
Long-Term Change of the Secchi Disk Depth 

in Indonesian Lakes Shown by Landsat TM 

and ETM+ Data 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

January 2021 
 

 

 

Fajar Setiawan 

 



ii 
 

Long-Term Change of the Secchi Disk Depth 

in Indonesian Lakes Shown by Landsat TM 

and ETM+ Data 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A Dissertation Submitted to  

the Graduate School of Life and Environmental Sciences,  

the University of Tsukuba 

in Partial Fulfillment of the Requirements  

for the Degree of Doctor of Philosophy  

(Doctoral Program in Integrative Environment and Biomass Sciences) 

 

 

 

Fajar Setiawan 
 



i 
 

Abstract  
 

Most of Indonesia's lakes face environmental problems such as eutrophication, sedimentation, 

and depletion of dissolved oxygen. The water quality database for supporting lake management 

in Indonesia is very limited due to financial constraints. The remote sensing technique shows 

great potential to retrieve water quality data from space to address this issue.  

           I made two efforts to improve the robustness of the Secchi Disk Depth (SD) estimation 

model using Landsat TM & ETM+. First, I carried out image preprocessing, which includes 

removing contaminated water pixels, filtering images to reduce noise effects, and mitigating 

atmospheric effects before using Landsat data. For removing contaminated water pixels, I used 

a 90 m buffer to avoid adjacency effects from land and reflectance effects from the lake bottom. 

I also further removed clouds and cloud shadows by combining two water indices, Normalized 

Different Water Index (NDWI) and Modified Normalized Different Water Index (MNDWI). 

After that, the data quality of Landsat was improved by iteratively applied a median filter. For 

mitigating atmospheric effects, I used a two-step atmospheric correction method to avoid the 

requirement of ancillary data for correcting aerosol effects. In the first step, I carried out a 

Rayleigh scattering correction using the Second Simulation of the Satellite Signal in the Solar 

Spectrum (6S) radiative transfer model. In the second step, I further mitigated aerosol scattering 

pixel-by-pixel by subtracting the minimum of the Rayleigh-corrected-reflectance at the near-

infrared or middle-infrared bands from those at the visible bands. 

In the second effort, I selected two-band ratios (TM1/TM2 and TM3/TM2) as SD 

predictors (i.e., model BF). This selection differs from previous studies' recommendations. To 

develop SD estimation models, I used the preprocessed Landsat data and in situ-measured SD 

collected from nine Indonesian lakes/reservoirs (SD values 0.5–18.6 m) and a 

regression/multiple-regression analysis technique. In total, 42 SD estimation models were 

obtained (three single-band models, six band-ratios models, 18 band-ratios and single-bands 
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models, and 15 two-band ratios models). After excluding the estimation models with lower 

performance (R2 <0.9 and RMSE >2.5 m), the remained 17 models were validated using in situ 

data collected from Lake Maninjau (SD ranged from 0.5 to 5.8 m, n = 74). To select an SD 

estimation model with the best performance, I used the Taylor diagram to show the standard 

deviation, correlation (r), and root means square error (RMSE) simultaneously in one diagram. 

As a result, I found the Model BF is the best SD estimation model, which retrieved SD values 

with an R2 of 0.60 and the RMSE of 1.01 m in Lake Maninjau. In addition, since water-leaving 

reflectance at the green band (TM2) does not change as much as that at the blue and red bands 

(TM1 and TM3) in various waters, the use of this value to normalize water-leaving reflectance 

at blue and red bands can avoid a large of fluctuation ratios. 

Then, I applied the selected Model BF to 23 Indonesian lakes, which were investigated 

in the 1990s by other researchers, and 14 Indonesian lakes, which I investigated between 2014 

and 2018, to further confirm the performance of the Model BF. The results showed that the 

estimated SD from Landsat data using the Model BF generated reasonable SD values, except 

for lakes with inferior image quality and a large time gap between satellite acquirements and in 

situ measurements. The SD estimations in high and extreme turbid lakes were reasonable but 

slight underestimations in clear lakes. These results increase the confidence in applying the 

developed model to other lakes and periods. 

As showcases, I applied the Model BF to Lake Maninjau, Lake Singkarak, and Lake 

Toba for generating a long-term SD database from Landsat time-series data. The visual 

comparison of the in situ-measured and satellite estimated SD values and several events (e.g., 

algal bloom, water management, and fish culture). The Landsat-based SD estimations well 

captured the change tendency of water transparency in three lakes. These results further 

demonstrate the developed model's reliability to generate a long-term SD database from the 

Landsat series. 
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Finally, I generated a database to show the long-term change of the SD in Indonesian 

lakes with area > 10 km2 (35 lakes). I found three patterns of SD changing trend: 13 lakes with 

significantly increased SD, eight lakes with significantly decreased SD, and 14 lakes with no 

significant changed during 2000-2019. This database is expected to provide useful information 

for lake managers and policymakers to support inland water sustainable management. 

Keywords: water transparency; historical Landsat data; empirical model; Indonesian lakes; 

atmospheric correction 

 

  



iv 
 

List of Contents 
Abstract ……………………………………………………………i 

List of Contents ................................................................................... iv 

List of Tables ....................................................................................... vi 

List of Figures ..................................................................................... vii 

List of Symbols ..................................................................................... x 

List of Abbreviations .......................................................................... xi 

Chapter I General Introduction ......................................................... 1 

1.1 Water Quality Database of Indonesian Lakes ......................................................... 1 

1.2. Water Quality Monitoring Methods ........................................................................ 2 

1.3. Remote Sensing Data Source for Water Quality Estimation ................................ 3 

1.4. Secchi Disk Depth (SD) ............................................................................................. 6 

1.5. Models for Estimating SD from Remote Sensing ................................................... 7 

1.5.1. Semi-analytical Approach ............................................................................................ 7 

1.5.2. Empirical Approach ...................................................................................................... 8 

1.6. Objectives of the Study ............................................................................................. 9 

Chapter II Develop a Robust Secchi Disk Depth Estimation Model 

using Landsat TM and ETM+ ..................................... 10 

2.1.  Introduction ............................................................................................................ 10 

2.2. Materials and Methods ........................................................................................... 12 

2.2.1. Study Area .................................................................................................................. 12 

2.2.2. Data Collections ......................................................................................................... 13 

2.2.3. Preprocessing Landsat TM and ETM+ Images .......................................................... 18 

2.2.3.1. Removing of Non-Water Pixels ................................................................... 19 

2.2.3.2. Reducing Noise Effects on Water Pixels ..................................................... 19 

2.2.3.3. Converting DN Values to Radiance and Minimizing Atmospheric Effects . 20 

2.2.4. SD Estimation Model Development and Accuracy Assessment ................................ 22 

2.2.4.1. Development of Empirical SD Estimation Models ...................................... 22 

2.2.4.2. Accuracy Assessment ................................................................................... 23 

2.3. Results ....................................................................................................................... 24 

2.3.1. Improved Landsat Data Quality by Filtering .............................................................. 24 

2.3.2. Atmospherically Corrected Reflectance ..................................................................... 27 

2.3.3 Empirical Models for Estimating the SD from Landsat TM/ETM+ Data ................... 28 

2.3.4. Validation of the 17 Selected SD Estimation Models in Lake Maninjau ................... 31 



v 
 

2.3.5. Long-term SD Changes in Lake Maninjau from the Landsat TM/ETM+   ................ 34 

2.4. Discussion ................................................................................................................. 36 

2.4.1 Atmospheric Correction Caused Unstable TM1/TM3 ................................................ 36 

2.4.2. Benefit of Using TM2 as the Denominator in Band Ratios ........................................ 38 

2.4.3. Advantages of Using Two-Band Ratio Models .......................................................... 38 

2.4.4. Applicability of the Developed SD Estimation Model ............................................... 39 

2.5. Conclusions .............................................................................................................. 39 

Chapter III Application of the Developed Model to Indonesian 

Lakes ............................................................................... 40 

3.1. Introduction ............................................................................................................. 40 

3.2. Material and Methods ............................................................................................. 41 

3.2.1. Study Area .................................................................................................................. 41 

3.2.2. In situ SD Data Collection .......................................................................................... 44 

3.2.3. Landsat Data collection .............................................................................................. 44 

3.2.4. SD estimation ............................................................................................................. 45 

3.2.5. Data Postprocessing .................................................................................................... 45 

3.2.6. Relating Data Collections from Other Lakes .............................................................. 45 

3.3.  Results ...................................................................................................................... 46 

3.3.1. Validation of the Developed SD Estimation Model in Various Waters ..................... 46 

3.3.2. Further Validation of the Generated Long-Term SD Database .................................. 50 

3.3.3. Long-Term SD Database for 35 Indonesian Lakes  ................................................. 503 

3.3.4. Spatial distribution of SD in 35 Indonesian Lakes ..................................................... 62 

3.3.5.  20-year SD changes in 35 Indonesian Lakes (2000-2019) ........................................ 71 

3.4. Discussion ................................................................................................................. 72 

3.5. Conclusions .............................................................................................................. 73 

Chapter IV General Conclusions ..................................................... 74 

Acknowledgment ................................................................................ 75 

References……..…………………………………………………….76 

 

 

  



vi 
 

List of Tables  

Table 2.1. The In Situ SD data of Nine Indonesian Lakes (In situ Dataset I) .......................... 15 

Table 2.2. Seven Landsat TM/ETM+ images corresponding with In situ SD Dataset I .......... 17 

Table 2.3. Twenty-one Landsat TM/ETM+ images of Lake Maninjau (Path=127, Row=60) 

corresponding to In situ SD Dataset III ................................................................... 17 

Table 2.4.  An Example of Input for Rayleigh Scattering Correction Using 6S Radiative 

Transfer Model ........................................................................................................ 21 

Table. 2.5. The developed SD estimation models and their performances based on In situ SD 

Dataset I and the preprocessed Landsat Dataset I. .................................................. 29 

Table 2.6. The developed SD estimation models and their performances based on In situ SD 

Dataset III and the preprocessed Landsat Dataset III (n=74) .................................. 33 

Table 3.1. List of 35 Selected Indonesian Lakes with an area larger than 10 km2 and the 

amount of usable Landsat images ........................................................................... 43 

Table 3.2. Two-periods of in situ SD Dataset for Further Evaluate the Developed Model ..... 44 

Table 3.3. SD changing trends in 35 Indonesian lakes ............................................................. 71 

 

 

  



vii 
 

List of Figures 

Figure 1.1. The active periods of several satellite sensors are used for studying waters, (a) 

Ocean Color sensors, and (b) Land sensors. ............................................................... 3 

Figure 2.1. The locations of nine Indonesian Lakes ................................................................. 13 

Figure 2.2. Flowchart of the Preprocessing of the Landsat TM and ETM+ Images ................ 18 

Figure 2.3.  Comparing Transects of (a) Non-Filtered Reflectance and (b) Filtered 

Reflectance in Lake Maninjau. (c) Landsat Path = 127, row = 60, date acquired 

2008-08-14, the average corresponding SD = 3 m. .................................................. 25 

Figure 2.4.  Comparing Transects of (a) Non-Filtered Reflectance and (b) Filtered 

Reflectance in Lake Towuti. (c) Landsat Path = 113, row = 62, date acquired 

1994-11-10, the average in situ SD = 20 m. ............................................................. 26 

Figure 2.5. Comparison of the Uncorrected reflectance (black dashed line), Surface 

Reflectance product from USGS (Red solid line), and Corrected Reflectance 

using the proposed method (solid blue line) for Seven Landsat TM/ETM+ 

images corresponding with "In situ SD Dataset I". .................................................. 27 

Figure 2.6. Comparison of the in situ SD measurements and the corresponding estimated 

SD values using the 17 selected models in the model calibration procedures. ........ 30 

Figure 2.7. Comparisons of the in situ-measured SD values (In situ SD Dataset III) and 

the corresponding estimated SD values from the preprocessed Landsat images 

(Landsat Dataset III) using the 17 selected SD estimation models (n = 74). ........... 32 

Figure 2.8. Comparison of the 17 selected SD estimation models using the Taylor 

diagram in terms of their correlation coefficients, root-mean-square differences, 

and standard deviations. ............................................................................................ 34 

Figure 2.9. Long-term changes in water transparency in Lake Maninjau from 1987 to 2018. 

Red points: The averaged SD values estimated from the preprocessed Landsat 

Dataset II using the BF model. Blue points: The averaged in situ SD values for 

each field survey (In situ SD Dataset II). Redline: obtained from the red points 

via a trend analysis in the R language. Blueline: obtained from the blue points via 

a trend analysis in the R language. Gray areas: 95% confidence intervals of the 

trend analysis. ........................................................................................................... 35 

Figure 2.10. Comparing transects of Digital Number, Non-filtered atmospheric corrected 

reflectance, and Filtered Atmospheric corrected reflectance of Lake Towuti, a 

clear lake with an SD = 20 m (a), and Lake Maninjau, a medium turbid lake 

with SD = 3 m (b). .................................................................................................... 36 

Figure 2.11. Spectra of three neighbor pixels and their band ratios in Lake Maninjau; (a) 

in original DN format, (b) after atmospheric correction, (c) band ratio of 

original DN, (d) band ratio after atmospheric correction. ........................................ 37 

Figure 3.1. The locations Indonesian lakes with an area larger than 10 km2, thirty-five 

lakes were selected considering the amount of usable Landsat images (Green 

stars). In contrast, the other 25 lakes were not studied (Black points). .................... 42 

Figure 3.2. Number of fish cages and fish production in Lake Maninjau from 1992-2016 ..... 46 

Figure 3.3. The number of usable images for 35 lakes from 1985 to 2019 .............................. 48 

Figure 3.4. Comparison of in situ SD data (red line) collected from 23 lakes in the 1990s 

and the range of estimated SD using the developed model ...................................... 49 

file:///D:/@@@_disertation/draft/v5/thesis-v5.docx%23_Toc63275967
file:///D:/@@@_disertation/draft/v5/thesis-v5.docx%23_Toc63275967
file:///D:/@@@_disertation/draft/v5/thesis-v5.docx%23_Toc63275967
file:///D:/@@@_disertation/draft/v5/thesis-v5.docx%23_Toc63275967


viii 
 

Figure 3.5. Comparison of in situ SD data (red line) collected from 14 lakes during 2014-

2018 and the range of estimated SD using the developed model ............................. 49 

Figure 3.6. Long-term change of SD in Lake Maninjau .......................................................... 50 

Figure 3.7. The relationship between the number of fish cages and 1/ SD generated from   

Landsat during 2004-2012 in Lake Maninjau shows a positive correlation. ............ 51 

Figure 3.8. Long-term change of SD in Lake Singkarak ......................................................... 51 

Figure 3.9. Long-term change of SD in Lake Toba North Basin (a) and South Basin (b) ....... 52 

Figure 3.10. Long-term of change SD in Lake Batur ............................................................... 53 

Figure 3.12.  Long-term change of SD in Lake Cirata (reservoir) ........................................... 54 

Figure 3.13. Long-term change of SD in Lake Diatas ............................................................. 54 

Figure 3.14. Long-term change of SD in Lake Dibawah ......................................................... 54 

Figure 3.15. Long-term change of SD in Lake Gajahmungkur (reservoir) .............................. 55 

Figure 3.16. Long-term change of SD in Lake Jatiluhur (reservoir) ........................................ 55 

Figure 3.17. Long-term change of SD in Lake Jempang ......................................................... 55 

Figure 3.18. Long-term change of SD in Lake Kedungombo (reservoir) ................................ 55 

Figure 3.19. Long-term change of SD in Lake Kerinci ............................................................ 56 

Figure 3.20. Long-term change of SD in Lake Limboto .......................................................... 56 

Figure 3.21. Long-term change of SD in Lake Lindu .............................................................. 56 

Figure 3.22. Long-term change of SD in Lake Luar ................................................................ 56 

Figure 3.23. Long-term change of SD in Lake Matano ........................................................... 57 

Figure 3.24. Long-term change of SD in Lake Melintang ....................................................... 57 

Figure 3.25. Long-term change of SD in Lake Merica (reservoir) .......................................... 57 

Figure 3.26. Long-term change of SD in Lake Paniai .............................................................. 57 

Figure 3.28. Long-term change of SD in Lake Ranau ............................................................. 58 

Figure 3.29. Long-term change of SD in Lake Rawapening .................................................... 58 

Figure 3.30. Long-term change of SD in Lake Saguling (reservoir) ........................................ 58 

Figure 3.32. Long-term change of SD in Lake Sempor (reservoir) ......................................... 59 

Figure 3.33. Long-term change of SD in Lake Sentani ............................................................ 59 

Figure 3.34. Long-term change of SD in Lake Sidenreng ....................................................... 59 

Figure 3.35. Long-term change of SD in Lake Sutami (Reservoir) ......................................... 60 

Figure 3.36. Long-term change of SD in Lake Tasikdalam ..................................................... 60 

Figure 3.37. Long-term change of SD in Lake Tempe ............................................................. 60 

Figure 3.38. Long-term change of SD in Lake Tondano ......................................................... 60 

Figure 3.39. Long-term change of SD in Lake Towuti ............................................................ 61 

Figure 3.40.  Long-term change of SD in Lake Wadaslintang (reservoir) ............................... 61 

Figure 3.41. Long-term change of SD in Lake Yamur ............................................................. 61 

Figure 3.42. Spatial distribution of 5-year averaged SD in Lake Batur ................................... 62 



ix 
 

Figure 3.43. Spatial distribution of 5-year averaged SD in Lake Cacaban (reservoir) ............ 62 

Figure 3.44. Spatial distribution of 5-year averaged SD in Lake Cirata (reservoir) ................ 62 

Figure 3.45. Spatial distribution of 5-year averaged SD in Lake Diatas .................................. 62 

Figure 3.46. Spatial distribution of 5-year averaged SD in Lake Dibawah ............................. 63 

Figure 3.47. Spatial distribution of 5-year averaged SD in Lake Gajahmungkur (reservoir) .. 63 

Figure 3.48. Spatial distribution of 5-year averaged SD in Lake Jatiluhur (reservoir) ............ 63 

Figure 3.49. Spatial distribution of 5-year averaged SD in Lake Jempang .............................. 63 

Figure 3.50. Spatial distribution of 5-year averaged SD in Lake Kedungombo (reservoir) .... 64 

Figure 3.51. Spatial distribution of 5-year averaged SD in Lake Kerinci ................................ 64 

Figure 3.52. Spatial distribution of 5-year averaged SD in Lake Limboto .............................. 64 

Figure 3.53. Spatial distribution of 5-year averaged SD in Lake Lindu .................................. 64 

Figure 3.54. Spatial distribution of 5-year averaged SD in Lake Luar .................................... 65 

Figure 3.55. Spatial distribution of 5-year averaged SD in Lake Maninjau ............................. 65 

Figure 3.56. Spatial distribution of 5-year averaged SD in Lake Matano ................................ 65 

Figure 3.57. Spatial distribution of 5-year averaged SD in Lake Melintang ........................... 65 

Figure 3.58. Spatial distribution of 5-year averaged SD in Lake Merica (reservoir) ............... 66 

Figure 3.59. Spatial distribution of 5-year averaged SD in Lake Paniai .................................. 66 

Figure 3.60. Spatial distribution of 5-year averaged SD in Lake Poso .................................... 66 

Figure 3.61. Spatial distribution of 5-year averaged SD in Lake Ranau .................................. 66 

Figure 3.62. Spatial distribution of 5-year averaged SD in Lake Rawapening ........................ 67 

Figure 3.63. Spatial distribution of 5-year averaged SD in Lake Saguling (reservoir) ............ 67 

Figure 3.64. Spatial distribution of 5-year averaged SD in Lake Semayang ........................... 67 

Figure 3.65. Spatial distribution of 5-year averaged SD in Lake Sempor (reservoir) .............. 67 

Figure 3.66. Spatial distribution of 5-year averaged SD in Lake Sentani ................................ 68 

Figure 3.67. Spatial distribution of 5-year averaged SD in Lake Sidenreng ............................ 68 

Figure 3.68. Spatial distribution of 5-year averaged SD in Lake Singkarak ............................ 68 

Figure 3.69. Spatial distribution of 5-year averaged SD in Lake Sutami (reservoir) ............... 68 

Figure 3.70. Spatial distribution of 5-year averaged SD in Lake Tasikdalambesar ................. 69 

Figure 3.71. Spatial distribution of 5-year averaged SD in Lake Tempe ................................. 69 

Figure 3.72. Spatial distribution of 5-year averaged SD in Lake Toba .................................... 69 

Figure 3.73. Spatial distribution of 5-year averaged SD in Lake Tondano .............................. 69 

Figure 3.74. Spatial distribution of 5-year averaged SD in Lake Towuti ................................ 70 

Figure 3.75. Spatial distribution of 5-year averaged SD in Lake Yamur ................................. 70 

 

 

 



x 
 

List of Symbols 

a, b, and c   =  model coefficients obtained using the calibration data 

Brescale    =  band-specific rescaling bias factor from Chander et al. (2009)  

c   = beam attenuation coefficient (m-1) 

Grescale    =  band-specific rescaling gain factor from Chander et al. (2009)  

Kd   =  vertical diffuse attenuation coefficient (m-1) 

ln (SD)   = natural Logarithm transformed Secchi Disk Depth 

Lλ    =  spectral radiance at the sensor's aperture [W/(m2·sr·μm)] 

n   =  number of samples 

P   = p-value 

QCAL    =  quantized calibrated pixel value [DN] 

R   =  correlation coefficient 

R2   = determination coefficient 

R
c
(λ)    =  atmospherically corrected reflectance  

R
rc

(λ)    =  Rayleigh corrected reflectance 

Rrc(4)   =  Rayleigh corrected reflectance at Landsat TM/ETM+ Band 4 

Rrc(5)   =  Rayleigh corrected reflectance at Landsat TM/ETM+ Band 5 

xa, xb, and xc   =  coefficients calculated using 6S code 

dgreen   = DN values at the green band 

dNIR   =  DN values at the Near Infrared band 

dSWIR  =  DN values at the Short Wave Infrared band 

  



xi 
 

List of Abbreviations 

6S     = Second Simulation of the Satellite Signal in the Solar Spectrum 

BQA   = Band Quality Assessment 

Chl-a   = Chlorophyll-a concentration 

DN   = Digital Number 

ETM+   =  Enhanced Thematic Mapper plus 

GCP    = Ground Control Point  

GOCI    =  Geostationary Ocean Color Imager 

GPS   =  Global Positioning System 

LIPI   = Indonesian Institute of Science 

LOESS   =  Locally Weighted Scatterplot Smoothing 

MERIS  = Medium Resolution Imaging Spectrometer 

MNB    =  Mean Normalized bias 

MNDWI   = Modified Normalized Different Water Index 

MODIS A   = Moderate Resolution Imaging Spectroradiometer Aqua 

MTL    =  Metadata File  

n.d.    =  not defined 

NDWI    = Normalized Different Water Index 

nm   = nano meter 

NMAE   =  Normalized Mean Absolute Error 

NSME   =  Nash–Sutcliffe Model Efficiency 

OLI    = Operational Land Imager (Landsat 8th generation) 

 (R)    =  Reservoir 

RCL   = Research Center for Limnology 

RMS    =  Root Mean Square 



xii 
 

RMSE   = Root Means Square Error 

S2   = Sentinel-2 

S3    =  Sentinel 3 

SD    =  Secchi Disk Depth 

SeaWIFS   = Sea-viewing Wide Field-of-view Sensor 

SLC    = Scan Line Corrector  

SNR   = signal-to-noise ratio 

TM   =  Thematic Mapper 

TM1    =  preprocessed Landsat TM/ETM+ band 1  

TM2    =  preprocessed Landsat TM/ETM+ band 2 

TM3   =  preprocessed Landsat TM/ETM+ band 3 

TSS   = total suspended solid 

USGS   =  United States Geological Survey 

WIA   =  Willmott Index of Agreement 



1 
 

Chapter I General Introduction 
 

Lakes are essential for humans as they provide water for domestic, industrial, and 

agricultural use and provide food. Despite their fundamental importance to humans, freshwater 

systems, including lakes, have been affected by anthropogenic disturbances. The disturbances 

caused eutrophication, acidification, and contamination by toxic substances. This problem is 

predicted to increase, especially in developing countries where the developments prioritize other 

than environmental conservation (Brönmark et al., 2002).  

Indonesia has 1034 lakes identified from Landsat data (Hamzah, 2019). There are 60 lakes 

with an area larger than 10 km2, including 50 natural lakes and ten reservoirs. These lakes are used 

as essential water resources for domestic life, industry, agriculture, transportation, energy, fisheries, 

and tourism (Sulastri, 2006). However, most of these waters face environmental problems such as 

eutrophication, sedimentation, and dissolved oxygen depletion. These problems are due mainly to 

untreated domestic/industrial/agricultural waste, deforestation in watersheds, and fish cultures in 

lakes (Ministry of Environment of the Republic Indonesia, 2011). Thus, it is crucial to routinely 

monitor the water quality in these lakes and reservoirs to obtain scientific data for their sustainable 

use. 

1.1 Water Quality Database of Indonesian Lakes 

A time series of water quality data (database) is critical to investigate how the water quality 

of lakes is changing over the years. Water quality data can be used as a benchmark for 

environmental management projects (plan-action-evaluation cycle). However, there is no existing 

water quality database for Indonesian lakes. As a result, it is not easy to evaluate the lakes 

objectively. 
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The available water quality data supporting lake management in Indonesia are very limited 

due to financial constraints. In 2011, the Indonesian government started a 5-year joint project to 

determine effective management policies for sustainable use of lakes (Ministry of Environment of 

the Republic Indonesia, 2011). The Ministry of Environment selected the 15 lakes with the most 

urgent situations. Lake Maninjau is one of the 15 priority lakes. With a total of 186 Secchi disk 

depth (SD) measurements taken during 2001–2018, Lake Maninjau has the greatest amount of 

available water quality data in Indonesia. Except for this dataset, only fragmentary water quality 

data exist for a few Indonesian lakes and reservoirs (Ruttner., 1930; Lehmusluoto et al., 1997). 

1.2. Water Quality Monitoring Methods 

Water quality data can be directly measured in a lake by performing a field survey or 

estimated using remote sensing data. By conducting field surveys, we can measure high accuracy 

data at each layer of water. However, this conventional method is time-, labor-, and cost-

consuming. The other disadvantages are the limited temporal and spatial coverages. As a 

consequence, the amount of in situ water quality data is limited. 

On the other hand, satellite remote sensing has been recognized as a supportive and 

powerful tool for collecting spatial and temporal water quality data, especially for lakes without 

available in situ data (Blondeau et al., 2014; Bonansea et al., 2015; Dörnhöfer et al., 2016; 

Gholizadeh et al., 2016; Giardino et al., 2001; Kloiber et al., 2002; Kutser., 2012; Olmanson et al., 

2008; Olmanson et al., 2011; Olmanson et al., 2016; Oyama et al., 2009; Zheng et al., 2015). 

Remote sensing data can address the limitation of temporal and spatial coverages. The historical 

data archive is the other advantage. The use of remote sensing techniques can thus provide 

opportunities to generate a water-quality database for Indonesian lakes and reservoirs. 
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1.3. Remote Sensing Data Source for Water Quality Estimation 

The first requirement for generating a water quality database from space is the availability of 

satellite data. Since no operational ocean color sensors are available before 1997 (Blondeau-

Patissier et al., 2014) and all ocean color sensors have relatively coarse spatial resolutions (>300 

m), Landsat TM/ETM+ data (obtained since 1984 with 30 m spatial resolutions) are often used to 

estimate the long-term changes of inland waters' water-quality parameters (Olmanson et al., 2008;  

Oyama et al., 2009; Kutser., 2012; Zheng et al., 2015; Lobo et al., 2015).  

 

Figure 1.1. The active periods of several satellite sensors are used for studying waters, (a) Ocean 

Color sensors, and (b) Land sensors. 

 

I list five primary ocean color sensors and four major land sensors that have been widely 

used for studying waters, as well as their active sensing periods (Figure 1.1). The ocean color 

sensors, including Sea-viewing Wide Field-of-view Sensor (SeaWiFS), Moderate Resolution 

Imaging Spectroradiometer Aqua (MODIS A), Medium Resolution Imaging Spectroradiometer 

(MERIS), Geostationary Ocean Color Imager (GOCI), and Sentinel-3 Ocean and Land Colour 

Instrument (S3-OLCI). For the land sensors including, Thematic Mapper (TM), Enhanced 

Thematic Mapper Plus (ETM+), Operational Land Imager (OLI), and Copernicus Sentinel-2 (S2).  
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The Sea-viewing Wide Field-of-view Sensor (SeaWiFS) collected data from September 

1997 until the end of the mission in December 2010. The SeaWiFS were optimized for ocean color 

measurements. The SeaWiFS had eight spectral bands from 412 to 865 nm (central wavelengths: 

412, 443, 490, 510, 555, 670, 765, and 865 nm). The SeaWiFS had a spatial resolution of 1,000 m 

and revisit time 1-2 days (Ocean Color-SeaWiFS, n.d.).   

The Moderate Resolution Imaging Spectroradiometer Aqua (MODIS A) was launched in 

May 2002 (aboard the Aqua satellite MODIS A) and collecting data to present. It is a sensor for 

both land and water observations. The MODIS A has 36 spectral bands in total, of which nine 

bands are used for ocean-color remote sensing. MODIS A had a spatial resolution of 1,000 m and 

revisit time 1-2 days (Ocean Color-MODIS Aqua, n.d.). 

The Medium Resolution Imaging Spectroradiometer (MERIS) was launched in March 

2002 until December 2012. MERIS provided higher spectral and spatial resolutions but slightly 

lower temporal resolution and radiometric sensitivity. The spatial resolution is 300 m, and the 

revisit time is three days. The MERIS has 15 spectral bands in the 390-1040 nm range (The 

European Space Agency-MERIS, n.d). The new visible band around 620 nm and 709 nm made 

the MERIS useful to study alga blooms, chlorophyll-a in turbid inland and coastal waters (Kutser 

et al. 2006; Dall’Olmo et al. 2003; Gilerson et al. 2010; Gitelson et al. 2008; Gower et al. 2005).  

The Geostationary Ocean Color Imager (GOCI) was launched in June 2010 by the Korea 

Aerospace Research Institute (KARI). The GOCI is a geostationary orbit sensor for monitoring 

ocean color from space (Ryu et al. 2012). GOCI has eight bands used for water quality monitoring. 

GOCI produces eight images during daylight with 500 m spatial resolution.  GOCI covers only 

the regions of Korea, China, and Japan, and it cannot provide global data (Ocean Color-GOCI, 

n.d.). 

The Sentinel-3 (S3) Ocean and Land Colour Instrument (OLCI) is an optical instrument 

used to provide MERIS data continuity. The S3-OLCI was designed to screen the ocean and land 
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surface and collect information related to biology (e.g., phenology of marine and terrestrial 

biomass). There are twin satellites of S3 (S3A and S3B). The S3A was launched in February 2016, 

followed by the S3B, launched in April 2018. The twin satellites were initially operated in a 

temporary tandem phase to allow for instrument inter-comparison. It has 21 spectral bands with a 

spatial resolution of 300 m and revisits time 2-3 days. The satellites provide land and ocean data, 

with the land data delivered by ESA (European Space Agency), while EUMETSAT (European 

Organization for the Exploitation of Meteorological Satellites) will be responsible for both the 

operation of the satellite and the processing and delivery of ocean data and additional atmosphere-

related products (The European Space Agency-Sentinel-3, n.d) 

The Landsat 5 Thematic Mapper (TM) was launched in March 1984 and ended the mission 

in November 2011. The Landsat TM has three bands in the visible range, one band in the NIR 

range, and two bands in the SWIR range (central wavelengths: 485, 569, 660, 840, 1676, 2223 

nm). The Landsat TM spatial resolution is 30 m with 16 days revisit time. It is a sun-synchronous 

satellite that provides global data (Landsat Science-Landsat 5, n.d).  

The Landsat 7 Enhanced Thematic Mapper Plus (ETM+) was launched in April 1999 and 

continuously sensing the earth until the present, despite Scan Line Corrector (SLC) failure on May 

31, 2003. The ETM+ replicates the highly successful previous generation, the Thematic Mapper 

(TM). Like the Landsat TM, the Landsat ETM+ has three bands in the visible range, one band in 

the NIR range, and two bands in the SWIR range (central wavelengths: 485, 560, 662, 835, 1648, 

2206 nm). The Landsat ETM+ spatial resolution is 30 m with 16 days revisit time. It is a sun-

synchronous satellite that provides global data (Landsat Science-Landsat 7, n.d). 

The Landsat 8 Operational Land Imager (OLI) is the successor of Landsat 5 Thematic 

Mapper (TM) and Landsat 7 Enhanced Thematic Mapper Plus (ETM+). The OLI was launched in 

February 2013. It provides coverage of the global landmass at a spatial resolution of 30 meters. 

The OLI collects data for two new bands, a coastal/aerosol band (band 1) and a cirrus band (band 



6 
 

9) and the heritage Landsat TM/ETM+.  The OLI revisit time is 16 days at the equator (Landsat 

Science-Landsat 8, n.d).  

The Copernicus Sentinel-2 (S2) are twin polar-orbiting satellites, Sentinel-2A (S2A), and 

Sentinel-2B (S2B), placed in the same sun-synchronous orbit, phased at 180° to each other. This 

setting aims to increase the revisit time (10 days at the equator with one satellite and five days with 

two satellites). The Sentinel-2A was launched in June 2015, followed by Sentinel-2A, which 

launched in March 2017. The S2 has 10 m spatial resolution for bands: B2 (490 nm), B3 (560 nm), 

B4 (665 nm), and B8 (842 nm). A 20 m  spatial resolution for bands: B5 (705 nm), B6 (740 nm), 

B7 (783 nm), B8a (865 nm), B11 (1610 nm) B12 (2190 nm). A 60 m spatial resolution for bands: 

B1 (443 nm), B9 (940 nm), and B10 (1375 nm) (The European Space Agency-Sentinel-2, n.d). 

Landsat TM/ETM+ is the most successful remote sensing satellite mission to observe the 

earth. Landsat has been collected and archived earth images regularly since early 1984, enabling 

extraction of some historical water quality information on lakes (Olmanson et al., 2008).  The 

combination of temporal and spatial resolution and data availability makes the Landsat system 

particularly useful for assessing inland Lakes (Kloiber et al., 2002). Therefore, in the present study, 

I will use Landsat TM and ETM+ data to generate a long-term water quality database for 

Indonesian lakes. 

1.4. Secchi Disk Depth (SD)  

A key parameter to represent water quality is Secchi disk depth (SD). SD is usually 

measured using a white disk with a 20 to 30 cm diameter, lowered into the water until it visually 

disappears (Preisendorfer, 1986).  SD is the most extended historical data of the water environment 

since the 1860s (Secchi, 1864). SD measurement method is the simplest and most often used for 

limnological studies because its values are easily understood (Carlson, 1977). SD represents water 

transparency, whose interpretation has broad applications from diverse visibility to climate change 
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studies (Lee et al., 2015). Generally, SD will decrease as Chl-a and suspended solid concentration 

increase and were used as an indirect eutrophication indicator (Karydis, 2009; Devlin et al., 2008).  

Besides, unlike other water quality parameters such as chlorophyll-a concentrations, total 

suspended solids, and colored dissolved organic matters, SD represents the same optical properties 

of a waterbody as remote sensing data. Thus, it is considered the most suitable variable to be 

retrieved from the satellite data. 

1.5. Models for Estimating SD from Remote Sensing 

1.5.1. Semi-analytical Approach 

The second requirement for generating a water quality database from space is the existence 

of estimation models. Generally, there are two types of models: empirical models and semi-

analytical models (Lee et al., 2016; Rodrigues et al., 2017). The semi-analytical approach is based 

mainly on an underwater visibility theory. There are two main semi-analytical models for 

estimating SD values from remote sensing data. The first semi-analytical model was developed by 

Doron et al. (2011) based on a classic underwater visibility theory by Duntley (1952) used for over 

60 years. In Doron et al.'s (2011) model, SD is determined by the beam attenuation coefficient c 

(m-1) and the vertical coefficient Kd (m-1).  The second semi-analytical model was developed by 

Lee et al. (2015) based on a new underwater visibility theory. In Lee et al. (2015), SD is inversely 

proportional to the minimum value of diffuse attenuation coefficient of downwelling irradiance 

within the visible domain. Generally, to obtain accurate SD values in various waters, the semi-

analytical approach always requires more narrow bands in the visible and near-infrared domains 

(Lee et al., 2016; Lee et al., 2002; Yang et al., 2013). Therefore, the semi-analytical approach is 

thus not suitable when using Landsat TM and ETM+ data due to their fewer available bands and 

broader bandwidths (>60 nm).   
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1.5.2. Empirical Approach 

The empirical approach is based on developing bi-variate or multivariate regressions 

between the remotely sensed reflectance data and the in situ SD measurement. Landsat TM and 

ETM+ images along with empirical models have been widely used to estimate the SD in inland 

waters (Giardino et al., 2001; Kloiber et al., 2002;  Olmanson et al., 2008; Olmanson et al., 2016; 

Lathrop, 1992; Lavery et al., 1993; Cox et al., 1998; Brezonik et al., 2005; Zhao et al., 2011; 

Sriwongsitanon et al., 2011; Bonansea et al., 2015;  Butt et al., 2015). One shortcoming of the 

empirical approach is that in situ-measured SD data are always necessary to recalibrate the SD 

estimation algorithms. This shortcoming will limit satellite data to lakes with insufficient in situ 

data, especially in developing countries such as Indonesia.  

Most Landsat-based studies use simple linear regression of a single band or band ratios to 

estimate SD. Landsat TM/ETM+ band 3 (TM3) is popular as an SD predictor in single band or 

ratio-based algorithms (e.g., Cox et al., 1998; Duan et al., 2009; Kallio et al., 2008; Lathrop., 1992; 

Pattiaratchi et al., 1994; Wu et al., 2008). TM3 has a positive correlation with particulate matter 

scattering; as the transparency (SD) decreases, TM3 brightness usually increases (Matthews, 2011). 

Landsat TM/ETM+ band 1 (TM1) has a smaller correlation with SD due to strong absorption in 

the blue domain, except for the very clear lakes (Giardino et al., 2001). Many studies achieved 

higher correlations by adding TM1 or TM3 to TM1/TM3 ratio in multiple regression (Lavery et 

al., 1993; Kloiber et al., 2002; Brezonik et al., 2005; Olmanson et al., 2008).  

The advantages of using the empirical model are the simplicity of a water quality model 

and reasonable accuracy. Kloiber et al. (2002) mentioned that ideally, a single (standard) relatively 

simple equation with constant coefficient values would be useful to calculate SD or a 

phytoplankton abundance index. Their study indicated that if the atmospheric effects can be 

completely removed, then one estimation model can be applied to different images across time 

and space.  
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1.6. Objectives of the Study 

Landsat TM/ETM+ data are available from 1984 with 30 m spatial resolutions. The 

empirical approach can also be applied to Landsat data even though it has fewer available bands 

and broader bandwidths (>60 nm). Therefore, I select Landsat TM/ETM+ data to show the long-

term water quality change in Indonesian lakes. Accordingly, the objectives of this study were to:  

1. develop a robust empirical SD estimation model for using Landsat TM & ETM+ data; 

2. generate an SD database for Indonesian lakes from Landsat time series;  

3. investigate the water quality changes in Indonesian lakes using the generated database. 
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Chapter II Develop a Robust Secchi Disk 

Depth Estimation Model using Landsat 

TM and ETM+ 
 

2.1.  Introduction 

A water quality database is essential to investigate how the water quality of lakes has 

changed over the years. However, it is difficult to provide water quality data for each Indonesian 

lake by performing field surveys due to financial constraints. As a result, the available water 

quality data for supporting lake management in Indonesia are very limited, leading to difficulties 

in evaluating the lakes objectively. On the other hand, the historical archive of remote sensing data 

provides valuable sources and opportunities to generate a water-quality database for Indonesian 

lakes and reservoirs.  

For the creation of a water quality database from space, both the availability of satellite 

data and estimation models for water quality parameters are necessary. Since no operational ocean 

color sensors are available before 1997, and all ocean color sensors have relatively coarse spatial 

resolutions (>300 m), Landsat TM/ETM+ data (available from 1984 with 30 m spatial resolutions) 

are often used to determine the long-term changes of inland waters' water quality parameters 

(Kutser et al., 2012; Lobo et al., 2015; Olmanson et al., 2002; Oyama et al., 2009; Zheng et al., 

2015).  

In this study, I select Secchi Disk Depth (SD) as the satellite-retrieved water quality 

parameter because SD represents the same optical properties of a waterbody as remote sensing 

data. Furthermore, SD is considered as the most suitable variable retrieving from the satellite data. 

In addition, SD is the most available in situ data in Indonesia. For the necessary model to estimate 

SD using Landsat TM/ETM+, since the semi-analytical approach always requires more narrow 

bands in the visible and near-infrared domains (Doron et al., 2011; Lee et al., 2002, 2016; Yang et 
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al., 2013),  semi-analytical approach not suitable when using Landsat TM and ETM+ data due to 

their fewer available bands and broader bandwidths (>60 nm).  

Numerous studies have been used Landsat TM/ETM+ images along with empirical models 

to estimate SD in inland waters (Bonansea et al., 2015; Brezonik et al., 2005; Butt et al., 2015; 

Cox et al., 1998; Giardino et al., 2001; Kloiber et al., 2002; Lathrop., 1992; Lavery et al., 1993; 

Olmanson et al., 2008,2016; Sriwongsitanon et al., 2011; Zhao et al., 2011). However, I found 

inconsistent SD predictors and coefficients. In other words, there is no standard equation that can 

be directly applied to my study.  For example, several researchers proposed a band-ratio of 

TM1/TM3 with TM1 as SD predictors (Brezonik et al., 2005; Kloiber et al., 2002; Olmanson et 

al., 2008; 2016). Meanwhile, Lathrop (1992) proposed the band-ratio of TM2/TM1 or TM3/TM1 

as an SD predictor. Giardino (2001) introduced TM1/TM2 as an SD predictor. Lavery et al. (1993) 

and Bonansea et al. (2015) used the band-ratio of TM1/TM3 plus TM1 as SD predictors. In 

addition to inconsistent SD predictor/s, the model coefficient also changes to estimate SD on each 

image.  

Previous researchers directly used Landsat's Digital Number data (without correction) and 

built an SD estimation model in each corresponding scene (Brezonik et al., 2005; Kloiber et al., 

2002; Olmanson et al., 2008; 2016). This method was possible to be applied because their studies 

had enough in situ SD data to calibrate the model in each image. On the contrary, a similar study 

cannot be carried out because I do not have enough in situ SD data to calibrate the model on each 

Landsat scene.  Therefore, I should perform corrections to produce standard Landsat data. The 

standardized Landsat data enlarge the possibility of building a robust SD estimation model.  

Considering the broad bandwidths of Landsat TM and ETM+ sensors rather than the 

inherent optical properties (IOPs) of a waterbody, the different atmospheric effects on each set of 

historical satellite data are likely to provide a challenge to the building of a robust SD estimation 

model under an empirical scheme. Although not completely successful, Kloiber et al. (2002) 
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showed the potential to produce a standard SD estimation model for Landsat TM images acquired 

on different dates when the atmospheric effects in each image can be well removed in advance. 

Lobo et al. (2015) successfully applied a single empirical model to atmospherically corrected time-

series Landsat data to estimate the concentrations of total suspended solids (TSSs) in Amazonian 

rivers. In addition, since the empirical approach is generally not suitable for extrapolation, a wide 

dynamic range of SD values is also required to develop a robust estimation model. 

In addition to the atmospheric correction and SD dynamic range, observable system noise 

over the water surface in Landsat TM/ETM+ images due to the sensor's low signal-to-noise ratio 

(SNR) could well pose another difficulty in building a robust SD estimation model. Nichol and 

Vohora (2004) confirmed that the noise could significantly affect estimations of water quality 

parameters. They proposed a filtering method to smooth the Landsat TM images to improve the 

image quality over water areas before these images were further used.  

The studies mentioned above suggested that a robust SD estimation model could probably 

be developed using well-preprocessed Landsat TM/ETM+ images and corresponding in situ-

measured SD values with a wide dynamic range, even if an empirical approach was used. 

Consequently, the detailed objectives of this chapter were to:  

1. develop a robust SD estimation model by using a wide range of in situ-measured SD values 

(0.5–18.6 m) collected from nine Indonesian lakes/reservoirs and the corresponding 

atmospherically-corrected and filtered Landsat TM and ETM+ images;  

2. Evaluate the developed SD estimation model's performance using another in situ-measured 

SD dataset collected from Lake Maninjau, Indonesia. 

2.2. Materials and Methods  

2.2.1. Study Area 

In this chapter, the study was conducted in nine Indonesian lakes. The nine Indonesian 

lakes are Lake Toba, Lake Maninjau, Lake Singkarak, Jatiluhur Reservoir, Saguling Reservoir, 



13 
 

Lake Matano, Lake Towuti, Lake Tondano, and Lake Limboto. Those nine lakes were considered 

to represent various water types. The water types including different lake origins (natural or 

human-made), a wide range of water clarity (SD values 0.5–18.6 m), depths (3 – 560 m), sizes (50 

– 1,124 km2), and altitudes (25 – 965 m above mean sea level), (Table 2.1). 

 

Figure 2.1. The locations of nine Indonesian Lakes 

2.2.2. Data Collections 

 2.2.2.1. In situ Data collection 

I carried out seven field surveys to collect in situ SD data during the years 2011–2014. A 

standard 20-cm-dia. Secchi disk painted in white and black quarters was used to measure the SD 

values. The locations (longitude, latitude) of the SD measurements were recorded using a GPS 

receiver. In total, I collected 31 in situ SD values from nine Indonesian lakes (Fig. 1b, green circles). 

The SD values ranged from 0.5 m to 18.6 m. Table 2.1. provides the name of the lakes, the 

coordinates of the collection locations, the investigation dates, and the SD values. Hereafter, I refer 

to this dataset as the "In situ SD Dataset I", and I used this dataset for calibrating the SD estimation 

models. 

I also collected other in situ SD measurements from the Research Centre for Limnology (RCL), 

part of the Indonesian Institute of Science (LIPI). The RCL started to collect in situ SD data from 
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Lake Maninjau in 2001. A total of 186 SD measurements were collected from 41 field surveys 

from 2001 to 2018. In addition, one SD measurement was collected from Lake Maninjau by 

Lehmusluoto et al. (1997) in March 1992, and ten SD measurements were collected from My three 

field surveys (September 7, 2015: three SD measurements; September 11, 2017: four SD 

measurements; November 13, 2018: three SD measurements). I combined the above in situ SD 

data with a range of 0.50 m to 5.80 m as the "In situ SD Dataset II". I selected SD measurements 

with available Landsat data obtained during the same month from the "In situ SD Dataset II" and 

redefined these measurements as "In situ SD Dataset III". I used this dataset for validating the 

developed SD estimation models (n=74).  
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Table 2.1. The In Situ SD data of Nine Indonesian Lakes (In situ Dataset I) 

No. Name and site 
Area 

(km2) 

Max 

depth 

(m) 

Altitude 

(m) 

Coordinate Investigation 

date 

SD 

(m) 

 Longitude Latitude 

1 Singkarak st.1 

108 268 362 

100.5062 -0.5432 

2011-07-20 

3.70 

2 Singkarak st.2 100.5061 -0.5434 4.00 

3 Singkarak st.3 100.5446 -0.6228 3.05 

4 Singkarak st.4 100.5722 -0.6741 3.00 

5 Maninjau st.1 

98 165 459 

100.2234 -0.2879 

2011-07-21 

0.90 

6 Maninjau st.2 100.2173 -0.2879 0.97 

7 Maninjau st.3 100.2234 -0.2879 0.91 

8 Saguling st.1 

53 99 645 

107.4828 -6.9133 

2012-07-18 

0.94 

9 Saguling st.2 107.4948 -6.9177 0.86 

10 Saguling st.3 107.5349 -6.9333 0.88 

11 Saguling st.4 107.5546 -6.9025 0.79 

12 Tondano st.1 

50 20 600 

124.8862 1.2268 

2013-03-18 

2.80 

13 Tondano st.2 124.8857 1.2165 2.80 

14 Tondano st.3 124.8997 1.2461 2.90 

15 Tondano st.4 124.9034 1.2560 2.60 

16 Limboto st.1 

56 3 25 

122.9897 0.5877 

2013-03-20 

0.48 

17 Limboto st.2 122.9797 0.5910 0.46 

18 Limboto st.3 122.9929 0.5634 0.55 

19 Toba st.1 

1,124 529 905 

98.6586 2.7674 

2014-03-19 

6.54 

20 Toba st.2 98.9271 2.4147 6.50 

21 Toba st.3 98.9611 2.4410 6.22 

22 Jatiluhur st.1 

83 105 111 

107.3665 -6.5260 

2014-07-15 

1.37 

23 Jatiluhur st.2 107.3236 -6.5393 1.83 

24 Jatiluhur st.3 107.3024 -6.5805 1.74 

25 Jatiluhur st.4 107.3297 -6.5139 1.71 

26 Matano st.1 

164 590 382 

121.3001 -2.4843 

2014-10-07 

15.10 

27 Matano st.2 121.3690 -2.4943 18.60 

28 Matano st.3 121.4154 -2.5179 16.90 

29 Towuti st.1 

561 203 293 

121.5430 -2.6990 

2014-10-08 

15.30 

30 Towuti st.2 121.5104 -2.7989 17.10 

31 Towuti st.3 121.4607 -2.8633 12.40 
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  2.2.2.2. Satellite Data Collections  

I collected satellite images that were acquired by two Landsat sensors (i.e., TM and ETM+). I 

used Landsat TM and ETM+ data in this study due to their high spatial resolution (30 m) and long-

term data availability (since 1984). Except for a panchromatic band included in the ETM+, both 

sensors have a similar spectral configuration (three visible bands, three infrared bands, and one 

thermal infrared band, https://landsat.gsfc.nasa.gov/landsat-5/;  

https://landsat.gsfc.nasa.gov/landsat-7/). I did not use the thermal infrared and panchromatic bands 

in this study. 

A total of 309 Landsat TM/ETM+ images were downloaded from the USGS website 

(https://earthexplorer.usgs.gov/). These satellite images include (1) seven images corresponding 

with in situ SD Dataset I (hereafter referred to as "Landsat Dataset I", also see Table 2.2 for 

details); (2) 302 images covering Lake Maninjau during the years from 2001 to 2018 (hereafter 

referred to as "Landsat Dataset II"). In Landsat Dataset II, 21 images corresponding to In situ SD 

Dataset III are referred to as "Landsat Dataset III" (see Table 2.3 for details). 

Each Landsat TM/ETM+ image was bundled in a folder including three visible bands, three 

infrared bands, one thermal band, one panchromatic band (only for Landsat 7 ETM+), and a quality 

assessment band (BQA), which are all in Digital Number (DN) format. The additional files are the 

metadata file (_MTL.txt) and the ground control point file (_GCP.txt). For the Landsat 7 ETM+ 

dataset, scan line corrector (SLC) failure was also embedded with a folder containing "gap_mask" 

files. 

  

https://earthexplorer.usgs.gov/
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Table 2.2. Seven Landsat TM/ETM+ images corresponding with In situ SD Dataset I 

No 
Acquisition 

Date 
Path Row Sensor Lake/Reservoir 

Days between 

Satellite and 

Field Data  

1 2011-07-06 127 60 5 TM 
Singkarak & 

Maninjau 
-14 & -15 

2 2012-07-29 122 65 7 ETM+ Saguling 11 

3 2013-03-13 111 59 7 ETM+ Tondano 5 

4 2013-03-27 113 60 7 ETM+ Limboto 7 

5 2014-03-30 129 58 7 ETM+ Toba 11 

6 2014-07-19 122 65 7 ETM+ Jatiluhur 3 

7 2014-10-08 113 62 7 ETM+ Matano & Towuti 1 & 0 

 

Table 2.3. Twenty-one Landsat TM/ETM+ images of Lake Maninjau (Path=127, Row=60) 

corresponding to In situ SD Dataset III 

No. Acquisition date Sensor 

Days between Satellite 

and Field Data 

1 2001-05-31 7 ETM+ Same month 

2 2002-05-18 7 ETM+ Same month 

3 2005-06-03 5 TM Same month 

4 2005-12-04 7 ETM+ Same month 

5 2006-05-29 7 ETM+ Same month 

6 2006-08-17 7 ETM+ Same month 

7 2007-05-24 5 TM Same month 

8 2007-07-03 7 ETM+ Same month 

9 2008-08-14 5 TM Same month 

10 2009-05-29 5 TM Same month 

11 2009-08-25 7 ETM+ Same month 

12 2011-11-19 7 ETM+ Same month 

13 2012-03-26 7 ETM+ Same month 

14 2013-03-13 7 ETM+ Same month 

15 2014-04-01 7 ETM+ 20 days 

16 2017-03-08 7 ETM+ - 9 days 

17 2017-06-12 7 ETM+ Same day 

18 2018-01-06 7 ETM+ -9 days 

19 2018-04-28 7 ETM+ Same day 

20 2018-07-17 7 ETM+ - 2 days 

21 2018-09-19 7 ETM+ Same day 

Note: The dates of the field surveys were not available for Landsat images Nos. 1–14. 
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3rd. Atmospheric  
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2.2.3. Preprocessing Landsat TM and ETM+ Images 

The preprocessing procedure including: (1) removing of non-water pixels, (2) reduction of 

noise effects, and (3) atmospheric correction.  Figure 2.2.  show the flowchart of the Preprocessing 

of the Landsat TM and ETM+ images. 

 

 

 

Figure 2.2. Flowchart of the Preprocessing of the Landsat TM and ETM+ Images 
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2.2.3.1. Removing of Non-Water Pixels 

I first used lake polygons to clip water pixels and then masked the clipped water pixels 

with bad quality (i.e., pixels with a BQA value ≠ 672). I further removed the water pixels 

contaminated by clouds or cloud shadows by using the Normalized Different Water Index (NDWI, 

[McFeeters, 1996]) and the Modified Normalized Different Water Index (MNDWI, [Xu, 2006]). 

The NDWI and MNDWI values can be calculated using the following equations: 

NDWI = (dgreen − dNIR)/(dgreen + dNIR), (1) 

MNDWI = (dgreen − dSWIR)/(dgreen + dSWIR), (2) 

 

dgreen, dNIR, and dSWIR are the DN values at the green band, near-infrared band, and shortwave 

infrared band. The contaminated water pixels were the pixels with both NDWI and MNDWI values 

<0 within the lake polygons. 

2.2.3.2. Reducing Noise Effects on Water Pixels 

Due to the low signal-to-noise ratios (SNRs) of the Landsat TM and ETM+ sensors, a 

coherent system noise pattern is observable in the images over homogeneous surfaces such as lakes 

(Poros and Petersen, 1985). Nichol and Vohora (2004) pointed out that the noise is serious enough 

to affect estimations of water-quality parameters. They proposed a method for removing the noise 

that uses an iterative median filtering technique in the spatial domain. In the present study, I 

followed Nichol and Vohora's (2004) method. I first iteratively applied a median filter with a 3-

pixel by 3-pixel window to the image until no further change in pixel values was observed. I also 

limited the maximum iteration to 1,000 times to avoid a long computational time. I then changed 

the median filter size to a 5-pixel by 5-pixel window and repeated the first step. 
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2.2.3.3. Converting DN Values to Radiance and Minimizing Atmospheric Effects 

I then converted the filtered DN values to at-sensor spectral radiance (Lλ) by using Eq. 3 

(Chander et al. 2009): 

Lλ = Grescale * QCAL + Brescale, (3) 

 

where Lλ is the spectral radiance at the sensor's aperture (W/(m2·sr·μm), QCAL is the quantized 

calibrated pixel value (DN), Brescale is the band-specific rescaling bias factor from Chander et al. 

(2009) (W/(m2 sr μm))/DN), and Grescale is the band-specific rescaling gain factor from Chander et 

al. (2009) (W/(m2 sr μm) ). 

Atmospheric correction is a crucial step in using satellite data, especially for the application 

of a single estimation model to different images across time and space (Kloiber et al. 2002). I 

proposed the use of a two-step atmospheric correction method to avoid the requirement of ancillary 

data for correcting aerosol effects (e.g., horizontal visibility, ratios of fine particles, and relative 

humidity in the atmosphere) following Wang et al. (2018).  In the first step, I carried out only a 

Rayleigh scattering correction using the 6S (Second Simulation of the Satellite Signal in the Solar 

Spectrum) radiative transfer model without considering aerosol effects (Vermote et al. 1997). I 

selected a standard tropical atmospheric model for this correction. Table 2.4 provide detailed input 

for 6S software. The Rayleigh corrected reflectance (Rrc) for each band can be obtained using the 

following equations: 

Rrc
 = y/(1.0 + xc*y), (4) 

y = xa * (Lλ) − xb, (5) 

where xa, xb, and xc are the coefficients calculated using the 6S code. 
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In the second step, I further mitigated the aerosol scattering effect pixel-by-pixel by 

subtracting the minimum of the Rayleigh corrected reflectance at the near-infrared (Rrc(4)) and 

middle-infrared (Rrc(5)) bands from those at the visible bands (Rrc(λ)): 

Rc(λ) = Rrc(λ) – min (Rrc(4), Rrc(5)),                                         (6) 

where Rc(λ) is the atmospherically corrected reflectance at Landsat visible bands. The second step 

is based on the following assumptions: (1) the water absorption at the near-infrared and middle-

infrared bands is very strong, and thus the water-leaving reflectance at those bands can be 

considered to be zero; (2) aerosol is probably heterogeneously distributed over a lake and varies 

temporally; and (3) the wavelength dependence of the aerosol effect is negligible. 

Table 2.4.  An Example of Input for Rayleigh Scattering Correction Using 6S Radiative Transfer 

Model 

Input data Explanation Source of data 

7 Sensor type: Landsat TM  

03 13 1.7708 124.903 

1.233 

Month, date, time, longitude, latitude Landsat meta-data file 

(*.MTL) 

1 Tropical User-defined 

 Please leave it blank  

0 0 = no aerosol computed  User-defined 

 Please leave it blank  

-1 Visibility (-1=no data) User-defined 

 Please leave it blank  

-06 Target above sea level (in negative 

km) 

Topographical map  

-1000 Sensor aboard on satellite   

 Please leave it blank  

25 Landsat TM band1  

0  Non-homogenous surface User-defined 

0 No directional effects User-defined 

4 Mean spectral value (4=lake) User-defined 

1 Request for AC (=yes)  

-0.1 Parameter of the AC (-

0.1=reflectance) 

 

4 Ground surface is not polarized User-defined 
 

  



22 
 

2.2.4. SD Estimation Model Development and Accuracy Assessment 

2.2.4.1. Development of Empirical SD Estimation Models 

I used In situ SD Dataset I and the preprocessed Landsat Dataset I to develop empirical SD 

estimation models. To reduce the impact of geometric errors associated with GPS-recorded 

locations of SD measurements and Landsat images, I used a 3-pixel by 3-pixel sampling window 

to extract the water-leaving reflectance (i.e., the preprocessed Landsat data). I averaged these 

values to pair them with the corresponding in situ SD measurements. I obtained a total of 31 pairs 

(Table 2.1). Next, to reduce the measurement errors in the in situ SD values, and by considering 

our finding of small variation between the SD measurements in each lake, I averaged the in situ 

SD values and the corresponding extracted water-leaving reflectance for each lake. The number 

of pairs was thus reduced from 31 pairs to nine pairs. I then used the nine natural log-transformed 

in situ SD values as dependent variables and various combinations of the corresponding water-

leaving reflectance at the three Landsat visible bands (e.g., using single bands, band ratios, band 

ratios and single bands, and two-band ratios) as independent variables to develop the SD 

estimation models by using the regression/multiple-regression analysis technique. The general 

equations of the SD estimation models are as follows: 

ln (SD) = a + b (single band), (7) 

ln (SD) = a + b (band ratio), (8) 

ln (SD) = a + b (band ratio) + c (single band), (9) 

ln (SD) = a + b (band ratio 1) + c (band ratio 2), (10) 
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where a, b, and c are coefficients and can be obtained by fitting the calibration data. Several 

research groups have recommended using natural log-transformed SD values (e.g., Bonansea et al. 

2015a; Brezonik et al. 2005; Kloiber et al. 2002; Olmanson et al. 2008). 

Equations (7) through (10) include three single band-based (1–3), six band-ratio-based (A–

F), 18 band ratio and single band-based (A1–F3), and 15 two band ratio-based (AB–EF) SD 

estimation models, respectively (also see Table 2.5). 

2.2.4.2. Accuracy Assessment 

I used three indices for assessing the accuracy of the developed models: the root means 

square error (RMSE), the mean normalized bias (MNB), and the normalized mean absolute error 

(NMAE). These indices are defined as follows: 

RMSE =  √∑ (𝑋𝑒𝑠𝑡𝑖,𝑖−𝑋𝑚𝑒𝑎𝑠,𝑖)
2𝑁

𝑖=1

𝑛
, (11) 

MNB (%) = mean (100×(Xesti,i−Xmeas,i)/ Xmeas), (12) 

NMAE (%) = mean (|100×(Xesti,i−Xmeas,i)/ Xmeas,i|), (13) 

where Xesti,i and Xmeas,i are the estimated and measured SD values, respectively; N is the number 

of samples. The RMSE denotes the absolute scattering of estimated SD values. The MNB 

represents the average bias in the estimation, and the NMAE means the average relative error in 

the estimations. I also calculate the correlation between the measured and estimated values (R2).  

I also used R language (R Core Team, 2018) for several statistical analyses. First, I used 

an R package named “hydroGOF” (Mauricio et al., 2017) to calculate Willmott Index of 

Agreement (WIA) and Nash–Sutcliffe model efficiency (NSME) to enhance the accuracy 

assessment of the developed model. The WIA value is a measure of modeled errors and varies 

between 0 and 1. A WIA value closer to 1 represents a better match between in situ data and 

modeled data (Willmott, 1981). The NSME value indicates how well the in situ data versus 

modeled data fits the 1:1 line, and a value closer to 1 indicates a better match of the modeled data 
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to the in situ data (Nash et al., 1970). Second, I made a Taylor diagram using the “openair” package 

in R language to compare the performance between different SD estimation models (Carslaw et 

al., 2012). The correlation coefficient (R), root-mean-square (RMS) difference, and the standard 

deviations of different models can be simultaneously shown in this diagram (Taylor, 2001). Third, 

I used an R package named “ggplot2” (Wickham, 2016) to obtain long-term trends based on in 

situ-measured and satellite estimated SD values by using the Locally wEighted Scatterplot 

Smoothing (LOESS) method. LOESS uses Savitzky–Golay filter to obtain a trend line from 

scattered points by local polynomial regression. It has been widely used in time-series data 

analyses (e.g., Christina et al., 2016; Lu et al., 2003; Jiang et al., 2010). 

2.3. Results 

2.3.1. Improved Landsat Data Quality by Filtering  

The filtering procedures aimed to replace the extremely low and extremely high pixels with 

the specified box's median values. The filter will calculate the median value from that specified 

box rather than produce a new value. In this study, the box size is 3 by 3 and 5 by 5. The 

calculations were done iteratively until no further change in pixel value was observed. Figure 2.3. 

showed the comparison of non-filtered and filtered reflectance of the visible band of Lake 

Maninjau acquired in 2008-08-14. Fluctuated reflectance values of neighboring pixels were 

observed. Figure 2.4. shows more considerable reflectance fluctuation between adjacent pixels of 

Lake Towuti acquired 1994-11-10, which is known as the clear lakes (SD >15 m). Generally, over 

clear water, the reflectance values are relatively lower than over turbid water. The weaker signal 

consequently resulted in the more dominant noise captured by the sensor. The unstable pixel values 

will influence further calculation results such as converting DN to radiance, atmospheric 

correction and may lead to inaccurate SD estimation. Figures 2.3. (b)  and 2.4. (b) shows the 

filtering results (red line). It indicated that the filter was necessary to be applied to obtain more 

stable and reliable reflectance for both Landsat TM and ETM+ data. 
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Figure 2.3.  Comparing Transects of (a) Non-Filtered Reflectance and (b) Filtered Reflectance in 

Lake Maninjau. (c) Landsat Path = 127, row = 60, date acquired 2008-08-14, the average 

corresponding SD = 3 m. 
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Figure 2.4.  Comparing Transects of (a) Non-Filtered Reflectance and (b) Filtered Reflectance in 

Lake Towuti. (c) Landsat Path = 113, row = 62, date acquired 1994-11-10, the average in situ 

SD = 20 m. 
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2.3.2. Atmospherically Corrected Reflectance 

The atmospheric corrections aimed to obtain comparable reflectance data acquired from 

different time and location. The atmospheric corrections in this study consist of two steps. The 

first step is for Rayleigh scattering effect correction, and the second step is to mitigate the aerosol 

scattering effect in visible bands. I applied two-step atmospheric correction because the 

information about the aerosol thickness or visibility data were not available. Figure 2.5. shows the 

comparison of atmospherically corrected reflectance (blue line), uncorrected reflectance (dashed 

lines), and Surface reflectance product from the USGS website (red lines) of nine lakes data, which 

were used for SD calibration.   

 

Figure 2.5. Comparison of the Uncorrected reflectance (black dashed line), Surface Reflectance 

product from USGS (Red solid line), and Corrected Reflectance using the proposed method (solid 

blue line) for Seven Landsat TM/ETM+ images corresponding with "In situ SD Dataset I". 
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Results demonstrated that the proposed atmospheric correction method has a better spectra 

profile than the USGS standard product. The USGS product often fails to remove the aerosol at 

the longer wavelength (band 4, band 5, and band 7). The reflectance over the water surface should 

be very close to zero at these longer wavelengths due to the very strong water absorption. The 

proposed atmospheric correction successfully removed the Rayleigh effect and mitigated the 

Aerosol effect for both turbid and clear lakes pixel by pixel.  

2.3.3 Empirical Models for Estimating the SD from Landsat TM/ETM+ Data 

Table 2.5 shows all of the developed SD estimation models and their performances based 

on In situ SD Dataset I and the preprocessed Landsat Dataset I. I excluded the SD estimation 

models with the worse performance from the further analyses using thresholds of R2 values <0.9 

and RMSE values >2.5 m. SD estimation models remained (models in bold in Table 2.5): Two 

band-ratio-based models (A and B), six band-ratio with single-band-based models (A1–A3 and 

B1–B3), and nine two-band ratio-based models (AB–AF and BC–BF). Since all 17 remaining SD 

estimation models contained band ratio of TM1 and TM3 (TM1/TM3) or band ratio of TM1 and 

TM2 (TM1/TM2), I refer to the models with TM1/TM3 as "A-type models" and the models with 

TM1/TM2 as "B-type models" hereafter for convenience. In addition, all 17 remaining SD 

estimation models showed WIA and NSME values larger than 0.96 and 0.87, respectively. 

Figure 2.6. provides the scatterplots of the in situ SD measurements and the corresponding 

estimated SD values using the selected 17 models in the model calibration procedures. The A-type 

models generally showed better performances than the B-type models. The A-type models' 

determination's coefficients ranged from 0.97 to 0.99, with RMSE values ranging from 0.8 to 1.6 

m and NMAE values ranging from 24.3 to 34.7%. In contrast, the ranges of the coefficients of 

determination, RMSE, and NMAE of the B-type models were 0.91–0.96, 1.9–2.2 m, and 42–

51.1%, respectively.  
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Table. 2.5. The developed SD estimation models and their performances based on In situ SD 

Dataset I and the preprocessed Landsat Dataset I. 
Variable Type ln (SD) = R2 RMSE (m) MNB (%) NMAE (%) 

Single band 

1 -0.04 + 29.35(TM1) 0.021 6.6 89.7 140.5 

2 2.77 - 47.99(TM2) 0.317 5.9 58.8 111.0 

3 2.24 - 53.91(TM3) 0.330 5.9 55.2 107.5 

Band ratio 

A -2.45 + 1.81(TM1/TM3) 0.971 1.6 10.1 34.7 

B -3.29 + 3.93(TM1/TM2) 0.914 2.1 16.6 50.7 

C -5.77 + 3.95(TM2/TM3) 0.270 5.6 43.2 86.9 

D  3.33 - 3.88(TM3/TM1) 0.782 4.6 29.3 74.5 

E  4.55 - 3.60(TM2/TM1) 0.845 4.0 28.2 68.3 

F  6.97 - 10.07(TM3/TM2) 0.293 5.6 45.7 91.1 

Band ratio 

and single 

band 

A1 -4.36 + 1.87(TM1/TM3) + 49.01(TM1) 0.985 0.8 4.4 25.0 

A2 -4.48 + 2.33TM1/TM3) + 28.22(TM2) 0.983 0.8 5.4 24.3 

A3 -3.85 + 2.24(TM1/TM3) + 25.83(TM3) 0.982 0.9 6.6 27.2 

B1 -4.43 + 3.94(TM1/TM2) + 30.99(TM1) 0.919 1.9 12.5 46.7 

B2 -4.47 + 4.52(TM1/TM2) + 14.93(TM2) 0.915 1.9 13.9 49.4 

B3 -3.71 + 4.18(TM1/TM2) + 7.18(TM3) 0.912 2.0 15.8 50.3 

C1 -13.60 + 5.85(TM2/TM3) + 124.11(TM1) 0.540 4.2 15.8 56.6 

C2 -4.17 + 3.28(TM2/TM3) -12.07(TM2) 0.339 5.5 42.9 88.9 

C3 -4.80 + 3.49(TM2/TM3) - 8.40(TM3) 0.297 5.6 43.3 88.2 

D1 0.21 - 4.84(TM3/TM1) + 100.49(TM1) 0.926 2.8 8.2 34.5 

D2 4.53 - 11.87(TM3/TM1) + 146.26(TM2) 0.936 3.1 17.5 50.5 

D3 4.27 - 10.20(TM3/TM1) + 125.67(TM3) 0.925 2.8 9.8 36.8 

E1 2.75 - 3.78(TM2/TM1) + 53.86(TM1) 0.899 3.2 17.4 53.4 

E2 4.80 - 5.10(TM2/TM1) + 33.83(TM2) 0.890 3.4 21.0 57.0 

E3 4.90 - 4.47(TM2/TM1) + 22.52(TM3) 0.866 3.7 25.4 63.9 

F1 5.46 - 16.59(TM3/TM2) + 146.02(TM1) 0.679 3.6 10.3 42.9 

F2 6.63 - 9.10(TM3/TM2) - 6.16(TM2) 0.327 5.6 45.5 92.3 

F3 7.11 - 10.37(TM3/TM2) + 2.01(TM3) 0.287 5.6 45.7 90.9 

Two band 

ratios 

AB -2.49 + 1.76(TM1/TM3) + 0.12(TM1/TM2) 0.971 1.6 10.2 34.6 

AC -1.80 + 1.95(TM1/TM3) - 0.53(TM2/TM3) 0.973 1.4 10.2 34.3 

AD -4.34 + 2.35(TM1/TM3) + 1.45(TM3/TM1) 0.979 1.0 8.1 26.4 

AE -4.17 + 2.22(TM1/TM3) + 0.96(TM2/TM1) 0.974 1.3 8.6 30.5 

AF -3.94 + 2.00(TM1/TM3) + 1.89(TM3/TM2) 0.974 1.3 9.9 33.7 

BC -4.84 + 3.37(TM1/TM2) + 1.26(TM2/TM3) 0.957 2.0 13.0 42.0 

BD -3.05 + 3.80(TM1/TM2) - 0.16(TM3/TM1) 0.916 2.2 16.7 51.1 

BE -6.78 + 5.60(TM1/TM2) + 1.70(TM2/TM1) 0.905 1.9 14.2 48.8 

BF -1.18 + 3.45(TM1/TM2) - 2.67(TM3/TM2) 0.946 2.1 14.4 45.2 

CD  2.53 + 0.38(TM2/TM3) - 3.62(TM3/TM1) 0.769 4.6 28.6 73.8 

CE  1.48 + 1.41(TM2/TM3) - 2.94(TM2/TM1) 0.861 3.9 22.3 60.8 

CF -10.31 + 5.34(TM2/TM3) + 3.64(TM3/TM2) 0.260 5.6 42.6 86.6 

DE  4.49 - 0.28(TM3/TM1) - 3.36(TM2/TM1) 0.846 4.0 28.0 67.9 

DF  2.72 - 4.27(TM3/TM1) + 1.43(TM3/TM2) 0.790 4.6 29.9 74.4 

EF  5.65 - 3.07(TM2/TM1) - 2.74(TM3/TM2) 0.865 3.9 24.7 64.1 
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Figure 2.6. Comparison of the in situ SD measurements and the corresponding estimated SD 

values using the 17 selected models in the model calibration procedures. 
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2.3.4. Validation of the 17 Selected SD Estimation Models in Lake Maninjau  

Figure 2.7 and Table 2.6 illustrate the results of our comparisons of the in situ-measured 

SD values (In situ SD Dataset III) and the corresponding estimated SD values from the 

preprocessed Landsat images (Landsat Dataset III) using the 17 selected SD estimation models. 

The figure and table reveal that the B-type models generally outperformed the A-type models in 

Lake Maninjau. All of the A-type models showed larger overestimations with RMSE values 

ranging from 1.64 to 2.55 m (average 1.94 m) and lower R2 values ranging from 0.25 to 0.44 

(Figure 2.7 a–i). In contrast, the B-type models showed smaller RMSE values (0.92–1.52 m, with 

an average of 1.07 m) and higher R2 values (0.35–0.60; Figures 2.7 j–q). 

Figure 2.8 shows the performances of the 17 selected SD estimation models using the 

Taylor diagram, which also reveals that the B-type models have better performance than the A-

type models in Lake Maninjau (higher R values and smaller RMS errors). Among the B-type 

models, since the BF model showed the highest R2 value (0.60; Table 2.6), the closest distance to 

the observed point (Figure 2.8), the highest WIA value (0.83; Table 2.6), a smaller RMSE value 

(1.01 m; Table 2.6), I chose this model for further analysis. 
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Figure 2.7. Comparisons of the in situ-measured SD values (In situ SD Dataset III) and the 

corresponding estimated SD values from the preprocessed Landsat images (Landsat Dataset III) 

using the 17 selected SD estimation models (n = 74). 
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Table 2.6. The developed SD estimation models and their performances based on In situ SD 

Dataset III and the preprocessed Landsat Dataset III (n=74) 

Name ln (SD) = R2 

WIA

* 

NSME 

** 

RMSE 

(m) 

MNB  

(%) 

NMAE 

(%) 

A -2.45 + 1.81(TM1/TM3) 0.42 0.68 -0.88 1.83 83.46 89.83 

A1 -4.36 + 1.87(TM1/TM3) + 49.01(TM1) 0.34 0.65 -1.29 2.02 45.98 63.67 

A2 -4.48 + 2.33TM1/TM3) + 28.22(TM2) 0.39 0.66 -1.35 2.05 61.35 73.23 

A3 -3.85 + 2.24(TM1/TM3) + 25.83(TM3) 0.44 0.72 -0.61 1.70 57.25 69.72 

AB -2.49 + 1.76(TM1/TM3) + 0.12(TM1/TM2) 0.32 0.62 -1.24 2.00 98.44 106.40 

AC -1.80 + 1.95(TM1/TM3) - 0.53(TM2/TM3) 0.36 0.69 -0.52 1.65 81.22 93.08 

AD -4.34 + 2.35(TM1/TM3) + 1.45(TM3/TM1) 0.32 0.63 -1.37 2.06 88.98 99.28 

AE -4.17 + 2.22(TM1/TM3) + 0.96(TM2/TM1) 0.25 0.54 -2.63 2.55 115.41 122.65 

AF -3.94 + 2.00(TM1/TM3) + 1.89(TM3/TM2) 0.36 0.69 -0.51 1.64 76.59 90.17 

B -3.29 + 3.93(TM1/TM2) 0.54 0.83 0.53 0.92 30.67 54.19 

B1 -4.43 + 3.94(TM1/TM2) + 30.99(TM1) 0.35 0.76 0.16 1.23 13.44 48.66 

B2 -4.47 + 4.52(TM1/TM2) + 14.93(TM2) 0.48 0.82 0.46 0.98 14.80 45.81 

B3 -3.71 + 4.18(TM1/TM2) + 7.18(TM3) 0.52 0.83 0.52 0.93 22.72 50.20 

BC -4.84 + 3.37(TM1/TM2) + 1.26(TM2/TM3) 0.40 0.71 -0.29 1.52 84.90 92.43 

BD -3.05 + 3.80(TM1/TM2) - 0.16(TM3/TM1) 0.54 0.83 0.53 0.92 33.19 55.38 

BE -6.78 + 5.60(TM1/TM2) + 1.70(TM2/TM1) 0.38 0.76 0.37 1.07 26.62 55.97 

BF -1.18 + 3.45(TM1/TM2) - 2.67(TM3/TM2) 0.60 0.83 0.43 1.01 56.47 67.43 

Note: *: Willmott Index of Agreement, **: Nash-Sutcliffe model efficiency. 
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Figure 2.8. Comparison of the 17 selected SD estimation models using the Taylor diagram in 

terms of their correlation coefficients, root-mean-square differences, and standard deviations. 

 

2.3.5. Long-term SD Changes in Lake Maninjau from the Landsat TM/ETM+ Time Series 

I applied the BF model to the preprocessed Landsat Dataset II to observe the long-term SD 

change in Lake Maninjau (1987–2018). To maintain the representativeness of the SD of the entire 

lake, I excluded Landsat images with <50% available water pixels in Lake Maninjau (see Section 

2.2.3.1 above). I also removed two Landsat images (acquired on July 2, 2004, and July 5, 2005) 

due to a large area of clouds and cloud shadows that failed to be masked by the BQA, NDWI, 

MNDWI values. I thus used only 230 Landsat images for the long-term SD change analysis. 

Figure 2.9 provides the averaged SD values estimated from the 230 preprocessed Landsat 

images using the BF model. The averaged in situ SD measurements of each field survey in Lake 

Maninjau are also shown in Figure 2.9 for visual comparison. From the long-term Landsat-based 

SD estimations, it can be seen that low SD values (1–1.5 m) occurred four times during the years 

from 2001 to 2018 (around 1989, 1999, 2011, and 2018). Around 2004, the water transparency in 

Lake Maninjau increased notably, as the SD values changed from 1.5 m (around 1999) to approx. 

6 m. The lake's water transparency then showed a continuous decrease until 2011, a smaller 
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tendency to increase in 2011–2015, and a decreasing trend again in 2015–2018. These water 

transparency variations observed from the Landsat-based SD estimations can be validated by the 

In situ SD dataset II after 2001 (Figure 2.9, blue points, and trend line), which showed a similar 

fluctuation pattern of SD values. 

 

Figure 2.9. Long-term changes in water transparency in Lake Maninjau from 1987 to 2018. Red 

points: The averaged SD values estimated from the preprocessed Landsat Dataset II using the BF 

model. Blue points: The averaged in situ SD values for each field survey (In situ SD Dataset II). 

Redline: obtained from the red points via a trend analysis in the R language. Blueline: obtained 

from the blue points via a trend analysis in the R language. Gray areas: 95% confidence intervals 

of the trend analysis. 
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2.4. Discussion 

2.4.1 Atmospheric Correction Caused Unstable TM1/TM3 

Previous research directly used Digital Number (DN) and calibrated the model using in 

situ data then estimated SD for whole water pixels in the corresponding scenes (Kloiber et al., 

2002; Brezonik et al., 2005; Olmanson et al., 2008 and Olmanson et al., 2016). In situ data were 

available to calibrate the corresponding image one by one, and thus it possible to use the Digital 

Number (DN) data format. In my research, the number of corresponding in situ data with Landsat 

images was very limited, and it also comes from different lakes, locations, and time of image 

acquisition. The atmospheric effect should be corrected to make a standard data set. After 

atmospheric correction, I found that the band ratio of reflectance TM1/TM3 becomes very volatile 

in contrast to the DN ratio at the same band, as shown in Figure 2.10 (red line). Even though a 

series of the median filter was applied, the band ratio of TM1/TM3 still showed a larger magnitude 

between neighboring pixels, especially in Lake Towuti (a clear lake).     

 

Figure 2.10. Comparing transects of Digital Number, Non-filtered atmospheric corrected 

reflectance, and Filtered Atmospheric corrected reflectance of Lake Towuti, a clear lake with an 

SD = 20 m (a), and Lake Maninjau, a medium turbid lake with SD = 3 m (b). 
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After performing atmospheric correction, the TM1/TM3 becomes unstable; using this band 

ratio as an SD predictor will estimate unstable SD values. On the other hand, after performed 

atmospheric correction, the band ratio of TM1/TM2 showed smaller fluctuation between 

neighboring pixels compares to TM1/TM3. The stable band ratios of atmospherically corrected 

reflectance of TM1/TM2 indicate that the model contains TM1/TM2 will have more robust SD 

estimations. Figure 2.11 shows the spectra of three neighbor pixels extracted from Lake Maninjau, 

the same Images as Figure 2.10 (b).  

The original DN data shows similar spectra profile (Figure 2.11. (a)) and a more stable 

band ratio (Figure 2.11. (c)). In detail, the DN value of band_3 of these three pixels is 14, 15, and 

16, respectively. Contrary, after the atmospheric correction, the pixel's absolute values become 

very small, and the relative difference between neighboring pixels becomes more explicit, 

especially for band_3 (Figure 2.11. (b)). Consequently, using atmospherically corrected data 

resulted in an unstable band ratio of TM1/TM3 (Figure 2.11. (d)). 

 

Figure 2.11. Spectra of three neighbor pixels and their band ratios in Lake Maninjau; (a) in 

original DN format, (b) after atmospheric correction, (c) band ratio of original DN, (d) band ratio 

after atmospheric correction.  
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2.4.2. Benefit of Using TM2 as the Denominator in Band Ratios 

Many researchers have suggested that the use of the band ratio of TM1/TM3 with the single 

band of TM1 as the SD predictor (i.e., the A1 model in Table 2.5; [e.g., Bonansea et al., 2015; 

Brezonik et al., 2005; Kloiber et al., 2002; Olmanson et a., 2008, 2016; Zhao et al., 2011; 

Sriwongsitanon et al., 2011]). Their suggestion differed from the recommendation in my study. 

The two band ratios of TM1/TM2 and TM3/TM2 are suggested as independent variables in the 

SD estimation model (i.e., the BF model in Table 2.5). The A1 model showed the best performance 

in the calibration procedure with the highest R2 value of 0.99 and the smallest RMSE of 0.8 m 

(Figure 2.6.b). However, the A1 model showed a lower R2 value (0.34) and larger error 

(RMSE=2.0 m) in the validation procedure (Figure 2.7.b). I observed many outliers in the SD 

estimations when the A1 model was applied to the Landsat Dataset II to estimate long-term SD 

changes (data not shown). Similar results were observed in all A-type and B-type models (Figs. 

2.7 and 2.8). These findings indicate that the A-type models present considerable uncertainty, 

whereas the B-type models are more robust in many applications. 

2.4.3. Advantages of Using Two-Band Ratio Models 

Another difference between my model and the previous models is that I used the band ratio 

instead of a single band for the second independent variable (i.e., I used TM3/TM2 instead of 

TM1). The merit of using the band ratio is that effects due to imperfect atmospheric correction can 

be mitigated (Doxaran et al., 2002, 2003). In addition, since water-leaving reflectance at the green 

band (TM2) does not change as much as that at the blue and red bands (TM1 and TM3) in various 

waters, using this value to normalize water-leaving reflectance at blue and red bands can avoid a 

large fluctuation of the ratios. The BF model thus showed the greatest robustness in Lake Maninjau 

(Fig. 2.7). 
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2.4.4. Applicability of the Developed SD Estimation Model 

In this chapter, I developed an empirical model for estimating SD values from Landsat 

data. Although the number of data pairs is small, the reflectance and SD data pairs were collected 

from nine Indonesian lakes with a wide dynamic range of SD values (0.5–18.6 m). I also conducted 

a series of preprocessing steps, including removing contaminated water pixels, filtering the 

images, and mitigating the atmospheric effects before the Landsat data were used. These efforts 

enable the developed SD estimation model to be applied to different Landsat images across time 

and space (Bonansea et al., 2015; Kloiber et al., 2002; Sriwongsitanon et al., 2011). In contrast, 

since the fewer available bands and the broad bandwidths of Landsat TM and ETM+ sensors, the 

changed IOPs in different water bodies are probably not the main cause to affect the robustness 

and universality of the developed SD estimation model. Nevertheless, the developed SD estimation 

model is still needed to be further validated by using more comprehensive data pairs collecting 

from various waters or simulation experiments. 

2.5. Conclusions  

In this chapter, I developed an empirical model to estimate SD values from Landsat 

TM/ETM+ data. The developed model suggested using the two-band ratios of TM1/TM2 and 

TM3/TM2 as the SD predictor to reduce uncertainties in the model. This suggestion differs from 

the recommendations in previous studies. The preprocessing procedure for Landsat data is 

essential for improving the robustness of the developed model. The model has the potential to 

generate an SD database for Indonesian lakes. 
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Chapter III Application of the Developed 

Model to Indonesian Lakes 
 

 3.1. Introduction 

Routine monitoring of the water environment is necessary to ensure the management 

practices for achieving sustainability (Blake et al., 2013). In addition, long-term water quality 

information on a broad regional and spatial scale is also essential for effective lake management 

(Olmanson et al., 2008). However, monitoring data for evaluating water quality is very limited in 

Indonesia due to a lack of a field survey budget. A combination of field surveys and remote sensing 

techniques can provide comprehensive data solutions to address sustainability issues because 

satellite sensors have the potential to provide better spatial and temporal coverage compared with 

traditional field surveys (Blake et al., 2013).  

Relating to global concerns, the Sustainable Development Goal (SDG) 6.3.2 of the United 

Nations (UN) focuses on ambient water quality (UN, 2015). For SDG 6.3.2 water quality 

evaluation, the UN-Water Group proposed five water quality parameters: nitrogen, phosphorus, 

pH, dissolved oxygen, and electrical conductivity as the global scale indicator (UN-Water, 2017).  

However, these parameters are mainly based on field measurements and laboratory analysis, 

limited by the number of monitoring stations or data and laboratory analysis costs. As a result, 

many countries are unable to provide global-level evaluation reports for SDG 6.3.2 (UN-Water, 

2018). On the other hand, water clarity (SD) simplistically and visually reflects water quality and 

can potentially support SDG 6.3.2 reporting (Shen et al., 2020).  

Shen et al. (2020) proposed a simple SDG 6.3.2 indicator evaluation scheme established 

from remote sensing derived Secchi Disk Depth (SD). The proposed scheme has higher 

spatiotemporal coverage data and effectively evaluates water quality in inland lake waters over a 
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large area, and demonstrates a significant increase in data availability and continuity for the SDG 

6.3.2 evaluation.  

In Chapter II, a robust model to estimate SD using Landsat TM/ETM+ data was developed. 

The Landsat-based SD estimations using the developed model well captured the changes in water 

transparency in Lake Maninjau. The developed model has the potential to generate an SD database 

for other Indonesian lakes. However, the reliability of the estimated SD and the generated SD 

database should be verified. Accordingly, the specific objectives of this chapter were to: (1) 

confirm the model can estimate reasonable SD in Indonesian lakes, (2) check the reasonableness 

of the generated SD database, (3) show the SD changes of large Indonesian lakes using the 

generated database.  

3.2. Material and Methods 

3.2.1. Study Area 

According to Hamzah (2019), Indonesia has 60 lakes with an area larger than 10 km2, 

including 50 natural lakes and ten reservoirs. Considering the Landsat Images availability, I 

studied 35 lakes. The 35 lakes including ten reservoirs and 25 natural lakes. Table 3.1 provides the 

lakes coordinate, surface area, and the number of usable Landsat images. Lake Towuti is the 

clearest lake with a surface area of 561 km2. The maximum SD was observed as 20 m in 1992 

(Lehmusluoto et al., 1997). Lake Limboto is the most turbid lake in Indonesia; with a surface area 

of 56 km2, the SD was observed as 0.4 m in 1993 (Lehmusluoto et al., 1997). Lake Toba is the 

largest lake with a surface area of 1,121 km2. The maximum SD was observed as 15.5 m in the 

Northern part and 13.5 m in the Southern part in 1992 (Lehmusluoto et al., 1997). In 2009, SD 

was observed as around 11 m in the Northern part and 9.5 m in the Southern part (Nomosatryo 

and Lukman, 2012). Lake Dibawah is the smallest lakes among the 35 selected lakes, with a 

surface area of 11 km2. SD was observed as 5.5 m in 1992 (Lehmusluoto et al., 1997). Figure 3.1 

shows the locations of the selected lakes. 
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Table 3.1. List of 35 Selected Indonesian Lakes with an area larger than 10 km2 and the amount 

of usable Landsat images 

No. Name Island Latitude 

(° N) 

Longitude 

(° E) 

Area 

(km2) 

Amount of 

Landsat (scene) 

1 Toba Sumatera 2.4347 98.9949 1,121 327 

2 Maninjau Sumatera -0.3266 100.1924 96 230 

3 Singkarak Sumatera -0.6122 100.5410 107 201 

4 Dibawah Sumatera -1.0105 100.7310 11 192 

5 Diatas Sumatera -1.0762 100.7548 12 200 

6 Kerinci Sumatera -2.1476 101.4920 44 176 

7 Tasik Dalam Sumatera 0.6565 102.2243 18 286 

8 Ranau Sumatera -4.8478 103.9392 125 196 

9 Cirata (R) Jawa -6.7339 107.2843 62 329 

10 Jatiluhur (R) Jawa -6.5343 107.3724 83 313 

11 Saguling (R) Jawa -6.9306 107.4267 53 310 

12 Cacaban (R)  Jawa -7.0081 109.2105 59 281 

13 Sempor (R) Jawa -7.5604 109.4845 12 328 

14 Merica (R) Jawa -7.3854 109.6210 13 224 

15 Wadaslintang (R) Jawa -7.5819 109.7865 15 303 

16 Rawapening Jawa -7.2834 110.4333 27 320 

17 Kedungombo (R) Jawa -7.2659 110.8240 65 158 

18 Gajahmungkur (R) Jawa -7.8958 110.9053 88 214 

19 Sutami (R) Jawa -8.1795 112.4753 15 258 

20 Luar Kalimantan 0.9360 112.2452 70 266 

21 Jempang Kalimantan -0.4322 116.1837 85 227 

22 Melintang Kalimantan -0.2966 116.3409 71 234 

23 Semayang Kalimantan -0.2320 116.4567 99 238 

24 Sidenreng Sulawesi -3.9879 119.8706 37 129 

25 Tempe Sulawesi -4.1006 119.9627 75 124 

26 Lindu Sulawesi -1.3166 120.0808 39 277 

27 Poso Sulawesi -1.9179 120.6135 423 309 

28 Matano Sulawesi -2.4830 121.3435 188 82 

29 Towuti Sulawesi -2.8203 121.5181 657 140 

30 Limboto Sulawesi 0.5641 122.9818 21 152 

31 Tondano Sulawesi 1.2281 124.8973 53 151 

32 Yamur Papua -3.6730 134.9357 52 316 

33 Paniai Papua -3.8851 136.3100 213 254 

34 Sentani Papua -2.6194 140.5085 156 186 

35 Batur Bali -8.2588 115.4073 17 183 

 Note: (R) = Reservoir    Total: 8,114 
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3.2.2. In situ SD Data Collection 

The first in situ SD data set was collected from 23 lakes during 1992-1993 by the Finnish 

researcher (Lehmusluoto et al., 1997). The SD values ranged from 0.4 m to 20 m. For the second 

in situ SD data set, I measured 75 SD values from 14 lakes during 2014-2018. The SD values 

ranged from 0.03 m to 17.5 m. These two in situ SD data sets (Table 3.2) were used to evaluate 

the developed model in estimating SD in Indonesian lakes in different periods.    

Table 3.2. Two-periods of in situ SD Dataset for Further Evaluate the Developed Model 

Dataset Number of 

lakes 

Number of 

data 

SD range 

(m) 

Period Sources 

I 23 23 0.4 – 20 1992-1993 Lehmusluoto et 

al., 1997 

 

II 14 75 0.03 – 17.5 2014-2018 My Surveys 

 

3.2.3. Landsat Data collection 

I downloaded Landsat TM/ETM+ images from the USGS website 

(https://earthexplorer.usgs.gov/). Theoretically, Landsat images were available globally from 1984 

until now (until 2019 in this research). However, the images are not always available or 

downloadable. I used the same “Data Range” from January 1st, 1984 to December 31st, 2019, for 

the “Search Criteria” and download all available Landsat 5 TM and Landsat 7 ETM+ images. The 

“Cloud Cover Range” was not considered; later, the cloudy pixel will be removed in the Landsat 

Data Preprocessing procedure.  

 

 

 

https://earthexplorer.usgs.gov/
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3.2.4. SD estimation  

I carried out the same image preprocessing (i.e., removing contaminated water pixels, 

filtering images, and mitigating atmospheric effects) as in Chapter II before the Landsat 

TM/ETM+ data were used to estimate SD using the developed model. The SD equation of the 

developed model in Chapter II is rewritten as:  

SD = exp { -1.18 + 3.45(TM1/TM2) - 2.67(TM3/TM2)}, (14) 

TM1, TM2, and TM3 are the preprocessed reflectance at Landsat TM/ETM+ Band 1, Band 2, and 

Band 3.   

3.2.5. Data Postprocessing 

I carried out data postprocessing to ensure the representativeness of the SD in each lake. I 

excluded Landsat images with the available water pixels less than 50% of a lake surface. I removed 

the 5% highest and the 5 % lowest SD values to avoid the outlier. Afterward, I averaged remained 

pixels. To improve the reliability of the historical data, I performed the Savitzky–Golay filter on 

the averaged data. Finally, I applied LOESS (the Locally wEighted Scatterplot Smoothing) to 

obtain long-term trends using the R program (R Core Team, 2018) with the ggplot2 library 

(Wickham, 2016).  

3.2.6. Relating Data Collections from Other Lakes 

Since the available in situ SD data are minimal, to further confirm the reliability of the 

generated SD, I also collected data in other lakes from literature. These data include the number 

of fish cages and fish production in Lake Maninjau (Junaidi et al., 2014; Badan Pusat Statistik 

Kabupaten Agam.; 2016, 2017, 2018, 2019). Other data or information from previous studies or 

reports were collected to investigate factors related to water quality changes. Figure 3.2 shows the 

number of fish cages and fish production in Lake Maninjau from 1992 to 2016.  
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Figure 3.2. Number of fish cages and fish production in Lake Maninjau from 1992 to 2016 

3.3.  Results  

3.3.1. Validation of the Developed SD Estimation Model in Various Waters 

SD of 35 Indonesian lakes was estimated by the model BF (Eq. (14)) using pre-processed 

Landsat TM/ETM+ data. Figure 3.3. shows the number of usable images in 35 lakes for each year.     

I compare the estimated SD with corresponding available in situ data from various lakes in two 

different periods to confirm the reliability. The first comparison is between estimated SD and in 

situ SD in 23 lakes during 1992-1993, and the second comparison is between estimated SD and in 

situ SD in 14 lakes during 2014-2018. 

 Figure 3.4 shows the comparison of in situ SD data collected from 23 Indonesian lakes 

during 1992-1993 (in situ SD data set I) and the estimated SD using the developed model.  As the 

coordinate data of in situ SD data set I collected from Lehmusluoto et al. (1997) was not available, 

the boxplot data representation method was used. Boxplot displays a range of SD values from a 

whole lake. It can be observed that the model has reasonable SD estimations in extremely turbid 

and highly turbid lakes (Lake Limboto, Kedungombo reservoir, Saguling reservoir, Lake Tempe, 

and Lake Rawapening). However, slightly underestimated SD were observed in Lake Dibawah, 

Lake Tondano, Lake Singkarak, Mrica Reservoir, and Lake Ranau. Remarkably underestimated 

SD was found in clear lake (i.e., Lake Maninjau, Lake Poso, and Lake Toba). For the very clear 

lakes (i.e., Lake Matano and Lake Towuti), even though the in situ SD were within the estimated 
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range, it was located in the higher percentile range. The time gap between in situ measurement and 

the satellite acquisition may influence the accuracy. Overall, the estimated SD shows reasonable 

values in 23 lakes in the 1990s, except for the SD estimations from the low-quality images & large 

time gaps.   

 

continued 
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continuation 

 

Figure 3.3. The number of usable images for 35 lakes from 1985 to 2019 
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Figure 3.4. Comparison of in situ SD data (red line) collected from 23 lakes in the 1990s and the 

range of estimated SD using the developed model 

 

 

Figure 3.5. Comparison of in situ SD data (red line) collected from 14 lakes during 2014-2018 

and the range of estimated SD using the developed model 

 

Figure 3.5 shows the in situ SD data collected from 14 Indonesian lakes during 2014-2018 

(in situ SD data set II) and the estimated SD using the developed model. The time gap between in 

situ measurement and the satellite acquisition was narrower compared to in Figure 3.4. Overall, 

the estimated SD generally show reasonable values in 14 Indonesian lakes during 2014-2018.  
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3.3.2. Further Validation of the Generated Long-Term SD Database  

 

 

Figure 3.6. Long-term change of SD in Lake Maninjau 

Febrianti (2000) and Sulastri (2002) reported a heavy algal bloom occurred in 2000 in Lake 

Maninjau. This event was also detected by my Landsat-based SD estimations, which showed low 

SD values during that period (Figure 3.6). To weaken the algal bloom effects on Lake Maninjau, 

residents around the lake asked the power company to open the secondary watergate in March 

2001 to flush the surface waters (Fakhrudin et al., 2002). After that, the water transparency in Lake 

Maninjau increased significantly. The RCL (LIPI) observed the highest SD values of 4.1 m in May 

2002 and 5.8 m in May 2005 (Henny et al., 2016). The trend of increased water transparency was 

also revealed by the Landsat time-series data (Figure 3.6). These results indicate that water 

management is effective in improving water quality. 

The continuous decrease of SD values during 2004 and 2012 from both the in situ-

measured and Landsat-based SD values can be explained by the dramatically increased number of 

fish cages in Lake Maninjau. In 2005, the number of fish cages in the lake was 4,920 units, and 

this number increased to 8,955 units in 2006 and 13,129 units in 2010 (Figure 3.2). I observed a 

strong correlation between the number of fish cages and the Landsat-based SD values during 

2004–2012 (R2=0.88, Figure 3.7). 
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Figure 3.7. The relationship between the number of fish cages and 1/ SD generated from 

Landsat during 2004-2012 in Lake Maninjau shows a positive correlation. 

 

 

Figure 3.8. Long-term change of SD in Lake Singkarak 

 

Lake Singkarak is a lake close to Lake Maninjau. In early 1990, fish aquaculture was also 

introduced in Lake Singkarak as that in Lake Maninjau. However, the profit was not as good as in 

Lake Maninjau. Risdawati (2011) reported that a fish parasite (Cirolana. sp) probably caused the 

low fish productivity in Lake Singkarak. Therefore, fish cages culture is not popular in the lake. 

The Singkarak Hydroelectric Power Plant (HEPP) began operation in May 1998, and in a 

certain sense, it changed the water balance in Lake Singkarak. Previously, the outlet of Lake 

Singkarak was located at the north-east (Batang Ombilin River) and flowed to the east direction. 

After the operating of HEPP, the outflows were shifted to the west direction through an artificial 

tunnel for hydropower purposes. This water management probably removed the upper layer of 

turbid water and was supposed to trigger a gradual SD increased during 2000-2005 (Figure 3.8).  
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Figure 3.9. Long-term change of SD in Lake Toba North Basin (a) and South Basin (b) 

 

Decreasing Rainfall (El Niño) during 1991-1992,1995,1997-1998 & 2015 is probably 

associating with the decreased SD in Lake Toba during corresponding periods (Figure 3.9). I 

measured three SD at three sites in Lake Toba in March 2014; the values are 6.54 m, 6.50 m, and 

6.22 m, respectively. These values are relatively close to the Landsat-based SD shown in Figure 

3.9. My other field surveys in February 2018 found SD is 6.5 m (averaged from 10 measurements); 

this value was slightly lower than Landsat-based SD.  

A report by the World Bank (2019) pointed out the degrading water quality in Lake Toba.  

This trend agrees with the significant decreased SD shown by Landsat TM/ETM+ data from 2000 

to 2019 (Figure 3.9 blue line). World Bank (2019) reported that fish culture, land use, landcover 

changes, and short-term weather dynamics are the main drivers regulating water quality in Lake 

Toba. This result demonstrates the reliability of the Model BF based long-term SD database. 
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3.3.3. Long-Term SD Database for 35 Indonesian Lakes 

Figures 3.6, 3.8, and 3.9 show that the generated SD database is reliable enough to capture 

water transparency's change tendency in Lake Maninjau, Lake Singkarak, and Lake Toba. These 

results increase the confidence to apply the developed model to generate an SD database for other 

Indonesian lakes. Figures 3.10 to 3.41 show the generated SD database for the remaining 32 

Indonesian lakes. The black points are the averaged SD values estimated from the preprocessed 

Landsat using the developed SD estimation model in Chapter II. The black tin line was obtained 

from the black points using the LOESS trend analysis method (the Locally 

wEighted Scatterplot Smoothing) using the R language. Gray areas represent 95% confidence 

intervals of the LOESS trend analysis. The solid black line is the linear trend of averaged estimated 

SD using all data. Considering the data availability, I select data from 2000 to 2019 to perform SD 

changing trend comparison. The solid blue line is the linear trend of averaged estimated SD using 

data from 2000 to 2019. The red line was the linear trend of averaged estimated SD of five-year 

periods (1985-1990, 1990-1995, 1995-2000, 2000-2005, 2005-2010, 2010-2015, and 2015-

2019).   

 

 

Figure 3.10. Long-term of change SD in Lake Batur 
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Figure 3.11. Long-term of change SD in Lake Cacaban (reservoir) 

 

 

Figure 3.12.  Long-term change of SD in Lake Cirata (reservoir) 

 

 

Figure 3.13. Long-term change of SD in Lake Diatas 

 

 

Figure 3.14. Long-term change of SD in Lake Dibawah 
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Figure 3.15. Long-term change of SD in Lake Gajahmungkur (reservoir) 

 

 

Figure 3.16. Long-term change of SD in Lake Jatiluhur (reservoir) 

 

 

Figure 3.17. Long-term change of SD in Lake Jempang 

 

 

Figure 3.18. Long-term change of SD in Lake Kedungombo (reservoir) 
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Figure 3.19. Long-term change of SD in Lake Kerinci 

 

 

Figure 3.20. Long-term change of SD in Lake Limboto 

 

 

Figure 3.21. Long-term change of SD in Lake Lindu 

 

 

Figure 3.22. Long-term change of SD in Lake Luar 
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Figure 3.23. Long-term change of SD in Lake Matano 

 

 

Figure 3.24. Long-term change of SD in Lake Melintang 

 

 

Figure 3.25. Long-term change of SD in Lake Merica (reservoir) 

 

 

Figure 3.26. Long-term change of SD in Lake Paniai 
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Figure 3.27. Long-term change of SD in Lake Poso 

 

Figure 3.28. Long-term change of SD in Lake Ranau 

 

 

Figure 3.29. Long-term change of SD in Lake Rawapening 

 

 

Figure 3.30. Long-term change of SD in Lake Saguling (reservoir) 
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Figure 3.31. Long-term change of SD in Lake Semayang 

 

Figure 3.32. Long-term change of SD in Lake Sempor (reservoir) 

 

 

Figure 3.33. Long-term change of SD in Lake Sentani 

 

Figure 3.34. Long-term change of SD in Lake Sidenreng 
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Figure 3.35. Long-term change of SD in Lake Sutami (Reservoir) 

 

 

Figure 3.36. Long-term change of SD in Lake Tasikdalam 

 

 

Figure 3.37. Long-term change of SD in Lake Tempe 

 

 

Figure 3.38. Long-term change of SD in Lake Tondano 
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Figure 3.39. Long-term change of SD in Lake Towuti 

 

 

Figure 3.40.  Long-term change of SD in Lake Wadaslintang (reservoir) 

 

 

Figure 3.41. Long-term change of SD in Lake Yamur 
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3.3.4. Spatial distribution of SD in 35 Indonesian Lakes  

Figures 3.42 to 3.76 show the spatial distribution of a five-year averaged SD estimated 

from Landsat TM/ETM+ in the 35 selected Indonesian lakes.  The five-year periods are 1987-

1990, 1990-1995, 1995-2000, 2000-2005, 2005-2010, 2010-2015 and 2015-2019. Each pixel is 

the average of the whole pixel during the corresponding period. In the case of no data, I ignore it 

in the averaging calculation. 

 

Figure 3.42. Spatial distribution of 5-year averaged SD in Lake Batur 

 

Figure 3.43. Spatial distribution of 5-year averaged SD in Lake Cacaban (reservoir) 

 

Figure 3.44. Spatial distribution of 5-year averaged SD in Lake Cirata (reservoir) 

 

Figure 3.45. Spatial distribution of 5-year averaged SD in Lake Diatas 
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Figure 3.46. Spatial distribution of 5-year averaged SD in Lake Dibawah 

 

 

Figure 3.47. Spatial distribution of 5-year averaged SD in Lake Gajahmungkur (reservoir) 

 

 

Figure 3.48. Spatial distribution of 5-year averaged SD in Lake Jatiluhur (reservoir) 

 

 

 

Figure 3.49. Spatial distribution of 5-year averaged SD in Lake Jempang 
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Figure 3.50. Spatial distribution of 5-year averaged SD in Lake Kedungombo (reservoir) 

 

 

Figure 3.51. Spatial distribution of 5-year averaged SD in Lake Kerinci 

 

 

Figure 3.52. Spatial distribution of 5-year averaged SD in Lake Limboto 

 

 

Figure 3.53. Spatial distribution of 5-year averaged SD in Lake Lindu 
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Figure 3.54. Spatial distribution of 5-year averaged SD in Lake Luar 

 

 

Figure 3.55. Spatial distribution of 5-year averaged SD in Lake Maninjau 

 

 

Figure 3.56. Spatial distribution of 5-year averaged SD in Lake Matano 

 

 

Figure 3.57. Spatial distribution of 5-year averaged SD in Lake Melintang 
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Figure 3.58. Spatial distribution of 5-year averaged SD in Lake Merica (reservoir) 

 

 

Figure 3.59. Spatial distribution of 5-year averaged SD in Lake Paniai 

 

 

Figure 3.60. Spatial distribution of 5-year averaged SD in Lake Poso 

 

 

Figure 3.61. Spatial distribution of 5-year averaged SD in Lake Ranau 
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Figure 3.62. Spatial distribution of 5-year averaged SD in Lake Rawapening 

 

 

Figure 3.63. Spatial distribution of 5-year averaged SD in Lake Saguling (reservoir) 

 

 

Figure 3.64. Spatial distribution of 5-year averaged SD in Lake Semayang 

 

 

Figure 3.65. Spatial distribution of 5-year averaged SD in Lake Sempor (reservoir) 
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Figure 3.66. Spatial distribution of 5-year averaged SD in Lake Sentani 

 

 

Figure 3.67. Spatial distribution of 5-year averaged SD in Lake Sidenreng 

 

 

Figure 3.68. Spatial distribution of 5-year averaged SD in Lake Singkarak 

 

 

Figure 3.69. Spatial distribution of 5-year averaged SD in Lake Sutami (reservoir) 
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Figure 3.70. Spatial distribution of 5-year averaged SD in Lake Tasikdalambesar 

 

 

Figure 3.71. Spatial distribution of 5-year averaged SD in Lake Tempe 

 

 

Figure 3.72. Spatial distribution of 5-year averaged SD in Lake Toba 

 

 

Figure 3.73. Spatial distribution of 5-year averaged SD in Lake Tondano 
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Figure 3.74. Spatial distribution of 5-year averaged SD in Lake Towuti 

 

 

Figure 3.75. Spatial distribution of 5-year averaged SD in Lake Yamur 
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3.3.5.  20-year SD changes in 35 Indonesian Lakes (2000-2019) 

To analyze the temporal variation in SD for Indonesian lakes, I selected the period from 

2000 to 2019 and compared the lakes' SD changes. By calculating the linear trend of long-term 

change SD in Figures 3.6, 3.8 – 3.41, I found three SD changing trends. In which 14 lakes showed 

no significant changes (P > 0.05), 13 lakes showed significantly increased SD (positive slope, P < 

0.05), and eight lakes showed significantly decreased SD (negative slope, P < 0,05) during 2000-

2019. Table 3.3. provide the name of lakes grouped by the SD changing trend.  

Table 3.3. SD changing trends in 35 Indonesian lakes 

No.  

SD changing trend 

No significant 

change 

Significantly Increased  

(change degree in %) 

Significantly decreased 

(change degree in %) 

1. Diatas Kerinci (16.20) Batur (-39.12) 

2. Dibawah Lindu (39.12) Limboto (-53.97) 

3. Jempang Matano (32.25) Maninjau (-23.59) 

4. Luar Ranau (11.82) Tempe (-21.31) 

5. Melintang Sentani (54.14) Toba (-35.18) 

6. Paniai Singkarak (119.02) Towuti (-5.11) 

7. Poso Tasikdalam (28.62) Cacaban Resv. (-56.25) 

8. Rawapening Tondano (63.48) Kedungombo Resv. (-34.39) 

9. Semayang Cirata Resv. (47.38)  

10. Sidenreng Gajahmungkur Resv. (99.74)  

11. Yamur Jatiluhur Resv. (20.16)  

12. Sempor (R) Merica Resv. (38.10)  

13. Sutami (R) Saguling Resv. (213.75)  

14. Wadaslintang (R)   

   

Among the lakes with a significantly increased SD, the Saguling reservoir has the highest 

increased degree (SD increased 213.75 %). In comparison, Lake Ranau has the lowest increased 

degree (SD increased 11.82 %).  Among the lakes with a significantly decreased SD, the Cacaban 

reservoir has the highest decreased degree (SD decreased -56.25 %). In comparison, Lake Ranau 

has the lowest decreased degree (SD decreased -5.11 %).   
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3.4. Discussion 

The developed model was applied to different Indonesian lakes across time and space. The 

results demonstrate that SD can be reasonably estimated over various waters, spanning over a wide 

range of SD values (0.03 – 17.5 m) using the developed model (Figures 3.4 and 3.5). These results 

increase the confidence to enhance the Landsat image's usefulness along with the developed model 

to estimate time-series SD in Indonesian lakes. The developed model was then used to generate a 

long-term SD database in Lake Maninjau, Lake Singkarak, and Lake Toba for further validation. 

The generated long-term SD database well capture water transparency's change tendency in these 

three lakes (Figures 3.6, 3.8, and 3.9) and further demonstrate the reliability of the Landsat based 

long-term SD database.  

Thus, in this research, it was created the first long-term SD database in 35 Indonesian lakes. 

This database enables to monitor water quality changes in Indonesian inland waters and provides 

higher spatial and temporal coverage to address data scarcity issues using remote sensing data as 

suggested by previous researches (Olmanson et al., 2008; Kutser., 2012; Blake et al., 2013; Lobo 

et al., 2015). Therefore, this database can provide useful information for lake managers and 

policymakers to support inland water's sustainable management. This SD database is also expected 

to provide a global level evaluation report for SDG 6.3.2, as proposed by Shen et al. (2020). 

Binding et al. (2015) reported remarkable and complex changes in SD in North America's 

Great Lakes from multi-sensor satellite observations. Over the last several decades, the change 

was driven by invasive species, eutrophication, and implemented nutrient management practices. 

Meanwhile, in my research, I found three patterns of SD change trend: significantly increased SD, 

significantly decreased SD, and no significant change SD during the period between 2000-2019.  

Visual observation on the generated SD database from figure 3.6, 3.8 – 3.41 identified 

three SD seasonal changes: noticeable seasonal changes, disguised (not so clear) seasonal changes, 

and no seasonal SD changes. Lakes with noticeable seasonal SD changes, including nine reservoirs 

(i.e., Cacaban, Cirata, Gajahmungkur, Jatiluhur, Merica, Saguling, Sempor,  Sutami, 
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Wadaslintang) and 17 natural lakes (i.e., Batur, Diatas, Dibawah, Jempang, Limboto, Lindu, Luar, 

Melintang, Paniai, Poso, Ranau, Rawapening, Semayang, Tasikdalam, Tempe, Towuti and 

Yamur). Lakes with disguised seasonal SD changes, including one reservoir (Kedungombo) and 

five natural lakes (i.e., Kerinci, Matano, Sentani, Sidenreng, Tondano). Meanwhile, three natural 

lakes showed no seasonal SD changes (i.e., Maninjau, Singkarak, Toba).  

Visual observation on the generated 5-year averaged SD map from figure 3.42, 3.75 

identified two spatial SD homogeneity: homogenous and inhomogeneous. Lakes with apparent 

homogenous spatial SD spatial distribution, including three reservoirs (i.e., Merica, Saguling, 

Wadaslintang) and ten natural lakes (i.e., Diatas, Dibawah, Lindu, Maninjau, Matano, Poso, Ranau, 

Singkarak, Tondano, Towuti). Lakes with apparent inhomogeneous spatial SD spatial distribution, 

including seven reservoirs (i.e., Cacaban, Cirata, Gajahmungkur, Jatiluhur, Kedungombo, Sempor, 

Sutami) and 15 natural lakes (i.e., Batur, Jempang, Kerinci, Limboto, Luar, Melintang, Paniai, 

Rawapening, Semayang, Sentani, Sidenreng, Tasik Dalam, Tempe, Toba, Yamur).  

Low SD regions identified at the inflow river of eight reservoirs (i.e., Cacaban, Cirata, 

Gajahmungkur, Jatiluhur,  Kedungombo, Saguling, Sempor and Wadaslintang), and 12 natural 

lakes (i.e., Batur, Jempang, Kerinci, Limboto, Luar, Melintang, Poso, Rawapening, Semayang, 

Sentani, Singkarak, Toba).  Generally, high SD regions are located in the lake offshore. 

3.5. Conclusions 

This chapter aimed to confirm whether the developed model can estimate reasonable SD, 

verify the reasonableness of the generated SD database, and show the SD changes of large 

Indonesian lakes using the generated database. Based on the boxplot analysis, it is concluded that 

the developed model can estimate reasonable SD values in various waters. The qualitative analysis 

in three selected lakes further confirmed the reasonableness of the generated SD database. 

Therefore, the SD database of large Indonesian lakes has been generated reliably, and the SD 

changes can be shown.   
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Chapter IV General Conclusions 

A robust empirical model for estimating SD from Landsat TM/ETM+ data was developed 

in this research. The Landsat data preprocessing procedure and the use of two-band ratios are the 

main efforts to improve the robustness of the developed model. The developed model suggested 

the use of the two-band ratios of TM1/TM2 and TM3/TM2 as the SD predictor to reduce 

uncertainties in the model. This suggestion differs from the recommendations in previous studies.  

I confirmed that the developed model could estimate a reasonable SD for several lakes and 

verify the reasonableness of the generated SD database. Next, I generated the first long-term SD 

database for 35 large Indonesian lakes and showed the SD changes. This information is expected 

to be useful to support inland water sustainable management. In the future, I will analyze what 

determinants regulate the changes in SD in Indonesian lakes.  

Overall, although the Landsat TM and ETM+ were designed as Land specific sensors, by 

several efforts, this research demonstrates the high values of TM/ETM+ as data sources for 

historical water quality studies. For future studies, a Semi-Analytical model for estimating SD 

using medium resolution sensors (e.g., MERIS and or Sentinel-3) and newer sensors (Landsat-8 

OLI and Sentinel-2 MSI) is expected to be used to validate the generated SD database further. The 

use of various remote sensing data will increase the data density and allow a more comprehensive 

understanding of the aquatic environment.  
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