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Abstract 

Forest in Vietnam consists of 10.3 million ha of natural forests and 4.3 million ha 

of plantation forests (as of 2019), according to national statistics of the Vietnamese 

government. Since the 1990s, Vietnam has experienced a forest transition, in which net 

forest loss has been shifted to net forest gain. The main contribution of the reforestation 

in Vietnam was from the increase of plantation forest area which increased by more 

than 3.6 million ha from 1990 to 2020. However, deforestation in natural forests has 

been occurred, especially in Central Highlands of Vietnam with about 51,000 ha forest 

loss per year during 2010–2019, reported by the statistical data of Vietnamese 

government. The loss of natural forests has led to tremendous impacts, i.e., habitat 

fragmentation, changing water cycle, increasing carbon emission via conversion from 

forest to non-forest land-uses. To alleviate these issues, management and policies have 

been proposed and implemented from local to national scales. In such frameworks, the 

importance of highly detailed and accurate monitoring of the two forest types have been 

emphasized. To this end, this study provides a comprehensive solution comprising of 

mapping, change analysis, and investigating the causes of the changes of natural forests 

and plantation forests based on remote sensing data. 

This study demonstrates a comprehensive and geographically transferable 

approach to produce a 12-category high-resolution land use/land cover (LULC) map 

over mainland Vietnam in 2016 by remote sensing data. The map included several 

natural forest categories (evergreen broadleaf, deciduous (mostly deciduous broadleaf), 

and coniferous (mostly evergreen coniferous)) and one category representing all popular 

plantation forests in Vietnam such as acacia (Acacia mangium, Acacia auriculiformis, 

Acacia hybrid), eucalyptus (Eucalyptus globulus), rubber (Hevea brasiliensis), and 

others. The approach combined the advantages of various sensor data by integrating 

their posterior probabilities resulting from applying a probabilistic classifier (comprised 

of kernel density estimation and Bayesian inference) to each datum individually. By 

using different synthetic aperture radar (SAR) images (PALSAR-2/ScanSAR, 

PALSAR-2 mosaic, Sentinel-1), optical images (Sentinel-2, Landsat-8) and topography 

data (AW3D30), the resultant map achieved 85.6% for the overall accuracy. The major 
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forest classes including evergreen broadleaf forests and plantation forests had a user’s 

accuracy and producer’s accuracy ranging from 86.0% to 95.3%. This study’s map 

identified 9.55 × 106 ha (±0.16 × 106 ha) of natural forests and 3.89 × 106 ha (±0.11 × 

106 ha) of plantation forests over mainland Vietnam, which were close to the 

Vietnamese government’s statistics (with differences of less than 8%). This result 

provides a reliable input/reference to support forestry policy and land sciences in 

Vietnam. 

Understanding deforestation is critically important for effective forest 

management, climate change mitigation, and biodiversity conservation. However, 

deforestation information from currently available forest data has limitations that reduce 

reliability and application. This study demonstrates an approach to deriving more 

accurate deforestation mapping based on high-resolution land use/land cover (LULC) 

maps. These LULC maps provide a means of distinguishing between natural forests and 

plantation forests over large spatial scales. Importantly, through this approach, 

deforestation of natural forests and the temporary loss of plantation forests can be 

effectively distinguished. In the deforestation hotspot in the Vietnam Central Highlands, 

the result show that the deforested area is closer to that reported in national statistics 

compared to other satellite-based datasets. In addition, I hypothesize a link between 

deforestation mean patch size (MPS) and the direct drivers of deforestation, including 

shifting agriculture and commodity-driven deforestation. That is, shifting agriculture-

driven deforestation is likely to have smaller MPSs than commodity-driven 

deforestation across the entire country. Temporally, the regional mean deforestation 

MPS in Northern and Central Vietnam showed a steady increase during the period 

2001–2019. In the Central Highlands, the regional mean deforestation MPS sharply 

increased between 2001 and 2010, and then decreased until 2019. Overall, the findings 

provide valuable reference information for developing and evaluating appropriate policy 

responses to deforestation. 

Keywords: natural forest, plantation forest, remote sensing, Vietnam, acacia, 

eucalyptus, rubber, land use/land cover change, PALSAR-2, Sentinel, forestry policy, 

sustainable forest management, forest transition. 
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Chapter 1. Introduction 
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1.1. Background 

Forest in Vietnam consists of 10.3 million ha of natural forests and 4.3 million ha 

of plantation forests (as of 2019), according to national statistics of the Vietnamese 

government (GSO, 2020). In the documents of the national statistics, a natural forest is 

defined as a forest that is naturally generated or regenerated (GSO, 2019), including 

both primary and secondary forests in line with the “naturally regenerating forest” 

definition of the FAO (2020) (FAO, 2018). In this study, I adopted the definition from 

the national statistics for natural forests. For plantation forests, according to FAO, a 

plantation forest is defined as a forest “that is intensively managed and meet all the 

following criteria at planting and stand maturity: one or two species, even age class, and 

regular spacing” (FAO, 2018).  

Since the 1990s, Vietnam has experienced a forest transition, in which net forest 

loss has been shifted to net forest gain (Mather, 2007). According to the Forest 

Resource Assessment Vietnam report 2020 provided by FAO, the forest area in 

Vietnam increased by more than 5 million ha from 9.375 million ha in 1990 to 14.643 

million ha in 2020 (FAO, 2020a). The main contribution of the reforestation in Vietnam 

was from the increase of plantation forest area. The plantation forests increased by more 

than 3.6 million ha from 0.745 million ha in 1990 to 4.349 million ha in 2020 (FAO, 

2020a). Natural forests experienced an increase of 1.674 million ha during 1990–2010, 

from 8.630 million ha to 10.304 million ha, and stay remain after that. The data of the 

report show that plantation forests have kept the steadily increasing trend, whereas the 

natural forest area shows mostly no change since 2010 until now.  

Although the plantation forest area increased, deforestation in natural forests has 

been occurred, especially in Central Highlands of Vietnam. 1.77 million ha of natural 

forest was lost throughout entire Vietnam between 2000–2010 based on national forest 

maps of the Vietnamese government (Khuc et al., 2018). Central Highlands has been 

considered the most severe deforestation region with about 51,000 ha forest loss per 

year during 2010–2019, reported by statistical data of the Vietnamese government 

(VNFOREST, 2020a).  
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Deforestation in Vietnam is mainly caused by direct anthropogenic drivers such as 

shifting agriculture, commodity-driven deforestation, and urbanization. Shifting 

agriculture is a practice of subsistence food production, which causes the conversion of 

forests to cultivated lands, after several years of which the soil degrades and the land is 

abandoned. Shifting agriculture in Vietnam is mostly practiced in mountainous areas by 

ethnic minority households (P. Li et al., 2014). Commodity-driven deforestation is 

caused by the conversion of forests to market-based agriculture, mining, and energy 

infrastructure. For example, the expansion of cash crops (e.g., coffee and pepper) and 

plantation forests (e.g., acacia, eucalyptus, and rubber) are considered to be the main 

causes of deforestation since the 2000s (Kissinger, 2020; Meyfroidt et al., 2013; 

Nghiem et al., 2020; M. P. Nguyen et al., 2018). In addition, the construction of new 

small- and medium-scale hydropower plants has become a widespread driver of 

deforestation; Pham et al. (2019) noted that 19,792 ha of forests in 29 provinces were 

destroyed as a result of the building of 160 hydropower plants between 2006 and 2012. 

Finally, urbanization is considered a minor direct driver of deforestation in Vietnam in 

comparison to these other drivers. Previous studies have also emphasized the underlying 

drivers of deforestation, such as poverty, local governance, and population growth 

(Khuc et al., 2018). 

The loss of natural forests and the increase of plantation forests in Vietnam have 

led to tremendous impacts. One of the serious impacts is that deforestation has caused 

habitat fragmentation. It was observed that in several regions, the reforestation by 

plantation forests reduced habitat fragmentation, whereas other regions clearing primary 

forests caused an increase in forest fragmentation (Meyfroidt & Lambin, 2008b). 

Deforestation has also harbored indirect consequences such as changing the water cycle 

by altering infiltration characteristics of the ground surface (Ziegler et al., 2004), 

altering flow regimes due to the loss of forest cover (N. C. Q. Truong et al., 2018), 

increasing carbon emission via conversion from forest to non-forest land-use types 

(Avitabile et al., 2016). In terms of plantation forests, although the plantation forests can 

contribute to economic growth by improving the income of local smallholders, it may 

reinforce the existing inequalities in landholding, which in turn increases the 

vulnerability of the landless and ethnic minorities (Sandewall et al., 2010; Thulstrup, 

2014; Thulstrup et al., 2013; Van Khuc et al., 2020). 
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To alleviate these issues, management and policies have been proposed and 

implemented from local to national scales. In such frameworks, the importance of 

detailed and accurate measurements of forest types have been emphasized.  

In terms of remote sensing-based mapping of natural forests and plantation forests, 

the synergy of structural information from Synthetic Aperture Radar (SAR) images and 

biophysical information from optical images has improved the accuracy and map detail. 

In recent studies, this integration of different data types has been carried out by data 

fusion at a feature level, where the optical and SAR images are stacked into a single 

dataset as a classification input (De Alban et al., 2018; Poortinga et al., 2019; Sarzynski, 

Giam, & Carrasco, 2020; Torbick et al., 2016).  

One of the biggest persistent challenges of large-scale forest type mapping is 

distinguishing between plantation evergreen broadleaf forests (EBFs) and natural EBFs. 

The spectral characteristics of these two forest types are mostly identical. Several 

approaches have been attempted to address this challenge. For instance, the detection of 

acacia has been based on very high-resolution satellite images such as GeoEye (Morales 

et al., 2011), airborne photos (Isaacson et al., 2017), or complex radiative transfer 

models (Masemola et al., 2020). These approaches are suitable for a small scale. 

Additionally, several studies exploited the fluctuation in the spectral indices during 

short-rotation cycles to detect a short-rotation eucalyptus (Deng et al., 2020; le Maire et 

al., 2014). This method required inter-annual time-series data for at least 5 to 7 years to 

sufficiently cover at least one rotation. 

In Vietnam plantation forests comprise of various tree types. Acacia is the most 

popular plantation tree in Vietnam with over 1.1 million ha (as of 2014 (Nambiar et al., 

2015)) and it has been showing a substantial expansion in southeast Asia during the last 

three decades (Griffin et al., 2015). Besides, Vietnam has nearly 1 million ha of rubber 

and about 500 thousand ha of eucalyptus (Harwood & Nambiar, 2014). Therefore, there 

is a need for constructing a comprehensive mapping approach that is applicable for (1) 

different plantation forest types; (2) various ranges of geographic regions; (3) short time 

coverage (e.g., annual mapping). 
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Accurate mapping of natural forests and plantation forests can provide accurate 

input for the detection of deforestation and changes in plantation forests. Precise 

deforestation monitoring and quantitative understanding of deforestation are, therefore, 

fundamental for informing sustainable forest management (Geist & Lambin, 2002; 

Hosonuma et al., 2012; Kissinger et al., 2012). However, current forest data have 

substantial limitations that reduce the reliability of the information that they provide. 

Forest data can be obtained from two main sources—remote sensing-based land 

use/land cover (LULC) maps and national forest censuses. Both of these sources have 

limitations, however. The global forest change (GFC) data produced by Hansen et al. 

(2013), which is the most widely used remote sensing-based forest dataset, has been 

reported to contain overestimations in forest cover and forest loss areas including 

Gabon (Sannier et al., 2016) and Guyana (Galiatsatos et al., 2020), indicating that 

appropriate data calibration is essential to ensure accuracy. Other land-cover datasets 

such as the Land Cover project of the Climate Change Initiative (CCI-LC) (ESA, 2015a) 

and the Terra and Aqua combined Moderate Resolution Imaging Spectroradiometer 

(MODIS) Land Cover Type (MCD12Q1) datasets (M. Friedl & Sulla-Menashe, 2019) 

are limited by their low spatial resolution (300 m and 500 m, respectively); hence, small 

deforestation areas (e.g., 1–3 ha) may be missed. Another limitation of remote sensing-

based LULC data is the lack of discrimination between natural forests and plantation 

forests. This may lead to an overestimation of the deforested area due to the inclusion of 

temporary losses of plantation forests due to harvesting. In the case of Vietnam’s 

national forest census data, the most noticeable limitation is that “forest” is taken to 

represent forestlands registered by the government even when no trees are present. This 

can lead to inaccurate estimates of physical forest cover. Given these limitations, a 

means of obtaining accurate data is necessary to improve deforestation monitoring and 

characterization. 

In addition, understanding deforestation requires both quantitative and spatially 

explicit presentations. To meet these demands, spatial attributes, such as landscape 

pattern metrics and proximity, have been used to characterize deforestation (Austin et 

al., 2017; G. Chen et al., 2015; Kalamandeen et al., 2018; Senf & Seidl, 2020). Among 

the pattern metrics, the deforestation patch size has mostly been used as it can reflect the 
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drivers of deforestation (Austin et al., 2017; Kalamandeen et al., 2018; Senf & Seidl, 

2020). For example, Austin et al. (2017) found that increasing trends in the size of 

tropical deforestation indicated an increasing dominance of industrial-scale drivers, and 

Kalamandeen et al. (2018) reported a pervasive rise in drivers of small-scale 

deforestation in Amazonia. 

In Vietnam, previous characterizations of deforestation have mostly focused on 

identifying both direct and indirect drivers (Cochard et al., 2017; Curtis et al., 2018; 

Khuc et al., 2018; T. T. Pham et al., 2019) and explaining the underlying mechanisms at 

a local scale (Meyfroidt et al., 2013; Tachibana et al., 2001). However, the 

spatiotemporal characteristics of deforestation drivers in Vietnam remain unknown. 

Such information would enrich the understanding of deforestation and provide a 

valuable reference for the development of appropriate conservation policy and action 

plans. 

1.2. Research questions 

 This research aims to answer the following questions: 

1. Whether plantation forests and natural forests can be mapped by the integration 

of various remote sensing data? 

2. Whether this study’s map with discrimination of plantation forests and natural 

forests can provide a better deforestation detection in comparison to other 

current remote sensing-based data, and forest statistical data of the government 

of Vietnam? 

3. Whether spatiotemporal variations in deforestation mean patch size (MPS) can 

indicate spatiotemporal variations in direct drivers of deforestation over the last 

two decades in Vietnam? 

1.3. Objectives  

This study focused on three objectives as follows:  
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1. To establish a comprehensive and geographically transferable approach to 

produce a 12-category high-resolution land use/land cover (LULC) map which 

distinguish plantation forests (i.e., acacia, eucalyptus, rubber, and others) and 

natural forests (i.e., EBFs, deciduous forests, and coniferous forests) for entire 

mainland Vietnam; 

2. To establish an approach to create a deforestation map based on two LULC 

maps which were created based on the approach in objective 1, and comparing 

the deforestation area of this study’s map with other data. 

3. To analyze spatiotemporal variations in the deforestation mean patch size and its 

link with spatiotemporal variations in drivers of deforestation.  

1.4. Structure of this dissertation 

This thesis contains 5 chapters: 

Chapter 1 provides the general background, the significance of this study, 

objectives of this study, research questions, and the structure of the thesis. 

Chapter 2 provides the description of the study area and two field surveys 

conducted in 2019 and 2020 in two different regions of Vietnam.  

Chapter 3 illustrates the process of producing a high-resolution LULC map that 

distinguishes natural forests and plantation forests (acacia, eucalyptus, rubber, and 

others) across different geographic regions in mainland Vietnam in 2016 using remote 

sensing data. The resultant map was then compared with other forest/LULC maps, and 

official data of the Vietnamese government including national statistics (VNFOREST, 

2020a) and the Vietnam Forest Resource Map 2016 (VNFOREST, 2020b). 

Chapter 4 aimed for objective 2 and objective 3. The main results described in this 

chapter are: (1) create a high-resolution LULC map in 2007 based on the mapping 

approach of the JAXA high-resolution LULC map product in 2016 in Vietnam (Hoang 

et al., 2020); (2) create a deforestation map of 2007–2016 based on the two LULC maps, 

and compare the deforestation area identified by the resultant map with the GFC data, 
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CCI-LC data, and the national statistics of the Vietnamese government; (3) analyze 

spatiotemporal variations in the deforestation mean patch size and its link with 

spatiotemporal variations in drivers of deforestation over the last two decades. 

Chapter 5 shows the discussion for the answers of research questions. 

Chapter 6 is the conclusion. 
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Chapter 2. Study Area and Field Surveys 
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2.1. Study area 

Mainland Vietnam is located in the southeast Asia region and extends from 

8037’N to 23023’N and from 102011’E to 109027’E (Figure 2.1a). This paper focused on 

mainland Vietnam, which excluded isolated and insufficiently observed islands. 

Mainland Vietnam accounts for about 332,000 km2 and consists of a diversity of 

ecological landscapes and climate regions. Northern Vietnam’s climate is characterized 

by monsoonal features with four distinct seasons, whereas, in the south, the climate is 

tropical monsoon with two seasons (rainy and dry). The topography of Vietnam is 

featured by mountains and hills (75% of total area), deltas, and coastal areas (25%). 

Forest in Vietnam has been considered abundant ecosystems (FAO, 2012) and 

biodiversity-rich areas (The Government of Vietnam, 2014). In terms of foliage 

characteristics, natural forests in Vietnam can be categorized into three main types: (1) 

evergreen broadleaf forest (EBF) which is major and widely distributed (occupies more 

than 88% of total natural forest area); (2) deciduous forest, distributed in Central 

Highlands and South-Central Coast; (3) coniferous forest, distributed in Central 

Highlands (Figures 2.1b–d). According to Phuong (2007), the main dominant species of 

EBFs includes Hopea spp., Dipterocarpus costatus, D. alatus, Shorea obtusa. 

Deciduous forests are dominated by several species including Lagerstroemia 

angustifolia, L. macrocarpa, L. floribunda, L. duperreana, etc. (Phuong, 2007). The 

dominant species of coniferous forests includes Pinus merkusii, P. khasya, Dacrydium 

pierrei, Fokienia hodginsii, Pinus krempfii, Glyptostrobus (Phuong, 2007). 

Vietnam has been considered one of a few developing countries that the forest 

transition, from net forest loss to net forest gain, has been occurring (Keenan et al., 2015; 

Mather, 2007). After the deforestation period from the Vietnam War to the early 1980s, 

the forest cover in Vietnam has been increased due to many causes such as 

decollectivisation in Doi Moi economic reform 1986, allocation of forestry land to 

households, development of timber market (Meyfroidt & Lambin, 2008a) and national 

reforestation programs (De Jong et al., 2006; McElwee, 2009). The increase of forest 

cover in Vietnam mainly comes from the expansion of plantation forests. 



11 

The forest cover of Vietnam has reached 42% of the total land area until 2019, in 

which plantation forests account for 29.5% (4.3 million ha) of the total forest area (14.6 

million ha) (VNFOREST, 2020a). Plantation forests in Vietnam are dominated by 

acacia (Acacia mangium, Acacia auriculiformis, Acacia hybrid), rubber (Hevea 

brasiliensis), and eucalyptus (Eucalyptus globulus) (Figures 2.1e and 2.1f). Acacia is 

the most popular plantation tree in Vietnam with over 1.1 million ha (as of 2014 

(Nambiar et al., 2015)). Besides, Vietnam has nearly 1 million ha of rubber and about 

500 thousand ha of eucalyptus (Harwood & Nambiar, 2014). Other plantation trees, 

such as pine (Pinus), Manglietia conifera Dandy, Melaleuca cajuputi, etc., occupy 

minor areas.  
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Figure 2.1. Study area and forest types in mainland Vietnam through ground-truth photos and high-

resolution Google Earth (GE) images. (a) Location of mainland Vietnam; (b) natural evergreen broadleaf 

forest at 12.2209° N, 108.7455° E with a field photo (2020-02-24) and GE image (2019-03-09); (c) 

natural coniferous forest at 12.1338° N, 108.6196° E with a field photo (2020-02-24) and GE image 

(2020-01-19); (d) natural deciduous forest at 12.8436° N, 107.7780° E with a field photo (2020-02-22) 

and GE image (2020-03-01); (e) rubber plantation at 12.6557° N, 107.8437° E with a field photo (2020-

02-22) and GE image (2019-03-01); (f) acacia plantation at 12.7768° N, 108.8242° E with a field photo 

(2020-02-23) and GE image (2020-03-09); (g) eucalyptus plantation at 19.1783° N, 105.5992° E with a 

field photo (2018-03-23) and GE image (2020-03-09).  
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2.2. Field surveys 

2.2.1. Field survey in northern Vietnam  

The field survey in northern Vietnam was conducted in March 2019. In this trip, 

this study collected about 42,000 GPS photos along 1,800 km total length of survey 

routes (Figure 2.2). Various types of forest in northern Vietnam were observed, i.e., a 

primary forest in Cuc Phuong national park (Ninh Binh province), a secondary forest in 

Hoang Lien national park (Lao Cai province), sparse forests on limestone (Cao Bang 

province), subtropical mountain deciduous needle-leaf forests (Cao Bang province), and 

plantation forest including mostly acacia and eucalyptus along the routes.  

The primary forest in Cuc Phuong national park is the habitat of old-growth trees 

and tropical flora and fauna. Several large trees with massive biomass in Cuc Phuong 

may have about a thousand years old (Figure 2.3a). In contrast, the secondary forest in 

Hoang Lien national park harbors mostly small and medium trees (Figure 2.3b). An 

interview with a ranger in the Ranger Station Tram Ton, Hoang Lien national park was 

conducted. According to the interview, the main cause of deforestation in the Hoang 

Lien area is forest fires. The reason for forest fires can come from hot and dry weather 

in the dry season or from swidden burning in shifting cultivation practice (Figure  2.4a).   

Swidden and barren hills (Figures 2.4a and 2.4b) appeared substantially along the 

survey routes in northern Vietnam. Shifting cultivation has been sustained widely in 

ethnic minorities. Many previous studies showed that shifting cultivation is the main 

driving force of deforestation in this region  (Curtis et al., 2018; Tachibana et al., 2001). 

Other interview was conducted on the way from Ha Noi to Lao Cai (Figures 2.5a 

and 2.5b). The interviewee is a manager of a wood production facility in Bao Yen 

district, Lao Cai province. Some information from the interview was recorded as 

follows: 

 From 1992, the government of Vietnam stopped wood exploitation in protection 

forests, special-use forests, and sparse forests. The reforestation programs were 

then deployed for “re-greening bare hills”. 
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 From 1996, the forestry sector received great support from foreign governments, 

especially Finland and Germany. Since then, wood production from plantation 

trees has been continually increased. 

 Wood products in this area are mainly exported to China. 

According to the Law on Forest Protection and Development (2004) of the 

Vietnamese government, protection forests were defined as forests to be “used mainly 

to protect water sources and land, prevent erosion and desertification, restrict natural 

calamities and regulate climate, thus contributing to environmental protection”. Special-

use forests were defined as forests to be “used for mainly conservation of nature, 

specimens of the national forest ecosystems and forest biological gene sources; for 

scientific research; protection of historical and cultural relics as well as landscapes; in 

service of recreation and tourism in combination with protection, contributing to 

environmental protection”. 

The authenticity of the information from the interview was examined with 

material and documents (Mustalahti, 2011; T. T. H. Phan, 2017). Under the context 

discussed in the interview, the expansion of plant forests in Vietnam is the result of not 

only the national reforestation programs but also the wood market with huge demand 

for timber from China and western countries. 

Another task of field survey was recognizing the actual LULC categories and 

collating it with the corresponding LULC categories in satellite images. Thereby, my 

ability of satellite image visual interpretation can be improved. For example, the pattern 

of eucalyptus plantation in a field photo was shown in Figure 2.6a and the pattern of 

acacia plantation in a field photo was shown in Figure 2.6b. 
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Figure 2.2. Field photo locations of two field surveys (in 2019 and 2020) of this study in 
Vietnam  
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2019-03-08, Location:  20°19'0.16"N, 105°38'25.77"E 

 

2019-03-10, Location:  22°21'3.83"N, 103°46'20.66"E 

Figure 2.3. (a) The primary forest in Cuc Phuong national park; (b) the secondary forest 

in Hoang Lien national park 

 

  

a 

b 



17 

 

2019-03-10, Location: 22°11'31.73"N, 104°19'23.31"E 

 

2019-03-12, Location: 22°12'43.42"N, 106°31'1.45"E 

Figure 2.4. (a) Shifting cultivation in northern Vietnam; (b) barren hills in northern 
Vietnam 

 

  

a 

b 
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2019-03-09, Location: 22°15'41.98"N, 104°25'46.76"E 
 

 

2019-03-09, Location: 22°15'41.89"N, 104°25'47.15"E 

 

Figure 2.5. (a) Interview local people in the Bao Yen district, Lao Cai province, 
Vietnam; (b) wood production in a local factory in the Bao Yen district 

 

  

a 

b 
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2019-03-12, Location: 21°8'18.52"N, 106°34'52.16"E 
 

 

2019-03-13, Location: 20°29'33.02"N, 105°40'15.21"E 
 

Figure 2.6. (a) Eucalyptus in field photo; (b) Acacia in field photo 

 

 

  

a 

b 
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2.2.2. Field survey in Central Highlands, Mekong Delta, and Ha Noi 

The field survey in Central Highlands, Ha Noi, and Mekong Delta was conducted 

in February and March 2020. In this trip, this study collected about 34,247 GPS photos 

along 2,000 km of total length of survey routes (Figure 2.2). Plantation forests in the 

vicinity of Ha Noi were observed. Various forests were observed such as typical 

deciduous broadleaf forests in Yok Don national park (Dak Lak province), evergreen 

needle-leaf forests in Da Lat (Lam Dong province), tropical shrublands in Phan Thiet 

(Binh Thuan province), desert in Phan Thiet, acacia and rubber plantations, and 

evergreen broadleaf forests in many places in Central Highlands and South Central of 

Vietnam. Wetland and mangroves in Mekong delta were investigated lastly. Local 

people interviews were also conducted to investigate the LULC categories, historical 

changes of forests, and the relation to socioeconomic contexts. 

(a) Field surveys in Ha Noi areas 

The first place in the field survey in Ha Noi areas was the Phat Tich hill (Bac 

Ninh province) (Figure 2.7a). Although the majority of land use in the Red River Delta 

is agriculture, there are several steep lands like hills or low mountains that have been 

used for growing plantation forests. The plantation forests in Phat Tich hill were 

dominated by Pinus (Thông) and Acacia auriculiformis (tràm bông vàng or keo lá tràm) 

(Figure 2.7b). I measured a diameter at breast height (DBH) of some pine trees (Figure 

2.7c) and Acacia auriculiformis (Figure 2.7d). 

* Interview with local people in Phat Tich hill: 

 The plantation forest in Phat Tich hill includes mostly: Pinus, Acacia 

auriculiformis. The purpose of the plantation forest is protection. According to 

the Law on Forest Protection and Development (2004) of the Vietnamese 

government, a production forest was defined as a forest which is “mainly used 

for production and trading of timber, and non-timber forest products, combined 

with purposes of protection and environmental protection”. The year of planting 

was about 1996. 
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 The year of planting trees in Phat Tich hill is compatible with the background of 

national programs of forestry. In 1992, The government of Vietnam launched 

program 327 aiming for “re-greening the barren hills”. The salient point of this 

program is to allocate forest to the private sector such as local people, small 

cooperative associations. 

 Besides, land cover in the Gia Lam district is characterized by mostly paddy, 

other crops, and orchards. In recent years, agricultural land has been converted 

to urban and built-up due to enhancing housing supply. 

 

Figure 2.7. Plantation forest survey in Phat Tich hill, Bac Ninh province 
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The second place of the survey in Ha Noi locates in the Dong Mo reservoir area 

(Figures 2.8a–d). The reservoir is surrounded by plantation forests, mostly acacia 

(Hybrid acacia which is Acacia mangium × Acacia auriculiformis). This area has been 

planned as a recreation area with golf courses and Vietnam National Village for Ethnic 

Culture and Tourism. Although several areas of plantation forests have been demolished 

for building infrastructure, acacia forests are preserved in some places. Old acacia trees 

and young acacia trees in this location can be compared via Figures 2.8a and 2.8b, 

respectively. 

 

 

 

Figure 2.8. Acacia plantation forest survey in Dong Mo, Ba Vi district 
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The third survey place in Ha Noi areas was Den Giong (Giong Temple), Soc Son 

district, Ha Noi (Figure 2.9). On the way to Den Giong along the highway AH14, there 

are many croplands, mostly vegetable which supplies Hanoi and vicinity areas. 

Plantation forests in Den Giong are protection forests. The dominant trees are Acacia 

auriculiformis (Keo lá tràm) (Figure 2.9a) and Pinus (Thông) (Figure 2.9b). Acacia 

auriculiformis is a large body tree type. The mature body of Acacia auriculiformis is 

larger than Acacia hybrid. In the mature stage, the height of this tree can reach up to 30 

m (Figure 2.9c). 

 

Figure 2.9. Plantation forest survey at Den Giong, Soc Son district 
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Interview with local people in Den Giong (Figure 2.9d): 

 The dominant trees of these plantation forest areas: Pinus, Acacia auriculiformis, 

Hybrid acacia. 

 Before 1978, the land cover of this area was mostly barren hills and paddy rice 

in flat land. 

 After 1978, the government (Ministry of Agriculture and Rural Development) 

hired local people to plant pine in the barren hills. The plantation pine forests 

were under the management of the government at that time. 

 From 1993, the government allocated forest land to private sectors: local 

households and private companies. The government supported seedling trees. 

The local households were responsible for raising and taking care of the 

allocated forest land. For productive plantation forests, private households could 

exploit wood production under regulation of planting duration and maximum 

exploitation areas. 

 Acacia auriculiformis and Hybrid acacia were planted in 1990s. 

 Some of the acacia areas have been cultivated by private farms.  

 Recently, some plantation forest in these places has been converted to golf 

courses. 

In summary, observing the plantation forest in the Ha Noi survey route improved 

the ability of satellite image visual interpretation of plantation. The influence of national 

policies on reforestation was reflected through informative interviews. Most of the 

plantation forests in Hanoi were planted around 1993 when the government started to 

launch the “Greening the barren hills” program (327). Land cover changes in Hanoi 

such as conversion from agricultural land or forest to built-up were examined through 

field observation. 
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(b) Field surveys in Central Highlands and South Central of Vietnam 

Rubber has been widely planted in Central Highlands. The first selected location 

to investigate the rubber plantation was the vicinity of Buon Ma Thuot city, Dak Lak 

province (Figures 2.10a–d). GPS photos taking and local people interviews were 

conducted. 

Interview with local people in Buon Ma Thuot city: 

 The rubber planting year in these places was the 1980s. 

 The rubber tree can reach the mature stage after 3 years.  

 Rubber leaves fall in around Oct and Nov (dry season). 

 DBH of an exploited rubber tree can reach 20 cm to 30 cm (Figures 2.10b and 

2.10d).  

 The distance between rows is 6m. The distance between 2 trees in a row is 3 – 4 

m. 

 Rubber latex is collected in the early morning every day, approximately 5:00 am. 

 At the mature stage, the height of a rubber tree can reach 10–15 m. 

 The latex exploitation duration can last about 50 years. 

 However, when the latex amount decreases substantially after 15–20 years, 

rubber trees might be chopped down for wood production.  

 



26 

 

Figure 2.10. Rubber plantation in Buon Ma Thuot, Dak Lak province 

 

The main driving forces of deforestation in Central Highlands of Vietnam has 

been attributed to conversion from forests to agriculture lands, in which rubber (Figure 

2.10), coffee and pepper (Figures 2.11a and 2.11b) are main agriculture plantations 

(Curtis et al., 2018; Ha & Shively, 2008; Meyfroidt et al., 2013). 
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Figure 2.11. Agricultural plantation trees and deciduous broadleaf forests in Dak Lak 
and Dak Nong provinces 

 

* Interview with local people (the driver) in Cu Jut, Dak Lak province (Figure 

2.11c) about other croplands and rubber plantation: 

 The combination of coffee and pepper is very popular in Central Highlands. 

Coffee is also mix-planted with orchards such as durian or avocado 

 There are 3 main types of coffee: 
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 Coffea robusta (Cà phê vối): 2 m height at the mature stage. This is the most 

popular coffee tree in Dak Lak and entire Vietnam. This coffee has the highest 

productivity in comparison to others. 

 Coffea arabica (Cà phê chè): 1 m height at the mature stage. It looks similar to 

tea (chè). This coffee has higher quality than the robusta coffee but lower 

productivity.  

 Coffea liberica (Cà phê mít): 2–5 m height at the mature stage. It looks similar 

to jackfruit (mít).  

 The harvesting time of coffee is around December. 

 The pepper is a climbing plant. The platform for pepper might be concrete 

pillars, woody pillars, or living woody trees. The platforms are normally 3–4 m 

in height. The harvesting time of pepper is around October. 

The recognition of pepper in satellite images is also important since its vertical 

structure is similar to plantation forests.  

The pattern of typical deciduous broadleaf forests in Yok Don national park, Dak 

Lak province was observed and recorded (Figure 2.11d). 

Acacia was also observed in M’ Drak District, Dak Lak province (Figure 2.12a). 

In the local people interview in M’ Drak, I focused on the economic value of acacia in 

comparison to other agricultural plantations. From the interview, the crop structure of 

this area varies depending on the variation of the price of the products.      

* Interview with local people in M’ Drak, Dak Lak province (Figure 2.12b): 

 The acacia forest in this area was planted around 2005. 

 Before the acacia plantations, this area is mostly barren. 

 The acacia plantationa were conducted by a company, namely Tan Mai from 

2005 – 2010. 

 After 2010, the acacia plantations were conducted by some local households.  

 The rotation of the acacia is normally 5 years. 

 The economic value of the acacia: 1 ha in 5 years ~ 60–80 million Vietnam 

Dong ($3000– $4000) 

 In his household, he is planting some orchards, peppers, and coffee. 
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 Investment for pepper: 200 million Vietnam Dong (~$10000). Rural households 

can apply for preferential loans from banks for agriculture production. 

 1 ha pepper can contain 1200 pillars. 

 Pepper can be harvested after 2 years. One pillar can give 10 kg pepper/year. 

 Climate is a big factor affecting agriculture productivity, especially coffee. 

Excessive rainfall in this region decreases the effectiveness of coffee. 

 

Figure 2.12. Acacia plantation in M’Drak, Dak Lak and shrubland, sand dunes in Mui 
Doi, Khanh Hoa 
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Subtropical shrubland and coastal sand dune near Mui Doi - the easternmost point 

of Vietnam, in Khanh Hoa province were observed (Figures 2.12c and 2.12d). High 

temperatures and strong wind in this area have formed an arid area with barren sand 

dunes and shrubland. 

In Lam Dong province, evergreen needle-leaf forests (Figures 2.13a and 2.13b), 

deciduous broadleaf forests (Figure 2.13c) were observed. Vegetation cover in the Da 

Lat area is characterized by homogeneous evergreen needle-leaf forests (pine) forests. 

This is a unique regional-scale forest in Vietnam. The canopy cover of the pine forests 

is sparser than that of natural forests and other plantation forests (e.g., acacia or rubber). 

 

Figure 2.13. Evergreen needle-leaf forests and deciduous broadleaf forests in Lam Dong 
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* Interview with local people near Dai Ninh hydroelectric plant, Duc Trong 

district, Lam Dong (Figure 2.13d): 

 The Dai Ninh hydroelectric plant started into operation in 2008. 

 Before the Dai Ninh dam and reservoir were built, the croplands in this area 

were mainly sugar cane. 

 After Dai Ninh hydroelectric plant appeared, sugar cane was replaced by coffee. 

It was mainly due to the economic effectiveness of coffee was higher at that time. 

 His household has 3 ha coffee. 

 In this area, every farming household has 3–5 ha on average for cultivation. 

 Recently, since the price of coffee has decreased, there is a trend to replaced 

coffee with higher economic value plantation such as vegetables: carrot, sweet 

potato… 

 Pine forests are natural in Lam Dong, some small areas are plantation pines. 

 Coffee is normally mix-planted with other orchards: cacao, macadamia. 

The interview revealed the influence of the market price to distribution of crops in 

Duc Trong, Lam Dong.  

In Binh Thuan province, shrubland and sand dunes landscapes were observed 

(Figure 2.14a).  

Notably, local people interview in Bac Binh, Binh Thuan revealed that the cause 

of forest fires is attributed to both weather and native people activity (Figure 2.14b). 
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Figure 2.14. Field survey in Binh Thuan province 

 

* Interview with local people in Bac Binh district, Binh Thuan province (Figure 2.14b): 

 Natural forests: extreme dry weather can lead to forest fires. The grass at 

understory is selectively burned by rangers to avoid forest fire.  

 Some small forest areas are burned by local people when they are hunting. 

 Acacia has been planted in some places. 

 In the rainy season, the deciduous forests in this region turn back to green. 

 Crops can be cultivated mainly in the rainy season. 

 His household has 2.2 ha cashew. 

 The biggest problem in this area is the shortage of water resources. 

 At some places in the Bac Binh district, local people exploited underground 

water. The depth of the groundwater level is about 55 m.  

 His household needs to purchase drinking water from other areas. 

 A new reservoir, the Luy river reservoir, has been built to supply and harmonize 

water for the semi-arid Bac Binh district and Tuy Phong district of Binh Thuan 

province. 

In summary, the field survey in Central Highlands and South Central of Vietnam 

obtained much useful information and experience about biophysical features of forest 

types and forest changes in history. The information about growth stages and the 

development of rubber and acacia plantation such as mature year, the period of leave-

falling, installation of rubber fields is very important in the detection of rubber by 

remote sensing images. Notably, the vertical structure of evergreen needle-leaf forests 

in Lam Dong is similar to that of plantation forests. This similarity may cause 

misclassification in the mapping process. The changes between agricultural crops and 

plantation trees in these regions can be governed by the market price. The expansion of 

perennial crops is the main cause of deforestation in Central Highlands of Vietnam. 

(c) Field surveys in the Mekong delta 

Before the 17th century, the intact Mekong Delta was characterized by a 

seasonally inundated wetland. Later on, along with the immigration of Vietnamese from 



33 

the north, land and channel networks in the Mekong Delta have been developed for 

cultivating mainly rice and orchard. Inundated grass is the dominant vegetation cover in 

the original wetland. Woody trees are mainly plantations and the dominant species is 

Melaleuca Cajuputi (Figure 2.15a). Land resources in this region are mainly used for 

agriculture. Paddy, orchards (Figure 2.15b), and aquaculture are the most dominant land 

cover types. 

 

Figure 2.15. Field surveys in Dong Thap and Long An provinces 

* Interview with local people in Tam Nong district, Dong Thap province: 



34 

Man 1 (Figure 2.15c): 

 The purpose of the small channels is to reduce acid sulfate in soil (Figure 2.15c).  

 Tien river provide water resources to this area 

 Recently, there has been a trend of converting rice land to orchard land in this 

area. 

 The popular orchards in this area include mango, coconut, pineapple, and 

jackfruit. 

 

Man 2, 86 years old (Figure 2.15d): 

 He came to Dong Thap province in 1973. 

 In the 1970s, the land cover of the Mekong Delta mostly is wetland with 

inundated grass and rice. There was no woody plantation forest at that time. 

 1982–1984: plantation forests (Melaleuca Cajuputi) were planted in the Mekong 

Delta. In general, the Melaleuca can turn to the mature stage after 10 years from 

the seedling. 

 From 1982 to now, the plantation forest area has not changed remarkably. 

 During 1970–1980, the channel network system in this area was developed and 

expanded. 

 

In recent years, drought and water shortage have become one of the biggest 

environmental issues in the Mekong Delta (Figure 2.16a). Drought always is 

accompanied by the salt intrusion. For example, the drought in 2016 caused salt 

intrusion into the central Mekong Delta, which is Can Tho province (Nguyen, 2017; M. 

N. Nguyen et al., 2020). The reduction of water resources the in lower Mekong Delta 

has derived from many causes. One of the main causes is the development of large 

reservoirs and dams upstream Mekong basin, mostly in China and other countries such 

as Thai Land and Laos (Räsänen et al., 2012). Over-exploitation of groundwater also 

leads to a decrease in the water level of river networks (Minderhoud et al., 2017). 

Therefore, a decrease of precipitation can make the water shortage in Mekong Delta 

more severe. Many paddy areas could not be cultivated under the drought condition. 
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The surface area of aquaculture in Ca Mau province is characterized by 70% 

mangrove and 30% aquaculture pond (Figure 2.16b). The mangrove area of Ca Mau has 

experienced remarkable changes during recent decades. The changes consisted of being 

destroyed by dioxin in the Vietnam War, regeneration after the war, and then being used 

as a part of the aquaculture ecosystem.   

 

 

Figure 2.16. Field surveys in Tra Vinh and Ca Mau provinces 

*) Interview local people in Nam Can district, Ca Mau province 

Man 1, 72 years old (Figure 2.16c): 
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 From 30 years ago until now, mangrove was converted to cropland, then after 

that cropland was converted to aquaculture: fish, shrimp, and crabs (no 

information of exact time). 

 Water was contaminated by acid sulfate for some years, affecting the 

productivity of aquaculture. 

 The saltwater for agriculture is supplied by river networks. Recently, water 

quality has reduced because rivers have been polluted by industry areas and 

discharge of large-scale aquaculture. 

 Recently, households in this area restricts taking water from the river to their 

ponds. They clean the aquaculture ponds with microbiological substances. 

 Keeping mangroves above the aquaculture ponds is of the local government 

policy. The mandatory rate is 70% mangrove, 30 % water in terms of area 

coverage. 

 

Man 2, 72 years old (Figure 2.16d): 

 He has been living here since 1988. At that time, this area was mainly fallow 

land. The government then allocated land to people for establishing new 

economic areas.  

 From 1988, mangrove was converted to aquaculture ponds with the regulation 

on surface area of 70% forest and 30% pond, or 60% forest and 40% pond. 

 Concern about water pollution. 

 The purpose of mangrove above aquaculture ponds: 

◦ Harmonize the temperature 

◦ Food for shrimp 

 

In summary, the field surveys in the Mekong delta investigated and explored 

many forest cover characteristics and environmental issues of this region. Forests in 

Mekong Delta mostly are plantation forests (Melaleuca Cajuputi) and mangrove 

(mostly Rhizophora) near the coastline. The typical characteristic of Mekong Delta soil 

is the contamination of acid sulfate. Therefore, in cultivation, farmers make small 

channels (~1 m width) interleaved with embanked soil beds (1–3 m width). This design 
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can reduce acid sulfate in the embankment. This makes the unique pattern of the 

agricultural land of the Mekong Delta region in satellite images. Water shortage is a big 

problem in the Mekong Delta. It is due to the development of large reservoirs and dams 

upstream of the Mekong basin, mostly in China and other countries such as Thai Land 

and Laos. Another reason is the over-exploitation of the groundwater. The pollution of 

water resources due to sewage discharge from industry areas to rivers. The unique 

characteristics of aquaculture in Ca Mau province is characterized by the surface area 

consisting of 70% mangrove cover and 30% aquaculture pond beneath. This distinct 

pattern can be displayed in satellite images. 
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Chapter 3. Mapping Plantation Forest and Natural Forest 

for entire Mainland Vietnam 

 

 

 

 

 

 

Publications: 

 Paper: Hoang T.T., Truong V.T., Hayashi M., Tadono T., Nasahara K.N. (2020) 

New JAXA High-resolution Land Use/Land Cover Map for Vietnam aiming for 

Natural Forest and Plantation Forest Monitoring. Remote Sensing, 12, 2707. 

https://doi.org/10.3390/rs12172707 

 Data publication: the LULC map has been published on JAXA website as open 

LULC data of JAXA: https://www.eorc.jaxa.jp/ALOS/en/lulc/lulc_vnm_v2006.htm 
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3.1. Background 

Globally, 4.7 million ha/year of net forest loss and a 3 million ha/year increase in 

planted forests have been reported between 2010 to 2020, according to Food and 

Agriculture Organization of the United Nations (FAO) (FAO, 2020b). The forest 

dynamics have been attributed to main drivers such as land use/land cover (LULC) 

conversion for commodity production, forestry, agriculture shifting, wildfire, and 

urbanization (Curtis et al., 2018). These land modifications have led to negative 

environmental impacts including the increase in greenhouse gas emission (Rivera et al., 

2020), disruption of the water cycle (Hornung et al., 1987; Salati & Nobre, 1991), 

increase in soil erosion (Anselmetti et al., 2007), biodiversity loss (Barlow et al., 2016; 

Carnus et al., 2006), and disruption of local livelihoods (Campbell et al., 2008). To 

alleviate these issues, managements and policies have been proposed and implemented 

from local to global scales. In such frameworks, the importance of detailed and accurate 

measurements of forest types have been emphasized. The mapping of natural forests 

and plantation forests can provide a more accurate input for actual deforestation 

detection, carbon assessment, climate change modelling, and biodiversity loss detection. 

Previous studies present various approaches to distinguish plantation forests and 

natural forests using remote sensing data. One approach is to make use of the 

phenological characteristics of specific plantation types based on time-series imagery. 

Typical studies using this approach have adopted the difference in spectral 

characteristics of the defoliation period of deciduous rubber to separate it from natural 

forests (B. Chen et al., 2016; Dong et al., 2013; H. Fan et al., 2015; Senf et al., 2013; C. 

Xiao et al., 2019). Another approach is to use image processing techniques for 

enhancing the separability of plantation forests and natural forests. Specifically, texture 

analysis (Haralick et al., 1973) has been used to differentiate the unique spatial pattern 

of the targeted plantation, e.g., oil palm fields, from surrounding land covers (Cheng et 

al., 2018; Thenkabail et al., 2004). This technique is usually applicable to high-

resolution and cloudless images. Another technique is using remote sensing indices to 

amplify the differences in the spectral information of the two forest types. A number of 

optical vegetation indices have proved their effectiveness in mapping plantation forests 

and natural forests (Dong et al., 2013; Dong, Xiao, Sheldon, Biradar, & Xie, 2012; Kou 
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et al., 2015; Qin et al., 2016; Torbick et al., 2016; X. Xiao et al., 2002) such as the 

normalized difference vegetation index (NDVI), enhanced vegetation index (EVI), soil-

adjusted total vegetation index (SATVI), normalized difference tillage index (NDTI), 

and land surface water index (LSWI). In addition, the development of new radar 

satellites has facilitated the increasing involvement of radar data in LULC mapping and 

forest monitoring (Flores-Anderson et al., 2019). L-band synthetic aperture radar (SAR) 

images have been widely used in forest mapping at the global scale as well as at the 

regional scale (Dong et al., 2014; Shimada et al., 2014; V. T. Truong et al., 2019) since 

it can provide cloud-free structural information sensitive to forest cover. Radar indices 

such as the polarization ratio, normalized difference index (NDI), and the NL index 

have also been used in forest type mapping (Almeida-Filho et al., 2009; De Alban et al., 

2018; Dong et al., 2014; Dong, Xiao, Sheldon, Biradar, & Xie, 2012; Dong, Xiao, 

Sheldon, Biradar, Duong, et al., 2012; G. Li et al., 2012; Miettinen & Liew, 2011; Qin 

et al., 2015; Sarzynski, Giam, & Carrasco, 2020). Another comprehensive approach that 

recent studies have frequently demonstrated is the combination of optical and SAR 

imagery (De Alban et al., 2018; Dong et al., 2013; Dong, Xiao, Sheldon, Biradar, & Xie, 

2012; Gutiérrez-Vélez & DeFries, 2013; Kou et al., 2015; Poortinga et al., 2019; 

Sarzynski, Giam, & Carrasco, 2020; Torbick et al., 2016). The synergy of structural 

information from SAR images and biophysical information from optical images has 

improved the accuracy and map detail. In recent studies, this integration of different 

data types has been carried out by data fusion at a feature level, where the optical and 

SAR images are stacked into a single dataset as a classification input. 

One of the biggest challenges of forest type mapping is distinguishing between 

plantation evergreen broadleaf forest (EBF) and natural EBF since the spectral 

characteristics of these two forest types are mostly identical as mentioned in section 1.1.  

It is, therefore, necessary to build a comprehensive mapping approach that is applicable 

for different plantation forest types, various ranges of geographic regions, short time 

coverage.  

The advantage of forest mapping studies nowadays is the development of data-

rich sources. The availability of open satellite data such as Global PALSAR-2/PALSAR 

(phased array type L-band synthetic aperture radar) mosaic (JAXA, 2020c), Sentinel 
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constellation (ESA, 2014a), and new Landsat satellites (USGS/NASA, 2020), with 

advances in their specifications, has offered mapping forest types at a large scale and in 

high detail. Besides, open cloud-computing platforms for remote sensing, such as 

Google Earth Engine, have supported data curation in high performance at any spatial 

scope. 

Japan Aerospace Exploration Agency (JAXA) has released several LULC map 

products for Vietnam using remote sensing data (JAXA/EORC, 2016). The previous 

high-resolution LULC products of Vietnam (version 16.09, 18.07, 18.09) (Hoang et al., 

2018; D. C. Phan et al., 2018) with a 10 or 15 m resolution have presented the changes 

in land cover over about one decade (2007–2017). The most recent LULC products 

(version 19.08) showed annual changes in land cover from 2015 to 2018 in a 50 m 

resolution (V. T. Truong et al., 2019). In terms of forest mapping, these above-

mentioned LULC products categorized forests in Vietnam as one class whereas the 

advantage of this research is to produce a 10 m resolution LULC map with many forest 

classes. Highly detailed forest maps for Vietnam would be of importance in supporting 

the REDD+ (reducing emissions from deforestation and forest degradation), in which 

Vietnam is one of the first countries to have participated. 

The goal of this chapter was to produce a high-resolution LULC map that 

distinguishes natural forests and plantation forests (acacia, eucalyptus, rubber, and 

others) across different geographic regions in mainland Vietnam in 2016 using remote 

sensing data. The specific objectives were to: (1) construct a comprehensive mapping 

approach that classifies various types of natural forests and plantation forests for the 

entire mainland Vietnam; (2) evaluate the classification performance of satellite data 

including PALSAR-2/ScanSAR, PALSAR-2 mosaic, Sentinel-2, Sentinel-1 and 

Landsat 8; (3) compare the resultant map with other land cover products such as the 

European Space Agency (ESA) CCI land cover map 2016 (ESA, 2015a), FROM-GLC 

10 m 2017 (Gong et al., 2019), JAXA Forest/Non-forest map 2016 (JAXA, 2020c), 

JAXA land use/land cover map of Vietnam 2016 v19.08 (V. T. Truong et al., 2019) and 

MODIS land cover product MCD12Q1 2016 (Mark a. Friedl et al., 2010); (4) compare 

the resultant map with official data of the Vietnamese government including national 

statistics (VNFOREST, 2020a) and the Vietnam Forest Resource Map 2016 
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(VNFOREST, 2020b). The accurate measurement of natural forest and plantation forest 

changes would support an investigation about potential telecouplings in plantation 

forest lands in Vietnam such as the expansion of farm-based plantation of smallholders 

(Sandewall et al., 2010) or vulnerable households under the plantation forest expansion 

(Thulstrup, 2014). 

3.2. Materials and methods 

3.2.1. Method 

To distinguish natural forests and plantation forests over many geographic regions 

in Vietnam, this study’s mapping approach was designed based on the differences 

between the two forest types. These differences were supposed to be independent of 

foliage characteristics since both plantation and natural forests in Vietnam contain 

several tree types (EBF, deciduous, coniferous). Here, I formed a hypothesis relating to 

the differences between natural forests and plantation forests as follows: 

(1) Vertical structure: plantation forests demonstrate uniform structures such as the 

lattice pattern of rubber in Figure 2.1e or the dense pattern of acacia in Figure 

2.1f. Trees of plantation forests have the same height, same diameter at breast 

height (DBH), and same density. On the contrary, natural forests present 

nonuniform structures such as a random pattern of canopies as seen in Figure 

2.1b. Natural forests are structurally very diverse with a high degree of variation 

in height classes, DBH and densities. This difference can be recognized by the 

combinations of L-band SAR polarizations of horizontal transmit–horizontal 

receive (HH) and horizontal transmit–vertical receive (HV); 

(2) Biophysical features and water content: the chlorophyll concentration, greenness, 

brightness, moisture, etc. of plantation forest canopies are different from those 

of natural forest canopies. This difference can be recognized using water and 

vegetation indices derived from optical images;  
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(3) Topography: plantation forests are mostly cultivated in low slope lands while 

natural forests grow in higher slope lands. This difference can be recognized by 

topography data. 

Based on the hypothesis, this study constructed a comprehensive mapping 

approach that satisfied the following criteria: 

 Integrating information from various sensors to recognize all the differences 

between the two forest types;   

 Making use of time series data for phenology capture, which are essential for the 

classification of deciduous forest, rice, and other crops; 

 Making use of spectral indices and radar indices aside from the original bands 

and polarizations. As the indices are less sensitive to atmospheric noise and 

viewing geometry, they can support the geographical transferability. 

To integrate various information from multi-temporal images of multiple sensors, 

this study’s approach adopted a non-parametric probabilistic classifier for each of 

sensor data, then the integration was implemented by multiplying the resultant 

probability of each sensor data’s classification results. The classifier was based on 

Kernel Density Estimation (KDE) with Bayesian inference (Hashimoto et al., 2014). In 

previous studies, this method was applied for mapping high-resolution land use and land 

cover products for entire Japan (Hashimoto et al., 2014; Katagi et al., 2018) and 

Vietnam (Hoang et al., 2018; D. C. Phan et al., 2018; V. T. Truong et al., 2019). The 

resulting products were published as open land cover data by JAXA (JAXA, 2020d).  

A brief explanation of the classification process is as follows. The classifier 

simulated the probability density function of each land cover category based on the 

KDE technique with the training data as the input (Equation (3.1)). The selected kernel 

type in this study was the Gaussian function (Equation (3.2)). The posterior probability 

values corresponding to each of the land cover types were then estimated at the pixel-

wise level for the entire feature space based on the Bayes theorem (Equation (3.3)). For 

the integration of multitemporal images of the sensors, the joint posterior probability of 

each of the land cover categories was estimated by multiplying the component posterior 

probability values of each single-date image from each sensor’s data (Equation (3.4)). 
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Finally, the predicted land cover type of each pixel was assigned by choosing the one 

having the highest probability (Equation (3.5)). The engineering of the classification 

process was conducted using the Saclass software version 17.06 developed by JAXA 

and the University of Tsukuba (Hashimoto et al., 2014)). 

𝑝(𝑥 ∣ 𝐶 ) =
1

𝑁
  

1

ℎ
𝐾(

𝑥 − 𝑥 ,

ℎ
)  

(3.1) 

𝐾(𝑢) =
1

√2𝜋
exp (

−𝑢

2
) 

(3.2) 

𝑝(𝐶 ∣ 𝑥) =
𝑝(𝐶 )𝑝(𝑥 ∣ 𝐶 )

𝑝(𝑥)
=

𝑝(𝐶 )𝑝(𝑥 ∣ 𝐶 )

𝑝(𝐶 )𝑝(𝑥 ∣ 𝐶 )
 

(3.3) 

𝑝 (𝐶 ) = 𝑝 (𝐶 ∣ 𝑥 ) 
(3.4) 

𝐶 = argmax 𝑝 (𝐶 ) (3.5) 

ℎ = 𝑁
/( )

. 𝜎  (3.6) 

Where: 𝐶  is the k-th category ( 𝑘 = 1, 2, … , 𝑀 , where 𝑀  is the number of 

categories; here, 𝑀 = 12); 𝑝(𝐶 ) is the prior probability of category 𝐶 ; 𝑝(𝑥 ∣ 𝐶 ) was 

estimated based on the training data using the KDE (Equation (1)); 𝑥  is the d-th 

component of the feature vector 𝑥 (1 ≤ 𝑑 ≤ 𝐷); 𝐷 is the number of dimensions of the 

feature space; 𝑥 ,  is the d-th component of vector 𝑥  (training data), where (1 ≤ 𝑛 ≤

𝑁 ); 𝑁  is the number of training data in category 𝐶 ; ℎ  is the bandwidth of the KDE, 

defined by Scott’s rule in Equation (3.6); 𝜎  is the standard deviation of the d-th 

component training data of category 𝐶 ; 𝑝(𝐶 ∣ 𝑥) is the posterior probability; 𝑝 (𝐶 ) is 

the joint posterior probability; 𝐶 is the predicted land cover type. 

This study conducted mapping for each 1° × 1° tiles (Figure 2.1a) individually, 

instead of mapping the Vietnam area as a whole. The overall workflow of establishing 

the high-resolution LULC map for Vietnam is illustrated in Figure 3.1. The 

preprocessing step for the input data is discussed in Section 3.2.2. 
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Figure 3.1. The overall workflow of establishing the high-resolution LULC map for 

Vietnam in 2016 

3.2.2. Satellite data and preprocessing 

(a) PALSAR-2/ScanSAR time series data and single-temporal PALSAR-2 mosaic 

The PALSAR-2 is a radar imaging sensor onboard the Advanced Land Observing 

Satellite 2 (ALOS-2) operated by JAXA. ScanSAR is the name of the image product 

acquired in the ScanSAR observation mode of PALSAR-2. The ScanSAR mode has a 
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wide swath (350 km) which is suitable for LULC studies and forest monitoring at large 

scales. The sensitivity of the L-band (1270 MHz) PALSAR/PALSAR-2 images to the 

forest covers has been exploited in many forest monitoring studies (Flores-Anderson et 

al., 2019; Shimada et al., 2014; V. T. Truong et al., 2019). The revisit time of the 

ALOS-2 satellite, which considers one “cycle”, is 14 days. The ScanSAR data are 

provided in 1° × 1° tile mosaic images merged by images acquired in one cycle. 

Therefore, one ScanSAR image can contain the observation data of several days within 

a 14-day period. These time-mixed images are acceptable for LULC mapping since the 

phenology would not have a significant discrepancy in such 14-day intervals. The 

ScanSAR data are a high level-processing product with geometric corrections and 

terrain corrections including the application of radiometric terrain flattening (Small, 

2011). ScanSAR images have a 50 m resolution with a georeference of the geographic 

latitude/longitude WGS84 coordinate system. Each of the images had two polarization 

data which are HH (horizontal transmit—horizontal receive) and HV (horizontal 

transmit—vertical receive). The number of ScanSAR images over the Vietnam area in 

one year depends on the PALSAR-2 Basic Observation Scenario (JAXA, 2015). For 

this study, the available ScanSAR images in 2016 for the entire Vietnam were 450 1° × 

1° tile images. The Vietnam area was covered by 60 1° × 1° tiles (Figure 2.1a). 

Therefore, the number of images in one coverage tile could be 7 or 8 scenes. The 

ScanSAR data used in this study were provided by JAXA under the research agreement 

of “Generation of the Precise Land Cover Map”. 

Another PALSAR-2 data used in this study was the single-temporal PALSAR-2 

mosaic. This yearly product is open data with global coverage provided by JAXA. 

Originated from Fine Beam Dual Mode (FBD), the PALSAR-2 mosaic product has a 

spatial resolution of 25 m (JAXA, 2019). In this study, PALSAR-2 mosaic was used as 

a complement for ScanSAR data since its resolution is higher than the ScanSAR’s 

resolution. This product was provided in 1° × 1° tiles with HH and HV polarizations. 

For preprocessing, PALSAR-2/ScanSAR time-series data and single-temporal 

PALSAR-2 mosaic had the same procedure. First, the gamma-0 radar backscatter (unit 

in decibel (dB)) was derived from the digital number (DN) by Equation (3.7) (JAXA, 

2019) (CF is the calibration factor with a given value of −83.0 dB; 〈 〉 is an ensemble 
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averaging operator). The radar shadowing and layover pixels were masked by the 

enclosed mask files. A Lee filter (Lee, 1980) with a 5 × 5 moving window was applied 

to suppress the speckle noises in gamma-0 images. The radar indices were estimated 

and then stacked with the two original gamma-0 HH, HV images. The radar indices 

included ratio (RAT, Equation (3.8)), normalized difference index (NDI, Equation (3.9)), 

and NL index (NLI, Equation (3.10)). These indices have been proved to be effective in 

the classification of natural forests and plantation forests (De Alban et al., 2018; 

Sarzynski, Giam, & Carrasco, 2020). 

𝛾 = 10 ⋅ log  ⟨𝐷𝑁 ⟩ + 𝐶𝐹 (3.7) 

𝑅𝐴𝑇 =
𝛾

𝛾
 

(3.8) 

𝑁𝐷𝐼 =
𝛾 − 𝛾

𝛾 + 𝛾
 

(3.9) 

𝑁𝐿𝐼 =
𝛾 × 𝛾

𝛾 + 𝛾
 

(3.10) 

Where: 𝛾  is the gamma-0 radar backscatter; DN is the digital number; CF is the 

calibration factor with a given value of -83.0 dB, 〈 〉 is an ensemble averaging operator; 

𝛾  and 𝛾   are the gamma-0 radar backscatters corresponding to polarizations of HH 

and HV, respectively. 

(b) Sentinel-1 time-series data 

Sentinel-1 satellites provide C-band SAR images (at 5.045 GHz) with an 

incidence angle between 20 and 45°. The revisit time of Sentinel-1 constellation 

(Sentinel-1A and Sentinel-1B) is 6 days (12 days for each individual Sentinel-1). This 

study used Sentinel-1 images in interferometric wide swath (IW) mode with a swath 

width of 250 km, and a resolution of 10 m. All the images were acquired in descending 

observation, with two polarizations including VV (vertical transmit—vertical receive) 

and VH (vertical transmit—horizontal receive). The Sentinel-1 data were collected from 

the Google Earth Engine (GEE) cloud platform. These data were provided in the ground 

range detected (GRD) level 1 product (ESA, 2014b) with additional preprocessing 

including thermal noise removal, radiometric calibration, and a terrain correction using 

SRTM 30 or ASTER DEM (Google Earth Engine, 2020b). Since the radiometric terrain 
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flattening was not applied, the pixel value of the data presented a sigma-0 value (unit in 

decibel (dB)). I generated 8 composite images during 2016, and each composite image 

was created by taking the pixel-wise median values of all images during each 1.5-month 

interval using a median reducer function of the GEE (Google Earth Engine, 2020a). 

These data were then trimmed into 1° × 1° tiles (Figure 2.1a). Similar to the PALSAR-2 

data, a Lee filter with a 5 × 5 moving window was applied to remove the speckle noise 

in sigma-0 Sentinel-1 images. The radar indices of the Sentinel-1 data, which were 

analogous to those of the PALSAR-2 data, were then estimated (Equations (3.10)–

(3.12)). The utilization of these radar indices was based on an assumption that the C-

band SAR indices can support and improve the classification of a low biomass 

plantation and natural vegetation, e.g., crops and natural grass or shrubs (Filgueiras et 

al., 2019). 

𝑅𝐴𝑇 =
𝜎

𝜎
 

(3.11)

𝑁𝐷𝐼 =
𝜎 − 𝜎

𝜎 + 𝜎
 

(3.12)

𝑁𝐿𝐼 =
𝜎 × 𝜎

𝜎 + 𝜎
 

(3.13)

Where: 𝜎  and 𝜎  are the sigma-0 radar backscatters corresponding to 

polarizations of VV and VH, respectively. 

(c) Sentinel-2 and Landsat-8 data 

The Sentinel-2A MultiSpectral Instrument (MSI) data have been available from 

June 2015 with a high spatial resolution (10 m, 20 m, 60 m), high temporal resolution 

(10-day revisit time) and 290 km swath width. The Sentinel-2 data during 2016 used in 

this study were collected from the GEE. The data archived in the GEE were in level 1C, 

which included cloud masking flags for dense clouds and cirrus clouds (ESA, 2015c). 

After applying cloud masking, 8 median composite images were generated with 1.5-

month intervals (same as the composite method applied for the Sentinel-1 images). 

Even after cloud masking by a quality assessment (QA) file and conducting the median 

composite, non-negligible cloud covers were still present in several images. To remove 

these cloud covers, I adjusted the too-bright threshold value of visible spectral bands 
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and masked out bright pixels (Vermote et al., 2014). The images were then trimmed to 1° 

× 1° tiles (Figure 2.1a). All 13 multispectral bands of the Sentinel-2 were used in this 

study (Table 3.1). 

Table 3.1. Spectral bands of Sentinel-2A (ESA, 2015b) and Landsat 8 (USGS, 2020b) 
used in this study 

Data Band 
Spectral Range 

(nm) 
Electromagnetic Region 

Sentinel-2A 

Band 1 432–453 Aerosols 
Band 2 459–525 Blue 
Band 3 542–578 Green 
Band 4 649–680 Red 
Band 5 697–712 Red Edge 1 
Band 6 733–748 Red Edge 2 
Band 7 773–793 Red Edge 3 
Band 8 780–886 NIR (Near Infrared) 

Band 8A 854–875 Red Edge 4 
Band 9 935–955 Water vapor 

Band 10 1358–1389 Cirrus 
Band 11 1568–1659 SWIR1 (Shortwave Infrared 1) 
Band 12 2115–2290 SWIR2 (Shortwave Infrared 2) 

Landsat 8 

Band 1 430–450 Coastal aerosol 
Band 2 450–510  Blue 
Band 3 530–590 Green 
Band 4 640–670 Red 
Band 5 850–880 NIR (Near Infrared) 
Band 6 1570–1650 SWIR1 (Shortwave Infrared 1) 
Band 7 2110–2290 SWIR2 (Shortwave Infrared 2) 

Band 10 10,600–1,190 TIRS1 (Thermal Infrared 1) 
Band 11 11,500–12,510 TIRS2 (Thermal Infrared 2) 

 

The Landsat 8 surface reflectance product from the Operational Land Imager (OLI) 

and Thermal Infrared Sensor (TIRS) were collected from the GEE. With a 30 m 

resolution, 180 km swath width, and 16-day revisit cycle, the Landsat 8 data are the 

useful complement of the Sentinel-2 data, especially in cloudy areas. The surface 

reflectance product embedded the atmospheric corrections using LaSRC codes and 

included cloud and cloud shadow masks using the CFMASK algorithm (USGS, 2019). 

After applying cloud and cloud shadow masking, 8 median composite Landsat 8 images 

were generated with 1.5-month intervals, and then they were trimmed to 1° × 1° tiles 
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(Figure 2.1a). This study used 7 spectral bands from the OLI and 2 brightness 

temperature bands from the TIRS (Table 3.1). 

Aside from the original bands, the spectral indices estimated from both Sentinel-2 

and Landsat 8 were utilized. I selected a set of vegetation indices and water indices that 

were the most useful for the classification of natural forests and plantation forests based 

on previous studies (De Alban et al., 2018; Poortinga et al., 2019; Sarzynski, Giam, & 

Carrasco, 2020; Torbick et al., 2016). The indices included the NDVI (Equation (3.14)) 

(Rouse et al., 1973; Tucker, 1979), EVI (Equation (3.15)) (A. Huete et al., 2002; A. R. 

Huete et al., 1997), LSWI (Equation (3.16)) (X. Xiao et al., 2002), aerosol free 

vegetation index (AFVI; Equation (3.17)) (Karnieli et al., 2001), atmospherically 

resistant vegetation index (ARVI; Equation (3.18)) (Kaufman & Tanré, 1992), soil and 

atmosphere resistant vegetation index (SARVI; Equation (3.19)) (A. R. Huete et al., 

1997), moisture stress index (MSI; Equation (3.20)) (Hunt & Rock, 1989), SATVI 

(Equation (3.21)) (Hagen et al., 2012), NDTI (Equation (3.22)) (Daughtry et al., 2005), 

and index-based built-up index (IBI; Equation (3.23)) (Xu, 2008). 

𝑁𝐷𝑉𝐼 =
𝑁𝐼𝑅 − 𝑅𝑒𝑑

𝑁𝐼𝑅 + 𝑅𝑒𝑑
 

(3.14) 

𝐸𝑉𝐼 = 𝐺
𝑁𝐼𝑅 − 𝑅𝑒𝑑

𝑁𝐼𝑅 + 𝐶 × 𝑅𝑒𝑑 − 𝐶 × 𝐵𝑙𝑢𝑒 + 𝐿
 

(3.15) 

𝐿𝑆𝑊𝐼 =
𝑁𝐼𝑅 − 𝑆𝑊𝐼𝑅1

𝑁𝐼𝑅 + 𝑆𝑊𝐼𝑅1
 (3.16) 

𝐴𝐹𝑉𝐼 =
𝑁𝐼𝑅 − 0.5𝑆𝑊𝐼𝑅2

𝑁𝐼𝑅 + 0.5𝑆𝑊𝐼𝑅2
 

(3.17) 

𝐴𝑅𝑉𝐼 =
𝑁𝐼𝑅 − (𝑅𝑒𝑑 − 𝛽(𝐵𝑙𝑢𝑒 − 𝑅𝑒𝑑))

𝑁𝐼𝑅 + (𝑅𝑒𝑑 − 𝛽(𝐵𝑙𝑢𝑒 − 𝑅𝑒𝑑))
 

(3.18) 

𝑆𝐴𝑅𝑉𝐼 =
(1 + 𝐿)(𝑁𝐼𝑅 − (𝑅𝑒𝑑 − 𝛽(𝐵𝑙𝑢𝑒 − 𝑅𝑒𝑑)))

𝑁𝐼𝑅 + (𝑅𝑒𝑑 − 𝛽(𝐵𝑙𝑢𝑒 − 𝑅𝑒𝑑)) + 𝐿
 

(3.19) 

𝑀𝑆𝐼 = 𝑆𝑊𝐼𝑅1/𝑁𝐼𝑅 (3.20) 

𝑆𝐴𝑇𝑉𝐼 = (
𝑆𝑊𝐼𝑅1 − 𝑅𝑒𝑑

𝑆𝑊𝐼𝑅1 + 𝑅𝑒𝑑 + 0.1
) × (1.1 −

𝑆𝑊𝐼𝑅1

2
) 

(3.21) 

𝑁𝐷𝑇𝐼 =
𝑆𝑊𝐼𝑅1 − 𝑆𝑊𝐼𝑅2

𝑆𝑊𝐼𝑅1 + 𝑆𝑊𝐼𝑅2
 (3.22) 
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𝐼𝐵𝐼 =
2𝑆𝑊𝐼𝑅1/(𝑆𝑊𝐼𝑅1 + 𝑁𝐼𝑅) − (𝑁𝐼𝑅/(𝑁𝐼𝑅 + 𝑅𝑒𝑑) + 𝐺𝑟𝑒𝑒𝑛/(𝐺𝑟𝑒𝑒𝑛 + 𝑆𝑊𝐼𝑅1))

2𝑆𝑊𝐼𝑅1/(𝑆𝑊𝐼𝑅1 + 𝑁𝐼𝑅) + (𝑁𝐼𝑅/(𝑁𝐼𝑅 + 𝑅𝑒𝑑) + 𝐺𝑟𝑒𝑒𝑛/(𝐺𝑟𝑒𝑒𝑛 + 𝑆𝑊𝐼𝑅1))
 

(3.23) 

 

(d) AW3D30 topographic data 

AW3D30 is a 30 m resolution digital surface model (DSM) product generated 

from the Panchromatic Remote-sensing Instrument for Stereo Mapping (PRISM), which 

is an optical sensor onboard the Advanced Land Observing Satellite (ALOS). The 

purpose of using this auxiliary data was to improve the separability of natural categories 

from human-impacted landscapes. For example, plantation vegetations are grown 

mostly in a specific range of altitudes and slopes due to the ecological requirements of 

plantation species, and to facilitate human accessibility. AW3D30 was provided open 

and freely by JAXA (JAXA, 2020a). The DSM data were downloaded in 1° × 1° tiles, 

and the slope images were then estimated from the DSM images. 

All the preprocessing steps were implemented by Python, Shell Script, Geospatial 

Data Abstraction Library (GDAL; available online: https://gdal.org/), and Quantum 

Geographic Information System 3.4 (QGIS; available online: https://qgis.org/en/site/). 

After preprocessing steps, all the data were organized as in Table 3.2. 

Table 3.2. Organization of datasets, the number of images for each 1o × 1o tiles 

Datasets 
Year of 

Acquisition 
Features of each data 

Number of 
images/tile 

PALSAR-2/ScanSAR 2016 HH, HV, and 3 indices 7 or 8 
PALSAR mosaic 2016 HH, HV, and 3 indices 1 
Sentinel-1 2016 VV, VH, and 3 indices 8 
Sentinel-2 original bands 2016 13 original bands 8 
Sentinel-2 indices 2016 10 indices 8 
Landsat 8 original bands 2016 9 original bands 8 
Landsat 8 indices 2016 10 indices 8 
AW3D30 - Elevation & slope 1 

 

3.2.3. Reference data and classification scheme 

The land use/land cover category system in this study was established following 

criteria from the Land Cover Classification System of the FAO (Gregorio, 2016) and 
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systematically inherited from previous JAXA LULC products (Hoang et al., 2018; D. C. 

Phan et al., 2018; V. T. Truong et al., 2019) (Table 3.3). All forest classes complied 

with the following conditions: areas must be at least 0.5 ha, the tree height must be 

higher than 5 m and the canopy cover must be at least 10% (FAO, 2018). 

Table 3.3. Description of the land cover categories of the Vietnam LULC map in 2016 

Code Category Definition 

1 Water 
Permanent fresh/salt water bodies such as oceans, lakes, 

rivers, inundation areas 
2 Urban/built-up Artificial construction structures, impervious surfaces 
3 Rice Paddy fields with inundated planted rice 
4 Other crops Herbaceous crops or shrub crops other than rice 
5 Grass/Shrub Herbaceous or shrub (non-woody) natural vegetation 

6 
Orchard/Crop 

mosaic 
Tree crops and herbaceous crops mosaic, immature 

plantation trees 

7 Barren 
Lands with exposed soil, sand or rocks that always have 

vegetation cover less than 10% 

8 
Evergreen 

broadleaf forest 
Mixed natural forests dominated by evergreen broadleaf 

trees 
9 Coniferous forest Natural forests with coniferous trees. 

10 Deciduous forest Natural forests with deciduous or semi-deciduous trees. 
11 Plantation forest Mature acacia, rubber, eucalyptus and other plantation trees 

12 Mangrove 
Woody vegetation on waterlogged soil, mostly along the 

coastline 
 

The training data were collected by visual interpretation using high-resolution 

Google Earth images, Sentinel-2, and Landsat 8 images, with the support of GPS photos 

taken from field surveys. The training data were created in point-sample form, with 

each training data point representing a homogeneous area of the targeted land cover 

type. I created 179,970 training data points in total for 12 LULC categories (Figure 

3.2a). The number of training data points for each category are shown in Figure 3.2a in 

square brackets. 

This study used GPS photos taken from many field surveys in Vietnam in 2015, 

2016, 2018, 2019, and 2020 (Figure 3.2b), which were designed to serve not only this 

study but also the production of previous Vietnam LULC maps (Hoang et al., 2018; D. 

C. Phan et al., 2018; V. T. Truong et al., 2019). The ground-truth photos supported the 

visual identification of land cover types from remote sensing imagery. The GPS photos 
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were taken using GPS cameras or automatic time-lapse GPS cameras (Gopro). The 

number of GPS photos in each of the field surveys are described in the square brackets 

of Figure 3.2b. 

 

Figure 3.2. Distribution and quantity of reference data for 2016 mapping. (a) 
Distribution and quantity of training data; (b) Distribution and quantity of field survey 
data; (c) Distribution and quantity of validation data. 

 

The validation data were designed and created following the method described by 

Olofsson et al. (2013). First, I used the stratified random sampling method to create 

sampling points. The land cover types of the resultant map were used as strata. 

Depending on the area values of each stratum, I allocated different numbers of sampling 

points (Appendix Table A1). The strata having areas greater than 2 million ha were 

sampled by 300 points whereas the strata having areas smaller than 2 million ha were 

sampled by 150 points. The number of samples in each stratum was given in square 

brackets of Figure 3.2c. The total number of samples was 2700 points. The stratified 

random sampling process was conducted using the AcATaMa plugin of QGIS software. 

The sampling points were then labeled with land cover types by visual interpretation 

using Sentinel-2 and Landsat 8 images in 2016. The labeled points were then used as 

the validation dataset to create the error matrix of the resultant LULC map (Appendix 

Table A1). The overall accuracy (OA), user’s accuracy (UA), producer’s accuracy (PA), 
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and their standard errors were estimated following the methods of Olofsson et al. (2013, 

2014). 

As the classification was conducted for each 1° × 1° tile individually (mentioned 

in Section 3.2.1), the training data used for the targeting tile was taken from all the 

training data sampling points located within that tile and its 8 surrounding tiles. This 

practice could avoid the edge mismatching issue which may occur in the resultant 

LULC map tiles after classification. 

3.3. Results 

3.3.1. Evaluation of the classification performance of satellite data 

The receiver operating characteristic (ROC) (Zweig & Campbell, 1993) was 

employed to evaluate the classification performance of input data. The ROC curves 

illustrated the graphs of true positive rates (TPR) (Equation (3.24)) versus the false 

positive rates (FPR) (Equation (3.25)) at different classification thresholds. The 

thresholds were determined by the predicted probabilities of positive classes. Generally, 

ROC curves indicate the trade-off between the TPRs and FPRs of a classification model. 

A model having ROC curves closer to the top-left corner would indicate a better 

performance. The area under the curve (AUC), which is estimated by the two-

dimensional area underneath the ROC curve (Equation (3.26)), is the numerical 

measurement of the ROC curve. A higher value of AUC implies a better classification 

performance. 

This study generated ROC curves for all 12 land cover classes for each input data 

and the model with all the input data integrated (Figure 3.3). A total of 2700 validation 

data points were used for establishing the ROC curves.  

𝑇𝑃𝑅 =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒
 (3.24) 

𝐹𝑃𝑅 =
𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒
 (3.25) 
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𝐴𝑈𝐶 = 𝑇𝑃𝑅 𝑑(𝐹𝑃𝑅) 
(3.26) 

 

Where: In the validation, True Positive of a category is the number of data points 

having the classified value correctly predicted; False Negative of a category is the 

number of data points having the classified value incorrectly predicted that it does not 

belong to the category; False Positive of a category is the number of data points having 

the classified value incorrectly predicted that it belongs to the category; True Negative 

of a category is the number of data points having the classified value correctly predicted 

that it does not belong to the category; 

The ROC plots in Figure 3.3 showed that the integration of all sensor data gave 

the best overall classification performance. This can be interpreted from the Figure that 

the ROC curves of the integration model (Figure 3.3h) were closer to the top-left corner 

than those of other individual input (Figures 3.3a–g). The grass/shrub class was the 

most challenging since its AUC showed the lowest values in all models compared to 

that of other classes. The comparison of ROC plots of PALSAR-2/ScanSAR and 

PALSAR-2 mosaic showed that ScanSAR time-series data have better classification 

performance on forest classes than PALSAR-2 mosaic single-temporal data. This was 

proved in Figures 3.3e and 3.3f, AUC values of EBF, coniferous, deciduous, plantation 

of ScanSAR data (0.87, 0.93, 0.70, 0.79, respectively) are mostly higher than those of 

PALSAR mosaic data (0.83, 0.90, 0.71, 0.76, respectively). On the other hand, the C-

band Sentinel-1 ROC plot showed lower classification performance in forest classes in 

comparison to all other sensor data.  

AUC values of all the input data for each of the forest classes was shown in 

Figure 3.4. As can be seen in Figure 3.4, the integration of all the input data showed the 

best performance, which was reflected by the highest AUC values in all the forest 

classes. As for the major forest classes, including EBFs and plantation forests (Figures 

3.4a and 3.4b), the PALSAR-2 and Sentinel-2 data indicated higher AUC values than 

the Landsat 8 and Sentinel-1 data. In terms of deciduous forests (Figure 3.4c), the AUC 
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values of optical data (Sentinel-2, Landsat 8) are higher than those of SAR data 

(Sentinel-1, PALSAR-2). A possible reason would be the high sensitivity of the time-

series optical data to the phenological characteristics of deciduous forests (seasonal leaf 

drop). The trend of the AUC values of coniferous forests was mostly similar to that of 

EBFs, with higher AUC values for PALSAR-2 and lower AUC values for other data 

(Figure 3.4d). Another salient point is that in most of the cases, the time-series 

PALSAR-2/ScanSAR data have higher AUC values than the single-temporal PALSAR-

2 mosaic data, and the Sentinel-2 data have higher AUC values than the Landsat 8 data. 

This proof emphasizes the advantages of the L-band time-series ScanSAR and high-

resolution optical time-series Sentinel-2 data in forest type mapping in Vietnam. 
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Figure 3.3. Receiver operating characteristic (ROC) curves of the 12 land cover categories for each input 
data model in 2016 mapping.(a) ROC curves of time-series Landsat 8 original bands; (b) ROC curves of 
time-series Landsat 8 indices; (c) ROC curves of time-series Sentinel-2 original bands; (d) ROC curves of 
time-series Sentinel-2 indices; (e) ROC curves of time-series PALSAR-2/ScanSAR; (f) ROC curves of 
single-temporal PALSAR-2 mosaic; (g) ROC curves of time-series Sentinel-1; (h) ROC curves of 
integration of all data 
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Figure 3.4. Comparison of the area under the curve (AUC) value of input data in forest 
classes in 2016 mapping. (a) The AUC value of input data in evergreen broadleaf 
forests; (b) The AUC value of input data in plantation forests; (c) The AUC value of 
input data in deciduous forests; (d) The AUC value of input data in coniferous forests 
where: S1 is the Sentinel-1 time-series; L8-VI is the Landsat 8 vegetation indices time-
series; L8-ORG is the Landsat 8 original bands time-series; S2-ORG is the Sentinel-2 
original bands time-series; S2-VI is the Sentinel-2 vegetation indices time-series; P2-
MOS is the PALSAR-2 mosaic; P2-SCR is the PALSAR-2/ScanSAR time-series; 
integration is the integration of all inputs 

 

3.3.2. The resultant Vietnam LULC map 2016 and its comparison to 

other LULC map products 

The resultant 10-m resolution LULC map of Vietnam in 2016 was shown in 

Figure 3.5a. The overall accuracy of the map was 85.6%. The evergreen broadleaf forest 

class, which accounts for more than 88% of total natural forest area, showed high UA 

and PA (95.3% and 89.6%, respectively). The other natural forest classes including 

deciduous forest and coniferous forest had accuracies lower than 80%. The plantation 

forest class also had high UA and PA (86.0% and 88.0%, respectively). The errors of 

forest classes mainly came from misclassification between the forest types. Besides, 

other confusion came from grass/shrub versus EBF and deciduous forest versus crops. 
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Mangrove demonstrated high accuracies with both UA and PA reached more than 92%. 

The detail of the error matrix was provided in Appendix Table A1. 

An acacia plantation forest area in this study’s map, Google Earth imagery, and 

several open land cover products was shown in Figures 3.5b–h. The acacia area was a 

field site that was close to the site described in Figure 2.1f. As can be seen in the 

Figures, the acacia plantation forest areas were detected in this study’s map while in 

ESA-CCI map, MODIS land cover map (MCD12Q1), JAXA LULC map v19.08, JAXA 

Forest/Non-Forest map the acacia forest areas mostly presented as cropland or non-

forest areas. In the FROM-GLC 2017v1 map (Figure 3.5f), some of the acacia areas 

were detected as forest. However, the FROM-GLC map does not distinguish natural 

forests and plantation forests.  
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Figure 3.5. The resultant Vietnam LULC map 2016 and its comparison to other LULC products. (a) The 
overall mainland Vietnam LULC map in 2016; (b) The LULC map of this study in the zoom-in window; 
(c) The Google Earth imagery in the zoom-in window; (d) ESA-CCI LULC map 2016 in the zoom-in 
window; (e) MCD12Q1 (MODIS LULC map) 2016 in the zoom-in window; (f) FROM-GLC 2017 v1 
LULC map in the zoom-in window; (g) JAXA Forest/Non-Forest map 2016 in the zoom-in window; (h) 
JAXA LULC map of Vietnam 2016 (version 19.08) in the zoom-in window. 
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3.3.3. Comparison of forest areas between this study’s map in 2016 and 

Vietnam national statistical data 

The comparison between this study and Vietnam national statistical data of the 

total forest area, the natural forest area, and the plantation forest area is shown Figure 

3.6. For the natural forest area in this study, the classes including EBFs, deciduous 

forests, and coniferous forests were merged into one class which represented the natural 

forests in Vietnam and then the area and the standard error were measured. The total 

forest area in this study was measured by summing up all the forest classes in the 

resultant map. 

 

Figure 3.6. Comparison of forest areas between this study’s LULC map in 2016 with 

Vietnam national statistical data. 

Overall, this study’s areas were lower than those of the national statistics with 

minor differences (smaller than 8% in all the three forest areas). The total forest area, 

the natural forest area, and the plantation forest area in this study’s map of 2016 were 

13.50 × 106 ha (± 0.20 × 106 ha), 9.55 × 106 ha (± 0.16 × 106 ha), and 3.89 × 106 ha (± 

0.11 × 106 ha) respectively, whereas those of the national statistical data were about 

14.38 × 106 ha, 10.24 × 106 ha, and 4.14 × 106 ha respectively (VNFOREST, 2020a). 

The differences in forest areas between this map and the national statistics may come 

from the error of this map and the difference in the definition of land use/land cover 
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used by each of the sources. The national statistics counted all the land areas assigned as 

forest land, even when there was no tree stands at that time. For this study’s map, forest 

areas were estimated based on actual forest covers detected by the remote sensing data. 

3.3.4. Comparison between this study’s map and the Vietnam Forest 

Resource (VFR) Map 2016 

The resultant LULC map was compared with the forest map of the government of 

Vietnam, namely the Vietnam Forest Resource Map (2016). The VFR Map was 

established under a Vietnam national forest inventory program and it has been opened 

to the public (VNFOREST, 2020b). The category system of the VFR Map included 17 

classes. The source of the VFR Map also provided a simplified forest map with three 

classes including natural forests (a merged class from many natural forest classes), 

plantation forests, and bare land. I estimated 10-km resolution fractional cover maps of 

the natural forests and plantation forests of this study’s map and the simplified VFR 

Map (Figure 3.7a–d). The natural forest class in this study’s map was merged from the 

EBFs, deciduous forests, and coniferous forests. The fractional difference maps 

(absolute value of the subtraction) between this study and the VFR Map (Figures 3.7e 

and 3.7f) was then derived to examine the degree of consistency between this study’s 

result and the official map. 

This study’s maps and the VFR Maps had a good consistency at a 10-km 

resolution (Figure 3.7). Most of the area over mainland Vietnam had a fractional cover 

difference of less than 10% in terms of both natural forests and plantation forests. 

However, several areas revealed a substantial fractional difference, shown as zoom-in 

sites in Figures 3.7e and 3.7f. I compared my LULC map with the VFR Map at the three 

sites to explore the causes of these differences (Figure 3.8). 
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Figure 3.7. Comparison of the 10-km resolution forest fraction maps between this study 
and the Vietnam Forest Resource (VFR) Map in 2016 and their forest fraction 
differences. (a) Natural forest fractional cover map of this study; (b) Plantation forest 
fractional cover map of this study; (c) Natural forest fractional cover map of the VFR 
Map 2016; (d) Plantation forest fractional cover map of the VFR Map 2016; (e) 
Absolute value of the natural forest fractional difference between this study’s map and 
the VFR Map 2016; (f) Absolute value of the plantation forest fractional difference 
between this study’s map and the VFR Map 2016. 

  



64 

 

Figure 3.8. The three zoom-in sites in the VFR Map 2016 and in this study’s map 2016. 
(a) Site 1 of this study’s map; (b) Site 1 of the VFR map; (c) Site 2 of this study’s 
map;(d) Site 2 of the VFR map; (e) Site 3 of this study’s map; (f) Site 3 of the VFR map 

 

In the following discussion, I assumed that the VFR Map properly reflected the 

reality of the forest status of Vietnam in 2016. As for Site 1 (Yen Bai, Ha Giang 

provinces), many plantation forest areas in this study’s map (Figure 3.8a) were 

presented as mixed wood and bamboo forest in the VFR Map (Figure 3.8b). The natural 

bamboo forests have some similar characteristics to plantation forests such as a low 

biomass, low moisture content, and bamboo trees having similar trunk sizes. Therefore, 

the natural bamboo forests are likely to be confused with plantation forests in the 

classification process. 

For Site 2 (Lang Son, Quang Ninh provinces), areas shown as natural forest (EBF) 

in this study map (Figure 3.8c) were presented as plantation forests in the VFR Map 

(Figure 3.8d). Interestingly, there was a nature-oriented reforestation project aided by 

the government of Germany from 1995 to 2005 conducted in this region (Bac Giang, 

Quang Ninh, Lang Son provinces) (Sturm & Apel, 2006). According to Sturm and Apel 

(2006), the project aimed for planting near-natural forests with multiple functions of 

forest ecosystems and attempting to harmonize the ecological, economic, and social 
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requirements of the region. Therefore, the structures and characteristics of these planted 

forests in Site 2 were identical to natural forests. This similarity caused the 

misclassification of the near-natural planted forests, in which they were detected as 

natural EBFs in this study’s map. 

For Site 3 (Binh Duong, Binh Phuoc provinces), the rubber plantation forests in 

this study’s map (Figure 3.8e) were not presented in the VFR Map (Figure 3.8f). The 

cause of this disagreement came from the fact that the Vietnamese government’s forest 

data excluded rubber plantations. In Vietnam’s national statistics, rubber plantation 

areas have been considered as agricultural lands (perennial industrial crops) (GSO, 

2019). However, according to the FAO (FAO, 2018) and the country report of Vietnam 

for the FAO Forest Resources Assessment 2020 (FAO, 2020a), the definition of forest 

considered rubber to constitute plantation forests. This study followed the FAO 

definitions to consider rubber as a plantation forest. 

3.4. Discussion 

3.4.1. Advantages and potential applications of the resultant LULC 

map 

In terms of methodology, the advantage of this map was demonstrated by the 

comprehensiveness of the mapping approach. Based on the hypothesis on the ultimate 

differences between natural forests and plantation forests, the comprehensiveness of the 

approach consisted of (1) combining the advantages of various sensors using the 

probabilistic integration at the decision level; (2) using time-series data; (3) using 

remote sensing indices.  

In terms of product quality, the advantage of this study’s LULC map was 

highlighted by a comparison with previous JAXA LULC maps of Vietnam and other 

LULC products. This map has a higher resolution (10 m), which is currently the best 

resolution among JAXA LULC products and other global LULC products. While all the 

previous JAXA LULC maps of Vietnam categorized forests as one class, this study’s 

map has four forest classes, which can offer better support for forest monitoring 
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initiatives such as REDD+, land use, land use change, and forestry (LULUCF), the 

national forest inventory, etc. In addition, this map was one of the first regional maps 

that distinguished natural forests and plantation forests, in which plantation forests were 

comprised of various foliage types including evergreen broadleaf, deciduous, and 

coniferous foliage. This salient point would open a potential direction for mapping 

natural forests and planted forests at a global scale to improve the accuracy of carbon 

emission assessments, the detection of deforestation, and assessments of biodiversity 

loss. As for the classification accuracy, the major forest classes, such as EBFs and 

plantation forests, had high accuracies (PA, UA) ranging from 86.0% to 95.3%. In 

terms of mapping the forest/non-forest cover, this study’s map (merging all forest 

classes as one and merging all non-forest classes as the other), showed a very higher 

accuracy (95.7%, Appendix Table A2). In addition, the higher-accuracy mangrove 

cover class in this map can facilitate studies associated with blue carbon assessments 

(Dat Pham et al., 2019) or mangrove ecosystem services (T. D. Pham et al., 2018; Van 

et al., 2015). 

3.4.2. Limitations and challenges of this study’s map 

The comparison between this study’s map and the VFR Map revealed several 

limitations and challenges in distinguishing natural forests and plantation forests. The 

misclassification of the natural bamboo forests was one of the challenges as bamboo 

forests and plantation forests had similar features in this study’s classification design. 

Bamboo forests have been considered one important carbon pool because of their strong 

carbon sequestration capacity (Du et al., 2018). According to Du et al. (2018), bamboo 

forests in Vietnam occupied 1.018 × 106 ha, which accounted for about 3.33% of the 

total bamboo forest area over the world and about 10% of the total natural forest area of 

Vietnam. Therefore, bamboo forests should be considered as a future target for this 

study’s approach. Potential solutions to overcome the misclassification of the bamboo 

forests would be using the leaf area index (LAI) information or adopting the approach 

of global bamboo forest mapping by Du et al. (2018). 

Another challenge was the misclassification of the nature-like planted forests. The 

establishment of these planted forests involved the use of indigenous species and the 
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incorporation of natural succession (Sturm & Apel, 2006). Hence, the characteristics of 

these forests and natural forests were mostly identical. Therefore, the detection of the 

nature-like planted forests would require human knowledge-embedded information as 

ancillary data along with Earth observation imagery. 

The misclassification of the grass/shrub class indicated another limitation of this 

study’s map. The error matrix (Appendix Table A1) showed that the grass/shrub class 

was mostly confused with EBFs, orchard/crop mosaics, and barren land. The reason for 

this misclassification may come from the imperfect training data of the grass/shrub class, 

which were possibly created by an inaccurate visual interpretation. In some cases, the 

interpreters were not highly confident in identifying whether an area in a satellite image 

is a rich shrubland or a degraded forest. Similarly, sparse grasslands and bare lands were 

sometimes difficult to distinguish from each other by satellite image interpretation. The 

quality of the training data can be improved by increasing the ground-truth data or 

consulting various sources such as available open reference data. 

3.4.3. Future research directions 

In terms of time-series scalability, this study can be replicated for historical high-

resolution remote sensing observations such as ALOS/AVNIR2 and ALOS/PALSAR 

(2006–2011). Thus, such expected high-resolution time-series LULC maps would 

provide the long-term changes of natural forests and plantation forests in Vietnam. 

These forest changes, in turn, would offer various research directions for identifying the 

links between forest resources and social-economic issues. For example, previous 

studies on plantation forests in Vietnam indicated that the expansion of plantation 

forests in Vietnam had a strong relationship with the expansion of plantation farm-based 

smallholders (Sandewall et al., 2010) and the vulnerability of resource-poor local people 

(Thulstrup, 2014). 

Another future work would be to improve the detail level and accuracy of future 

LULC maps. Recent studies on carbon emissions from land cover changes in Vietnam, 

like Avitabile et al. (2016), and the REDD+ readiness status (Maraseni et al., 2020) 

have called for highly reliable and detailed LULC and forest maps. Carbon emission 
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assessments would be more accurate if the input LULC maps contained sub-categories 

of natural forests such as bamboo, biomass-rich forests, biomass-medium forests, 

biomass-poor forests, and regrowth forests. Similarly, separating plantation forests into 

single tree species sub-categories such as rubber, acacia, eucalyptus, pine, etc., would be 

of importance. Although the VFR Map has a high level of detail, it is expensive because 

its establishment relies on satellite imagery with a visual interpretation of numerous 

forestry staff and specialists, and it has been carried out at five-year intervals. Therefore, 

the expected improved LULC product would provide more timely and objective data to 

policymakers and the land science community with low cost. 

Future research initiatives will have more opportunities for improvement since, 

along with current data archives, this research direction will have the opportunity to use 

new data from future satellites such as Landsat 9 (optical, 2021), NISAR (L-band SAR, 

2021), BIOMASS (P-band SAR, 2021), Tandem-L (L-band SAR, 2023), ALOS-3 

(optical, future), ALOS-4 (L-band SAR, future) and a new Vietnamese satellite, 

LOTUSat-1 (X-band SAR, 2023). Moreover, the continued evolution of advanced deep 

learning algorithms would provide new classification methods for improving LULC 

map production. 

3.5. Summary 

This chapter demonstrated a comprehensive approach to create a high-resolution 

LULC map which aimed at distinguishing natural forests and plantation forests (acacia, 

rubber, eucalyptus, and others) in Vietnam. This approach comprised of integrating 

various data products from multiple sensors (PALSAR-2/ScanSAR, PALSAR-2 mosaic, 

Sentinel-1, Sentinel-2, Landsat 8, AW3D30) at the decision level, after applying the 

probabilistic classifier for each data, taking advantage of time-series data and remote 

sensing spectral indices. A ROC analysis showed that the integration of all the sensor 

data displayed a better classification performance than any individual sensor’s data. In 

addition, the PALSAR-2/ScanSAR and Sentinel-2 data showed better classification 

performances in forest classes compared to the data products from other sensors. 
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The high-resolution LULC map over mainland Vietnam in 2016 was produced 

with 12 classes and an overall accuracy of 85.6%. The major forest classes such as 

EBFs and plantation forests reached high accuracies of more than 86%. The comparison 

of the natural and plantation forest fractional covers between this study’s map with 

Vietnam’s national statistics and the Vietnam Forest Resources Maps 2016 showed 

good agreement except for the limitation of the bamboo forest misclassification 

(confused with plantation forests). This study confirmed the feasibility of producing 

highly detailed and accurate forest type maps in the forthcoming big data era of Earth 

observation. There is also a further need to reproduce the resultant map in historical 

periods to have spatially explicit insights into changes in plantation forests and natural 

forests in Vietnam. 
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Chapter 4. A spatiotemporal Analysis of Deforestation in 

Vietnam over the Last Two Decades 
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4.1. Background 

Deforestation is a critical environmental issue that exerts negative impacts on 

global climate change, biodiversity, and local communities. For example, in 2019 the 

Intergovernmental Panel on Climate Change (IPCC) reported that agriculture, forestry, 

and other land use (AFOLU) including deforestation and forest degradation accounted 

for 23% of global anthropogenic greenhouse gas emissions (IPCC, 2019). Furthermore, 

by investigating 875 sample sites across the tropics, Alroy (2017) found that 

approximately 41% of tree and animal species are absent from disturbed forests in 

comparison to undisturbed forests. Despite efforts by national governments and 

international bodies to halt the issue, tropical deforestation has continued apace, making 

the development of effective countermeasures a significant challenge (Seymour & 

Harris, 2019).  

Vietnam has experienced a forest transition from net forest loss to net forest gain 

since the 1990s (Keenan et al., 2015). However, deforestation continues to persist in this 

country. For example, Khuc et al. (2018) identified 1.77 million ha of deforestation in 

Vietnam between 2000 and 2010 based on national forest maps obtained from the 

Vietnamese government. Furthermore, according to data released by the Vietnamese 

government, the Central Highlands region, which is considered the most severely 

deforested region in Vietnam, lost 524,000 ha of natural forest between 2009 and 2019 

(GSO, 2020). Deforestation in Vietnam has led to numerous detrimental impacts 

including habitat fragmentation and biodiversity loss (Meyfroidt & Lambin, 2008b), the 

intensification of natural disasters such as floods, flash floods (Bradshaw et al., 2007), 

and a changing water cycle and altered flow regimes (N. C. Q. Truong et al., 2018; 

Ziegler et al., 2004).  

Precise deforestation monitoring and quantitative understanding of deforestation 

are fundamental to inform sustainable forest management (Geist & Lambin, 2002; 

Hosonuma et al., 2012; Kissinger et al., 2012). However, current deforestation data 

have substantial limitations that decline the reliability of the deforestation information. 

Remote sensing-based maps have presented large uncertainty in deforestation areas (H. 

Chen et al., 2020), which included both overestimation and underestimation in  Global 
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Forest Change (GFC) data (Galiatsatos et al., 2020; Sannier et al., 2016) and Land 

Cover project of the Climate Change Initiative (CCI-LC) data (ESA, 2015a), 

respectively. Whereas, forest census-based data have presented the limitation on the 

land-use based definition. By the definition, “forest” in this data represents a forestland 

registered by the government, even if there is no tree. This limitation led to inaccurate 

estimates of the actual forest cover. 

In addition, patch size is one of the important pattern metrics that can reflect the 

characteristics of deforestation. For example, Kalamandeen et al. (2018) and Rosa et al. 

(2012) pointed out that the change in patch size of deforestation in Brazillian Amazon 

was coincident with implementation of new conservation policies. Forest disturbance 

regimes of Europe was mapped using several pattern metrics that included disturbance 

mean patch size (MPS) (Senf & Seidl, 2020). The increasing trends in patch size of 

tropical deforestation can signal an increasing trend of industrial-scale drivers, 

according to Austin et al. (2017). 

As for Vietnam, previous studies on the characterization of deforestation mostly 

focused on identifying its direct and indirect drivers (Cochard et al., 2017; Curtis et al., 

2018; Khuc et al., 2018; T. T. Pham et al., 2019) and explaining its mechanisms in some 

local study cases (Meyfroidt et al., 2013; Tachibana et al., 2001). However, 

spatiotemporal presentations of drivers of deforestation in entire Vietnam has remained 

unknown. Such information would enrich the knowledge of deforestation in Vietnam 

and provides a good reference for policy designs and action plans of conservation. 

Recently, the Japan Aerospace Exploration Agency (JAXA) released a new high-

resolution LULC map for 2016 covering all of Vietnam (version 20.06) (Hoang et al., 

2020). This map has a 10-m spatial resolution with fine discrimination of natural forests 

and plantation forests. Importantly, the mapping approach used to produce this map can 

be applied to historical remote sensing data to create historical LULC maps, from which 

deforestation can be quantified based on post-classification comparisons of natural 

forest extent.  

This study aimed to address the following three main research questions: (1) 

whether the high-resolution LULC mapping approach suggested by Hoang et al. (2020) 
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(Hoang et al., 2020) can provide better deforestation detection in comparison to other 

currently available data including GFC (Hansen et al., 2013) and CCI-LC (ESA, 2015a) 

data, and statistical forest data from the government of Vietnam (GSO, 2020); (2) how 

deforestation mean patch size (MPS) has varied spatially and temporally in Vietnam 

over the last two decades; and (3) whether there is a link between spatiotemporal 

variations in the MPS of deforestation and its direct drivers during this period. To 

address these questions, the following four specific objectives were adopted: (1) to 

create a high-resolution LULC map for 2007 based on the JAXA 2016 high-resolution 

LULC mapping approach (Hoang et al., 2020); (2) to create a deforestation map for the 

period between 2007 and 2016 based on the two LULC maps and in comparison with 

the GFC and CCI-LC datasets, and national governmental statistics; (3) analyze spatial 

variations in deforestation MPS in association with spatial patterns of deforestation 

drivers; and (4) analyze temporal variations in the deforestation MPS for the period 

2001–2019 alongside variations in deforestation drivers. 

4.2. Materials and method 

4.2.1. Satellite data and preprocessing 

One important goal of this study was to establish a deforestation map for 

mainland Vietnam between 2007 and 2016. The deforestation map was created using a 

post-classification comparison of two high-resolution LULC maps for these years. The 

2016 map was the JAXA high-resolution LULC map (version 20.06) (Hoang et al., 

2020), which was created based on a comprehensive mapping approach that included 

integrating information from time-series data of various sensors and making use of 

spectral and radar indices. By using this mapping approach, this study also created a 

map for 2007. For this, all input data were transformed to the geographic 

latitude/longitude WGS84 coordinate system. The LULC classification process for 2007 

was conducted for each 1° × 1° tile (Figure 2.1a) rather than the entire Vietnam area. 

(a) ALOS/PALSAR RTC data 

The Phased Array type L-band Synthetic Aperture Radar (PALSAR) is a radar 

imaging sensor onboard the Advanced Land Observing Satellite (ALOS) operating from 
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2006 to 2011, managed by the JAXA. PALSAR Radiometrically Terrain Corrected 

(RTC) data were produced by the ASF under the Radiometric Terrain Correction 

Project, which corrected the geometry and radiometry of PALSAR data and published 

these in GeoTiff format (ASF, 2014). Here, I obtained 626 high-resolution (12.5 m) 

PALSAR RTC scenes in the Fine Beam Dual (FBD) mode including both polarizations 

of horizontal transmit–horizontal receive (HH) and horizontal transmit–vertical receive 

(HV) for 2007 over Vietnam (Figure 4.1a). For classification purposes, the pixel values 

(DN) in gamma-0 power were transformed to the decibel scale (unit in decibel [dB]) 

(Equation (3.7)). The pixels affected by layover and shadowing are masked in this data 

product. A Lee filter (Lee, 1980) with a 7 × 7 moving window was applied to suppress 

the speckle noise in the gamma-0 images. Radar indices were estimated and then 

stacked with the two original gamma-0 HH and HV images. The radar indices included 

the ratio (RAT, Equation (3.8)), normalized difference index (NDI, Equation (3.9)), and 

NL Index (NLI, Equation (3.10)). These indices have proven to be useful in mapping 

natural forests and plantation forests (De Alban et al., 2018; Hoang et al., 2020; 

Sarzynski, Giam, Carrasco, et al., 2020). The images were then trimmed into 1° × 1° 

tiles (Figure 2.1a). 

(b) ALOS/AVNIR-2 ORI data 

High-spatial-resolution (10 m) Advanced Visible and Near Infrared Radiometer 

type 2 (AVNIR-2) Ortho Rectified Image (ORI) data from the ALOS satellite are 

available for 2006–2011 with a 46-day revisit cycle and a 70-km swath width. These 

data have four spectral bands in the visible and infrared regions (Table 4.1). The 

AVNIR-2 ORI data were created from AVNIR-2 level 1B1 after stereo-matching with a 

digital surface model (DSM) constructing using Panchromatic Remote-Sensing 

Instrument for Stereo Mapping (PRISM) data. In total, 177 scenes from 2007 with cloud 

covers of less than 30% were used to create the LULC map (Figure 4.1b). The spectral 

reflectance of each band was calculated based on the provided parameters enclosed with 

the data header files (JAXA, 2008, 2020b; Tadono et al., 2009). To remove these cloud 

covers, I adjusted the too-bright threshold values of the visible spectral bands to mask 

the bright pixels (Vermote et al., 2014). The images were then trimmed into 1° × 1° tiles 

(Figure 2.1a). Along with the four original bands, vegetation indices were used 
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including the Normalized Difference Vegetation Index (NDVI, Equation (3.14)) (Rouse 

et al., 1973; Tucker, 1979), the Enhanced Vegetation Index (EVI, Equation (3.15)) (A. 

Huete et al., 2002; A. R. Huete et al., 1997), the Soil and Atmosphere Resistant 

Vegetation Index (SARVI, Equation (3.19)) (A. R. Huete et al., 1997), the Green-Red 

Vegetation Index (GRVI, Equation (4.1)) (Tucker, 1979), the Modified Soil-adjusted 

Vegetation Index (MSAVI, Equation (4.2)) (Qi et al., 1994), and the Normalized 

Difference Water Index (NDWI, Equation (4.3)) (McFeeters, 1996). The AVNIR-2 ORI 

data for the Vietnam region were provided by the JAXA under the "Generation of the 

Precise Land Cover Map" research agreement with a support by JAXA/EORC Ecology 

Group. 

𝐺𝑅𝑉𝐼 =
𝐺𝑟𝑒𝑒𝑛 − 𝑅𝑒𝑑

𝐺𝑟𝑒𝑒𝑛 + 𝑅𝑒𝑑
 

(4.1)

𝑀𝑆𝐴𝑉𝐼 =
2𝑁𝐼𝑅 + 1 − (2𝑁𝐼𝑅 + 1) − 8 × (𝑁𝐼𝑅 − 𝑅𝑒𝑑)

2
 

(4.2)

𝑁𝐷𝑊𝐼 =
𝐺𝑟𝑒𝑒𝑛 − 𝑁𝐼𝑅

𝐺𝑟𝑒𝑒𝑛 + 𝑁𝐼𝑅
 (4.3)

Where: Green, Red, and NIR are described in Table 4.1. 

 

Figure 4.1. (a) Coverage of 626 ALOS/PALSAR RTC scenes and (b) 177 
ALOS/AVNIR-2 ORI scenes. 

(c) Landsat-5 and Landsat-7 data 

Landsat-5 and Landsat-7 surface reflectance products collected from the Google 

Earth Engine (GEE) were used to fill the data gaps in the ALOS/AVNIR-2 ORIs 

(Figure 4.1b). Moreover, spectral bands in the shortwave and thermal IR regions of the 
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Landsat data can provide more information about the land surface than AVNIR-2 data. 

The Landsat surface reflectance product embedded the atmospheric corrections using 

LEDAPS codes (USGS, 2020a) with cloud and cloud shadow masking using the 

CFMASK algorithm (Foga et al., 2017). After applying the cloud and cloud shadow 

masking flags, eight median composite images were generated with 1.5-month intervals, 

which were trimmed into 1° × 1° tiles (Figure 2.1a). Seven spectral bands (Table 4.1) 

were used along with 10 remote sensing indices including the NDVI (Equation (3.14)), 

EVI (Equation (3.15)), SARVI (Equation (3.19)), Land Surface Water Index (LSWI, 

Equation (3.16)) (X. Xiao et al., 2002), Aerosol Free Vegetation Index (AFVI, Equation 

(3.17)) (Karnieli et al., 2001), Atmospherically Resistant Vegetation Index (ARVI, 

Equation (3.18)) (Kaufman & Tanré, 1992), Moisture Stress Index (MSI, Equation 

(3.20)) (Hunt & Rock, 1989), Soil-Adjusted Total Vegetation Index (SATVI, Equation 

(3.21)) (Hagen et al., 2012), Normalized Difference Tillage Index (NDTI, Equation 

(3.22)) (Daughtry et al., 2005), and the Index-Based Built-Up Index (IBI, Equation 

(3.23)) (Xu, 2008). 

Table 4.1. Spectral bands of ALOS/AVNIR-2 ORI (JAXA, 2020b), Landsat-5, and 
Landsat-7 (USGS, 2020b) used in this study 

Data Band 
Spectral Range 

(nm) 
Electromagnetic Region 

ALOS/AVNIR-2 
ORI 

Band 1 420–500 Blue 
Band 2 520–600 Green 
Band 3 610–690 Red 
Band 4 760–890 NIR (Near Infrared) 

 
Landsat-5 & 

Landsat-7 

Band 1 450–520  Blue 
Band 2 520–600 Green 
Band 3 630–690 Red 
Band 4 760–900 NIR (Near Infrared) 
Band 5 1,550–1,750 SWIR1 (Shortwave Infrared 1) 
Band 6 10,400–12,500 TIR (Thermal Infrared) 
Band 7 2,080–2,350 SWIR2 (Shortwave Infrared 2) 

  

(d) Auxiliary data 

The open digital surface model AW3D30 produced by the JAXA (JAXA, 2020a), 

the Defense Meteorological Satellite Program Operational Line Scanner (DMSP-OLS) 
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nighttime lights produced by the National Oceanic and Atmospheric Administration 

(NOAA) (WorldPop, 2018b), and the distance to OpenStreetMap (OSM) major roads 

(WorldPop, 2018a) were used as auxiliary data when establishing the 2007 LULC map. 

These datasets were chosen to reflect human accessibility and presence, to enhance the 

separability of natural land cover (e.g., natural forests and grass/shrubland) from 

human-impacted land-cover types (e.g., plantation forests, crops, orchards, and 

urban/built-up areas) in the LULC mapping (Hoang et al., 2018, 2020). 

(e) Global Forest Change data v1.7 (Hansen) 

The year of gross forest cover loss event (‘lossyear’) dataset produced by Hansen 

et al. (2013) was used as a comparison to this study’s deforestation area results, and to 

analyze temporal variations in deforestation MPS during the period 2001–2019. The 

lossy data of the GFC were defined as “a stand-replacement disturbance, or a change 

from a forest to non-forest state” with a 30-m resolution. As this study adopted the FAO 

definition of deforestation (FAO, 2018), which excludes temporary forest cover loss, 

this study used these data with natural forest masks from the 2007 and 2016 LULC 

maps to exclude temporary clearing of plantation forests after harvesting cycles. 

4.2.2. Methods 

(a) Establishing the high-resolution LULC map in 2007 

The creation of the 2007 high-resolution LULC map followed the same mapping 

approach of the 2016 map (Hoang et al., 2020) created by integrating information from 

various data sources (Figure 4.3). The details of this classification method are described 

by Hoang et al. (2020) and Hashimoto et al. (2014). Briefly, to integrate the various 

information types, a probabilistic classification model was applied to each of the 

individual inputs, and then an integration procedure was performed by multiplying the 

resulting probability of each of the classified outputs. The classification model was 

based on kernel density estimation (KDE) with a Bayesian inference (Hashimoto et al., 

2014). In the classification process, first, the KDE was used to estimate the likelihood of 

each LULC category based on training data. Then, the posterior probability values of 

each LULC category at corresponding pixel values were estimated based on Bayes’ 
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theorem with the likelihood as the input. The integration was conducted by multiplying 

the component posterior probability values from each single-date image of each 

sensor’s data. This classification method has been widely used for creating high-

resolution LULC products for Japan (Hashimoto et al., 2014; Katagi et al., 2018) and 

Vietnam (Hoang et al., 2018, 2020; D. C. Phan et al., 2018; V. T. Truong et al., 2019), 

and the products have been published as open LULC data by the JAXA (JAXA, 2020d). 

The LULC maps for 2007 and 2016 categorized 12 LULC types, namely water, 

urban/built-up areas, rice, other crops, grass/shrub, orchard/crop mosaic, barren, EBF, 

coniferous forest, deciduous forest, plantation forest, and mangrove. The definitions of 

these categories are described in detail by Hoang et al. (2020). 

(b) Deforestation mapping for 2007–2016 and comparisons with other datasets 

The creation of the deforestation map for the period 2007–2016 adopted a post-

classification comparison approach, which is a widely used change detection method (P. 

Coppin et al., 2004; P. R. Coppin & Bauer, 1996; Hussain et al., 2013; Singh, 1989). 

This approach compares classified maps to identify the changes between the categories 

of the maps. One important advantage of this is that the individual classification of each 

map can minimize the impact of different observation conditions, such as atmospheric 

disturbance and different sensors. 

Here, deforestation was defined as the loss of natural forests by conversion to 

other LULC types. To minimize the inclusion of small tree loss areas, which are not 

defined as forests by the FAO (FAO, 2018), this study only considered deforestation 

areas greater than or equal to 1 ha. Temporary loss of plantation forests, such as clearing 

areas after a harvesting cycle, was also not classified as deforestation. Thus, to identify 

the deforestation areas, I created 100-m-resolution natural forest fractional cover maps. 

The fractional cover of natural forest was taken as the ratio of natural forest area within 

a 100 m × 100 m square to an area of 100 m × 100 m. The 100-m fractional cover maps 

for 2007 and 2016 were estimated based on the original 10-m natural forest classes of 

the LULC maps. The natural forest classes in the LULC maps included EBF, coniferous 

forest, and deciduous forest. A fractional cover difference map was then derived by 

subtraction. This difference map indicated that the degree of change in forest fractional 
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cover varied from -1 (complete gain) to 1 (complete loss). Next, I identified the 

threshold of forest fractional cover difference that gave the best accuracy for 

deforestation detection. For this, I created 11 deforestation maps corresponding to 11 

fractional cover difference thresholds from 0.50 to 1.00 (intervals of 0.05). These maps 

were then validated using a reference dataset described in section 4.2.3. The results 

showed a forest fractional cover difference of > 0.7 was optimal, giving a user accuracy 

(UA) of 69.2% and producer accuracy (PA) of 85.6% (Table 4.2). 

Table 4.2. Accuracies and errors of deforestation map for Vietnam between 2007 and 
2016 corresponding with various fractional cover difference thresholds 

Difference of forest 
fractional cover 

thresholds 
User’s 

Accuracy (%) 
Producer’s 

Accuracy (%) 
Commission 

error (%) 
Omission error 

(%) 

0.50 57.7 100.0 42.3 0.0 
0.55 60.9 98.0 39.1 2.0 
0.60 63.7 94.6 36.3 5.4 
0.65 65.8 89.6 34.2 10.4 
0.70 69.2 85.6 30.8 14.4 
0.75 68.4 76.2 31.6 23.8 
0.80 74.0 73.3 26.0 26.7 
0.85 76.6 66.3 23.4 33.7 
0.90 76.7 56.9 23.3 43.1 
0.95 77.6 48.0 22.4 52.0 
1.00 83.0 41.1 17.0 58.9 

 

This study compared the calculated deforestation area between 2007 and 2016 

with GFC data, CCI-LC data, and national governmental statistics. First, the 

deforestation area based on the created map was estimated using an error-adjusted 

estimator of area following Olofsson et al. (2013). The error-adjusted estimator was 

calculated from the deforestation area in the map and the error matrix (Appendix Table 

A3). For the comparison with GFC data, the deforestation area was estimated based on 

the GFC lossy data for the period 2007–2016 after being masked by natural forest 

extent derived from the 2007 LULC map to exclude areas temporary plantation clearing. 

For the CCI-LC data, the deforestation area was estimated based on a post-classification 

comparison of forest classes in CCI-LC maps for the same period (2007–2016). Forest 

classes were chosen to correspond to the equivalent forest category in the IPCC land 
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categories according to the CCI-LC product user guide (ESA, 2017). For the 

comparison with national statistics (GSO, 2020), as deforestation data are not directly 

available, this study used the net change in natural forest area as a substitute, which was 

estimated by subtracting the 2016 natural forest area from the equivalent 2007 area. 

(c) Spatial variations in deforestation MPS 

The MPSs of deforestation were mapped for Vietnam using the constructed 2007–

2016 deforestation map. For this, I divided mainland Vietnam into hexagon grids with a 

maximal diameter of 30 km. The deforestation MPS in each hexagon was then 

calculated as the ratio of the total deforestation area to the number of deforestation 

patches within each hexagon. Hexagons were used to minimize spatial differences 

between complex landforms (Birch et al., 2007; Senf & Seidl, 2020). 

Spatial variations in deforestation MPS were investigated at a regional scale 

across the four main regions of Vietnam (Figure 4.2). By considering MPS values 

within each region as one sample set, I statistically compared the sample sets using the 

non-parametric Wilcoxon rank-sum test (as the data were not normally distributed). I 

hypothesized that there was a link between the MPS of deforestation and the drivers of 

deforestation. Based on this hypothesis, I explained differences in deforestation MPS 

among the regions using evidence of differences in deforestation drivers from previous 

studies. 

The first source of evidence of drivers of deforestation was the global map of 

primary drivers of forest cover loss for the period 2001–2015 by Curtis et al. (2018). 

This global map presents the following five dominant direct drivers of forest cover loss: 

(i) commodity-driven deforestation, defined as the permanent conversion from forest to 

non-forest land use such as agriculture, mining, and infrastructure; (ii) shifting 

agriculture, defined as conversion from forest to agriculture that is later abandoned, 

followed by forest regrowth; (iii) forestry, defined as the operation of managed forests 

and tree plantations; (iv) wildfire, defined as large-scale forest loss by burning with no 

human conversion or agricultural practices afterward; and (v) urbanization, defined as 

the conversion from forest to urban areas. The creation of the map was based on a 

statistical model using various geospatial datasets. As the resolution of this map is 10 
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km, it is suitable for regional-scale analyses. The overall accuracy of the map was 89%, 

and is published as open-source data via the online platform Global Forest Watch 

(https://www.globalforestwatch.org/map/). 

For Vietnam, all categories of forest loss drivers are available except for wildfire. 

Here, I used classes commodity-driven deforestation, shifting agriculture, and 

urbanization but excluded the forestry class as, as previously noted, the temporary loss 

of plantation forests was not considered as deforestation in this study. By overlaying 

this map for the Vietnam area on this study’s 2007–2016 deforestation map, I estimated 

the percentages of deforestation areas caused by their corresponding drivers for each of 

the regions. These percentages were then used to explain the differences in the MPS of 

deforestation among the regions. 

 

 

Figure 4.2. Four main regions of Vietnam 
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(d) Temporal variations in deforestation MPS 

Annual maps of deforestation MPS for the period 2001–2019 were created using 

the annual GFC lossy maps with natural forest masks derived from this study’s LULC 

maps. Specifically, the natural forest extent in 2007 was used to mask the GFC lossy 

maps from 2001 to 2010, and the natural forest extent in 2016 was used to mask the 

GFC maps from 2011 to 2019. This approach may encounter potential issues such as the 

potential overestimation of forest loss area of GFC data as previously noted, and the 

possible insufficiency of using natural forest masking layers of two years 2007 and 

2016 as natural forest extents may have annual changes. However, in this analysis, I 

focused on comparing the trends of deforestation MPS at the regional scale. Therefore, 

even if the GFC data may bring the overestimation, the consistent use of this data can 

still reflect the trends. The insufficiency issue of masking layers can be negligible since 

the annual changes of natural forest could be minimized in regional estimations and 

comparison. 

To identify significant changes in deforestation MPS over time, I generated mean 

maps for 5-year periods, that is, 2001–2005, 2006–2010, 2011–2015, and 2016–2019. 

Then, for each of the regions, the deforestation MPS values for each of these periods 

was considered as a sample set and compared using the Wilcoxon rank-sum test. This 

comparison identified the trajectories of deforestation MPS by identifying significant 

changes over time. Based on the hypothesized link between deforestation MPS and 

deforestation drivers, I explained the observed trajectories in each region using evidence 

of temporal changes in deforestation drivers from previous studies. 
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Figure 4.3. The overall workflow of Chapter 4 

 
4.2.3. Reference Data 

Reference data included a training dataset for the automated classification of the 

2007 LULC map, a validation dataset for accuracy assessment of this map, and a 
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validation dataset for the accuracy assessment of the deforestation 2007–2016 map (see 

Section 4.2.2b). All the reference data were created based on visual interpretation using 

high-resolution Google Earth satellite images and other satellite images in 2007 and 

2016, such as Landsat-5 (2007), AVNIR-2 (2007), Sentinel-2 (2016), and Landsat-8 

(2016). This visual interpretation was supported by geotagged photos collected in field 

surveys described by Hoang et al. (2020). 

To train the classification process of the 2007 LULC map, I created 113,181 

training data points for the 12 LULC categories (Appendix Figure A1a). The validation 

data for this map were created based on the method described by Olofsson et al. (2013, 

2014). Briefly, stratified random sampling was first used to randomly create 100 

sampling points in each of the 12 strata corresponding to the 12 LULC classes, giving 

1,200 data points in total (Appendix Figure A1a). Next, the sampling points were 

labeled based on visual interpretation using satellite images from 2007, such as Landsat-

5 and AVNIR-2 imagery. Finally, accuracy assessment metrics including overall 

accuracy (OA), PA, and UA, and their standard errors were estimated and described in 

an error matrix (Appendix Table A4). 

For the accuracy assessment of this study’s deforestation map, I created 8,550 

validation points including 202 deforestation points and 8,348 non-deforestation points 

(Appendix Figure A1c) following Olofsson et al. (2013, 2014). The corresponding error 

matrix is provided in Appendix Table A3. 

4.3. Results and Discussion 

4.3.1. High-resolution 2007 LULC map and LULC changes between 

2007 and 2016 

The generated 10-m resolution 2007 LULC map is shown in Figure 4.4a. Details 

of the accuracy assessment of the map are provided in Appendix Table A4. The overall 

accuracy of the map was 85.0%. The EBF class, which accounts for 88% of the total 

natural forest area, had high UA and PA (94.0% and 86.2%, respectively). Other minor 

natural forest classes, such as coniferous forest and deciduous forest, had a UA lower 
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than 80%. The plantation forest class also had high UA and PA (87.0% and 85.0%, 

respectively). The errors of forest classes mainly came from misclassifications, either 

among the forest classes or between the forest classes and grass/shrub class. The 10-m 

resolution 2016 LULC map created by Hoang et al. (2020) is shown in Figure 4.4b for 

comparison. 

Overall LULC net changes in Vietnam between 2007 and 2016 (Figure 4.5) were 

derived from the two LULC maps. The LULC categories showing substantial increases 

were urban/built-up areas, other crops, and plantation forest, which increased by 

200,000 ha, 255,000 ha, and 1,152,000 ha, respectively. The LULC categories showing 

substantial decreases were orchard/crop mosaic, barren, and EBF, which decreased by 

508,000 ha, 178,000 ha, and 649,000 ha, respectively. Of these changes, the decrease in 

EBFs reflects deforestation in Vietnam during the study period, accounting for 88% of 

the total natural forest area across the entire country (see Section 4.3.2). For the “other 

crop” category, changes were in agreement with the increase in perennial crop cover in 

Vietnam in recent decades, which is considered one of the drivers of deforestation 

(Kissinger, 2020; Nghiem et al., 2020). The decrease in barren and grass/shrub areas, 

and the increase of plantation forest area, in Figure 4.5 might reflect reforestation 

programs that have been implemented since the 1990s (Cochard et al., 2017; Dao Minh 

et al., 2017). For example, plantation forest area was boosted in recent decades by 

reforestation Program 327 (1992–1997), Program 661 (1998–2010), and Program 147 

(2007–2015) (T. T. Nguyen & Masuda, 2018). In addition, the observed changes in the 

other LULC categories are in agreement with the results of previous research. For 

example, the decrease in orchard/crop mosaic area tallies with the results of LULC 

changes in Central Vietnam between 2007 and 2017 reported by Phan et al. (2018) (D. 

C. Phan et al., 2018). Furthermore, the increase in urban/built-up areas supports the 

findings of Fan et al. (2019) and Dung et al. (2016), who reported an urban expansion in 

Vietnam in recent years. 
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Figure 4.4. High-resolution LULC maps for (a) 2007 and (b) 2016 (Chapter 3) (Hoang 
et al., 2020). 
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Figure 4.5. Overall LULC net changes in Vietnam between 2007 and 2016 estimated 
from LULC maps for 2007 and 2016 (Chapter 3) (Hoang et al., 2020). 

 

4.3.2. 2007–2016 deforestation map and comparison with other data 

The generated 2007–2016 deforestation map is shown in Figure 4.6a. The map 

identified a deforestation area of 686,000 ± 65,000 ha in mainland Vietnam. The Central 

Highlands was the region with the largest deforestation area at 399,000 ± 48,000 ha. In 

comparison, the estimated deforestation areas in Northern Vietnam, Central Vietnam, 

and Southern Vietnam were 151,000 ± 54,000 ha, 200,000 ± 42,000 ha, and 48,000 ± 

14,000 ha, respectively. The uncertainties of these estimations represent the 95% 

confidence interval. 

Aside from the accuracy assessment mentioned in section 4.2.3, the deforestation 

map was compared with deforestation information from local news in Vietnamese 

online media. The results showed that the deforestation map was in agreement with the 

local news. For example, thoibaonganhang.vn (2015) reported that the natural forest 

area of Dak Nong province, Central Highlands decreased by 140,000 ha between 2005–

2015 (from 360,000 ha to 220,000 ha). The decrease was mainly due to the conversion 

from natural forests to perennial plantations such as coffee, pepper, and orchards. The 
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information in the news was relatively consistent with the result of this study’s maps 

which indicated approximately 85,000 ha of forest loss by the conversion to croplands 

between 2007–2016 (Appendix Figure A2). For Southern Vietnam, tuoitre.vn (2010) 

reported a conversion from natural forests to farm-based rubber plantations in Bu Dang 

district, Binh Phuoc province circa 2010. The legal loophole which allowed poor-

quality natural forests to be converted to rubber plantations was considered an indirect 

cause of deforestation in this area. This conversion from natural forests to plantation 

forests was well presented in this study’s maps (Appendix Figure A3). For the 

northwest of Vietnam, baotainguyenmoitruong.vn (2016) informed that Muong Nhe 

district in Dien Bien province was considered a small-scale deforestation hot spot. The 

deforestation situation was mainly attributed to the demand for cultivation land of 

immigrants from other provinces. Between 2011–2016, there were approximately 2000 

immigrants settled down in Muong Nhe district. The information on deforestation in 

Muong Nhe was in agreement with the results of this study’s maps which showed the 

conversion from natural forests to croplands, orchards, and plantation forests (Appendix 

Figure A4). For the northeast of Vietnam, thiennhien.net (2008) informed a conversion 

from natural forests to acacia plantation by local residents circa 2008 in Son Dong 

district, Bac Giang province. The cause of this change was due to the high economic 

value of acacia plantation which overweighed the benefit from natural forests which had 

been allocated to each local household. The conversion was continued until 2017, 

reported by kinhtenongthon.vn (2017). The conversion was also reflected in this study’s 

maps by the change from natural forests to plantation forests in Appendix Figure A5. 

For Central Vietnam, nongnghiep.vn (2015) informed the deforestation case in Yen Hop 

commune, Quy Hop district, Nghe An province circa 2015 which was due to natural 

forest logging and then growing acacia plantation by local people. The underlying cause 

of this change was also due to the high benefit of acacia plantation. This deforestation 

case was indicated in this study’s maps by the conversion from natural forests to 

plantation forests in Appendix Figure A6. 

I compared the deforestation areas derived from this study’s map with other data 

for the entire mainland Vietnam (Figure 4.6b) and for the Central Highlands, which is a 

recognized deforestation hotspot (Figure 4.6c). In comparison with the national 

statistics, for the entire country (Figure 4.6b), my estimated deforestation area (686,000 



89 

± 65,000 ha) is far higher than the net change in natural forest area reported in the 

national statistics (41,000 ha); for the Central Highlands (Figure 4.6c), my estimate 

(399,000 ± 48,000 ha) is remarkably close to the reported net change in natural forest 

area (444,000 ha). The possible reason for the difference—particularly for the whole-

country values—may be due to limitations in the national statistics, which are based on 

the national forest censuses that adopt a land-use definition for forestland. Under such a 

definition, "forest" represents forestland, which is registered by the government even 

where no trees are present (Hoang et al., 2020). Therefore, these national statistics do 

not likely accurately record true forest loss unless that loss is caused by the land use-

conversion allowed by the government. Moreover, reforestation programs in Vietnam 

could have increased the area of natural forestlands (Crowther et al., 2020). These forest 

gain areas could compensate forest loss areas. Therefore, the net change in natural forest 

areas, in this case, was low. In the case of the Central Highlands, deforestation has been 

mainly caused by the rapid expansion in the growth of perennial crops (e.g., coffee and 

rubber). This has been supported by government policies and legal loopholes, which 

have allowed the conversion of natural forests to rubber plantations according to 

Kissinger et al. (2020). As a result, the conversion from natural forest to cropland in the 

Central Highlands would be officially recorded in the national statistics. Moreover, the 

natural forest gain in Central Highlands was negligible due to lacking of economic 

incentives and weak local governance (thiennhien.net, 2020). Thus, for Central 

Highlands, the net change of natural forest area could be close to the true area of 

deforestation areas. 

In comparison with other remote sensing-based data, my estimated deforestation 

area is appropriately half that of the GFC data both for the entire country and the 

Central Highlands region (Figures 4.6b and 4.6c). In contrast, my estimates are far 

higher than the CCI-LC data suggest (Figures 4.6b and 4.6c). This difference might 

reflect the limitations of these remote sensing-based datasets, such as overestimation by 

the GFC data and the coarse resolution of the CCI-LC data. 

Assuming that the net change in natural forest areas in the Central Highlands 

region recorded in the national statistics accurately reflect the true deforestation area, 

my map provides the best estimates in comparison with the other remote sensing-based 
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datasets. A reliable reference dataset of deforestation over Vietnam is now needed to 

enable more comprehensive evaluations. 

 

Figure 4.6. (a) 2001–2016 deforestation map derived in this study; (b) a comparison of 
the estimated total deforestation area for mainland Vietnam (2007–2016) with national 
statistics (net change in natural forest area), GFC* (year of gross forest cover loss event 
data with a natural forest mask from the 2007 LULC map 2007 created in this study), 
and CCI-LC; (c) a comparison of estimated the deforestation area in the Central 
Highlands of Vietnam (2007–2016). 

4.3.3. Spatial variations in deforestation MPS 

Spatial variations in the MPS of deforestation for the period 2007–2016 are 

illustrated in Figure 4.7a with corresponding for each study region in Figures 4.7b–e. To 

examine the significance of the observed differences, the results of a statistical 

comparison are shown in Table 4.3. These show that the MPS values of deforestation in 

the Central Highlands are significantly greater than those of all other regions (p < 0.001). 

Furthermore, the MPS values of Deforestation for Northern Vietnam are significantly 

lower than those of all other regions (p < 0.001) except for Southern Vietnam (p = 

0.206). 
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Based on the hypothesized link between deforestation MPS and deforestation 

drivers, the observed differences among the regions can be explained based on evidence 

from previous research. For this, the percentages of deforestation areas caused by their 

corresponding drivers for each of the regions were estimated using this study’s 

deforestation map and the map of primary drivers of forest cover loss by Curtis et al. 

(2018) (Figure 4.8). The distributions of the percentages corresponding to each of the 

regions in Figure 4.8a and the regional means of deforestation MPSs (2007–2016) in 

ascending order (Figure 4.8b) indicate the link between MPS and deforestation drivers. 

That is, the percentages of shifting agriculture-driven deforestation are likely negatively 

correlated to regional mean deforestation MPS, whereas the percentages of commodity-

driven deforestation are likely positively correlated to regional mean deforestation MPS. 

According to Li et al. (2014), shifting agriculture in Vietnam is mostly practiced 

by ethnic minority households in upland areas for subsistence food production. 

Therefore, shifting agriculture-driven deforestation may result in dispersed, small patch 

sizes. On the other hand, commodity-driven deforestation mainly involves market-based 

farming of crops and plantation forests, or the construction of hydropower plants 

(Meyfroidt et al., 2013; Nghiem et al., 2020; T. T. Pham et al., 2019). Thus, 

commodity-driven deforestation may result in larger patch sizes in comparison with 

shifting agriculture-driven deforestation and centralized distributions. Based on this 

assessment, the deforestation MPS map quantitatively captures the spatial heterogeneity 

of deforestation drivers in Vietnam.  
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Figure 4.7. (a) Deforestation mean patch size (MPS) map for Vietnam for the period 
2007–2016; (b) histogram of deforestation MPS in Northern Vietnam; (c) histogram of 
deforestation MPS in Central Vietnam; (d) histogram of deforestation MPS in the 
Central Highlands region of Vietnam; (e) histogram of deforestation MPS in Southern 
Vietnam 

 

Table 4.3. Comparison of deforestation MPS in Northern Vietnam, Central Vietnam, the 
Central Highlands of Vietnam, and Southern Vietnam. Statistical significance of 
differences was estimated using the Wilcoxon rank-sum test. 

Pair of regions 
Regional mean of 
deforestation MPS 
(respectively) (ha) 

Statistical 
Significance 

Northern Vietnam (n=236) & Central Vietnam (n=249)                 3.079 4.043 p < 0.001 
Northern Vietnam (n=236) & Central Highlands (n=95)                   3.079 7.175 p < 0.001 
Northern Vietnam (n=236) & Southern Vietnam (n=60)                     3.079 4.030 p = 0.206 
Central Vietnam (n=249) & Central Highlands (n=95)                     4.043 7.175 p < 0.001 
Central Vietnam (n=249) & Southern Vietnam (n=60)              4.043 4.030 p = 0.371 
Central Highlands (n=95) & Southern Vietnam (n=60)                         7.175 4.030 p < 0.001 
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Figure 4.8. (a) Percentages of deforestation areas caused by corresponding drivers 
(Curtis et al., 2018) in different regions and (b) regional deforestation mean patch size 
(MPS) between 2007 and 2016 in the ascending order. 

 

4.3.4. Temporal variations in deforestation MPS 

The temporal variations in deforestation patch size are illustrated using annual 

maps of the deforestation MPS (2001–2019) in Figure 4.9, with statistical comparisons 

between 5-year means for each main region of Vietnam shown in Table 4.4. The 

trajectories of the regional means in each region are also shown in Figure 4.10. The 

observed temporal trends fall into two categories. First, Northern Vietnam and Central 

Vietnam show steadily increasing trends (p < 0.05 in most cases). Second, the Central 

Highlands and Southern Vietnam show a sharp increase between 2001 and 2010, and 

then a decreasing trend until 2019. 

As with the spatial patterns discussed in Section 4.3.3, these trajectories can be 

explained by temporal trends in deforestation drivers. For Northern Vietnam and 

Central Vietnam, evidence from previous studies indicates that there has been a 

transition from subsistence farming shifting agriculture to market-based farming of 
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perennial crops and plantation forests in recent decades (Nghiem et al., 2020; M. P. 

Nguyen et al., 2018; T. T. Nguyen & Masuda, 2018; T. T. Pham et al., 2019; Sandewall 

et al., 2010; Van Khuc et al., 2020). For example, Nguyen et al. (2018) showed that 

loopholes in the forestry policy of Program 147, which supported the conversion of 

poor-quality natural forests to plantation forests, were a cause of deforestation in Bac 

Kan Province, Northern Vietnam between 2008 and 2020. Furthermore, Nghiem et al. 

(2020) reported that the expansion of coffee plantations has contributed to forest loss in 

Son La Province, Northern Vietnam, and Sandewall et al. (2010) indicated a transition 

from shifting cultivation to farm-based plantations in the mountainous areas of Phu Tho 

Province, Tuyen Quang Province, and Lao Cai Province in Northern Vietnam. Khuc et 

al. (2020) also highlight the expansion of plantation forests in Nghe An Province, 

Central Vietnam, and suggested that switching from shifting cultivation to plantation 

forests increases the income of households. As discussed in Section 4.3.3, shifting 

agriculture-driven deforestation is likely to generate smaller MPSs than commodity 

driven-deforestation. Therefore, such transitions from shifting agriculture to 

commodity-based plantations are in agreement with the observed steady increase in 

deforestation MPS in the regions between 2001 and 2019. 

For the Central Highlands region and Southern Vietnam, evidence from previous 

studies shows that there has been an expansion in perennial crop agriculture from the 

late 2000s. For example, Meyfroidt et al. (2013) reported a rapid expansion in perennial 

crops causing significant deforestation between 2000 and 2010 in the Central Highlands, 

with the deforested area doubling between 2001–2005 and 2006–2010. The same 

authors also highlight that this agricultural expansion has resulted in the replacement of 

shifting agriculture with market-based plantations. Moreover, Kissinger (2020) provide 

evidence of the expansion of perennial crop cultivation in the Central Highlands 

between 2005 and 2015, with the areas of rubber, coffee, and pepper plantations 

increasing by 198%, 29%, and 106%, respectively. In Southern Vietnam, deforestation 

is mainly caused by the conversion of natural forests to rubber plantations in Binh 

Phuoc, Tay Ninh, and Binh Duong Provinces (baodatviet.vn, 2016; Fox & Castella, 

2013; laodong.vn, 2018; Phuc & Nghi, 2014). Such expansion in the extent of perennial 

crop plantations is in agreement with the observed MPS trajectories in these two regions. 

The decreasing deforestation MPS trend in the Central Highlands region and Southern 



95 

Vietnam during 2016–2019 may indicate some degree of mitigation driven by active 

policy responses from the Vietnamese government (Kissinger, 2020; T. T. Pham et al., 

2019). 
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Figure 4.9. Annual maps of deforestation mean patch size (MPS) during the period 
2001–2019 created from GFC year of gross forest cover loss event data with natural 
forest masks from the 2007 LULC map created in this study and the 2016 LULC map 
created by Hoang et al., (2020). 
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Table 4.4. Differences in 5-year means (2001–2005, 2006–2010, 2011–2015, and 2016–
2019) of deforestation mean patch size (MPS) for the main regions in Vietnam. The 
statistical significance of the differences was estimated using the Wilcoxon rank-sum 
test. 

Regions Pair of 5-year period  

Regional mean of 
deforestation MPS of 

each 5-year period 
(respectively) (ha) 

Statistical 
Significance 

Northern 
Vietnam 
(n=236) 

2001–2005 & 2006–2010 1.700 1.880 p < 0.001 
2001–2005 & 2011–2015 1.700 1.853 p < 0.001 
2001–2005 & 2016–2019 1.700 2.183 p < 0.001 
2006–2010 & 2011–2015 1.880 1.853 p = 0.729 
2006–2010 & 2016–2019 1.880 2.183 p < 0.001 
2011–2015 & 2016–2019 1.853 2.183 p < 0.001 

Central  
Vietnam 
(n=249) 

2001–2005 & 2006–2010 1.903 2.209 p < 0.001 
2001–2005 & 2011–2015 1.903 2.460 p < 0.001 
2001–2005 & 2016–2019 1.903 2.579 p < 0.001 
2006–2010 & 2011–2015 2.209 2.460 p = 0.001 
2006–2010 & 2016–2019 2.209 2.579 p < 0.001 
2011–2015 & 2016–2019 2.460 2.579 p = 0.035 

Central 
Highlands of 

Vietnam 
(n=95) 

2001–2005 & 2006–2010 1.951 2.678 p < 0.001 
2001–2005 & 2011–2015 1.951 3.028 p < 0.001 
2001–2005 & 2016–2019 1.951 2.646 p < 0.001 
2006–2010 & 2011–2015 2.678 3.028 p = 0.065 
2006–2010 & 2016–2019 2.678 2.646 p = 0.968 
2011–2015 & 2016–2019 3.028 2.646 p = 0.095 

Southern 
Vietnam 

(n=60) 

2001–2005 & 2006–2010 2.140 2.718 p = 0.239 
2001–2005 & 2011–2015 2.140 2.669 p = 0.255 
2001–2005 & 2016–2019 2.140 2.249 p = 0.316 
2006–2010 & 2011–2015 2.718 2.669 p = 0.946 
2006–2010 & 2016–2019 2.718 2.249 p = 0.935 
2011–2015 & 2016–2019 2.669 2.249 p = 0.704 
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Figure 4.10. Trajectories of regional deforestation MPS means for the main regions of 
Vietnam during the last two decades. 

 
4.4. Summary 

This chapter created a high-resolution 2007 LULC map for Vietnam following the 

mapping approach of the JAXA to comprehensively distinguish natural forests and 

plantation forests (Hoang et al., 2020). The resulting map had an overall accuracy of 

85%, and accuracies of the major forest classes such as EBFs and plantation forests 

were higher than 85%. By analyzing the LULC net change between the 2007 LULC 

map and the 2016 JAXA map, I identified a marked reduction in the area of EBFs (a 

loss of 649,000 ha) and an increase in the area of plantation forests (a gain of 1,152,000 

ha).  

Based on the loss of natural forest areas derived from the LULC maps, I generated 

a deforestation map for the 2007–2016 period. The deforestation category of the 

resulting map had a user accuracy and producer accuracy of 69.2% and 85.6%, 

respectively. In comparison with other datasets, this study found that for Central 

Highlands deforestation hotspot, my estimated deforestation area (399,000 ± 48,000 ha) 

is closest to that reported in official national statistics (444,000 ha), while GFC data and 

CCI-LC data yield overestimations and underestimations results in comparison to the 

national statistics, respectively. Although there is still a need for reliable deforestation 

datasets in Vietnam, my comparisons demonstrate the potential advantages of this 

study’s mapping approach for the regional-scale detection of deforestation.  
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Based on this study’s deforestation map and GFC data with natural forest masks, I 

created maps of deforestation MPS for the period 2001–2019. My results demonstrate a 

clear association between spatiotemporal variations in deforestation MPS and drivers of 

deforestation in Vietnam. Specifically, shifting agriculture-driven deforestation is likely 

associated with smaller MPSs than commodity driven-deforestation. Temporally, the 

transition from shifting agriculture to commodity-based plantations in Northern 

Vietnam and Central Vietnam is indicated by a steadily increasing trend in deforestation 

MPS. Furthermore, the booming expansion of perennial crops in Central Highlands and 

Southern Vietnam well matches the deforestation MPS trajectories. 

Understanding the drivers of deforestation is essential for designing forest 

conservation policies. It is recommended that zero-deforestation commitments should 

be taken into account in land-use planning relevant to commodity-based plantations. 
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Chapter 5. Discussion 
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The changes of plantation forests and natural forests in Vietnam in recent decades 

with their profound impacts have raised an urgent demand for highly accurate and 

detailed monitoring. To this end, this study provided a comprehensive solution 

comprising of mapping, change analysis, and investigating the causes of the changes 

based on Earth observation data. The results of this study would be a potential reference 

for policymaking in the forestry sector in Vietnam. Aside from the achievements, 

limitations and caveats are worth mentioning for future work. 

For the first research question mentioned in section 1.2, this study addressed the 

challenge of mapping different types of plantation forests and natural forests in various 

geographical regions in Vietnam by the comprehensive approach which integrated time-

series data from various sensors. Overall, the main target of this research question was 

achieved. The major natural forest category—EBF, and plantation forest had high 

accuracies of more than 85%. The resulting map presented its advantages when 

compared to other LULC map products or forest map products. The advantages were, 

i.e., 10-m resolution, which is currently the best resolution among open LULC data 

products, and the discrimination of natural forest and plantation forest classes which 

facilitates deforestation monitoring. As for limitations, natural bamboo forests were 

likely to be confused with plantation forests, and nature-like planted forests were likely 

to be confused with natural forests. Potential solutions for the misclassification of 

bamboo would be using leaf area index (LAI) information or adopting the approach of 

global bamboo forest mapping by Du et al. (2018). To detect the nature-like planted 

forests, human knowledge-based information would be the solution. Besides, increasing 

forest categories would be of future work. The number of forest categories of this study 

(4 categories) was lower than that of the Vietnam Forest Map of the Vietnamese 

government (11 categories). The development of new satellite images and advanced 

deep learning classification methods would offer opportunities for highly detailed and 

accurate forest mapping. 

For the second research question, this study showed that in the deforestation hot 

spot—Central Highlands, the deforestation area between 2007 and 2016 of this study’s 

map was closer to national statistics in comparison with other remote sensing-based 

data. The limitation in this comparison was that there was no reference for the 
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deforestation area in the national statistics. Therefore, for the national statistics, the net 

change of natural forest area was used as a substitution for deforestation area. Since in 

Central Highlands, the natural forest gain was negligible, the net change of natural 

forest area can reflect the deforestation area. This result indicated the potential 

advantage of this study’s map in comparison with other remote sensing-based data in 

deforestation detection. However, there is a need for a reliable reference of deforestation 

area over entire Vietnam. 

For the third research question, this study showed that the spatiotemporal 

variations in deforestation mean patch size (MPS) were connected with spatiotemporal 

variations in the main direct drivers of deforestation among the regions in Vietnam. The 

connection was that deforestation MPS were negatively correlated to the involvement of 

shifting agriculture, and positively correlated to the involvement of commodity-driven 

deforestation. This result suggests that maps of deforestation MPS can be potential 

representations for the deforestation drivers. Moreover, the temporal trends of 

deforestation MPS can track the temporal changes of drivers of deforestation in 

Vietnam such as the transition from shifting agriculture to commodity-driven 

deforestation in Northern Vietnam and Central Vietnam, or the booming expansion of 

perennial crops in Central Highlands over the last two decades. In this analysis, the 

support of natural forest extents from this study’s LULC maps in the deforestation MPS 

mapping was essential. Therefore, the discrimination of natural forests and plantation 

forests in the objective 1 played a key role throughout this study. However, the 

limitation of this result was no ground-truth verification of the spatiotemporal variations 

in the drivers. Evidence of the drivers was collected from data and documents of 

previous studies. Therefore, the involvement of ground-truth data for the drivers of 

deforestation would be of future work. 
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Chapter 6. Conclusion 
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This study aimed for analyzing changes of natural forests and plantation forests in 

Vietnam using remote sensing data. The overall goal comprised of specific objectives, 

i.e., (i) to establish a comprehensive and geographically transferable approach to 

produce the high-resolution LULC map in 2016 which distinguish various types of 

plantation forests and natural forests over entire mainland Vietnam; (ii) to establish an 

approach to create a deforestation map based on two LULC maps (2007 and 2016) 

which were created based on the approach in objective (i) and comparing the 

deforestation area of this study’s map with other data; and (iii) to investigate 

spatiotemporal variations in the deforestation mean patch size and its link with 

spatiotemporal variations in drivers of deforestation of the main regions in Vietnam 

during 2001–2019. 

The results of this study indicate that: 

1. This study demonstrated a comprehensive approach to create high-resolution LULC 

maps which aimed for distinguishing natural forests and plantation forests (acacia, 

rubber, eucalyptus, and others) among various geographical regions in Vietnam. 

The comprehensive approach comprised of integrating various data from multiple 

sensors at the decision level, taking advantage of using time-series data, and taking 

advantage of using remote sensing indices. 

2. Based on the mapping approach, this study created two high-resolution LULC maps 

in 2007 and 2016. The resultant LULC maps provide a reliable reference for forest 

changes analysis. The major forest classes such as EBFs and plantation forests have 

accuracies of more than 85%. The LULC maps have been published on the JAXA 

website as open Vietnam LULC data of JAXA: 

https://www.eorc.jaxa.jp/ALOS/en/lulc/lulc_vnm_v2006.htm 

3. In comparison other widely-used LULC maps and forest maps, the resultant LULC 

maps have advantages in the discrimination of natural forest and plantation forest 

classes, which facilitates deforestation monitoring, and high-resolution (10 m). 
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4. Based on post-classification comparison, this study identified that the major natural 

forest category—EBF decreased by 649 thousand ha and plantation forests 

increased by 1,152 thousand ha over entire Vietnam between 2007 and 2016. 

5. This study found that for Central Highlands deforestation hotspot, the estimated 

deforestation area of this study (399,000 ± 48,000 ha) is closest to that reported in 

official national statistics (444,000 ha) in comparison with other datasets. 

Assuming that in the case of Central Highlands, the national statistics properly 

reflected the reality of deforestation area, this result indicated the potential 

advantage of this study’s map in comparison with other remote sensing-based data 

in deforestation detection. 

6. Spatiotemporal variations in deforestation MPS over Vietnam were analyzed at the 

regional scale in Vietnam. The analysis demonstrated a link between 

spatiotemporal variations in deforestation MPS and drivers of deforestation in 

Vietnam. That is, shifting agriculture-driven deforestation is likely associated with 

smaller MPSs than commodity driven-deforestation.  

7. Based on the hypothesized link, the deforestation MPS well represented the 

temporal changes in drivers of deforestation in Vietnam in the last two decades. 

Specifically, the transition from shifting agriculture to commodity-based 

plantations in Northern Vietnam and Central Vietnam is indicated by a steadily 

increasing trend in deforestation MPS. Furthermore, the booming expansion of 

perennial crops in Central Highlands and Southern Vietnam well matches the 

deforestation MPS trajectories.  
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Appendices 

Appendix Table A1. Error matrix of the resultant LULC map of 2016 
 

  Reference    

  Water Urban Rice Crops 
Grass/ 
Shrub 

Orchard/ 
Crop Barren EBF CF DF PF MGR  Total Wi UA [%] OA [%] 

 
Map 

Water 141 2 0 4 0 0 3 0 0 0 0 0 150 0.032 94.0 ± 1.9  
Urban 0 134 0 3 3 5 4 0 0 0 1 0 150 0.025 89.3 ± 2.5  
Rice 20 3 274 2 1 0 0 0 0 0 0 0 300 0.127 91.3 ± 1.6  
Crops 5 15 0 273 3 2 0 0 0 0 2 0 300 0.112 91.0 ± 1.7  
Grass/Shrub 0 1 1 15 236 4 2 34 0 0 7 0 300 0.150 78.7 ± 2.4  
Orchard/Crop 
mosaic  1 7 2 24 16 236 8 1 0 0 5 0 300 0.112 78.7 ± 2.4  
Barren 0 6 0 13 18 2 111 0 0 0 0 0 150 0.043 74.0 ± 3.6  
EBF 0 0 0 0 1 0 0 286 2 3 8 0 300 0.243 95.3 ± 1.2  
Coniferous forest 
(CF) 1 1 0 2 0 0 2 19 114 1 10 0 150 0.006 76.0 ± 3.5  
Deciduous 
forest (DF) 0 0 2 16 1 2 16 3 0 110 0 0 150 0.029 73.3 ± 3.6  
Plantation 
forest (PF) 2 1 0 1 8 8 0 22 0 0 258 0 300 0.113 86.0 ± 2.0  
Mangrove (MGR) 3 0 0 6 0 1 0 0 0 0 1 139 150 0.007 92.7 ± 2.1  

 Total 173 170 279 359 287 260 146 365 116 114 292 139 2700 1   

 PA [%] 72.1 ± 5.3 64.0 ± 6.3 98.6 ± 1.9 79.5 ± 2.7 87.3 ± 3.2 92.1 ± 3.3 
79.0 ± 

5.4 
89.6 ± 

1.7 
73.8 ± 
18.8 89.6 ± 7.4 88.0 ± 3.3 

100.0 ± 
2.3    85.6 ± 0.7 

 
PA = Producer’s Accuracy, UA = User’s Accuracy, OA = Overall Accuracy, Wi = area weight 
EBF = Evergreen broadleaf forest 
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Appendix Table A2. Error matrix of the of the resultant LULC map in 2016 in terms of 
Forest/Non-Forest 

 
  Reference   
  Non-Forest Forest Total PA [%] 

Map 
Non-Forest 1749 51 1800 97.2 
Forest 64 836 900 92.9 

 Total 1813 887 2700  
 UA [%] 96.5 94.3  OA = 95.7% 
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Appendix Table A3. Error matrix of deforestation map in Vietnam between 2007–2016 
with fractional cover difference threshold of 0.70 

 
  Reference    
  DF Non-DF Total Wi UA [%] 

Map 
DF 173 77 250 0.024 69.2 ± 2.9 

Non-DF 29 8271 8300 0.976 99.7 ± 0.1 
 Total 202 8348 8550   
 PA [%] 85.6 ± 2.6 99.1 ± 0.1    

 
 
DF = Deforestation; Non-DF = Non-deforestation 

PA = Producer’s Accuracy, UA = User’s Accuracy, OA = Overall Accuracy, Wi = area weight 
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Appendix Figure A1. (a) Distribution and quantity of training data of the LULC map in 
2007; (b) Distribution and quantity of validation data of the LULC map in 2007; (c) 
Distribution and quantity of validation data of the deforestation map between 2007–
2016. The number of data points were described in square brackets. 
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Appendix Table A4. Error matrix of the resultant LULC map 2007 
 

 
  Reference    

  Water Urban Rice Crops 
Grass/ 
Shrub 

Orchard/ 
Crop Barren EBF CF DF PF MGR  Total Wi UA [%] OA [%] 

 
Map 

Water 93 2 2 0 0 0 3 0 0 0 0 0 100 0.032 93.0 ± 2.6  
Urban 0 91 0 2 2 2 3 0 0 0 0 0 100 0.019 91.0 ± 2.9  
Rice 3 1 92 1 0 2 0 0 0 0 0 1 100 0.130 92.0 ± 2.7  
Crops 0 2 2 91 0 2 1 0 0 0 2 0 100 0.104 91.0 ± 2.9  
Grass/Shrub 0 0 0 2 76 0 0 19 0 0 3 0 100 0.156 76.0 ± 4.3  
Orchard/Crop 
mosaic 0 0 0 8 5 78 5 0 0 0 4 0 100 0.127 78.0 ± 4.2  
Barren 0 0 0 9 13 1 77 0 0 0 0 0 100 0.049 77.0 ± 4.2  
EBF 0 0 0 0 6 0 0 94 0 0 0 0 100 0.262 94.0 ± 2.4  
Coniferous forest 
(CF) 0 0 0 1 4 1 0 10 75 3 6 0 100 0.006 75.0 ± 4.4  
Deciduous 
forest (DF) 0 0 0 12 8 0 0 7 0 73 0 0 100 0.029 73.0 ± 4.5  
Plantation 
forest (PF) 0 1 0 0 2 1 0 9 0 0 87 0 100 0.079 87.0 ± 3.4  
Mangrove (MGR) 3 1 0 0 0 2 1 0 0 0 0 93 100 0.007 93.0 ± 2.6  

 Total 99 98 96 126 116 89 90 139 75 76 102 94 1200 1   

 PA [%] 87.8 ± 5.8 78.1 ± 7.6 97.8 ± 1.2 80.6 ± 3.2 78.3 ± 3.8 93.8 ± 2.3 
80.6 ± 

5.3 
86.2 ± 

2.0 
100.0 ± 

0.0 99.1 ± 0.5 85.0 ± 4.1 
83.9 ± 
13.5    85.0 ± 1.2 

 
PA = Producer’s Accuracy, UA = User’s Accuracy, OA = Overall Accuracy, Wi = area weight 
EBF = Evergreen broadleaf forest 
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Appendix Figure A2. Deforestation between 2007–2016 identified by this study’s land 
use/land cover (LULC) maps in Dak Nong province, Central Highlands, Vietnam. (a) 
Google Earth satellite and the deforestation areas; (b) Landsat 5 image in 2007; (c) 
Landsat 8 image in 2016; (d) The LULC map in 2007; (e) The LULC map in 2016; (f) 
The location of Dak Nong province. 
Thoibaonganhang.vn (2015) reported that the natural forest area of Dak Nong province, 
Central Highlands decreased by 140,000 ha between 2005–2015 (from 360,000 ha to 
220,000 ha). The decrease was mainly due to the conversion from natural forests to 
perennial plantations such as coffee, pepper, and orchards. The information in the news 
was relatively consistent with the result of this study’s maps which indicated 
approximately 85,000 ha of forest loss by the conversion to croplands between 2007–
2016 (Appendix Figure A2a,d,e). 
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Appendix Figure A3. Deforestation between 2007–2016 identified by this study’s land 
use/land cover (LULC) maps in Bu Dang district, Binh Phuoc province, Vietnam. (a) 
Google Earth satellite and the deforestation areas; (b) Landsat 5 image in 2007; (c) 
Landsat 8 image in 2016; (d) The LULC map in 2007; (e) The LULC map in 2016; (f) 
The location of Bu Dang district, Binh Phuoc province, Vietnam. 
Tuoitre.vn (2010) reported a conversion from natural forests to farm-based rubber 
plantations in Bu Dang district, Binh Phuoc province circa 2010. The legal loophole 
which allowed poor-quality natural forests to be converted to rubber plantations was 
considered an indirect cause of deforestation in this area. This conversion from natural 
forests to plantation forests was well presented in this study’s maps (Appendix Figures 
A3d and A3e). 
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Appendix Figure A4. Deforestation between 2007–2016 identified by this study’s land 
use/land cover (LULC) maps in Muong Nhe district, Dien Bien province, Vietnam. (a) 
Google Earth satellite and the deforestation areas; (b) Landsat 5 image in 2007; (c) 
Landsat 8 image in 2016; (d) The LULC map in 2007; (e) The LULC map in 2016; (f) 
The location of Muong Nhe district, Dien Bien province, Vietnam. 
Baotainguyenmoitruong.vn (2016) informed that Muong Nhe district in Dien Bien 
province was considered a small-scale deforestation hot spot. The deforestation 
situation was mainly attributed to the demand for cultivation land of immigrants from 
other provinces. Between 2011–2016, there were approximately 2000 immigrants 
settled down in Muong Nhe district. The information on deforestation in Muong Nhe 
was in agreement with the results of this study’s maps which showed the conversion 
from natural forests to croplands, orchards, and plantation forests (Appendix Figure 
A4d,e).  
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Appendix Figure A5. Deforestation between 2007–2016 identified by this study’s land 
use/land cover (LULC) maps in Son Dong district, Bac Giang province, Vietnam. (a) 
Google Earth satellite and the deforestation areas; (b) Landsat 5 image in 2007; (c) 
Landsat 8 image in 2016; (d) The LULC map in 2007; (e) The LULC map in 2016; (f) 
The location of Son Dong district, Bac Giang province, Vietnam. 
Thiennhien.net (2008) informed a conversion from natural forests to acacia plantation 
by local residents circa 2008 in Son Dong district, Bac Giang province. The cause of 
this change was due to the high economic value of acacia plantation which overweighed 
the benefit from natural forests which had been allocated to each local household. The 
conversion was continued until 2017, reported by kinhtenongthon.vn (2017). The 
conversion was also reflected in this study’s maps by the change from natural forests to 
plantation forests in Appendix Figure A5d,e.  
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Appendix Figure A6. Deforestation between 2007–2016 identified by this study’s land 
use/land cover (LULC) maps in Yen Hop commune, Quy Hop district, Nghe An 
province, Vietnam. (a) Google Earth satellite and the deforestation areas; (b) Landsat 5 
image in 2007; (c) Landsat 8 image in 2016; (d) The LULC map in 2007; (e) The LULC 
map in 2016; (f) The location of Yen Hop commune, Quy Hop district, Nghe An 
province, Vietnam. 
Nongnghiep.vn (2015) informed the deforestation case in Yen Hop commune, Quy Hop 
district, Nghe An province circa 2015 which was due to natural forest logging and then 
growing acacia plantation by local people. The underlying cause of this change was also 
due to the high benefit of acacia plantation. This deforestation case was indicated in this 
study’s maps by the conversion from natural forests to plantation forests in Appendix 
Figure A6d,e. 
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Appendix List A1. PALSAR-2/ScanSAR image list 
 
 

1. N09E104_W02DC042DR 
2. N09E104_W02DC045DR 
3. N09E104_W02DC048DR 
4. N09E104_W02DC051DR 
5. N09E104_W02DC053DR 
6. N09E104_W02DC056DR 
7. N09E104_W02DC059DR 
8. N09E104_W02DC062DR 
9. N09E105_W02DC042DR 
10. N09E105_W02DC045DR 
11. N09E105_W02DC048DR 
12. N09E105_W02DC051DR 
13. N09E105_W02DC053DR 
14. N09E105_W02DC056DR 
15. N09E105_W02DC059DR 
16. N09E105_W02DC062DR 
17. N10E104_W02DC042DR 
18. N10E104_W02DC045DR 
19. N10E104_W02DC048DR 
20. N10E104_W02DC051DR 
21. N10E104_W02DC053DR 
22. N10E104_W02DC056DR 
23. N10E104_W02DC059DR 
24. N10E104_W02DC062DR 
25. N10E105_W02DC042DR 
26. N10E105_W02DC045DR 
27. N10E105_W02DC048DR 
28. N10E105_W02DC051DR 
29. N10E105_W02DC053DR 
30. N10E105_W02DC056DR 
31. N10E105_W02DC059DR 
32. N10E105_W02DC062DR 
33. N10E106_W02DC042DR 
34. N10E106_W02DC045DR 
35. N10E106_W02DC048DR 
36. N10E106_W02DC051DR 
37. N10E106_W02DC053DR 
38. N10E106_W02DC056DR 
39. N10E106_W02DC059DR 
40. N10E106_W02DC062DR 
41. N11E103_W02DC042DR 
42. N11E103_W02DC045DR 
43. N11E103_W02DC048DR 
44. N11E103_W02DC051DR 
45. N11E103_W02DC053DR 
46. N11E103_W02DC056DR 
47. N11E103_W02DC059DR 
48. N11E103_W02DC062DR 
49. N11E104_W02DC042DR 
50. N11E104_W02DC045DR 
51. N11E104_W02DC048DR 
52. N11E104_W02DC051DR 

53. N11E104_W02DC053DR 
54. N11E104_W02DC056DR 
55. N11E104_W02DC059DR 
56. N11E104_W02DC062DR 
57. N11E105_W02DC042DR 
58. N11E105_W02DC045DR 
59. N11E105_W02DC048DR 
60. N11E105_W02DC051DR 
61. N11E105_W02DC053DR 
62. N11E105_W02DC056DR 
63. N11E105_W02DC059DR 
64. N11E105_W02DC062DR 
65. N11E106_W02DC042DR 
66. N11E106_W02DC045DR 
67. N11E106_W02DC048DR 
68. N11E106_W02DC051DR 
69. N11E106_W02DC053DR 
70. N11E106_W02DC056DR 
71. N11E106_W02DC059DR 
72. N11E106_W02DC062DR 
73. N11E107_W02DC042DR 
74. N11E107_W02DC045DR 
75. N11E107_W02DC048DR 
76. N11E107_W02DC051DR 
77. N11E107_W02DC053DR 
78. N11E107_W02DC056DR 
79. N11E107_W02DC059DR 
80. N11E107_W02DC062DR 
81. N11E108_W02DC039DR 
82. N11E108_W02DC042DR 
83. N11E108_W02DC045DR 
84. N11E108_W02DC048DR 
85. N11E108_W02DC051DR 
86. N11E108_W02DC053DR 
87. N11E108_W02DC056DR 
88. N11E108_W02DC059DR 
89. N11E108_W02DC062DR 
90. N12E105_W02DC042DR 
91. N12E105_W02DC045DR 
92. N12E105_W02DC048DR 
93. N12E105_W02DC051DR 
94. N12E105_W02DC053DR 
95. N12E105_W02DC056DR 
96. N12E105_W02DC059DR 
97. N12E105_W02DC062DR 
98. N12E106_W02DC042DR 
99. N12E106_W02DC045DR 
100. N12E106_W02DC048DR 
101. N12E106_W02DC051DR 
102. N12E106_W02DC053DR 
103. N12E106_W02DC056DR 
104. N12E106_W02DC059DR 

105. N12E106_W02DC062DR 
106. N12E107_W02DC042DR 
107. N12E107_W02DC045DR 
108. N12E107_W02DC048DR 
109. N12E107_W02DC051DR 
110. N12E107_W02DC053DR 
111. N12E107_W02DC056DR 
112. N12E107_W02DC059DR 
113. N12E107_W02DC062DR 
114. N12E108_W02DC039DR 
115. N12E108_W02DC042DR 
116. N12E108_W02DC045DR 
117. N12E108_W02DC048DR 
118. N12E108_W02DC051DR 
119. N12E108_W02DC053DR 
120. N12E108_W02DC056DR 
121. N12E108_W02DC059DR 
122. N12E108_W02DC062DR 
123. N12E109_W02DC039DR 
124. N12E109_W02DC042DR 
125. N12E109_W02DC045DR 
126. N12E109_W02DC048DR 
127. N12E109_W02DC051DR 
128. N12E109_W02DC053DR 
129. N12E109_W02DC056DR 
130. N12E109_W02DC059DR 
131. N12E109_W02DC062DR 
132. N13E106_W02DC042DR 
133. N13E106_W02DC045DR 
134. N13E106_W02DC048DR 
135. N13E106_W02DC051DR 
136. N13E106_W02DC053DR 
137. N13E106_W02DC056DR 
138. N13E106_W02DC059DR 
139. N13E106_W02DC062DR 
140. N13E107_W02DC042DR 
141. N13E107_W02DC045DR 
142. N13E107_W02DC048DR 
143. N13E107_W02DC051DR 
144. N13E107_W02DC053DR 
145. N13E107_W02DC056DR 
146. N13E107_W02DC059DR 
147. N13E107_W02DC062DR 
148. N13E108_W02DC042DR 
149. N13E108_W02DC045DR 
150. N13E108_W02DC048DR 
151. N13E108_W02DC051DR 
152. N13E108_W02DC053DR 
153. N13E108_W02DC056DR 
154. N13E108_W02DC059DR 
155. N13E108_W02DC062DR 
156. N13E109_W02DC039DR 
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157. N13E109_W02DC042DR 
158. N13E109_W02DC045DR 
159. N13E109_W02DC048DR 
160. N13E109_W02DC051DR 
161. N13E109_W02DC053DR 
162. N13E109_W02DC056DR 
163. N13E109_W02DC059DR 
164. N13E109_W02DC062DR 
165. N14E107_W02DC042DR 
166. N14E107_W02DC045DR 
167. N14E107_W02DC048DR 
168. N14E107_W02DC051DR 
169. N14E107_W02DC053DR 
170. N14E107_W02DC056DR 
171. N14E107_W02DC059DR 
172. N14E107_W02DC062DR 
173. N14E108_W02DC042DR 
174. N14E108_W02DC045DR 
175. N14E108_W02DC048DR 
176. N14E108_W02DC051DR 
177. N14E108_W02DC053DR 
178. N14E108_W02DC056DR 
179. N14E108_W02DC059DR 
180. N14E108_W02DC062DR 
181. N14E109_W02DC039DR 
182. N14E109_W02DC042DR 
183. N14E109_W02DC045DR 
184. N14E109_W02DC048DR 
185. N14E109_W02DC051DR 
186. N14E109_W02DC053DR 
187. N14E109_W02DC056DR 
188. N14E109_W02DC059DR 
189. N14E109_W02DC062DR 
190. N15E107_W02DC042DR 
191. N15E107_W02DC045DR 
192. N15E107_W02DC048DR 
193. N15E107_W02DC051DR 
194. N15E107_W02DC053DR 
195. N15E107_W02DC056DR 
196. N15E107_W02DC059DR 
197. N15E107_W02DC062DR 
198. N15E108_W02DC042DR 
199. N15E108_W02DC045DR 
200. N15E108_W02DC048DR 
201. N15E108_W02DC051DR 
202. N15E108_W02DC053DR 
203. N15E108_W02DC056DR 
204. N15E108_W02DC059DR 
205. N15E108_W02DC062DR 
206. N15E109_W02DC039DR 
207. N15E109_W02DC042DR 
208. N15E109_W02DC045DR 
209. N15E109_W02DC048DR 
210. N15E109_W02DC051DR 
211. N15E109_W02DC053DR 

212. N15E109_W02DC056DR 
213. N15E109_W02DC059DR 
214. N15E109_W02DC062DR 
215. N16E107_W02DC042DR 
216. N16E107_W02DC045DR 
217. N16E107_W02DC048DR 
218. N16E107_W02DC051DR 
219. N16E107_W02DC053DR 
220. N16E107_W02DC056DR 
221. N16E107_W02DC059DR 
222. N16E107_W02DC062DR 
223. N16E108_W02DC042DR 
224. N16E108_W02DC045DR 
225. N16E108_W02DC048DR 
226. N16E108_W02DC051DR 
227. N16E108_W02DC053DR 
228. N16E108_W02DC056DR 
229. N16E108_W02DC059DR 
230. N16E108_W02DC062DR 
231. N17E106_W02DC042DR 
232. N17E106_W02DC045DR 
233. N17E106_W02DC048DR 
234. N17E106_W02DC051DR 
235. N17E106_W02DC053DR 
236. N17E106_W02DC056DR 
237. N17E106_W02DC059DR 
238. N17E106_W02DC062DR 
239. N17E107_W02DC042DR 
240. N17E107_W02DC045DR 
241. N17E107_W02DC048DR 
242. N17E107_W02DC051DR 
243. N17E107_W02DC053DR 
244. N17E107_W02DC056DR 
245. N17E107_W02DC059DR 
246. N17E107_W02DC062DR 
247. N17E108_W02DC042DR 
248. N17E108_W02DC045DR 
249. N17E108_W02DC048DR 
250. N17E108_W02DC051DR 
251. N17E108_W02DC053DR 
252. N17E108_W02DC056DR 
253. N17E108_W02DC059DR 
254. N17E108_W02DC062DR 
255. N18E105_W02DC042DR 
256. N18E105_W02DC045DR 
257. N18E105_W02DC048DR 
258. N18E105_W02DC051DR 
259. N18E105_W02DC053DR 
260. N18E105_W02DC056DR 
261. N18E105_W02DC059DR 
262. N18E105_W02DC062DR 
263. N18E106_W02DC042DR 
264. N18E106_W02DC045DR 
265. N18E106_W02DC048DR 
266. N18E106_W02DC051DR 

267. N18E106_W02DC053DR 
268. N18E106_W02DC056DR 
269. N18E106_W02DC059DR 
270. N18E106_W02DC062DR 
271. N18E107_W02DC042DR 
272. N18E107_W02DC045DR 
273. N18E107_W02DC048DR 
274. N18E107_W02DC051DR 
275. N18E107_W02DC053DR 
276. N18E107_W02DC056DR 
277. N18E107_W02DC059DR 
278. N18E107_W02DC062DR 
279. N19E104_W02DC042DR 
280. N19E104_W02DC045DR 
281. N19E104_W02DC048DR 
282. N19E104_W02DC051DR 
283. N19E104_W02DC053DR 
284. N19E104_W02DC056DR 
285. N19E104_W02DC059DR 
286. N19E104_W02DC062DR 
287. N19E105_W02DC042DR 
288. N19E105_W02DC045DR 
289. N19E105_W02DC048DR 
290. N19E105_W02DC051DR 
291. N19E105_W02DC053DR 
292. N19E105_W02DC056DR 
293. N19E105_W02DC059DR 
294. N19E105_W02DC062DR 
295. N19E106_W02DC042DR 
296. N19E106_W02DC045DR 
297. N19E106_W02DC048DR 
298. N19E106_W02DC051DR 
299. N19E106_W02DC053DR 
300. N19E106_W02DC056DR 
301. N19E106_W02DC059DR 
302. N19E106_W02DC062DR 
303. N20E103_W02DC042DR 
304. N20E103_W02DC045DR 
305. N20E103_W02DC048DR 
306. N20E103_W02DC051DR 
307. N20E103_W02DC053DR 
308. N20E103_W02DC056DR 
309. N20E103_W02DC059DR 
310. N20E103_W02DC062DR 
311. N20E104_W02DC042DR 
312. N20E104_W02DC045DR 
313. N20E104_W02DC048DR 
314. N20E104_W02DC051DR 
315. N20E104_W02DC053DR 
316. N20E104_W02DC056DR 
317. N20E104_W02DC059DR 
318. N20E104_W02DC062DR 
319. N20E105_W02DC042DR 
320. N20E105_W02DC045DR 
321. N20E105_W02DC048DR 
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322. N20E105_W02DC051DR 
323. N20E105_W02DC053DR 
324. N20E105_W02DC056DR 
325. N20E105_W02DC059DR 
326. N20E105_W02DC062DR 
327. N20E106_W02DC042DR 
328. N20E106_W02DC045DR 
329. N20E106_W02DC048DR 
330. N20E106_W02DC051DR 
331. N20E106_W02DC053DR 
332. N20E106_W02DC056DR 
333. N20E106_W02DC059DR 
334. N20E106_W02DC062DR 
335. N21E103_W02DC042DR 
336. N21E103_W02DC045DR 
337. N21E103_W02DC048DR 
338. N21E103_W02DC051DR 
339. N21E103_W02DC053DR 
340. N21E103_W02DC056DR 
341. N21E103_W02DC059DR 
342. N21E103_W02DC062DR 
343. N21E104_W02DC042DR 
344. N21E104_W02DC045DR 
345. N21E104_W02DC048DR 
346. N21E104_W02DC051DR 
347. N21E104_W02DC053DR 
348. N21E104_W02DC056DR 
349. N21E104_W02DC059DR 
350. N21E104_W02DC062DR 
351. N21E105_W02DC042DR 
352. N21E105_W02DC045DR 
353. N21E105_W02DC048DR 
354. N21E105_W02DC051DR 
355. N21E105_W02DC053DR 
356. N21E105_W02DC056DR 
357. N21E105_W02DC059DR 
358. N21E106_W02DC042DR 
359. N21E106_W02DC045DR 
360. N21E106_W02DC048DR 
361. N21E106_W02DC051DR 
362. N21E106_W02DC053DR 
363. N21E106_W02DC059DR 
364. N21E107_W02DC042DR 
365. N21E107_W02DC045DR 
366. N21E107_W02DC048DR 
367. N21E107_W02DC051DR 
368. N21E107_W02DC053DR 
369. N21E107_W02DC059DR 
370. N22E102_W02DC042DR 
371. N22E102_W02DC045DR 

372. N22E102_W02DC048DR 
373. N22E102_W02DC051DR 
374. N22E102_W02DC053DR 
375. N22E102_W02DC056DR 
376. N22E102_W02DC059DR 
377. N22E102_W02DC062DR 
378. N22E103_W02DC042DR 
379. N22E103_W02DC045DR 
380. N22E103_W02DC048DR 
381. N22E103_W02DC051DR 
382. N22E103_W02DC053DR 
383. N22E103_W02DC056DR 
384. N22E103_W02DC059DR 
385. N22E103_W02DC062DR 
386. N22E104_W02DC042DR 
387. N22E104_W02DC045DR 
388. N22E104_W02DC048DR 
389. N22E104_W02DC051DR 
390. N22E104_W02DC053DR 
391. N22E104_W02DC056DR 
392. N22E104_W02DC059DR 
393. N22E104_W02DC062DR 
394. N22E105_W02DC042DR 
395. N22E105_W02DC045DR 
396. N22E105_W02DC048DR 
397. N22E105_W02DC051DR 
398. N22E105_W02DC053DR 
399. N22E105_W02DC056DR 
400. N22E105_W02DC059DR 
401. N22E106_W02DC042DR 
402. N22E106_W02DC045DR 
403. N22E106_W02DC048DR 
404. N22E106_W02DC051DR 
405. N22E106_W02DC053DR 
406. N22E106_W02DC059DR 
407. N22E107_W02DC042DR 
408. N22E107_W02DC045DR 
409. N22E107_W02DC048DR 
410. N22E107_W02DC051DR 
411. N22E107_W02DC053DR 
412. N22E107_W02DC059DR 
413. N22E108_W02DC042DR 
414. N22E108_W02DC045DR 
415. N22E108_W02DC048DR 
416. N22E108_W02DC051DR 
417. N22E108_W02DC059DR 
418. N23E102_W02DC042DR 
419. N23E102_W02DC045DR 
420. N23E102_W02DC048DR 
421. N23E102_W02DC051DR 

422. N23E102_W02DC053DR 
423. N23E102_W02DC056DR 
424. N23E102_W02DC059DR 
425. N23E102_W02DC062DR 
426. N23E103_W02DC042DR 
427. N23E103_W02DC045DR 
428. N23E103_W02DC048DR 
429. N23E103_W02DC051DR 
430. N23E103_W02DC053DR 
431. N23E103_W02DC056DR 
432. N23E103_W02DC059DR 
433. N23E103_W02DC062DR 
434. N23E104_W02DC042DR 
435. N23E104_W02DC045DR 
436. N23E104_W02DC048DR 
437. N23E104_W02DC051DR 
438. N23E104_W02DC053DR 
439. N23E104_W02DC056DR 
440. N23E104_W02DC059DR 
441. N23E104_W02DC062DR 
442. N23E105_W02DC042DR 
443. N23E105_W02DC045DR 
444. N23E105_W02DC048DR 
445. N23E105_W02DC051DR 
446. N23E105_W02DC053DR 
447. N23E105_W02DC056DR 
448. N23E105_W02DC059DR 
449. N23E106_W02DC042DR 
450. N23E106_W02DC045DR 
451. N23E106_W02DC048DR 
452. N23E106_W02DC051DR 
453. N23E106_W02DC053DR 
454. N23E106_W02DC059DR 
455. N24E104_W02DC042DR 
456. N24E104_W02DC045DR 
457. N24E104_W02DC048DR 
458. N24E104_W02DC051DR 
459. N24E104_W02DC053DR 
460. N24E104_W02DC056DR 
461. N24E104_W02DC059DR 
462. N24E104_W02DC062DR 
463. N24E105_W02DC042DR 
464. N24E105_W02DC045DR 
465. N24E105_W02DC048DR 
466. N24E105_W02DC051DR 
467. N24E105_W02DC053DR 
468. N24E105_W02DC056DR 
469. N24E105_W02DC059DR 
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Appendix List A2. ALOS/AVNIR-2 ORI image list 
 

1. ALAV2A050483220 
2. ALAV2A050773300 
3. ALAV2A050773310 
4. ALAV2A050773320 
5. ALAV2A052523350 
6. ALAV2A052523360 
7. ALAV2A052523370 
8. ALAV2A052523380 
9. ALAV2A052523390 

10. ALAV2A053983140 
11. ALAV2A053983150 
12. ALAV2A053983160 
13. ALAV2A053983170 
14. ALAV2A053983180 
15. ALAV2A055003270 
16. ALAV2A055003310 
17. ALAV2A055003320 
18. ALAV2A055003330 
19. ALAV2A055003340 
20. ALAV2A055003350 
21. ALAV2A055003360 
22. ALAV2A055003370 
23. ALAV2A055003380 
24. ALAV2A055003390 
25. ALAV2A055003400 
26. ALAV2A055003410 
27. ALAV2A055003420 
28. ALAV2A055733240 
29. ALAV2A055733260 
30. ALAV2A055733270 
31. ALAV2A055733380 
32. ALAV2A055733390 
33. ALAV2A055733400 
34. ALAV2A056173140 
35. ALAV2A056173150 
36. ALAV2A058943140 
37. ALAV2A058943150 
38. ALAV2A058943160 
39. ALAV2A058943180 
40. ALAV2A058943190 
41. ALAV2A059963370 
42. ALAV2A059963380 
43. ALAV2A059963390 
44. ALAV2A059963400 
45. ALAV2A059963410 
46. ALAV2A059963420 
47. ALAV2A059963430 
48. ALAV2A063173390 

49. ALAV2A065943350 
50. ALAV2A065943360 
51. ALAV2A065943370 
52. ALAV2A065943380 
53. ALAV2A065943390 
54. ALAV2A065943420 
55. ALAV2A065943430 
56. ALAV2A070903400 
57. ALAV2A070903410 
58. ALAV2A070903420 
59. ALAV2A073383250 
60. ALAV2A073383360 
61. ALAV2A073383370 
62. ALAV2A073383380 
63. ALAV2A073383390 
64. ALAV2A073383400 
65. ALAV2A073383410 
66. ALAV2A073383420 
67. ALAV2A073383430 
68. ALAV2A073823140 
69. ALAV2A074113390 
70. ALAV2A074113400 
71. ALAV2A074843160 
72. ALAV2A074843170 
73. ALAV2A074843180 
74. ALAV2A074843190 
75. ALAV2A074843200 
76. ALAV2A074843210 
77. ALAV2A074843220 
78. ALAV2A075133270 
79. ALAV2A075133280 
80. ALAV2A075133290 
81. ALAV2A075133300 
82. ALAV2A075133310 
83. ALAV2A075133320 
84. ALAV2A075133330 
85. ALAV2A075133340 
86. ALAV2A075133350 
87. ALAV2A075573140 
88. ALAV2A077323180 
89. ALAV2A077323190 
90. ALAV2A077323200 
91. ALAV2A077613260 
92. ALAV2A077613270 
93. ALAV2A077613280 
94. ALAV2A078343190 
95. ALAV2A078343200 
96. ALAV2A078343230 

97. ALAV2A078343240 
98. ALAV2A078633330 
99. ALAV2A078633340 
100. ALAV2A078633350 
101. ALAV2A078633360 
102. ALAV2A078633370 
103. ALAV2A080093250 
104. ALAV2A080093260 
105. ALAV2A080093270 
106. ALAV2A080093280 
107. ALAV2A080093370 
108. ALAV2A080093380 
109. ALAV2A082573240 
110. ALAV2A082573380 
111. ALAV2A082573400 
112. ALAV2A083303210 
113. ALAV2A083303220 
114. ALAV2A083303230 
115. ALAV2A083303240 
116. ALAV2A085053160 
117. ALAV2A085053230 
118. ALAV2A085053240 
119. ALAV2A086073290 
120. ALAV2A086073300 
121. ALAV2A086073310 
122. ALAV2A086073330 
123. ALAV2A086073340 
124. ALAV2A086073350 
125. ALAV2A086073390 
126. ALAV2A086073420 
127. ALAV2A086073430 
128. ALAV2A086803360 
129. ALAV2A086803370 
130. ALAV2A086803380 
131. ALAV2A087533140 
132. ALAV2A087533150 
133. ALAV2A087533160 
134. ALAV2A087533170 
135. ALAV2A087533180 
136. ALAV2A089283160 
137. ALAV2A089283170 
138. ALAV2A089283180 
139. ALAV2A091033360 
140. ALAV2A091033370 
141. ALAV2A091033380 
142. ALAV2A091033390 
143. ALAV2A091033400 
144. ALAV2A091033410 
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145. ALAV2A091033420 
146. ALAV2A092493140 
147. ALAV2A092493150 
148. ALAV2A092493160 
149. ALAV2A092493170 
150. ALAV2A092493180 
151. ALAV2A092783380 
152. ALAV2A092783390 
153. ALAV2A093513180 
154. ALAV2A093513430 
155. ALAV2A098473160 
156. ALAV2A098473170 

157. ALAV2A098473180 
158. ALAV2A098473190 
159. ALAV2A098473200 
160. ALAV2A100223250 
161. ALAV2A100223260 
162. ALAV2A100223270 
163. ALAV2A100223280 
164. ALAV2A100223380 
165. ALAV2A100223390 
166. ALAV2A100223400 
167. ALAV2A100223410 
168. ALAV2A100223420 

169. ALAV2A100223430 
170. ALAV2A100663140 
171. ALAV2A100663150 
172. ALAV2A100663160 
173. ALAV2A101243360 
174. ALAV2A101683190 
175. ALAV2A101683200 
176. ALAV2A101683210 
177. ALAV2A101683220 
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Appendix List A3. ALOS/PALSAR RTC image list 
 

1. ALPSRP099860460 
2. ALPSRP099860450 
3. ALPSRP099860440 
4. ALPSRP099860430 
5. ALPSRP099860420 
6. ALPSRP099860410 
7. ALPSRP099860400 
8. ALPSRP099860390 
9. ALPSRP099860380 
10. ALPSRP099860370 
11. ALPSRP099860360 
12. ALPSRP099860350 
13. ALPSRP099860340 
14. ALPSRP099860330 
15. ALPSRP099860320 
16. ALPSRP099860240 
17. ALPSRP099860230 
18. ALPSRP099860220 
19. ALPSRP099860210 
20. ALPSRP099860200 
21. ALPSRP096360440 
22. ALPSRP096360430 
23. ALPSRP096360420 
24. ALPSRP096360410 
25. ALPSRP096360400 
26. ALPSRP096360370 
27. ALPSRP096360360 
28. ALPSRP096360200 
29. ALPSRP096360190 
30. ALPSRP096360180 
31. ALPSRP096360170 
32. ALPSRP096360160 
33. ALPSRP096360150 
34. ALPSRP095630450 
35. ALPSRP095630440 
36. ALPSRP095630430 
37. ALPSRP095630420 
38. ALPSRP095630410 
39. ALPSRP095630400 
40. ALPSRP095630390 
41. ALPSRP095630380 
42. ALPSRP095630370 
43. ALPSRP095630360 
44. ALPSRP095630350 

45. ALPSRP095630340 
46. ALPSRP095630330 
47. ALPSRP095630320 
48. ALPSRP095630230 
49. ALPSRP095630220 
50. ALPSRP095630210 
51. ALPSRP095630200 
52. ALPSRP095630190 
53. ALPSRP095630180 
54. ALPSRP095630170 
55. ALPSRP094610200 
56. ALPSRP094610190 
57. ALPSRP093880450 
58. ALPSRP093880440 
59. ALPSRP093880430 
60. ALPSRP093880420 
61. ALPSRP093880410 
62. ALPSRP093880400 
63. ALPSRP093880390 
64. ALPSRP093880380 
65. ALPSRP093880370 
66. ALPSRP093880360 
67. ALPSRP093880220 
68. ALPSRP093880210 
69. ALPSRP093880200 
70. ALPSRP093880190 
71. ALPSRP093880180 
72. ALPSRP093880170 
73. ALPSRP093880160 
74. ALPSRP092130420 
75. ALPSRP092130410 
76. ALPSRP092130400 
77. ALPSRP092130200 
78. ALPSRP092130190 
79. ALPSRP092130180 
80. ALPSRP091690430 
81. ALPSRP091690420 
82. ALPSRP091690410 
83. ALPSRP091690300 
84. ALPSRP091690290 
85. ALPSRP091690280 
86. ALPSRP091690270 
87. ALPSRP091690260 
88. ALPSRP091690250 

89. ALPSRP091690240 
90. ALPSRP091690230 
91. ALPSRP091690220 
92. ALPSRP091400450 
93. ALPSRP091400440 
94. ALPSRP091400430 
95. ALPSRP091400420 
96. ALPSRP091400410 
97. ALPSRP091400400 
98. ALPSRP091400390 
99. ALPSRP091400380 
100. ALPSRP091400370 
101. ALPSRP091400360 
102. ALPSRP091400350 
103. ALPSRP091400340 
104. ALPSRP091400220 
105. ALPSRP091400210 
106. ALPSRP091400200 
107. ALPSRP091400190 
108. ALPSRP091400180 
109. ALPSRP091400170 
110. ALPSRP090960430 
111. ALPSRP090960420 
112. ALPSRP090960410 
113. ALPSRP089940470 
114. ALPSRP089940460 
115. ALPSRP089940450 
116. ALPSRP089940440 
117. ALPSRP089940430 
118. ALPSRP089940420 
119. ALPSRP089940410 
120. ALPSRP089940400 
121. ALPSRP089940390 
122. ALPSRP089940320 
123. ALPSRP089940310 
124. ALPSRP089940300 
125. ALPSRP089940290 
126. ALPSRP089940280 
127. ALPSRP089940270 
128. ALPSRP089940260 
129. ALPSRP089940250 
130. ALPSRP089940240 
131. ALPSRP089940230 
132. ALPSRP089940220 
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133. ALPSRP089940210 
134. ALPSRP089940200 
135. ALPSRP089650440 
136. ALPSRP089650430 
137. ALPSRP089650420 
138. ALPSRP089650410 
139. ALPSRP089650400 
140. ALPSRP089650370 
141. ALPSRP089650360 
142. ALPSRP089650200 
143. ALPSRP089650190 
144. ALPSRP089650180 
145. ALPSRP089650170 
146. ALPSRP089650160 
147. ALPSRP089650150 
148. ALPSRP089210430 
149. ALPSRP089210420 
150. ALPSRP088920450 
151. ALPSRP088920440 
152. ALPSRP088920430 
153. ALPSRP088920420 
154. ALPSRP088920410 
155. ALPSRP088920400 
156. ALPSRP088920390 
157. ALPSRP088920380 
158. ALPSRP088920370 
159. ALPSRP088920360 
160. ALPSRP088920350 
161. ALPSRP088920340 
162. ALPSRP088920330 
163. ALPSRP088920320 
164. ALPSRP088920230 
165. ALPSRP088920220 
166. ALPSRP088920210 
167. ALPSRP088920200 
168. ALPSRP088920190 
169. ALPSRP088920180 
170. ALPSRP088920170 
171. ALPSRP088190470 
172. ALPSRP088190460 
173. ALPSRP088190450 
174. ALPSRP088190440 
175. ALPSRP088190430 
176. ALPSRP088190420 
177. ALPSRP088190410 
178. ALPSRP088190400 

179. ALPSRP088190390 
180. ALPSRP088190380 
181. ALPSRP088190370 
182. ALPSRP088190360 
183. ALPSRP088190350 
184. ALPSRP088190340 
185. ALPSRP088190330 
186. ALPSRP088190320 
187. ALPSRP088190310 
188. ALPSRP088190300 
189. ALPSRP088190290 
190. ALPSRP088190280 
191. ALPSRP088190270 
192. ALPSRP088190260 
193. ALPSRP088190250 
194. ALPSRP088190240 
195. ALPSRP088190230 
196. ALPSRP088190220 
197. ALPSRP088190210 
198. ALPSRP088190200 
199. ALPSRP088190190 
200. ALPSRP087900200 
201. ALPSRP087900190 
202. ALPSRP087460450 
203. ALPSRP087460440 
204. ALPSRP087460430 
205. ALPSRP087460420 
206. ALPSRP087460410 
207. ALPSRP087460400 
208. ALPSRP087460310 
209. ALPSRP087460300 
210. ALPSRP087460290 
211. ALPSRP087460280 
212. ALPSRP087460270 
213. ALPSRP087460260 
214. ALPSRP087460250 
215. ALPSRP087460240 
216. ALPSRP087460230 
217. ALPSRP087460220 
218. ALPSRP087460210 
219. ALPSRP086440460 
220. ALPSRP086440450 
221. ALPSRP086440440 
222. ALPSRP086440430 
223. ALPSRP086440420 
224. ALPSRP086440410 

225. ALPSRP086440400 
226. ALPSRP086440390 
227. ALPSRP086440380 
228. ALPSRP086440370 
229. ALPSRP086440360 
230. ALPSRP086440350 
231. ALPSRP086440340 
232. ALPSRP086440330 
233. ALPSRP086440320 
234. ALPSRP086440240 
235. ALPSRP086440230 
236. ALPSRP086440220 
237. ALPSRP086440210 
238. ALPSRP086440200 
239. ALPSRP086440190 
240. ALPSRP086440180 
241. ALPSRP085710470 
242. ALPSRP085710460 
243. ALPSRP085710450 
244. ALPSRP085710440 
245. ALPSRP085710430 
246. ALPSRP085710420 
247. ALPSRP085710410 
248. ALPSRP085710400 
249. ALPSRP085710390 
250. ALPSRP085710380 
251. ALPSRP085710350 
252. ALPSRP085710340 
253. ALPSRP085710330 
254. ALPSRP085710320 
255. ALPSRP085710310 
256. ALPSRP085710300 
257. ALPSRP085710290 
258. ALPSRP085710280 
259. ALPSRP085710270 
260. ALPSRP085710260 
261. ALPSRP085710250 
262. ALPSRP085710240 
263. ALPSRP085710230 
264. ALPSRP085710220 
265. ALPSRP085710210 
266. ALPSRP085710200 
267. ALPSRP085420420 
268. ALPSRP085420410 
269. ALPSRP085420400 
270. ALPSRP085420200 
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271. ALPSRP085420190 
272. ALPSRP085420180 
273. ALPSRP084980430 
274. ALPSRP084980420 
275. ALPSRP084980410 
276. ALPSRP084980300 
277. ALPSRP084980290 
278. ALPSRP084980280 
279. ALPSRP084980270 
280. ALPSRP084980260 
281. ALPSRP084980250 
282. ALPSRP084980240 
283. ALPSRP084980230 
284. ALPSRP084980220 
285. ALPSRP084690450 
286. ALPSRP084690440 
287. ALPSRP084690430 
288. ALPSRP084690420 
289. ALPSRP084690410 
290. ALPSRP084690400 
291. ALPSRP084690390 
292. ALPSRP084690380 
293. ALPSRP084690370 
294. ALPSRP084690360 
295. ALPSRP084690350 
296. ALPSRP084690340 
297. ALPSRP084690220 
298. ALPSRP084690210 
299. ALPSRP084690200 
300. ALPSRP084690190 
301. ALPSRP084690180 
302. ALPSRP084690170 
303. ALPSRP083960470 
304. ALPSRP083960460 
305. ALPSRP083960450 
306. ALPSRP083960440 
307. ALPSRP083960430 
308. ALPSRP083960420 
309. ALPSRP083960410 
310. ALPSRP083960400 
311. ALPSRP083960390 
312. ALPSRP083960380 
313. ALPSRP083960370 
314. ALPSRP083960360 
315. ALPSRP083960350 
316. ALPSRP083960340 

317. ALPSRP083960330 
318. ALPSRP083960320 
319. ALPSRP083960310 
320. ALPSRP083960300 
321. ALPSRP083960240 
322. ALPSRP083960230 
323. ALPSRP083960220 
324. ALPSRP083960210 
325. ALPSRP083960200 
326. ALPSRP083960190 
327. ALPSRP083230470 
328. ALPSRP083230460 
329. ALPSRP083230450 
330. ALPSRP083230440 
331. ALPSRP083230430 
332. ALPSRP083230420 
333. ALPSRP083230410 
334. ALPSRP083230400 
335. ALPSRP083230390 
336. ALPSRP083230320 
337. ALPSRP083230310 
338. ALPSRP083230300 
339. ALPSRP083230290 
340. ALPSRP083230280 
341. ALPSRP083230270 
342. ALPSRP083230260 
343. ALPSRP083230250 
344. ALPSRP083230240 
345. ALPSRP083230230 
346. ALPSRP083230220 
347. ALPSRP083230210 
348. ALPSRP083230200 
349. ALPSRP082940440 
350. ALPSRP082940430 
351. ALPSRP082940420 
352. ALPSRP082940410 
353. ALPSRP082940400 
354. ALPSRP082940370 
355. ALPSRP082940360 
356. ALPSRP082940200 
357. ALPSRP082940190 
358. ALPSRP082940180 
359. ALPSRP082940170 
360. ALPSRP082940160 
361. ALPSRP082940150 
362. ALPSRP082210450 

363. ALPSRP082210440 
364. ALPSRP082210430 
365. ALPSRP082210420 
366. ALPSRP082210410 
367. ALPSRP082210400 
368. ALPSRP082210390 
369. ALPSRP082210380 
370. ALPSRP082210370 
371. ALPSRP082210360 
372. ALPSRP082210350 
373. ALPSRP082210340 
374. ALPSRP082210330 
375. ALPSRP082210320 
376. ALPSRP082210230 
377. ALPSRP082210220 
378. ALPSRP082210210 
379. ALPSRP082210200 
380. ALPSRP082210190 
381. ALPSRP082210180 
382. ALPSRP082210170 
383. ALPSRP081480470 
384. ALPSRP081480460 
385. ALPSRP081480450 
386. ALPSRP081480440 
387. ALPSRP081480430 
388. ALPSRP081480420 
389. ALPSRP081480410 
390. ALPSRP081480400 
391. ALPSRP081480390 
392. ALPSRP081480380 
393. ALPSRP081480370 
394. ALPSRP081480360 
395. ALPSRP081480350 
396. ALPSRP081480340 
397. ALPSRP081480330 
398. ALPSRP081480320 
399. ALPSRP081480310 
400. ALPSRP081480300 
401. ALPSRP081480290 
402. ALPSRP081480280 
403. ALPSRP081480270 
404. ALPSRP081480260 
405. ALPSRP081480250 
406. ALPSRP081480240 
407. ALPSRP081480230 
408. ALPSRP081480220 



141 

409. ALPSRP081480210 
410. ALPSRP081480200 
411. ALPSRP081480190 
412. ALPSRP081190200 
413. ALPSRP081190190 
414. ALPSRP080460450 
415. ALPSRP080460440 
416. ALPSRP080460430 
417. ALPSRP080460420 
418. ALPSRP080460410 
419. ALPSRP080460400 
420. ALPSRP080460390 
421. ALPSRP080460380 
422. ALPSRP080460370 
423. ALPSRP080460360 
424. ALPSRP080460220 
425. ALPSRP080460210 
426. ALPSRP080460200 
427. ALPSRP080460190 
428. ALPSRP080460180 
429. ALPSRP080460170 
430. ALPSRP080460160 
431. ALPSRP080020430 
432. ALPSRP080020420 
433. ALPSRP079000470 
434. ALPSRP079000460 
435. ALPSRP079000450 
436. ALPSRP079000440 
437. ALPSRP079000430 
438. ALPSRP079000420 
439. ALPSRP079000410 
440. ALPSRP079000400 
441. ALPSRP079000390 
442. ALPSRP079000380 
443. ALPSRP079000350 
444. ALPSRP079000340 
445. ALPSRP079000330 
446. ALPSRP079000320 
447. ALPSRP079000310 
448. ALPSRP079000300 
449. ALPSRP079000290 
450. ALPSRP079000280 
451. ALPSRP079000270 
452. ALPSRP079000260 
453. ALPSRP079000250 
454. ALPSRP079000240 

455. ALPSRP079000230 
456. ALPSRP079000220 
457. ALPSRP079000210 
458. ALPSRP079000200 
459. ALPSRP078710420 
460. ALPSRP078710410 
461. ALPSRP078710400 
462. ALPSRP078710200 
463. ALPSRP078710190 
464. ALPSRP078710180 
465. ALPSRP078270430 
466. ALPSRP078270420 
467. ALPSRP078270410 
468. ALPSRP078270300 
469. ALPSRP078270290 
470. ALPSRP078270280 
471. ALPSRP078270270 
472. ALPSRP078270260 
473. ALPSRP078270250 
474. ALPSRP078270240 
475. ALPSRP078270230 
476. ALPSRP078270220 
477. ALPSRP077980450 
478. ALPSRP077980440 
479. ALPSRP077980430 
480. ALPSRP077980420 
481. ALPSRP077980410 
482. ALPSRP077980400 
483. ALPSRP077980390 
484. ALPSRP077980380 
485. ALPSRP077980370 
486. ALPSRP077980360 
487. ALPSRP077980350 
488. ALPSRP077980340 
489. ALPSRP077980220 
490. ALPSRP077980210 
491. ALPSRP077980200 
492. ALPSRP077980190 
493. ALPSRP077980180 
494. ALPSRP077980170 
495. ALPSRP077540430 
496. ALPSRP077540420 
497. ALPSRP077540410 
498. ALPSRP077250470 
499. ALPSRP077250460 
500. ALPSRP077250450 

501. ALPSRP077250440 
502. ALPSRP077250430 
503. ALPSRP077250420 
504. ALPSRP077250410 
505. ALPSRP077250400 
506. ALPSRP077250390 
507. ALPSRP077250380 
508. ALPSRP077250370 
509. ALPSRP077250360 
510. ALPSRP077250350 
511. ALPSRP077250340 
512. ALPSRP077250330 
513. ALPSRP077250320 
514. ALPSRP077250310 
515. ALPSRP077250300 
516. ALPSRP077250240 
517. ALPSRP077250230 
518. ALPSRP077250220 
519. ALPSRP077250210 
520. ALPSRP077250200 
521. ALPSRP077250190 
522. ALPSRP076520470 
523. ALPSRP076520460 
524. ALPSRP076520450 
525. ALPSRP076520440 
526. ALPSRP076520430 
527. ALPSRP076520420 
528. ALPSRP076520410 
529. ALPSRP076520400 
530. ALPSRP076520390 
531. ALPSRP076520320 
532. ALPSRP076520310 
533. ALPSRP076520300 
534. ALPSRP076520290 
535. ALPSRP076520280 
536. ALPSRP076520270 
537. ALPSRP076520260 
538. ALPSRP076520250 
539. ALPSRP076520240 
540. ALPSRP076520230 
541. ALPSRP076520220 
542. ALPSRP076520210 
543. ALPSRP076520200 
544. ALPSRP076230440 
545. ALPSRP076230430 
546. ALPSRP076230420 
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547. ALPSRP076230410 
548. ALPSRP076230400 
549. ALPSRP076230370 
550. ALPSRP076230360 
551. ALPSRP076230200 
552. ALPSRP076230190 
553. ALPSRP076230180 
554. ALPSRP076230170 
555. ALPSRP076230160 
556. ALPSRP076230150 
557. ALPSRP074770470 
558. ALPSRP074770460 
559. ALPSRP074770450 
560. ALPSRP074770440 
561. ALPSRP074770430 
562. ALPSRP074770420 
563. ALPSRP074770410 
564. ALPSRP074770400 
565. ALPSRP074770390 
566. ALPSRP074770380 
567. ALPSRP074770370 
568. ALPSRP074770360 
569. ALPSRP074770350 
570. ALPSRP074770340 
571. ALPSRP074770330 
572. ALPSRP074770320 
573. ALPSRP074770310 
574. ALPSRP074770300 
575. ALPSRP074770290 
576. ALPSRP074770280 
577. ALPSRP074770270 
578. ALPSRP074770260 
579. ALPSRP074770250 
580. ALPSRP074770240 
581. ALPSRP074770230 
582. ALPSRP074770220 
583. ALPSRP074770210 
584. ALPSRP074770200 
585. ALPSRP074770190 
586. ALPSRP074480200 
587. ALPSRP074480190 
588. ALPSRP073750450 
589. ALPSRP073750440 
590. ALPSRP073750430 
591. ALPSRP073750420 
592. ALPSRP073750410 

593. ALPSRP073750400 
594. ALPSRP073750390 
595. ALPSRP073750380 
596. ALPSRP073750370 
597. ALPSRP073750360 
598. ALPSRP073750220 
599. ALPSRP073750210 
600. ALPSRP073750200 
601. ALPSRP073750190 
602. ALPSRP073750180 
603. ALPSRP073750170 
604. ALPSRP073750160 
605. ALPSRP073020460 
606. ALPSRP073020450 
607. ALPSRP073020440 
608. ALPSRP073020430 
609. ALPSRP073020420 
610. ALPSRP073020410 
611. ALPSRP073020400 
612. ALPSRP073020390 
613. ALPSRP073020380 
614. ALPSRP073020370 
615. ALPSRP073020360 
616. ALPSRP073020350 
617. ALPSRP073020340 
618. ALPSRP073020330 
619. ALPSRP073020320 
620. ALPSRP073020240 
621. ALPSRP073020230 
622. ALPSRP073020220 
623. ALPSRP073020210 
624. ALPSRP073020200 
625. ALPSRP073020190 
626. ALPSRP073020180 
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Appendix Table A5. Number of image of data collected from Google Earth Engine 

 

Name Number of 
Time steps*  

Year Number of  
1° × 1° tiles 

Total number of 
images 

Sentinel-1 8 2016 60 480 

Sentinel-2 8 2016 60 480 

Landsat 8 8 2016 60 480 

Landsat 5 8 2007 60 480 

Landsat 7 8 2007 60 480 

* Each time step is equal to 1.5 month. 

 

 

 

 

 

 

 

 

 

 


