
Γ ' g0(K). This

completes the proof.

4.5 Proof of Theorem 1.4, Part 3: Case Γ = S3

In this case, let R be a right (KΓ)∗-Galois δ-K-algebra. In view of Corollary 4.7 we wish to show

that g0(R)
Γ is such as in Part 3 of the theorem. This is obvious when R is either trivial or a Galois

field extension L/K with Γ = Gal(L/K); notice from the preceding case that g0(R)
Γ = g0(K) if R

is trivial. We may thus exclude these two cases.

To describe R, note that R is artinian as a ring, and Γ-simple in the sense that it does not

include any non-trivial Γ-stable ideal. Since the action by Γ on R commutes with the δ-operator,

R is a module algebra over the C-Hopf algebra CΓ⊗C C[δ], which is artinian simple or AS in the

sense of [2, Definition 11.6]; see the original [1, Definition 2.6] as an alternate. This C-Hopf algebra
is the group algebra CΓ tensored with the polynomial algebra C[δ] in which δ is primitive. Choose

arbitrary a maximal (or equally, minimal) ideal m of R, and let Γ′ be the subgroup of Γ consisting

of all elements that stabilize m. By [2, Proposition 11.5] we have

(a) Γ′ ' Z2 or (b) Γ′ ' Z3,

with the extremal cases being excluded. Moreover, there exists a δ-K-field L such that R is naturally

isomorphic to the (δ,Γ)-K-algebra Map(Γ′\Γ, L) consisting of all maps from the set of right cosets

Γ′\Γ to L. This Map(Γ′\Γ, L) is naturally isomorphic to the direct product of [Γ : Γ′]-copies of

L, as δ-K-algebra, and possesses the Γ-action presented below. Suppose that Z2 is an arbitrarily

chosen subgroup of Γ of order 2, and Z3 is the unique subgroup of Γ of order 3, so that we have

Γ = Z3 ⋊ Z2.
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Case (a). We may suppose Γ′ = Z2 (see [2, Proposition 11.5 (1)]) and Γ′\Γ = Z3. If γ ∈ Γ,

γ′ ∈ Z3 and f ∈ Map(Z3, L), then we have

γf : γ′ 7→

f(γγ′), if γ ∈ Z3

γf(γ′−1), if 0 6= γ ∈ Z2.

Case (b). We have Γ′ = Z3, and we may suppose Γ′\Γ = Z2. If γ ∈ Γ, γ′ ∈ Z2 and f ∈
Map(Z2, L), then we have

γf : γ′ 7→


f(γγ′), if γ ∈ Z2;

γf(γ′), if γ ∈ Z3, γ
′ = 0 in Z2;

γ−1f(γ′), if γ ∈ Z3, γ
′ 6= 0 in Z2.

In either case, since R is right (KΓ)∗-Galois, Γ′ must act non-trivially on L, so that L/K is

a Galois field extension with Γ′ = Gal(L/K). Conversely, if L/K is such, then R is seen to be a

right (KΓ)∗-Galois δ-K-algebra, being split by L. Moreover, g0(R) is naturally isomorphic to the

(δ,Γ)-R-Lie algebra Map(Γ′\Γ, g0(L)) equipped with the obviously induced structure. We see

g0(R)
Γ ' Map(Γ′\Γ, g0(L))Γ =

(
Map(Γ′\Γ, g0(L))Z3

)Z2

=

{all constant maps Z3 → g0(L)}Z2 in Case (a)

Map(Z2, g0(L)
Z3)Z2 in Case (b)

= g0(L)
Γ′
,

which completes the proof.

4.6 Explicit non-trivial twisted forms

Let us describe explicitly (up to quasi-isomorphism) the non-trivial twisted forms of g0(K) listed

in (ii) of Part 2 and (ii)–(iv) of Part 3 of the theorem, separately for four types. For all those,

quadratic field extensions are needed. Such an extension L/K is of the form

L = K(
√
α) = {a+ b

√
α | a, b ∈ K},

where α ∈ K× \ (K×)2. The generator of Gal(L/K) (= Z2) sends each element x = a+ b
√
α to

x := a− b
√
α. (4.7)

We will use this symbol x, regardless of α.

4.6.1 Type Aℓ (` ≥ 2)

We have g0 = sln(C), where n = ` + 1 ≥ 3. The order 2 outer-automorphism is conjugate to

X 7→ −tX. For a quadratic extension field L = K(
√
α) over K as above, the generator of Γ (= Z2)
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may supposed to act on g0(L) by X =
(
xij
)
i,j
7→ −tX =

(
− xji

)
i,j
; see [4, Chapter IX, Theorem

5]. We see

g0(L)
Γ = on(K) ⊕

√
α
(
Symn(K) ∩ sln(K)

)
,

where Symn(K) (resp., on(K)) denotes the K-subspace of gln(L) consisting of all matrices X with

entries in K that are symmetric (resp., skew-symmetric, tX = −X).

4.6.2 Type Dℓ (` ≥ 5)

Let m = 2`. We have g0 = om(C), which consists of all skew-symmetric m×m complex matrices.

The order 2 outer-automorphism is conjugate to X 7→ DXD, where D = diag(−1, 1, . . . , 1); see [4,

Chapter IX, Theorem 6]. For a quadratic extension field L = K(
√
α) over K as above, we see

g0(L)
Γ =

{(
0 −

√
α tX

√
αX Y

) ∣∣∣∣ X ∈ Km−1, Y ∈ om−1(K)

}
, (4.8)

where by writing X ∈ Km−1, we mean that X is an (m− 1)-columned vector with entries in K.

4.6.3 Type E6

Here we follow Jacobson [5, Section 7] for the construction. Let J be the exceptional central simple

Jordan algebra over C, and let J+ denote the subspace of J which consists of the elements a with

trace zero, T (a) = 0. We have the general linear complex Lie algebra gl(J) on the C-vector space
J. Given an element a ∈ J+, we have an element Ra ∈ gl(J) given by Ra(x) = xa (= ax), x ∈ J.

Let RJ+ be the subspace of gl(J) which consists of all Ra, a ∈ J+. The complex simple Lie algebra

g0 of type E6 is the Lie subalgebra of gl(J) generated by RJ+ . We have

g0 = RJ+ ⊕ f0,

where we set f0 := [RJ+ , RJ+ ]; this is a Lie subalgebra of g0 such that [RJ+ , f0] = RJ+ , and

is in fact the complex simple Lie algebra of type E6. The order 2 outer-automorphism of g0 is

conjugate to X 7→ −X∗, where X∗ denotes the operator adjoint to X with respect to the trace

form (a, b) 7→ T (ab). More explicitly this is given by

X 7→

−X if X ∈ RJ+ ;

X if X ∈ f0.

Therefore, we have

g0(L)
Γ = (RJ+ ⊗C K

√
α)⊕ f0(K).

4.6.4 Type D4

The complex Lie algebra g0 is the Lie algebra o8(C) of skew-symmetric 8 × 8 complex matrices.

We follow É. Cartan [3] for the explicit description of outer-automorphisms. We discuss for each

group action, separately as in Part 3 of the theorem.
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(ii) Action by Z2. The argument above for Dℓ (` ≥ 5) works for ` = 4, as well, so that g0(L)
Z2

is given by the right-hand side of (4.8) with m = 8.

(iii) Action by Z3. Choose a generator σ of the group. The relevant Galois extension is a

cubic one, and it is of the form L = K( 3
√
β), where β ∈ K× \ (K×)3. The generator σ acts on L

so that 3
√
β 7→ ω 3

√
β, where ω is a primitive 3rd root of 1.

We suppose that the rows and the columns of matrices in g0 (= o8(C)) are indexed by the eight

integers 0, 1, · · · , 7. Given a matrix X =
(
xij
)
0≤i,j≤7

in g0, we define seven vectors in C4 by

Xi =
t
(
x0,i, xi+1,i+5, xi+4,i+6, xi+2,i+3

)
, i = 1, 2, . . . , 7, (4.9)

where the index i+ p greater than 7 is understood to be i+ p− 7; e.g., the third entry xi+4,i+6 in

i = 3 in understood to be x7,2 (= −x2,7). Then every matrix X as above is uniquely determined by

these seven vectors. This holds when g0 is replaced by its base extension. We will use in (4.13)–

(4.15) the notation Xi for the seven vectors which are associated as above with a matrix X in such

a base extension.

The action by Z3 on g0 is (up to conjugation) such that σ acts on the vectors above as the

C-linear automorphisms given by the matrix

S =
1

2


−1 −1 −1 −1
1 1 −1 −1
1 −1 1 −1
1 −1 −1 1

 , (4.10)

which is seen to have 1, 1, ω and ω2 as eigen-values; see [3, Section 4]. Set
√
−3 := 1+2ω, a square

root of −3. Then we have the eigen-vectors

v
(1)
1 =


0

1

−1
0

 , v
(2)
1 =


0

1

0

−1

 , vω =


√
−3
1

1

1

 , vω2 =


−
√
−3
1

1

1

 (4.11)

of S which are associated with 1, 1, ω and ω2, respectively; these form a basis of C4. Let L4 denote

the L-vector space of all 4-columned vectors with entries in L. Define a 4-dimensional K-subspace

of L4 by

ΞL/K = Kv
(1)
1 +Kv

(2)
1 +K 3

√
β vω2 +K( 3

√
β)2vω. (4.12)

We see now easily

g0(L)
Γ = {X ∈ g0(L) | Xi ∈ ΞL/K , 1 ≤ i ≤ 7 }. (4.13)

(iv) Action by Γ (= S3). The relevant Galois extension is described by the following.

Lemma 4.8. A Galois extension field over K with Galois group Γ (= S3) is the same as a field L

of the form L = K(
√
α, 3
√
β), where

(a) α ∈ K× \ (K×)2, so that K(
√
α)/K is a quadratic field extension,
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(b) β ∈M× \ (M×)3, where M = K(
√
α), and

(c) ββ ∈ (K×)3, where β is such as given by (4.7).

For such an L, we have

(x) an order 3 element σ and an order 2 element τ of Γ, which necessarily generate Γ, satisfying

στ = τσ2,

(y) a primitive 3rd root ω of 1, and

(z) an element γ of K× such that γ3 = ββ (see (c) above),

with which the action by Γ is presented as

σ :
√
α 7→

√
α, 3

√
β 7→ ω 3

√
β; τ :

√
α 7→ −

√
α (=

√
α), 3

√
β 7→ γ

3
√
β
.

Proof. Given β such as in (b), we have a cubic extension M( 3
√
β)/M . One sees that ββ ∈ (M×)3

if and only if M( 3
√
β) =M( 3

√
β). If γ ∈M× and γ3 = ββ, then γ/ 3

√
β is a 3rd root of β. A point

is only to see that 3
√
β 7→ γ/ 3

√
β gives an involution which extends M → M,x 7→ x if and only if

γ ∈ K×.

Example 4.9. Recall K = C(t). One can prove that

α = 1− t3 and β = 1 +
√
1− t3

satisfy the conditions above.

To verify (c), one has to prove that there exists no pair of elements a and b in C(t) that satisfy
a3 + 3ab2α = 1, 3a2b + b3α = 1, where α = 1 − t3. Alternatively, one may prove that there

exist no triple of polynomials p, q and r in C[t] with r monic that satisfy (i) p3 + 3pq2α = r3,

(ii) 3p2q + q3α = r3, by expressing a, b with a common denominator, so as a = p/r, b = q/r.

Suppose we had such p, q and r. To show a contradiction let |p|, |q|, |r| denote the degrees of p, q, r,
and let cp, cq denote the top-term coefficients of p, q. Comparing the degrees in (i), (ii) shows

(a) 3|r| = 3|p| > |p| + 2|q| + 3 or 3|p| < |p| + 2|q| + 3 = 3|r| and (b) 3|r| = 2|p| + |q| > 3|q| + 3 or

2|p|+ |q| < 3|q|+3 = 3|r|, since any of these inequalities cannot be replaced by equality, as is seen

by mod 2 reduction. It follows that (c) |p| = |q| = |r| or (d) |p| = |q| = |r| − 1. We see from (i), (ii)

that 8p3q = (3p − q)r3, 8pq3α = (3q − p)r3. For the latter, (c) is impossible. In Case (d) one has

3cp − cq = 0, −8c3pcq = 3cq − cp, whence c3p = −1/3, c3q = −9. But this last contradicts −c3q = 1, as

is seen from (ii).

The result shows that there exists a Galois extension L/K with Gal(L/K) = S3.

Let L = K(
√
α, 3
√
β), M = K(

√
α), σ, τ , ω and γ be as in Lemma 4.8. Recall from the proof

of the lemma that γ/ 3
√
β is a 3rd root of β, and denote it by 3

√
β, so that one has

τ( 3
√
β) =

3

√
β, τ(

3

√
β) = 3

√
β.
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The action by Γ on g0 (= o8(C)) is (up to conjugation) such that the generators σ and τ act on

the seven vectors in (4.9) as the K-linear automorphisms given by the matrix S in (4.10) and the

diagonal matrix D = diag(−1, 1, 1, 1), respectively. The latter action by τ on g0 coincides with the

above mentioned outer-automorphism X 7→ DXD for type Dℓ, when ` = 4.

Note L =M( 3
√
β), and apply the previous result for the action by Z3 to the action by 〈σ〉 (on

L/M). Then, by using the M -subspace ΞL/M of L4 defined by (4.12) (modified into the present

situation), we have

g0(L)
⟨σ⟩ = {X ∈ g0(L) | Xi ∈ ΞL/M , 1 ≤ i ≤ 7 }. (4.14)

By using the vectors given in (4.11) we define a 4-dimensional K-subspace of L4 by

ΘL/K = Kv
(1)
1 +Kv

(2)
1 +K

(
3
√
β vω2 +

3

√
β vω

)
+K
√
α
(

3
√
β vω2 − 3

√
β vω

)
.

We see now easily

g0(L)
Γ = (g0(L)

⟨σ⟩)⟨τ⟩ = {X ∈ g0(L) | Xi ∈ ΘL/K , 1 ≤ i ≤ 7 }. (4.15)

5 Cohomology non-vanishing

We prove that a differential analogue of Steinberg’s cohomology-vanishing theorem does not hold.

Theorem 5.1. Suppose that G0 = Spec(H0) is a non-trivial connected affine algebraic C-group,
and let

G = Specδ-C(t)(H0 ⊗C C(t))

denote the naturally associated, affine algebraic δ-C(t)-group. Then the cohomology

H1
δ (C(t),G)

defined by (3.6) does not vanish.

Proof. By the solution [10, Theorem1] to the inverse problem of differential Galois theory, G0 is

realized as the Galois group of a Picard-Vessiot extension, say, L/C(t). The Picard-Vessiot ring R

of L/C(t) represents a right δ-C(t)-torsor X = Specδ(R). Since R is simple as a δ-ring, and clearly

R 6= C(t), it follows that X is not trivial, or namely, X 6' (G0)C(t). This prove the theorem.

One may wonder if mutually isomorphic differential Lie algebras are necessarily isomorphic.

But this is not the case, as is seen from the following.

Corollary 5.2. Let g0 be a complex simple Lie algebra such that the automorphism group scheme

Aut(g0) of g0 is connected; see (1.2). then every twisted form of the δ-C(t)-Lie algebra g0(C(t)) is
quasi-isomorphic to g0(C(t)), but there exists a twisted form of g0(C(t)) which is not isomorphic

to g0(C(t)).
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Proof. The first half (“preceding but”) follows from 1.4, Case Γ = {1}; see section 4.2. The

second half follows by Theorem 5.1 for G0 applied to Aut(g0), since the cohomology classifies by

isomorphism the twisted forms of g0(C(t)).
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