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Preface

Survival data analysis is a standard method to evaluate the effect of a treat-

ment on the survival time defined by the time until an event (death, recurrence,

etc.) happens. In particular, the Cox proportional hazards (PH) model1 is the

most popular regression model in the survival data analysis. However, the Cox

PH model has two important limitations: 1) the treatment effect is expressed

as a hazard ratio and is difficult to interpret on the scale of survival time and

2) the model assumes that the hazard ratio between two treatment groups is

constant over time (proportional hazard assumption).

The accelerated failure time (AFT) model2,3 is an attractive alternative to

the Cox PH model, since the treatment effect in the AFT model is interpreted

as a ratio of survival time between treatment groups and the AFT model does

not require the proportional hazard assumption. To apply the AFT model, we

have to include all important covariates in the analysis model and specify the

true distribution of the survival time. If we omit an important covariate and/or

misspecify the distribution, the model misspecification problem occurs and

wrong analysis results would be provided. In practice, it is impossible to specify

the true distribution of the survival time, because the true distribution is

unknown. Furthermore, we cannot include uncollected covariates and unknown

prognostic factors in the analysis model. Thus, we cannot avoid the model

misspecification problem. As a serious effect of the model misspecification
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problem, the Type-I error rate is not controlled at the nominal level (usually

0.05). Here, the Type-I error rate is the probability of the rejection of a null

hypothesis when it is actually true, that is, false-positive rate.

Many researchers provided asymptotic corrections of various test statistics

to control the Type-I error rate even under model misspecification. However,

their corrected statistical tests do not have good performance in small samples,

since the performance of these tests is ensured only when the sample size is

sufficiently large. Actually, the use of these corrected tests in small-sample

clinical trials cannot control the Type-I error rate at the nominal level. Hence,

corrected statistics which work well in small samples are required.

The Bartlett adjustment is a popular approach for small-sample correc-

tion of the likelihood ratio statistic under the null hypothesis. The Bartlett-

adjusted likelihood ratio test can control the Type-I error rate at the nomi-

nal level even under model misspecification and small samples. However, the

Bartlett adjustment factor is defined by the expectation with respect to the

unknown true distribution. Thus, it is impossible to derive the adjustment

factor analytically under model misspecification.

In this study, we propose a novel likelihood ratio test which controls the

Type-I error rate at the nominal level even under model misspecification and

small samples. Our proposed method is based on the Bartlett adjustment and

uses the non-parametric bootstrap method to estimate the adjustment factor.

We apply the proposed method to the AFT model when the distribution of

the survival time is misspecified and/or an important covariate is omitted in

small samples. Our simulation results show that the Type-I error rate for the

proposed method is close to the nominal level, although the existing methods

result in substantial inflation of the Type-I error rate.

This dissertation is based on Ishii et al.4 and organized as follows. Chapter
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1 provides a background of this study. We explain the AFT model in Chapter

2. In Chapter 3, we outline the likelihood ratio test and adjustments of the

likelihood ratio test, as well as the ordinary (naive) Wald test and robust

Wald test. In Chapter 4, we describe our proposed method which applies the

non-parametric bootstrap method to estimate the expectation of the likelihood

ratio statistic in the finite sample size. In Chapter 5, we show the performances

of the proposed method through simulation studies when the AFT model is

used. In Chapter 6, we apply the proposed method to a real dataset. Finally,

Chapter 7 discusses the results and concludes. We provide a sample code of

our proposed method in Appendix A.

8



Chapter 1

Introduction

The Cox proportional hazards (PH) model1 is the most popular regression

model in the survival data analysis. The accelerated failure time (AFT)

model2,3 is a flexible alternative model and is better than the Cox PH model

in some respects.5–7 For example, the Cox PH model assumes that covari-

ates affect the hazard function, making it difficult to interpret the parameter

estimates. In contrast, the AFT model is a linear regression model for the

logarithm of the event time, and its parameter estimate is intuitive. Further-

more, the exponential of the group-effect parameter in a two-group comparison

can be interpreted as the ratio of expected survival time between two groups.

Hence, the AFT model is widely used in actual clinical trials.8–10 However,

the AFT model requires specifying the distribution of an error term and runs

the risk of model misspecification. Gosho et al.11 shows that the Type-I error

rate cannot be controlled at the nominal level under model misspecification in

a two-group comparison based on the AFT model.

To address the issue of model misspecification, corrections of the asymp-

totic distribution of various statistics have been established. For example, the

robust (empirical) covariance estimator12,13 is a popular approach to provide
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a consistent estimator for the asymptotic variance-covariance matrix of the

maximum likelihood estimator under model misspecification, and the estima-

tor can be applied to Wald statistics. In fact, the function survreg in the

package survival of the statistical software R14 has an option to provide a

robust variance estimate in the analysis using the AFT model. On the other

hand, in the context of the likelihood ratio test,15 Kent16 shows the asymptotic

distribution of the likelihood ratio statistic under model misspecification and

provides the correction factor to make the likelihood ratio test asymptotically

valid. However, these corrected statistical tests do not have good performance

in practice, because these corrections are based only on the asymptotic the-

ory and do not ensure the performance in small samples.17 In the context

of generalized estimating equations,18 some researchers have proposed covari-

ance estimators adjusted for small-sample bias;19,20 however, these estimators

cannot be universally applied, for example, to survival data with censoring.

Viraswami and Reid21 and Lunardon22 improve the accuracy of chi-square ap-

proximation of the likelihood ratio statistic under model misspecification. To

apply the methods of Viraswami and Reid21 and Lunardon,22 we have to cal-

culate fourth derivatives of the log-likelihood function. In practice, nuisance

parameters often exist and the profile likelihood function is used instead of the

ordinary likelihood function. In this case, higher order derivatives of profile

log-likelihood function are complicated and it is difficult to calculate even if

we use numerical differentiation, in particular, when the maximum likelihood

estimator cannot be described explicitly.

We now focus on the case of a one-dimensional parameter of interest, which

is seen in the typical randomized clinical trial comparing two groups. Our con-

sideration is applicable to many situations since clinical trials comparing two

groups are widely conducted. In this case, Kent16 suggests the adjustment of
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the asymptotic distribution of the likelihood ratio statistic by its asymptotic

expectation, where the asymptotic expectation indicates the limit of the expec-

tation as the sample size approaches infinity. In addition, Kent16 shows how

to estimate the adjustment factor using information and Hessian matrices. On

the other hand, dividing the likelihood ratio statistic by its expectation in the

finite sample size is called Bartlett adjustment23 and allows for highly accurate

chi-square approximation.22,24,25 Applying Slutsky’s theorem, these two facts

show that the likelihood ratio statistic divided by its expectation in the finite

sample size is asymptotically valid under model misspecification and have more

accurate approximation to the chi-squared distribution. Hence, it is needed

to estimate the expectation in the finite sample size, and not the asymptotic

expectation. To estimate the expectation, Loose et al.26 and Cordeiro and

Cribari-Neto27 use the parametric bootstrap method, while Rocke28 uses the

bootstrap method for residuals. These two bootstrap methods require the cor-

rect model specification for resampling. However, we cannot know the correct

model under model misspecification; therefore, we can apply neither of the two

bootstrap methods.

In practice, owing to resource limitations and the limited size of the study

population, many clinical trials have small sample sizes. In addition, it is

sometimes difficult to specify the distribution of the error term correctly due

to censored data and small samples. Both the problems of model misspeci-

fication and small samples arise quite naturally in various survival datasets;

we will later focus on an acute myelogenous leukemia dataset29,30 as an exam-

ple. This dataset of 23 patients is from the preliminary analysis of a clinical

trial to evaluate the efficacy of maintenance chemotherapy for acute myel-

ogenous leukemia. Patients were randomly assigned to receive maintenance

chemotherapy consisting of cytarabine and 6-thioguanine for two days each
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month or to receive no maintenance therapy. The objective of the trial was to

see if maintenance chemotherapy increased the length of remission. The small

sample size does not provide a good approximation of the chi-squared distri-

bution. Furthermore, we may be unable to build the correct mean structure,

as the dataset includes only survival or censoring time, censoring status, and

treatment group. A second example uses a randomized double-blind trial on

64 patients with severe aplastic anemia.3,31 Patients were randomized to cy-

closporine and methotrexate (CSP + MTX) or methotrexate alone (MTX). An

endpoint was the time from assignment until the diagnosis of a life-threatening

stage of acute graft versus host disease. The events of interest were observed

only in the early period of the trial and many patients were censored. Hence,

researchers are likely to fit an incorrect model to this dataset.

In this study, we propose a robust test to model misspecification in small

samples by adjusting the likelihood ratio statistic by its expectation in the

finite sample size. To estimate the expectation, the non-parametric bootstrap

method is used in our proposed method. We evaluate the Type-I error rate

for our proposed method through simulation studies in the case of a two-group

comparison based on the AFT model. In addition, we provide the sample code

of R to apply our proposed test in the appendix.
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Chapter 2

AFT model

We introduce the Cox PH model before the AFT model, since the Cox PH

model is routinely applied to survival data. The Cox PH model is expressed

as

log h(t) = αTx, (2.1)

where h(t) is a hazard function, x is a vector of explanatory variables, and

α is a vector of regression parameters. Hence, the regression parameters are

interpreted in the scale of the hazard. For example, if αg is a coefficient

of the treatment group indicator, its exponential exp(αg) shows the hazard

ratio between treatments. The important assumption in the Cox PH model

is proportional hazard assumption which means the hazard ratio between two

treatment groups is constant over time.

The AFT model is a linear model for the logarithm of the survival time T ,

log T = αTx+ η, (2.2)

where the error term η is assumed a specific parametric distribution. Unlike
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the Cox PH model, the AFT model assumes a direct relationship between

survival time and explanatory variables, and thus, it is easy for physicians to

interpret the estimator of regression parameters. In fact, if αg is a coefficient

of the treatment group indicator, its exponential exp(αg) shows the ratio of

survival time between treatments.

We can deal with many types of hazard ratios between treatments through

the specification of the distribution of exp(η) in the AFT model, while the

hazard ratio is always constant in the Cox PH model. We explain three popular

distributions used in the AFT model.32 The three distributions can be applied

in the survreg function in the R software14 and LIFEREG procedure in the SAS

software.33

Weibull distribution If exp(η) follows the Weibull distribution with shape

parameter κ, the survival function S(t), density function f(t), and hazard

function h(t) of the AFT model (2.2) are expressed as follows:

S(t) = exp

{
−
(

t

exp(αTx)

)1/κ
}
,

f(t) =
1

κt

(
t

exp(αTx)

)1/κ

exp

{
−
(

t

exp(αTx)

)1/κ
}
,

h(t) =
1

κt

(
t

exp(αTx)

)1/κ

.

The Weibull distribution includes the exponential distribution as a special

case κ = 1. It is clear that the Weibull distribution satisfies the proportional

hazard assumption. In addition, the Weibull distribution is the only distri-

bution that has both a proportional hazards representation and accelerated

failure-time representation.34 The default setting in the survreg function in

the R software14 and LIFEREG procedure in the SAS software33 is the Weibull
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distribution.

Log-logistic distribution If exp(η) follows the log-logistic distribution with

shape parameter κ (i.e., η follows the logistic distribution), the survival func-

tion S(t), density function f(t), and hazard function h(t) of AFT model (2.2)

are expressed as follows:

S(t) =
1

1 + (t exp(−αTx))1/κ
,

f(t) =
1

κt

(
t

exp(αTx)

)1/κ
1(

1 + (t exp(−αTx))1/κ
)2 ,

h(t) =
1

κt

(
t

exp(αTx)

)1/κ
1

1 + (t exp(−αTx))1/κ
.

The log-logistic distribution has a hazard function which is hump-shaped, that

is, it increases initially and, then, decreases,35 while the hazard function in the

Weibull distribution is monotone function of t.

Log-normal distribution If exp(η) follows the log-normal distribution with

shape parameter κ (i.e., η follows the normal distribution), the survival func-

tion S(t), density function f(t), and hazard function h(t) of AFT model (2.2)

are expressed as follows:

S(t) = 1− Φ

(
log t− exp(αTx)

κ

)
,

f(t) =
1√
2πκt

exp

{
−(log t− exp(αTx))2

2κ2

}
,

h(t) =
1√
2πκt

[
1− Φ

(
log t− exp(αTx)

κ

)]−1

exp

{
−(log t− exp(αTx))2

2κ2

}
.

Here, Φ is the cumulative distribution function of the standard normal distri-

bution. If κ is large then the hazard function reaches maximum value early in
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life. Thus, the log-normal distribution is used to model situations when the

risk of event is decreasing.36

To apply the AFT model, we have to correctly specify the distribution of

the error term η and include all important covariates. Covariate omission and

wrong specification of the error distribution cause the model misspecification

problem.11 We consider these two types of misspecifications.

Of course, the covariate omission problem also occurs in the Cox PH model

(2.1). However, covariate omission in the Cox PH model does not yield a bias

in the treatment effect estimator under the null hypothesis of no difference

between treatments37–39 and inflation of the Type-I error rate.40 Hence, sta-

tistical tests using the Cox PH model are valid even under covariate omission.

In this study, we assume a randomized clinical study with two treatment

groups and we consider the simple AFT model of the form log T = α0+xgαg+η,

where α0 is an intercept parameter. The exponential exp(η) of the error term

follows a distribution with shape parameter vector κ. In this case, αg is a

parameter of interest and α0 and κ are nuisance parameters, since our aim is

two-group comparison.

We let log T = α0 + xgαg + η be the true model. To differentiate models,

we write the fitting model as log T = β0 + xgβg + ε. As is the case with the

true model, β0 is an intercept, βg is a group effect parameter, and exp(ε) has

various distribution with shape parameter vector σ.

Let Ti be the observed time for subject i = 1, . . . , N . Let δi be the event

indicator that takes one if Ti is an survival time and zero if Ti is a censor-

ing time. The density function and survival function under the fitting model

are denoted by f(t;θ) and Sf (t;θ), respectively, where θ = (β0, βg,σ) is the

16



parameter vector. Then, the log-likelihood function is defined by

ℓ(θ) =
N∑
i=1

{δi log f(Ti;θ) + (1− δi) log Sf (Ti;θ)} . (2.3)

The maximum likelihood estimator θ̂ of θ is defined through the maximization

of ℓ(θ).
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Chapter 3

Likelihood ratio test and Wald

test

3.1 Ordinary likelihood ratio test

Let (t1, δ1), . . . , (tN , δN) be independent observations and ℓ(θ) be the log-

likelihood function defined by (2.3). Assume that the true density function of

the survival time is g(t). Then, the fitting model is misspecified if f(t;θ) ̸= g(t)

for all θ. We consider a null hypothesis H0 : βg = 0, which means that there is

no difference between the two treatment groups. Thus, we partition parameter

θ into θ = (βg,λ) and consider βg and λ = (β0,σ) as a parameter of interest

and a nuisance parameter vector, respectively. Let θ̂ = (β̂g, λ̂) be the unre-

stricted maximum likelihood estimator, and let θ̂0 = (0, λ̂0) be the maximum

likelihood estimator under the null hypothesis βg = 0. Then, the likelihood

ratio statistic15 w = 2{ℓ(θ̂) − ℓ(θ̂0)} follows the chi-squared distribution χ2
1

with one degree of freedom asymptotically under the null hypothesis when

the fitting model is correctly specified. The ordinary likelihood ratio test is

a chi-squared test performed by approximately fitting χ2
1 to w. The reference

18



distribution χ2
1 is derived by assuming correct model specification; hence, the

chi-square approximation would not be valid under model misspecification.

Furthermore, as χ2
1 is the asymptotic distribution of w, the distribution of w

in small samples might differ from χ2
1.

3.2 Adjustment of the likelihood ratio test un-

der model misspecification

Let g0(t) be the true density function under the null hypothesis, and let Eg0 [w]

be the expectation of w under g0. Assume that the expectation Eg0 [w] con-

verges to µ as N approaches infinity. According to Theorem 3.1 of Kent,16

w/µ follows χ2
1 asymptotically under the null hypothesis even when the fitting

model is misspecified. This theorem means that the reference distribution of

w should be a constant µ multiple of χ2
1. The asymptotic expectation µ is of-

ten larger than one under model misspecification, while µ is one under correct

model specification. Hence, when the fitting model is misspecified, the ordi-

nary likelihood ratio test cannot control the Type-I error rate at the nominal

level.

Kent16 also shows another expression of µ using the information and Hes-

sian matrices and the method to estimate µ. The negative multiple H of

Hessian matrix and information matrix J are defined as follows:

H = − ∂2ℓ(θ)

∂θ∂θT

∣∣∣∣
θ=θ̂

and J =
∑
i

∂ℓi(θ)

∂θ

∂ℓi(θ)

∂θT

∣∣∣∣∣
θ=θ̂

,

where ℓi(θ) is the log-likelihood function for subject i (i.e., ℓ(θ) =
∑

i ℓi(θ)).

Then, Kent16 shows that µ is estimated by [(H−1)βgβg ]
−1(H−1JH−1)βgβg , where

a matrix with subscript βgβg indicates the diagonal element corresponding to
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βg. The adjusted likelihood ratio statistic obtained by the results of Kent16 is

wK = w/{[(H−1)βgβg ]
−1(H−1JH−1)βgβg}. This adjusted statistic wK is asymp-

totically follows χ2
1 under the null hypothesis even when the fitting model is

misspecified. Hence, the adjusted likelihood ratio test is performed by approx-

imately fitting χ2
1 to wK .

3.3 Adjustment of the likelihood ratio test un-

der model misspecification and small sam-

ples

Lunardon22 extends the results of the likelihood ratio to the marginal compos-

ite likelihood ratio and provides the explicit formula of the extended likelihood

ratio statistic. In particular, Lunardon22 provides a Bartlett-corrected version

of the marginal composite likelihood ratio under model misspecification. On

the other hand, Viraswami and Reid21 also improves the chi-square approxi-

mation of the likelihood ratio statistic under model misspecification. To apply

the methods of Lunardon22 and Viraswami and Reid,21 we have to calculate

fourth derivatives of the log-likelihood function. In practice, nuisance parame-

ters often exist, and the profile likelihood function is considered instead of the

ordinary likelihood function. In this case, from Leibniz’s rule for differentia-

tion, λβg needs to be derived with respect to βg, where λβg is the maximum

likelihood estimator of λ for a given value of βg. However, such derivatives are

complicated, and higher-order derivatives of the profile log-likelihood function

are difficult to calculate even if we use numerical differentiation, particularly,

when the maximum likelihood estimator cannot be described explicitly.
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3.4 Bartlett adjustment

The expectation of w often differs from one owing to small samples or model

misspecification. In such cases, approximating χ2
1 to w is incorrect, since the

expectation of χ2
1 is exactly one. The adjustment w/Eg0 [w] from the aspect

of the expectation is called the Bartlett adjustment,23 and the distribution of

w/Eg0 [w] is χ
2
1 up to an error term of order N−2 under the null hypothesis.22

Hence, adjustment by Eg0 [w] improve the chi-square approximation of w even

under model misspecification and small samples. However, the adjustment

factor cannot be calculated exactly under model misspecification, because we

cannot know the true underlying distribution g0.

To estimate the expectation, Loose et al.26 and Cordeiro and Cribari-

Neto27 use the parametric bootstrap method, while Rocke28 uses the bootstrap

method for residuals. These two bootstrap methods require the correct model

specification for resampling. However, we cannot know the correct model under

model misspecification; therefore, we can apply neither of the two bootstrap

methods.

3.5 Naive Wald test and robust Wald test

The Wald test is performed by approximating the test statistic β̂g/ŜE(β̂g) to

the standard normal distributionN(0, 1). We present formulas of the two types

of Wald test. The only difference between the two Wald test is the standard

error estimator. Let H and J be the matrices defined above. Then, H−1 is

called the naive variance estimator for θ̂, while H−1JH−1 is called the robust

variance estimator.12,13 Let ŜENaive(β̂g) and ŜERobust(β̂g) be the square roots of

(H−1)βgβg and (H−1JH−1)βgβg , respectively. The naive standard error estima-

tor ŜENaive(β̂g) is asymptotically valid only under correct model specification,
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while the robust standard error estimator ŜERobust(β̂g) is asymptotically valid

even under model misspecification. However, the robust variance estimator

does not work well in small samples,17 since ŜERobust(β̂g) would have small-

sample bias.
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Chapter 4

Proposed adjustment of

likelihood ratio test

We consider the adjustment w/Eg0 [w] to address the model misspecification

and small-sample problems simultaneously. It is generally impossible to obtain

the unknown true distribution g0 under the null hypothesis and we cannot cal-

culate Eg0 [w] exactly. Hence, we estimate the adjustment factor Eg0 [w] using

the non-parametric bootstrap method,41 that is, the expectation is approxi-

mated as

Eg0 [w] =

∫
wg0(y)dy ≈

∫
wĝ0(y)dy ≈ 1

B

B∑
j=1

w∗j, (4.1)

where w∗j is calculated by a resampling from the empirical distribution ĝ0 of

g0. We define the estimator Êg0 [w] by this formula.

Êg0 [w] would be a consistent estimator of Eg0 [w], owing to the consistency

of the bootstrap sampling mean.42 Thus, w/Êg0 [w] asymptotically follows χ2
1

from Slutsky’s theorem.

We now explain our proposed procedure. In our proposed method, we use
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the bootstrap from the pooled sample to estimate Êg0 [w], where the pooled

sample means the union of data from each group. Obviously, w/Êg0 [w] ob-

tained from bootstrapping the pooled sample approximately follows χ2
1 under

the null hypothesis so that the Type-I error rate can be controlled. Note

that, although bootstrapping by group can also provide the approximation

under the null hypothesis, this resampling method under the alternative hy-

pothesis makes the estimated expectation of w large owing to a difference

between groups and leads an overcorrection of w decreasing power. On the

other hand, even when the alternative hypothesis is true, the estimated ex-

pectation of w by bootstrapping the pooled sample would be near one; hence,

we can avoid the overcorrection of w. Let yi = (ti, δi) be an observation

from subject i. We denote the sample size in groups 0 and 1 by n0 and n1,

respectively. Let {y1, . . . , yn0} and {yn0+1, . . . , yn0+n1} be observations from

groups 0 and 1, respectively. Then, the pooled sample {y1, . . . , yn0+n1} is

{y1, . . . , yn0 , yn0+1, . . . , yn0+n1} and the procedure can be described by the fol-

lowing steps:

1. Calculate the likelihood ratio statistic w for null hypothesis βg = 0 from

the original sample.

2. Resample {y∗j1 , . . . , y∗jn0+n1
} from the pooled sample {y1, . . . , yn0+n1}, B

times (j = 1, 2, . . . , B).

3. Calculate the likelihood ratio statistic w∗j for null hypothesis βg = 0

while considering {y∗j1 , . . . , y∗jn0
} and {y∗jn0+1, . . . , y

∗j
n0+n1

} as groups 0 and

1, respectively.

4. Estimate Eg0 [w] by Êg0 [w] =
∑B

j=1 w
∗j/B and obtain the corrected like-

lihood ratio statistic w∗ = w/Êg0 [w].
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5. Perform the proposed test by approximately fitting the chi-squared dis-

tribution with one degree of freedom to w∗.

In addition, we provide a sample code of R to apply our proposed test in the

appendix.
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Chapter 5

Simulation study

In this chapter, we examine the performance of the chi-squared test based on

the proposed test statistic, w∗ = w/Êg0 [w], under model misspecification and

small samples through simulation study. We assumed a randomized clinical

study with two treatment groups, that evaluate the survival time extension in

an active group (group 1) compared with a placebo group (group 0).

5.1 Simulation 1

5.1.1 Simulation design

This simulation aims to compare the performance of the proposed method

with existing methods under misspecification of the distribution of the error

term. The survival time T assumed a model of the form log T = α0+αgxg+η,

where xg = 0, 1 is a group indicator. We let the distribution of exp(η) be the

Weibull, log-logistic, or log-normal distribution with shape parameter κ. We

let the true parameters be α0 = 1, κ = 0.5, 1, 2. Sample sizes were the same in

each group and we let sample size n in each group be n = 20, 50, 100, 200, 500.

We assumed that the censoring time in each group followed a common expo-
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nential distribution with parameter ρ. Parameter ρ was calculated so that the

censoring rate in group 0 was about q. We considered two scenarios for q:

q = 0.2 and q = 0.4. We let the true group-effect parameter αg be αg = 0

when we evaluated the Type-I error rate. On the other hand, we let αg = 0.5, 1

when we evaluated performances under αg > 0.

The fitting model was log T = β0 + βgxg + ε and we assumed that the

distribution of exp(ε) was the Weibull distribution with shape parameter σ.

We let the number of trials be 100,000 if αg = 0 or 10,000 if αg > 0. We

used the different numbers of trials between null and alternative hypotheses

because we have to evaluate the Type-I error rate with high precision. Under

each condition, we calculated the maximum likelihood estimator β̂g of βg and

conducted the robust Wald test, naive Wald test, chi-squared tests based on

ordinary likelihood ratio statistic w, adjusted statistic wK of w by Kent,16

and adjusted statistic w∗ = w/Êg0 [w] using the non-parametric bootstrap

resampling, and a test based on the percentile bootstrap confidence interval

for the null hypothesis βg = 0 at a significance level of 0.05. Furthermore,

we calculated the 95% confidence intervals corresponding to each test statistic

as follows. The 95% confidence intervals based on the naive and robust Wald

test statistics are defined by [β̂g − z0.975ŜENaive(βg), β̂g + z0.975ŜENaive(βg)] and

[β̂g − z0.975ŜERobust(βg), β̂g + z0.975ŜERobust(βg)], respectively, where z0.975 is the

97.5th percentile of the standard normal distribution. The three likelihood

ratio test statistics are commonly denoted as ξ−12{ℓ(θ̂) − ℓ(θ̂0)}, where ξ is

an adjustment factor (e.g., ξ = 1 for w). Let θ̂d = (d, λ̂d) be the maximum

likelihood estimator under the constraint βg = d. Then, the confidence interval

based on the likelihood ratio statistic is defined as {d | ξ−12{ℓ(θ̂) − ℓ(θ̂d)} ≤

χ2
1,0.95},43 where χ2

1,0.95 is the 95th percentile of χ2
1. We let the number of

resampling be 1,000 to calculate Êg0 [w] and bootstrap confidence intervals.
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We calculated the bias of β̂g (= mean of β̂g − αg) and coverage probability

of true value αg for each confidence interval. In addition, we calculated the

Type-I error rate of the six tests when αg = 0, while we calculated the relative

bias of β̂g (= 100× (mean of β̂g − αg)/αg) when αg > 0.

5.1.2 Simulation result

Figures 5.1 – 5.6 show the results for Type-I error rate. Figures 5.1 – 5.2, 5.3

– 5.4, and 5.5 – 5.6 illustrate the results when the true distributions are the

Weibull, log-logistic and log-normal, respectively.

In Figures 5.1 – 5.2, we correctly specified the true distribution. Type-I

error rates for the five existing methods were inflated in the small sample even

when the distribution is correctly specified. On the other hand, the Type-I

error rates for our proposed method were close to the nominal level even in

small samples.

In Figures 5.3 – 5.6, we misspecified the true distribution. Type-I error

rates for the naive Wald test and ordinary likelihood ratio test were not con-

trolled at the nominal level regardless of sample size. Type-I error rates for

the robust Wald test, chi-squared test based on wK , and test based on the

percentile bootstrap confidence interval were close to the nominal level when

n was large, but they were inflated when n was small. In terms of the Type-

I error rate, the five existing tests did not have sufficient performance under

model misspecification and small sample. In contrast, Type-I error rates of our

proposed chi-squared test based on w∗ = w/Êg0 [w] were close to the nominal

level for all parameter settings.

Figures 5.7 – 5.15 show the results of coverage probability for each test

statistic and bias of β̂g. Figures 5.7 – 5.9, 5.10 – 5.12, and 5.13 – 5.15 illustrate

the results when the true distributions are the Weibull, log-logistic and log-
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Figure 5.1: Type-I error rate (%) in simulation 1 when the true distribution is
Weibull (i.e., correctly specified). The parameter q of the censoring mechanism
is 0.2. κ is the shape parameter in the true model. w is the ordinary likelihood
ratio statistic, wK is the adjusted statistic of w by Kent,16 w∗ is the adjusted
statistic by Êg0 [w] (proposal), and Boot is the test based on the percentile
bootstrap confidence interval.
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Figure 5.2: Type-I error rate (%) in simulation 1 when the true distribution is
Weibull (i.e., correctly specified). The parameter q of the censoring mechanism
is 0.4. κ is the shape parameter in the true model. w is the ordinary likelihood
ratio statistic, wK is the adjusted statistic of w by Kent,16 w∗ is the adjusted
statistic by Êg0 [w] (proposal), and Boot is the test based on the percentile
bootstrap confidence interval.
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Figure 5.3: Type-I error rate (%) in simulation 1 when the true distribution is
log-logistic (i.e., misspecified). The parameter q of the censoring mechanism is
0.2. κ is the shape parameter in the true model. w is the ordinary likelihood
ratio statistic, wK is the adjusted statistic of w by Kent,16 w∗ is the adjusted
statistic by Êg0 [w] (proposal), and Boot is the test based on the percentile
bootstrap confidence interval.
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Figure 5.4: Type-I error rate (%) in simulation 1 when the true distribution is
log-logistic (i.e., misspecified). The parameter q of the censoring mechanism is
0.4. κ is the shape parameter in the true model. w is the ordinary likelihood
ratio statistic, wK is the adjusted statistic of w by Kent,16 w∗ is the adjusted
statistic by Êg0 [w] (proposal), and Boot is the test based on the percentile
bootstrap confidence interval.
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Figure 5.5: Type-I error rate (%) in simulation 1 when the true distribution is
log-normal (i.e., misspecified). The parameter q of the censoring mechanism is
0.2. κ is the shape parameter in the true model. w is the ordinary likelihood
ratio statistic, wK is the adjusted statistic of w by Kent,16 w∗ is the adjusted
statistic by Êg0 [w] (proposal), and Boot is the test based on the percentile
bootstrap confidence interval.
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Figure 5.6: Type-I error rate (%) in simulation 1 when the true distribution is
log-normal (i.e., misspecified). The parameter q of the censoring mechanism is
0.2. κ is the shape parameter in the true model. w is the ordinary likelihood
ratio statistic, wK is the adjusted statistic of w by Kent,16 w∗ is the adjusted
statistic by Êg0 [w] (proposal), and Boot is the test based on the percentile
bootstrap confidence interval.
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Figure 5.7: Coverage probability (%) and bias of β̂g in simulation 1 when
the true distribution is Weibull with shape parameter κ = 0.5 (i.e., correctly
specified). q is the parameter of the censoring mechanism. αg and βg are group

effects in the true model and fitting model, respectively. β̂g is the maximum
likelihood estimator of βg. w is the ordinary likelihood ratio statistic, wK is

the adjusted statistic of w by Kent,16 w∗ is the adjusted statistic by Êg0 [w]
(proposal), and Boot is the test based on the percentile bootstrap confidence
interval.
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Figure 5.8: Coverage probability (%) and bias of β̂g in simulation 1 when
the true distribution is Weibull with shape parameter κ = 1 (i.e., correctly
specified). q is the parameter of the censoring mechanism. αg and βg are group

effects in the true model and fitting model, respectively. β̂g is the maximum
likelihood estimator of βg. w is the ordinary likelihood ratio statistic, wK is

the adjusted statistic of w by Kent,16 w∗ is the adjusted statistic by Êg0 [w]
(proposal), and Boot is the test based on the percentile bootstrap confidence
interval.
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Figure 5.9: Coverage probability (%) and bias of β̂g in simulation 1 when
the true distribution is Weibull with shape parameter κ = 2 (i.e., correctly
specified). q is the parameter of the censoring mechanism. αg and βg are group

effects in the true model and fitting model, respectively. β̂g is the maximum
likelihood estimator of βg. w is the ordinary likelihood ratio statistic, wK is

the adjusted statistic of w by Kent,16 w∗ is the adjusted statistic by Êg0 [w]
(proposal), and Boot is the test based on the percentile bootstrap confidence
interval.
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Figure 5.10: Coverage probability (%) and bias of β̂g in simulation 1 when the
true distribution is log-logistic with shape parameter κ = 0.5 (i.e., misspeci-
fied). q is the parameter of the censoring mechanism. αg and βg are group

effects in the true model and fitting model, respectively. β̂g is the maximum
likelihood estimator of βg. w is the ordinary likelihood ratio statistic, wK is

the adjusted statistic of w by Kent,16 w∗ is the adjusted statistic by Êg0 [w]
(proposal), and Boot is the test based on the percentile bootstrap confidence
interval.
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Figure 5.11: Coverage probability (%) and bias of β̂g in simulation 1 when the
true distribution is log-logistic with shape parameter κ = 1 (i.e., misspecified).
q is the parameter of the censoring mechanism. αg and βg are group effects in

the true model and fitting model, respectively. β̂g is the maximum likelihood
estimator of βg. w is the ordinary likelihood ratio statistic, wK is the adjusted

statistic of w by Kent,16 w∗ is the adjusted statistic by Êg0 [w] (proposal), and
Boot is the test based on the percentile bootstrap confidence interval.

39



q = 0.2 q = 0.4
Coverage probability (%) Bias of βg Coverage probability (%) Bias of βg

n = 20

0 0.5 1
80

85

90

95

100

0 0.5 1
−0.4

−0.2

0.0

0.2

0.4

0 0.5 1
80

85

90

95

100

0 0.5 1
−0.4

−0.2

0.0

0.2

0.4

n = 50

0 0.5 1
80

85

90

95

100

0 0.5 1
−0.4

−0.2

0.0

0.2

0.4

0 0.5 1
80

85

90

95

100

0 0.5 1
−0.4

−0.2

0.0

0.2

0.4

n = 100

0 0.5 1
80

85

90

95

100

0 0.5 1
−0.4

−0.2

0.0

0.2

0.4

0 0.5 1
80

85

90

95

100

0 0.5 1
−0.4

−0.2

0.0

0.2

0.4

n = 200

0 0.5 1
80

85

90

95

100

0 0.5 1
−0.4

−0.2

0.0

0.2

0.4

0 0.5 1
80

85

90

95

100

0 0.5 1
−0.4

−0.2

0.0

0.2

0.4

n = 500

0 0.5 1
80

85

90

95

100

0 0.5 1
−0.4

−0.2

0.0

0.2

0.4

0 0.5 1
80

85

90

95

100

0 0.5 1
−0.4

−0.2

0.0

0.2

0.4

αg αg αg αg

Naive Wald Robust Wald Boot w wK w*

Figure 5.12: Coverage probability (%) and bias of β̂g in simulation 1 when the
true distribution is log-logistic with shape parameter κ = 2 (i.e., misspecified).
q is the parameter of the censoring mechanism. αg and βg are group effects in

the true model and fitting model, respectively. β̂g is the maximum likelihood
estimator of βg. w is the ordinary likelihood ratio statistic, wK is the adjusted

statistic of w by Kent,16 w∗ is the adjusted statistic by Êg0 [w] (proposal), and
Boot is the test based on the percentile bootstrap confidence interval.
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Figure 5.13: Coverage probability (%) and bias of β̂g in simulation 1 when the
true distribution is log-normal with shape parameter κ = 0.5 (i.e., misspeci-
fied). q is the parameter of the censoring mechanism. αg and βg are group

effects in the true model and fitting model, respectively. β̂g is the maximum
likelihood estimator of βg. w is the ordinary likelihood ratio statistic, wK is

the adjusted statistic of w by Kent,16 w∗ is the adjusted statistic by Êg0 [w]
(proposal), and Boot is the test based on the percentile bootstrap confidence
interval.
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Figure 5.14: Coverage probability (%) and bias of β̂g in simulation 1 when the
true distribution is log-normal with shape parameter κ = 1 (i.e., misspecified).
q is the parameter of the censoring mechanism. αg and βg are group effects in

the true model and fitting model, respectively. β̂g is the maximum likelihood
estimator of βg. w is the ordinary likelihood ratio statistic, wK is the adjusted

statistic of w by Kent,16 w∗ is the adjusted statistic by Êg0 [w] (proposal), and
Boot is the test based on the percentile bootstrap confidence interval.
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Figure 5.15: Coverage probability (%) and bias of β̂g in simulation 1 when the
true distribution is log-normal with shape parameter κ = 2 (i.e., misspecified).
q is the parameter of the censoring mechanism. αg and βg are group effects in

the true model and fitting model, respectively. β̂g is the maximum likelihood
estimator of βg. w is the ordinary likelihood ratio statistic, wK is the adjusted

statistic of w by Kent,16 w∗ is the adjusted statistic by Êg0 [w] (proposal), and
Boot is the test based on the percentile bootstrap confidence interval.
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Table 5.1: Relative bias (%) of β̂g in simulation 1. The parameter of the
censoring mechanism is q = 0.2

True distribution

κ n αg Weibull Log-logistic Log-normal

0.5 20 0.5 0.4 −3.8 −1.5
0.5 20 1.0 0.8 −4.0 −1.7
0.5 50 0.5 2.1 −5.5 −1.4
0.5 50 1.0 1.4 −5.1 −1.5
0.5 100 0.5 0.3 −5.2 −1.3
0.5 100 1.0 0.3 −5.0 −1.5
0.5 200 0.5 0.2 −5.3 −1.2
0.5 200 1.0 0.1 −5.1 −1.4
0.5 500 0.5 0.2 −5.2 −1.3
0.5 500 1.0 0.1 −5.1 −1.4
1.0 20 0.5 −0.3 −7.8 −4.5
1.0 20 1.0 0.1 −8.0 −4.6
1.0 50 0.5 1.0 −10.2 −4.9
1.0 50 1.0 0.7 −9.6 −4.9
1.0 100 0.5 0.2 −10.2 −4.9
1.0 100 1.0 0.1 −9.5 −5.1
1.0 200 0.5 0.0 −9.9 −4.8
1.0 200 1.0 0.0 −9.4 −5.0
1.0 500 0.5 0.1 −9.7 −4.9
1.0 500 1.0 0.1 −9.4 −5.1
2.0 20 0.5 −0.6 −10.9 −9.8
2.0 20 1.0 −0.4 −11.3 −9.3
2.0 50 0.5 0.4 −15.1 −9.8
2.0 50 1.0 0.2 −13.8 −9.6
2.0 100 0.5 0.0 −14.1 −10.4
2.0 100 1.0 −0.1 −13.2 −10.1
2.0 200 0.5 0.0 −13.3 −9.9
2.0 200 1.0 0.0 −12.9 −10.0
2.0 500 0.5 0.0 −13.2 −9.9
2.0 500 1.0 0.0 −12.8 −10.0

Note: αg and βg are group effects in the true model and fitting model, respectively. κ is

the shape parameter in the true model. Relative bias (%) is 100× (mean of β̂g − αg)/αg,

where β̂g is the maximum likelihood estimator of βg.
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Table 5.2: Relative bias (%) of β̂g in simulation 1. The parameter of the
censoring mechanism is q = 0.4

True distribution

κ n αg Weibull Log-logistic Log-normal

0.5 20 0.5 0.6 −4.1 −2.4
0.5 20 1.0 1.8 −2.8 −2.0
0.5 50 0.5 2.8 −6.1 −2.3
0.5 50 1.0 2.4 −4.5 −2.0
0.5 100 0.5 0.4 −5.9 −2.4
0.5 100 1.0 0.4 −4.4 −2.2
0.5 200 0.5 0.5 −5.6 −2.1
0.5 200 1.0 0.5 −4.4 −2.0
0.5 500 0.5 0.0 −5.7 −2.2
0.5 500 1.0 0.0 −4.6 −2.0
1.0 20 0.5 0.5 −6.9 −5.6
1.0 20 1.0 2.1 −5.4 −4.3
1.0 50 0.5 1.7 −9.0 −6.0
1.0 50 1.0 1.4 −7.8 −5.4
1.0 100 0.5 0.0 −8.8 −6.8
1.0 100 1.0 0.1 −7.7 −6.0
1.0 200 0.5 0.3 −8.9 −6.5
1.0 200 1.0 0.2 −7.9 −6.0
1.0 500 0.5 0.0 −9.1 −6.5
1.0 500 1.0 0.1 −8.1 −6.1
2.0 20 0.5 −0.7 −7.7 −9.6
2.0 20 1.0 −2.3 −7.5 −8.7
2.0 50 0.5 0.5 −11.6 −10.7
2.0 50 1.0 0.3 −10.7 −10.2
2.0 100 0.5 −0.2 −11.4 −12.0
2.0 100 1.0 0.0 −10.5 −11.0
2.0 200 0.5 0.1 −11.5 −11.4
2.0 200 1.0 0.1 −10.4 −10.9
2.0 500 0.5 0.0 −11.5 −11.5
2.0 500 1.0 0.0 −10.9 −11.1

Note: αg and βg are group effects in the true model and fitting model, respectively. κ is

the shape parameter in the true model. Relative bias (%) is 100× (mean of β̂g − αg)/αg,

where β̂g is the maximum likelihood estimator of βg.
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normal, respectively. Tables 5.1 – 5.2 show the results of the relative bias.

There was no bias for parameter estimates β̂g for all the settings under the

null hypothesis since both distributions of survival time and censoring time are

common in groups under the null hypothesis. When αg > 0, the parameter

estimates β̂g had a downward bias under model misspecification, while β̂g had

little bias under the correct model specification. When the true distribution

was Weibull (i.e., correctly specified), coverage probabilities of the five existing

methods were close to the nominal level in large samples, but they were lower

than the nominal level in small samples. In contrast, the coverage probabilities

of our proposed method were close to the nominal level in many cases even if n

was small; however, in other cases, the coverage probabilities were somewhat

larger than the nominal level. When the true distribution were log-logistic

and log-normal (i.e., misspecified), coverage probabilities of the five existing

methods were lower than the nominal level for all parameter settings. On the

other hands, coverage probabilities of our proposed method were larger than

those of the existing methods and were close to the nominal level in many

cases.

5.2 Simulation 2

5.2.1 Simulation design

This simulation aims to compare the performance of the proposed methods

with existing methods under misspecification of both the error distribution

and mean structure. The survival time assumed a model of the form log T =

α0 + αgxg + α1x1 + η, where x1 ∼ Bernoulli(0.3) is a binary covariate. We

let the distribution of exp(η) be the Weibull or log-normal distribution with

shape parameter κ. We let the true parameters be α0 = 1, αg = 0, 0.5, 1, and
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α1 = ±1,±2, and let κ = 2 and 0.5 for Weibull distribution and log-normal

distribution, respectively. The sample sizes were the same in each group and

we let sample size n in each group be n = 20, 200. The fitting model was

log T = β0 + βgxg + ε and we assumed that the distribution of exp(ε) was the

Weibull distribution with shape parameter σ. Hence, we misspecified the error

distribution and/or omitted the important covariate. The other settings were

the same as simulation 1.

5.2.2 Simulation result

Figure 5.16 shows the Type-I error rate in simulation 2. In the upper half

of Figure 5.16, the true distribution is correctly specified, but the important

covariate x1 is omitted from the mean structure. Type-I error rates for the

naive Wald test and the ordinary likelihood ratio test were not controlled at the

nominal level regardless of the sample size, owing to the misspecification of the

mean structure. Type-I error rates for the robust Wald test, chi-squared test

based on wK , and test based on the percentile bootstrap confidence interval

were inflated in the small sample as in simulation 1. In contrast, Type-I error

rates for the proposed method were controlled at the nominal level for all

simulation settings.

In the lower half of Figure 5.16, the true distribution was misspecified and

the important covariate x1 is omitted from the mean structure. The result

was similar to those of the upper half, but the degree of the inflation of the

existing methods were larger, owing to the misspecification of both the error

distribution and the mean structure. On the other hand, Type-I error ratess

for the proposed method were controlled at the nominal level.

Figures 5.17 – 5.20 show the results of coverage probability for each test

statistic and bias of β̂g. Figures 5.17 – 5.18 and 5.19 – 5.20 illustrate the results
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Figure 5.16: Type-I error rate (%) in simulation 2. The parameter q of the
censoring mechanism is 0.2. α1 is the coefficient of the omitted covariate x1.
w is the ordinary likelihood ratio statistic, wK is the adjusted statistic of w
by,16 w∗ is the adjusted statistic by Êg0 [w] (proposal), and Boot is the test
based on the percentile bootstrap confidence interval.
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Figure 5.17: Coverage probability (%) and bias of β̂g in simulation 2 when
the true distribution is Weibull. The parameter q of the censoring mechanism
is 0.2. αg and βg are group effects in the true model and fitting model, re-

spectively. κ is the shape parameter in the true model. β̂g is the maximum
likelihood estimator of βg. w is the ordinary likelihood ratio statistic, wK is

the adjusted statistic of w by Kent,16 w∗ is the adjusted statistic by Êg0 [w]
(proposal), and Boot is the test based on the percentile bootstrap confidence
interval.
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Figure 5.18: Coverage probability (%) and bias of β̂g in simulation 2 when
the true distribution is Weibull. The parameter q of the censoring mechanism
is 0.4. αg and βg are group effects in the true model and fitting model, re-

spectively. κ is the shape parameter in the true model. β̂g is the maximum
likelihood estimator of βg. w is the ordinary likelihood ratio statistic, wK is

the adjusted statistic of w by Kent,16 w∗ is the adjusted statistic by Êg0 [w]
(proposal), and Boot is the test based on the percentile bootstrap confidence
interval.
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Figure 5.19: Coverage probability (%) and bias of β̂g in simulation 2 when the
true distribution is log-normal. The parameter q of the censoring mechanism
is 0.2. αg and βg are group effects in the true model and fitting model, re-

spectively. κ is the shape parameter in the true model. β̂g is the maximum
likelihood estimator of βg. w is the ordinary likelihood ratio statistic, wK is

the adjusted statistic of w by Kent,16 w∗ is the adjusted statistic by Êg0 [w]
(proposal), and Boot is the test based on the percentile bootstrap confidence
interval.
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Figure 5.20: Coverage probability (%) and bias of β̂g in simulation 2 when the
true distribution is log-normal. The parameter q of the censoring mechanism
is 0.4. αg and βg are group effects in the true model and fitting model, re-

spectively. κ is the shape parameter in the true model. β̂g is the maximum
likelihood estimator of βg. w is the ordinary likelihood ratio statistic, wK is

the adjusted statistic of w by Kent,16 w∗ is the adjusted statistic by Êg0 [w]
(proposal), and Boot is the test based on the percentile bootstrap confidence
interval.
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Table 5.3: Relative bias (%) of β̂g in simulation 2.

n α1 αg exp(η): Weibull exp(η): Log-normal

q = 0.2 20 −2 0.5 1.3 0.1
20 −2 1.0 1.6 0.6
20 −1 0.5 −0.1 −1.8
20 −1 1.0 −0.4 −1.9
20 1 0.5 −0.9 −2.7
20 1 1.0 −2.0 −3.2
20 2 0.5 −5.3 −6.1
20 2 1.0 −7.8 −8.0
200 −2 0.5 1.6 0.9
200 −2 1.0 1.6 0.9
200 −1 0.5 −0.1 −1.1
200 −1 1.0 −0.3 −1.4
200 1 0.5 −1.8 −2.7
200 1 1.0 −2.3 −3.2
200 2 0.5 −6.7 −6.7
200 2 1.0 −8.4 −8.5

q = 0.4 20 −2 0.5 2.2 1.3
20 −2 1.0 1.0 1.0
20 −1 0.5 −0.5 −2.4
20 −1 1.0 −0.1 −2.1
20 1 0.5 −2.9 −4.4
20 1 1.0 −2.5 −4.0
20 2 0.5 −13.1 −13.8
20 2 1.0 −11.5 −12.9
200 −2 0.5 1.2 1.1
200 −2 1.0 −0.5 −0.1
200 −1 0.5 −0.8 −2.3
200 −1 1.0 −1.0 −2.3
200 1 0.5 −3.5 −4.9
200 1 1.0 −3.2 −4.7
200 2 0.5 −14.1 −14.7
200 2 1.0 −12.9 −14.3

Note: αg and βg are group effects in the true model and fitting model, respectively. q is

the parameter of the censoring mechanism. α1 is the coefficient of the omitted covariate

x1. Relative bias (%) is 100× (mean of β̂g − αg)/αg, where β̂g is the maximum likelihood

estimator of βg.
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when the true distributions are the Weibull and log-normal, respectively. Table

5.3 shows the results of the relative bias.

There was no bias for parameter estimates β̂g for all the settings under

the null hypothesis as is the case with simulation 1. When αg > 0, the pa-

rameter estimates β̂g had a downward bias, since the fitting model was always

misspecified in simulation 2.

Coverage probabilities of the five existing methods were not close to the

nominal level owing to the covariate omission. In contrast, the coverage prob-

abilities of our proposed method were closer to the nominal level than those

of the existing methods.

From the above results, the proposed method can provide a robust test for

the misspecification of the error distribution and mean structure.
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Chapter 6

Case study

6.1 Acute myelogenous leukemia data

The acute myelogenous leukemia data are from the preliminary analysis of a

clinical trial to evaluate the efficacy of maintenance chemotherapy for acute

myelogenous leukemia.29,30 Patients were randomly assigned receive either

maintenance chemotherapy consisting of cytarabine and 6-thioguanine for two

days each month or to receive no maintenance therapy. The objective of the

trial was to examine if maintenance chemotherapy increased the length of

remission. The sample sizes in the maintained group and the unmaintained

group were 11 and 12, respectively. Figure 6.1 shows the Kaplan-Meier curves

for each treatment group.

In our examination, the fitting model was log T = β0 + βgxg + ε, where

xg is a treatment group indicator (1 = maintenance chemotherapy; 0 = no

maintenance therapy). We fit the exponential, Weibull, log-logistic, and log-

normal model to exp(ε). To test the effects of maintenance chemotherapy, we

conducted the robust and naive Wald tests, chi-squared tests based on ordinary

likelihood ratio statistic w, adjusted statistic wK of w by Kent,16 and adjusted
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Figure 6.1: The Kaplan-Meier curves for each treatment group for acute myel-
ogenous leukemia data.

statistic w∗ = w/Êg0 [w] using the non-parametric bootstrap resampling for the

null hypothesis βg = 0 and calculated the p-values. To compare the goodness

of fit, we calculated the maximum values of the log-likelihood function as a

reference.

Table 6.1 presents the results for the analysis of acute myelogenous leukemia

data. The p-values of the naive and robust Wald tests and the chi-squared tests

based on w and wK were dependent on the specified models. In particular,

a choice of fitting model had an effect on whether the p-values for the naive

Wald test and unadjusted likelihood ratio test are below the significance level

0.05. On the other hand, the p-values of our proposed method were uniformly

larger than the significance level. Although the p-values of the robust Wald

test and the chi-squared test based on wK were also larger than the significance
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Table 6.1: Results for acute myelogenous leukemia data.

P-value

Wald LR

Model Naive Robust w wK w∗ LL

Exponential 0.0475 0.0579 0.0439 0.0538 0.0794 −81.3
Weibull 0.0151 0.0562 0.0212 0.0700 0.0798 −80.5

Log-logistic 0.1243 0.1578 0.1208 0.1540 0.1357 −79.4
Log-normal 0.0568 0.0705 0.0618 0.0762 0.0804 −78.9

Range of p-values 0.1092 0.1016 0.0996 0.1002 0.0563

Note: LR is the likelihood ratio test, w is the ordinary likelihood ratio statistic, wK is the

adjusted statistic of w by Kent,16 w∗ is the adjusted statistic by Êg0 [w] (proposal), and LL

is the maximum value of the log-likelihood function.

level, they varied much more than those of our proposed method. The reason

why the p-values from the log-logistic model were much larger than those from

other models would be the small sample and outlier. The range of p-values for

our proposed method was the narrowest; hence, our proposed method provided

stable results. Further, the p-values of our proposed method were larger than

the unadjusted likelihood ratio test, and in most cases, larger than the robust

Wald test and the chi-squared test based on wK . The results of the simulation

study in this article support these results. In addition, we expect from the

simulation study that the results of the adjusted likelihood ratio test are robust

to misspecification of mean structure, although we might omit an important

covariate due to the paucity of available variables in the dataset.

6.2 Severe aplastic anemia data

The severe aplastic anemia data are from a randomized clinical trial on 64

patients with severe aplastic anemia.3,31 Patients were randomized to cy-

closporine and methotrexate (CSP + MTX) or methotrexate alone (MTX). An
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endpoint was the time from assignment until the diagnosis of a life-threatening

stage of acute graft versus host disease. The sample sizes in each group were

the same. Figure 6.2 shows the Kaplan-Meier curves for each treatment group.
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Figure 6.2: The Kaplan-Meier curves for each treatment group for severe aplas-
tic anemia data.

In our examination, the fitting model was log T = β0 + βgxg + ε, where

xg is a treatment group indicator (1 = CSP + MTX; 0 = MTX). The other

settings were the same as those for acute myelogenous leukemia data.

Table 6.2 presents the results for the severe aplastic anemia data. Similar to

results for acute myelogenous leukemia data, the p-values of naive and robust

Wald tests and the chi-squared tests based on w and wK were dependent on

the specified models. It is difficult to choose an appropriate model for the

severe aplastic anemia data, as the events of interest were observed only in

the early period of the trial and many patients were censored. In fact, as seen

58



Table 6.2: Results for severe aplastic anemia data.

P-value

Wald LR

Model Naive Robust w wK w∗ LL

Exponential 0.0031 0.0162 0.0012 0.0087 0.0140 −152.5
Weibull 0.0190 0.0087 0.0059 0.0020 0.0112 −136.1

Log-logistic 0.0106 0.0063 0.0056 0.0031 0.0128 −134.8
Log-normal 0.0215 0.0112 0.0137 0.0065 0.0156 −133.8

Range of p-values 0.0184 0.0049 0.0125 0.0067 0.0044

Note: LR is the likelihood ratio test, w is the ordinary likelihood ratio statistic, wK is the

adjusted statistic of w by Kent,16 w∗ is the adjusted statistic by Êg0 [w] (proposal), and LL

is the maximum value of the log-likelihood function.

in the maximum value of the likelihood function, the exponential model was

not fitted well. Hence, model misspecification has affected the results from the

exponential model. On the other hand, the p-values of our proposed method

were slightly dependent on the fitting models. In addition, even when the

exponential model was fitted, the p-values of our proposed method were larger

than the unadjusted likelihood ratio test and, in most cases, larger than the

robust Wald test and the chi-squared test based on wK .
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Chapter 7

Discussion

We proposed the procedure for estimating the the expectation of the likelihood

ratio statistic in the finite sample size using the non-parametric bootstrap re-

sampling in the two-group comparison. The simulation study indicated that

our proposed method could control Type-I error rate in the two-group compar-

ison based on the AFT model. In addition, we applied our proposed method

to two actual time-to-event datasets with small-sample sizes and concluded

that our proposed method could provide results that were robust to model

misspecification.

Type-I error rates of existing methods (naive and robust Wald tests, or-

dinary likelihood ratio test, likelihood ratio test proposed by Kent,16 and the

test based on the percentile bootstrap confidence interval) could be controlled

at the nominal level when the model is correctly specified and the sample size

is sufficiently large. However, Type-I error rates of existing methods were not

controlled in a small sample even when the model is correctly specified. Fur-

thermore, when we misspecified the model, the naive Wald test and ordinary

likelihood ratio test yielded the inflation of the Type-I error rate even in a

large sample due to model misspecification. The robust Wald test and likeli-
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hood ratio test proposed by Kent16 controlled the Type-I error rate in a large

sample even under model misspecification. However, these two methods did

not control the Type-I error rate in a small sample, because their correction

factors are based on asymptotic properties. The test based on the percentile

bootstrap confidence interval was conducted by estimating percentiles in tail

areas; therefore, this estimation performs poorly in a small sample. In fact, this

test yielded inflation in a small sample even under correct model specification.

On the other hand, in our proposed method, we used the bootstrap method

to estimate the mean of the likelihood ratio statistic, and not a percentile in

the tail areas; thus, it is expected that the bootstrap method performs well

even in a small sample. From the above results, the existing methods resulted

in substantial inflation of the type 1 error rate under small-sample size and

model misspecification; therefore, the existing methods are not practically use-

ful for analysis with AFT models. In contrast, the adjusted likelihood ratio

test we proposed had a Type-I error rate near the nominal level even under

small-sample size and model misspecification. Hence, in terms of Type-I error

rate, we could propose a practical test statistic for the AFT model.

However, our methods do have limitations. The point estimates of the

treatment effect remain biased under the alternative hypothesis and model

misspecification. Thus, the confidence interval based on our proposed method

did not have sufficient performance under model misspecification owing to such

bias. In addition, when the treatment effect was excessively large, the confi-

dence interval based on our proposed method showed coverage probabilities

larger than the nominal level. Hutton and Monaghan44 proves the asymp-

totic unbiasedness of the treatment effect for the uncensored case, but not for

the censored case. Hence, some additional corrections are required in future

work. A flexible model that includes many models is useful to avoid such bias,
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since simulation results under the correct model specification were mostly un-

biased. For example, the use of generalized gamma distribution,45–47 which in-

cludes Weibull distribution and log-normal distribution as special cases, could

be considered. In addition, diagnostic statistics for the distribution such as

the Cox-Snell residual48 might be useful to choose an appropriate distribution

and reduce the bias of the point estimate. As an alternative strategy, the

semi-parametric AFT model,2,7 which does not need to specify the error dis-

tribution, provides an unbiased estimator for many underlying distributions.49

However, the semi-parametric AFT model has not been used widely because

of difficulties in computing the estimators and lack of efficient and reliable

computational methods.50,51 Furthermore, a small-sample problem for the

semi-parametric AFT model has not been studied sufficiently. Hence, some

small-sample corrections for the semi-parametric AFT model are required in

future work.
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Appendix A

R function for our proposed

method

A.1 Details of R function

The function AFT_Bartlett in section A.3 provides results of our proposed

method. The function AFT_Bartlett has arguments indat, fitdist, B, and

seed. indat is a data frame intended to be analyzed, which has following

three variables.

time: survival time or censoring time

event: indicator variable, which takes one if the subject experiences event and

zero if the subject experiences censoring

group: group indicator variable (e.g., 0 = placebo group; 1 = active group)

fitdist specifies a fitting distribution of the error term. In the function

AFT_Bartlett, we can specify exponential, weibull, loglogistic, and

lognormal; other distributions are not supported. B is the number of re-

sampling arising from the approximation (4.1). seed is a random seed.
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The function AFT_Bartlett provides the results of naive and robust Wald

tests and chi-squared tests based on w, wK , and w∗ = w/Êg0 [w], where w

is the ordinary likelihood ratio statistic, wK is the adjusted statistic of w

proposed by Kent,16 and w∗ is the adjusted statistic using the non-parametric

bootstrap method. In the Wald tests, a point estimate of the treatment effect,

its standard error, z-value, and p-value are presented. On the other hands, in

the likelihood ratio tests, test statistic (w, wK , or w
∗ = w/Êg0 [w]), degree of

freedom, and p-value are presented.

A.2 Example

We provide an example of an analysis for the acute myelogenous leukemia

dataset used in section 6.1. In the following R code, we analyze the dataset by

fitting Weibull distribution. Let the number of resampling B be 1,000 and let

the random seed be 5678.

# observed times

time <- c(9,13,13,18,23,28,31,34,45,48,161,

5,5,8,8,12,16,23,27,30,33,43,45)

# event indicators

event <- c(1,1,0,1,1,0,1,1,0,1,0,1,1,1,1,1,0,1,1,1,1,1,1)

# group indicators

group <- c(1,1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0)

leukemiadat <- data.frame(time=time,event=event,group=group)

AFT_Bartlett(leukemiadat,’weibull’,1000,5678)

The results are shown as follows. Here, Loglik is the maximum value of
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the log-likelihood function.

$‘Information‘

value

number of resampling 1000

fitting distribution weibull

Loglik -80.5216452034027

$Wald

Estimate Std. Error z p

Naive 0.9293416 0.3825019 2.429639 0.01511385

Robust 0.9293416 0.4867046 1.909457 0.05620314

$LR

w df p

Ordinary 5.314048 1 0.02115415

Kent 3.282175 1 0.07003608

Bootstrap 3.050050 1 0.08073464

A.3 R code

AFT_Bartlett <- function(indat,fitdist,B,seed){

library(survival)

library(MASS)

set.seed(seed)

n0 <- sum(indat$group == 0)

n1 <- sum(indat$group == 1)

b <- 1:B
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for(i in 1:B){

samp <- sample(1:(n0+n1),replace=T)

btime <- matrix((indat$time)[samp],ncol=1)

bevent <- matrix((indat$event)[samp],ncol=1)

gdat <- matrix(c(numeric(n0),numeric(n1)+1),ncol=1)

btry <- try(bres <- survreg(formula = Surv(btime,bevent)~

gdat,dist = fitdist))

if(class(btry) != ’try-error’){

b[i] <- 2*(bres$loglik[2] - bres$loglik[1])

bscale <- bres$scale

}else{

b[i] <- NaN

bscale <- NaN

}

}

b <- b[!is.nan(b)]

resn <- survreg(formula = Surv(time, event)~group,

data = indat,dist = fitdist)

tablen <- summary(resn)$table

resr <- survreg(formula = Surv(time, event)~group,

data = indat,dist = fitdist,robust = T)

tabler <- summary(resr)$table

naive <- matrix(tablen[2,],1,4)
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robust <- matrix(tabler[2,-3],1,4)

cname1 <- c("Estimate","Std. Error","z","p")

rname1 <- c("Naive","Robust")

Wald <- as.data.frame(rbind(naive,robust),row.names = rname1)

colnames(Wald) <- cname1

w <- 2*(resn$loglik[2] - resn$loglik[1])

adjw <- w/mean(b)

ordinaryLR <- matrix(c(w,1,1-pchisq(w,df=1)),1,3)

proposedLR <- matrix(c(adjw,1,1-pchisq(adjw,df=1)),1,3)

dat <- indat$time

xdat <- indat$group

flg <- indat$event

if(fitdist == "exponential"){

mle <- c(resn$coefficients)

beta0hat <- mle[1]

betaghat <- mle[2]

z <- log(dat) - (beta0hat+betaghat*xdat)

ell_0 <- -flg + exp(z)

ell_g <- (-flg + exp(z))*xdat

# score
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j_00 <- sum(ell_0*ell_0)

j_g0 <- sum(ell_g*ell_0)

j_gg <- sum(ell_g*ell_g)

j <- c(j_gg,j_g0,j_g0,j_00)

J <- matrix(j,2,2)

# Hesse matrix

ell_00 <- -exp(z)

ell_g0 <- -exp(z)*xdat

ell_gg <- -exp(z)*xdat

h_00 <- sum(ell_00)

h_g0 <- sum(ell_g0)

h_gg <- sum(ell_gg)

h <- c(h_gg,h_g0,h_g0,h_00)

H <- matrix(-h,2,2)

}

if(fitdist == "weibull"){

mle <- c(resn$scale,resn$coefficients)

sigmahat <- mle[1]

beta0hat <- mle[2]

betaghat <- mle[3]

z <- (log(dat) - (beta0hat+betaghat*xdat))/sigmahat

ell_s <- flg*(-1/sigmahat - z/sigmahat) +
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z*exp(z)/sigmahat

ell_0 <- -flg/sigmahat+exp(z)/sigmahat

ell_g <- -flg*xdat/sigmahat+exp(z)*xdat/sigmahat

# score

j_ss <- sum(ell_s*ell_s)

j_0s <- sum(ell_0*ell_s)

j_gs <- sum(ell_g*ell_s)

j_00 <- sum(ell_0*ell_0)

j_g0 <- sum(ell_g*ell_0)

j_gg <- sum(ell_g*ell_g)

j <- c(j_gg,j_g0,j_gs,j_g0,j_00,j_0s,j_gs,j_0s,j_ss)

J <- matrix(j,3,3)

# Hesse matrix

ell_ss <- sigmahat^(-2)*

(flg*(1+2*z) - 2*z*exp(z) - z^2*exp(z))

ell_0s <- sigmahat^(-2)*(flg - exp(z) - z*exp(z))

ell_gs <- sigmahat^(-2)*(flg - exp(z) - z*exp(z))*xdat

ell_00 <- sigmahat^(-2)*(-exp(z))

ell_g0 <- sigmahat^(-2)*(-exp(z))*xdat

ell_gg <- sigmahat^(-2)*(-exp(z))*xdat

h_ss <- sum(ell_ss)

h_0s <- sum(ell_0s)

h_gs <- sum(ell_gs)
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h_00 <- sum(ell_00)

h_g0 <- sum(ell_g0)

h_gg <- sum(ell_gg)

h <- c(h_gg,h_g0,h_gs,h_g0,h_00,h_0s,h_gs,h_0s,h_ss)

H <- matrix(-h,3,3)

}

if(fitdist == "loglogistic"){

mle <- c(resn$scale,resn$coefficients)

sigmahat <- mle[1]

beta0hat <- mle[2]

betaghat <- mle[3]

z <- (log(dat) - (beta0hat+betaghat*xdat))/sigmahat

a <- exp(z)/(1+exp(z))

ell_s <- (-flg*z - flg + (1+flg)*z*a)/sigmahat

ell_0 <- (-flg + (1+flg)*a)/sigmahat

ell_g <- (-flg + (1+flg)*a)*xdat/sigmahat

# score

j_ss <- sum(ell_s*ell_s)

j_0s <- sum(ell_0*ell_s)

j_gs <- sum(ell_g*ell_s)

j_00 <- sum(ell_0*ell_0)

j_g0 <- sum(ell_g*ell_0)

j_gg <- sum(ell_g*ell_g)
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j <- c(j_gg,j_g0,j_gs,j_g0,j_00,j_0s,j_gs,j_0s,j_ss)

J <- matrix(j,3,3)

# Hesse matrix

z_s <- -z/sigmahat

z_0 <- -1/sigmahat

z_g <- -xdat/sigmahat

u_s <- -flg*z - flg + (1+flg)*z*a

u_0 <- flg*(1-2/(1+exp(z))) + (1-flg)*(1-1/(1+exp(z)))

u_g <- flg*xdat*(1-2/(1+exp(z))) +

(1-flg)*xdat*(1-1/(1+exp(z)))

ell_ss <- -sigmahat^(-2)*u_s + sigmahat^(-1)*z_s*

(-flg+(1+flg)*exp(z)*(1+z+exp(z))/(1+exp(z))^2)

ell_0s <- -sigmahat^(-2)*u_0 +

sigmahat^(-1)*(1+flg)*z_s*exp(z)/(1+exp(z))^2

ell_gs <- -sigmahat^(-2)*u_g +

sigmahat^(-1)*(1+flg)*xdat*z_s*exp(z)/(1+exp(z))^2

ell_00 <- sigmahat^(-1)*(1+flg)*z_0*exp(z)/(1+exp(z))^2

ell_g0 <- sigmahat^(-1)*(1+flg)*z_g*exp(z)/(1+exp(z))^2

ell_gg <- sigmahat^(-1)*

(1+flg)*xdat*z_g*exp(z)/(1+exp(z))^2

h_ss <- sum(ell_ss)

h_0s <- sum(ell_0s)

h_gs <- sum(ell_gs)
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h_00 <- sum(ell_00)

h_g0 <- sum(ell_g0)

h_gg <- sum(ell_gg)

h <- c(h_gg,h_g0,h_gs,h_g0,h_00,h_0s,h_gs,h_0s,h_ss)

H <- matrix(-h,3,3)

}

if(fitdist == "lognormal"){

mle <- c(resn$scale,resn$coefficients)

sigmahat <- mle[1]

beta0hat <- mle[2]

betaghat <- mle[3]

z <- (log(dat) - (beta0hat+betaghat*xdat))/sigmahat

a <- dnorm(z)/(1-pnorm(z))

ell_s <- (flg*(-1+z^2) + (1-flg)*z*a)/sigmahat

ell_0 <- (flg*z + (1-flg)*a)/sigmahat

ell_g <- (flg*z + (1-flg)*a)*xdat/sigmahat

# score

j_ss <- sum(ell_s*ell_s)

j_0s <- sum(ell_0*ell_s)

j_gs <- sum(ell_g*ell_s)

j_00 <- sum(ell_0*ell_0)

j_g0 <- sum(ell_g*ell_0)

j_gg <- sum(ell_g*ell_g)
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j <- c(j_gg,j_g0,j_gs,j_g0,j_00,j_0s,j_gs,j_0s,j_ss)

J <- matrix(j,3,3)

# Hesse matrix

z_s <- -z/sigmahat

z_0 <- -1/sigmahat

z_g <- -xdat/sigmahat

dphi <- -z*exp(-z^2/2)/sqrt(2*pi)

u_s <- flg*(-1+z^2) + (1-flg)*z*a

u_0 <- flg*z + (1-flg)*a

u_g <- (flg*z + (1-flg)*a)*xdat

pz <- pnorm(z)

dz <- dnorm(z)

ell_ss <- -sigmahat^(-2)*u_s + sigmahat^(-1)*z_s*

(2*flg*z + (1-flg)*((dz+z*dphi)*(1-pz)+z*dz^2)/(1-pz)^2)

ell_0s <- -sigmahat^(-2)*u_0 + sigmahat^(-1)*z_s*

(flg + (1-flg)*(dphi*(1-pz)+dz^2)/(1-pz)^2)

ell_gs <- -sigmahat^(-2)*u_g + sigmahat^(-1)*z_s*xdat*

(flg + (1-flg)*(dphi*(1-pz)+dz^2)/(1-pnorm(z))^2)

ell_00 <- sigmahat^(-1)*z_0*

(flg + (1-flg)*(dphi*(1-pz)+dz^2)/(1-pz)^2)

ell_g0 <- sigmahat^(-1)*z_g*

(flg + (1-flg)*(dphi*(1-pz)+dz^2)/(1-pz)^2)
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ell_gg <- sigmahat^(-1)*z_g*xdat*

(flg + (1-flg)*(dphi*(1-pz)+dz^2)/(1-pz)^2)

h_ss <- sum(ell_ss)

h_0s <- sum(ell_0s)

h_gs <- sum(ell_gs)

h_00 <- sum(ell_00)

h_g0 <- sum(ell_g0)

h_gg <- sum(ell_gg)

h <- c(h_gg,h_g0,h_gs,h_g0,h_00,h_0s,h_gs,h_0s,h_ss)

H <- matrix(-h,3,3)

}

Hinv <- ginv(H)

Kent <- Hinv[1,1]^(-1)*((Hinv%*%J%*%Hinv)[1,1])

wK <- w/Kent

KentLR <- matrix(c(wK,1,1-pchisq(wK,df=1)),1,3)

cname2 <- c("w","df","p")

rname2 <- c("Ordinary","Kent","Bootstrap")

LR <- as.data.frame(rbind(ordinaryLR,KentLR,proposedLR),

row.names = rname2)

colnames(LR) <- cname2
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Info <- data.frame(value = c(B,fitdist,resn$loglik[2]),

row.names = c("number of resampling",

"fitting distribution",

"Loglik"))

Info$value <- as.character(Info$value)

outdat <- list(Information=Info,Wald=Wald,LR=LR)

return(outdat)

}
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