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Chapter 1: Introduction 

This chapter aims to give a brief introduction of the integrated nanomaterials, mainly focusing 

on the two integrated systems the author has been working on during her PhD course, graphene-

integrated system and memristive network. The first section gives a general review of integrated 

nanomaterials, introducing two forms of integration architecture in material science. The second and 

third sections focus on the graphene-integrated system and memristive network, respectively. Both 

started with a comprehensive historical review of the base material in the integrated system and 

followed by the detail applications of it. 

1.1 INTEGRATED NANOMATERIALS 

Nanomaterial refers to a material with any external dimension of an internal structure or 

surface structure in the nanoscale. Compared to its macroscopic counterpart, nanomaterial often 

shows extraordinary physical or chemical properties. It ranges from zero dimension like fullerene and 

nanoparticle to two-dimensions like graphene, thin-film molecule, covering organic, inorganic and 

carbon materials. The discovery of nanomaterials boosts the development of nanotechnology, where 

nanomaterials usually integrated into different architectures, emerging unique physical properties. As 

we see in Figure 1.1, in nature, the colour iridescence of the wing of the butterfly is a result of light 

interference at the wing surface1-2, and super adhesion of the foot of gecko is due to the integration 

of van der Waals force of numerous spatulas to the wall3-5. The integration of nanomaterials is first 

inspired by nature and has been extensively studied with different architectures.  

Integrating nanomaterials with other materials, especially with substrates when fabricating 

nanomaterial-based devices, would considerably influence physical properties of nanomaterials, such 

as electrical, optical, thermal and magnetic properties. This is primarily reflected when the 

nanomaterial is thin in its thickness, especially down to atomic thickness such as graphene. For 

example, strain and doping could be easily introduced to graphene while attaching to a substrate. By 

lifting the graphene from the substrate to some distance, another possibility may be opened: light 

interaction between graphene and substrate has been a suitable protocol for photo-thermal self-

oscillation. 

Meanwhile, the integration of nanomaterials would result in emergent phenomena beyond our 

expectation, even if it is based on a simple combination of different materials. This has recently 

recognized in experiments using novel materials having memristive properties has to be more 

carefully and thoroughly investigated. For example, self-assembled memristive nanowire networks 

have been suggested to have many parallels with the biological brain and to emerge interesting 

electrical and dynamical properties. In more details, by designing the crossing points between 

nanowires to have memristive properties, and by integrating a vast number of such crossing points, a 

collective interplay between the crossing points occurs and results in a modification of the inner 

structure as well as electrical state which contributes to a change of electrical resistance of the entire 

network. Since self-assembly of nanomaterials takes fewer fabrication costs, if we can find and utilize 

emerging and useful properties out of such self-assembled systems, it will be highly desirable for 

future application. 
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Figure 1.1.  Integrated nanomaterials in nature. (a-e) Nanostructure of Morpho butterfly2. (a-c) 

Photographs of Morpho didius butterfly showing blue iridescence. (d) Scanning electron microscope (SEM) 

image of a male butterfly Morpho didius showing nanostructure. (e) A cross-sectional view of (d). (f-g) 

Nanostructure of gecko foot4. (f) Photograph of a gecko foot. (g) SEM image of the gecko toe pad which 

contains numerous antennas called spatulas. 
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1.2 GRAPHENE-INTEGRATED SYSTEM 

1.2.1 History of graphene  

Graphene refers to a monolayer of graphite, and Boehm and his colleagues initially introduced 

this term in 1986 from the combination of word “graphite” and suffix that refers to polycyclic 

aromatic hydrocarbons6. In 1946, Phil Wallace derived the electronic band structure of graphene in 

order to understand the electronic properties of bulk graphite and its unusual semi-metallic behaviour7. 

Since then, graphene has been a toy model to explain various questions of quantum electrodynamics 
8-9. However, experimental isolation of graphene had not been achieved10-11 until 2004, when 

Professor A. K. Geim and his group successfully isolated the one-atomic-thick carbon layer by 

micromechanical cleavage from highly oriented pyrolytic graphite (HOPG)11. The top layer of 

graphite crystal was removed by Scotch tape and then pressed against the SiO2 substrate. As the 

adhesion of the bottom graphene layer to the substrate was more substantial than that between 

interlayers of graphite, it is possible to transfer monolayer graphene onto the SiO2 substrate. This 

technique is unique from previous studies and avoids coagulation into islands or three-dimensional 

(3D) carbon structures12. One can also notice that graphene film produced by cleavage is very stable 

under ambient temperature—not reactive with air or moisture. Inside graphene, each carbon atom has 

three nearest neighbour atoms, interacted with a strong σ bond and half-filled π bond and form Dirac 

cone valley in its Brillouin zone.  

As the first two-dimensional (2D) material ever made, studies on graphene are unprecedented, 

including fabrication, chemical properties, physical properties and applications. Graphene shows 

outstanding intrinsic properties, yielding high electrical conductivity11, 13, high thermal 

conductivity14-15 and high elasticity16. It is impermeable to any molecules17 and has broadband 

absorption covering the far-infrared to ultraviolet range18. By now, it is possible to obtain large scale 

and high-quality graphene sheet by mechanical exfoliation19, liquid-phase exfoliation 20, and chemical 

vapour deposition (CVD)21-23. With its outstanding electronic properties and mechanical properties, 

the graphene-integrated system has broad applications in electronic device24-25, such as gas sensors26, 

radiofrequency electronics27, flexible electronics28-29, nanoelectromechanical system30 and optical 

communication29, 31, but its performance is primarily affected by the substrate which supports it. 

Strain and doping are frequently introduced in graphene from substrate32, causing wrinkles and 

energy loss through electron scattering33-34. Substrate engineering has been a primary task in the 

graphene-integrated system for high-performance electronic device35. 

1.2.2 Substrate engineering in graphene-integrated system  

Substrate engineering in graphene-integrated system covers topics from graphene growth to 

device fabrication. In the process of graphene growth, CVD method has been the primary technique 

to produce large and uniform high-quality graphene sheet with no or negligible defects36. Such a 

method involves carbon-based gas molecules (precursor) and substrate to allow graphene to grow 

epitaxially in a hot reaction chamber. The surface properties of the substrate primarily define the 

reaction temperature and the type of reaction. Metallic materials, such as copper37-41,nickel42-44, 

copper/nickel alloy45-47 and silicon carbide48-50, usually require a growth temperature between 300℃ 

~ 600 ℃. To obtain a lower growth temperature is one of the main directions in graphene growth. At 

the same time, a dielectric substrate is essential for graphene electronic application. Transfer-free 

synthesis of graphene film, which retains the high quality of the film and reduces the device 
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preparation process, is favourable in industry. There is progress working with SiO2 
51 and glass52. 

Fujita et al. reported graphene CVD temperature down to 50 ℃ on sapphire and 100 ℃ on 

polycarbonate, assisted with molten gallium as catalysts53, which reduced the reaction to near room 

temperature regime. 

Depending on the final target of application, researchers have integrated graphene into 

different architectures, which require micro/nanofabrication of graphene with a top-down approach 

on different substrates. In the approach to the field-effect transistor (FET), graphene films on standard 

SiO2 substrates are highly disordered, presenting characteristics that far inferior to a suspended 

graphene13. Substrate engineering focuses on identifying dielectrics that allow a substrate-supported 

geometry while retaining the high carrier motilities as a supported one. One breakthrough discovery 

is that the carrier density of graphene on the atomically smooth h-BN surface is extremely high24. 

The lattice constant of h-BN is similar to that of graphene, which remarkably reduced energy loss 

during electron transportation. The work gives a new angle in substrate engineering even for other 

2D materials.  

Beside the substrate-supported architecture, graphene on the patterned substrate has potential 

applications for the future nanoelectromechanical system (NEMS). The suspended graphene can 

vibrate at a high resonant frequency which is tuneable over a wide range with moderate applied 

voltages. An integrated system like the graphene drum has been used as a mechanical resonator to 

detect pressure54, molecule absorption55 and operate in high frequency for energy-efficient radio 

frequency signal processing and communication56-58. It is also the most straightforward system to 

study some fundamental problems within the frame of interaction, such as light-matter interaction, 

for example, photo-thermal self-oscillation, laser cooling59 and tuneable phonon-cavity coupling57-58.  

The existence of substrate, with no doubt, to some extent suppress the intrinsic properties of 

the graphene. However, with the substrate engineering, graphene-integrated systems demonstrate 

outstanding performance which could not be achieved by individual graphene sheet. Meanwhile, 

there are vast possibilities of physical modifications of graphene by posing different substrate 

architectures and should be more extensively studied.   
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1.3 MEMRISTIVE NANOMATERIALS 

1.3.1 Introduction of memristive nanomaterials 

Memristive behaviour stands for a device on its IV characteristics showing hysteresis loop, 

indicating a changed internal structure or electronic state in the device under external power 

application. An observation of memristive behaviour can trace back to two centuries ago when Sir 

Humphry Davy used voltaic pile for demonstrating the effect of large current on a generation of 

sparks60-61 between two charcoal cylinders 62-63 and found that ionization and deionization take place 

depending on previously applied current64. Similar characteristics also appeared on tungsten filament, 

high pressure-vapour lamps, low-pressure mercury tube, discharge tubes and sodium tubes 

afterwards65. Also, magnetization and polarization of materials would be well-known examples of 

similar memristive behaviours. However, in the following discussion, we describe and discuss about 

resistively memristive behaviours. 

The development of memristive nanomaterials has roughly gone through three stages, and 

each period has its representative functional materials. The first period start from the 1960s to 1980s, 

some unconventional electrical properties had been observed and reported on many metal/amorphous 

oxide film/metal device. The observation of memristive behaviour in nanomaterials was firstly 

reported in 1962 by Hickmott 66 on a group of amorphous oxide films (Zr/ZrO2/Au,   Al/Al2O3/Au,   

Ta/Ta2O5/Au,   Al/SiOx/Au, Ti/ TiO2/Au ), showing resistance switching and also an unconventional 

negative resistance on their IV characteristics. After that many other amorphous oxide films, to list 

some, NiO, Al/SiO/Au, Al/Al2O3/metal (Ag, Mg) 67-73, have shown similar properties and the 

underlying mechanisms had been intensive discussed69, 72-78.  Nevertheless, due to the poor 

controllability, there is a lack of comprehensive understanding of such resistance switching. At the 

same period, integrated circuit technology was developing rapidly, therefore study on memristive 

materials had reduced attention. Until the 1990s, as the flash memory with a floating gate structure 

faced the physical size limit, the application of the resistive switching materials in the storage field 

received renewed attention, the second phase of research boom began. With Pr0.7Ca0.3MnO3(PCMO) 

discovered in 1997 by Asamitsu et al. 79as the representative, the research on resistive switching 

nanomaterials mainly focused on transition metal oxide, such a manganite and titanate with complex 

perovskite structure80. In 2000, Liu et al. 81 and Beck et al. 82 respectively found reversible and 

reproducible non-volatile resistance switching behaviour in PCMO film and Cr doped SrZrO3 film, 

showing the great potential of resistive switching in novel non-volatile memory. Since then, diverse 

materials emerged as resistance-switching memory, such as binary transition metal oxides(AlOx
83, 

TaOx
84, ZrOx

85-86, CuOx
87-88), electron-ion mixed conductors (CuS89, Ag2S

89-90) and organic 

nanomaterials (AIDCN91-93, Alq394, PEDOT:PSS: NaCl/6T-co-PEO 95).  

The last period of research boom started in 2008 when Strukov et al. 96 from HP laboratory 

published a paper named “The missing memristor found”,  in which a physical model successfully 

demonstrated the hysteresis loop observed on TiO2 nanodevice. Strukov’s work for the first time 

connected the resistance switching behaviour with a theoretical model97. In the following years to 

now, more and more materials and device (TiOx
98, GeSx

99-100, Ge2Sb2Te101, AgI102-103,  HfOx
104-105, 

TaOx
106, SrTiOx 

107) has been included into memristive material and extensively studied both 
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experimentally and theoretically, and the relevant physical mechanism of memristive behaviour and 

designing applications of memristive materials has been rapidly deepening and developing. 

1.3.2 Background of redox-based memristive nanomaterials 

With the rapid growth of information technology for big data processing and storage, there is 

an urgent need of non-volatile resistance switches with tuneable resistance states, high endurance, 

fast switching speed and low power consumption. Memristive nanomaterials are promising 

candidates owing to its unique characteristics. The driven force of the resistance switching can be one 

of four mechanisms: electrochemical reaction (redox and ion migration) 108-109, phase changes 110-115, 

tunnel magnetoresistance116-126 or ferroelectricity127-129. Among them, the redox-based memristive 

device has attracted enormous attention owing to its excellent chemical and physical controllability 

and scalability.130   

In this section, we introduce the background of the redox-based memristive device and 

provide general knowledge and understanding of the switching mechanism and switching modes. 

Memristive devices are generally in the form of metal/insulating layer /metal (M-I-M) structure, 

where the metal electrode, the insulating layer or their interface can contribute to the change of 

resistance state (Figure 1.2 a). The switching mode can be bipolar or unipolar, and if devices can 

work with both polarities, they are called nonpolar devices. Bipolar switching requires opposite 

voltage polarities for switching ON and OFF, respectively, whereas unipolar and nonpolar switching 

does not have such a requirement, as shown in Figure 1.2 b and c.  

 

Figure 1.2. Schematic of M-I-M structure for the memristive device (a) and possible IV curves, 

showing two different switch modes: (b) unipolar and (c) bipolar. 

Redox based memristive device can be either cation-based or anion-based one depending on 

the active element for the resistance switching of the device. In many cases, for an insulating layer 

terminated with inert electrodes, anion ion can be easily reduced under the application of a sufficient 

electrical field, forming a conductive channel in between electrodes. All type of transition metal oxide 

can be classified as anion-based memristive materials, and few non-oxide memristive materials also 

have been found in nitrides, telluride and selenide. Figure 1.3 shows the filament growth behaviour 

and the corresponding IV characteristics for transition metal oxide-based memristive device. Figure 

1.3a takes from the case of a Pt/TiO2-x/TiO2/Pt device131, in which the oxygen ions drift form oxygen-

rich region to the oxygen-deficient region under an electrical field. Since the oxygen-deficient region 

has high conductivity, device conductance switches form low to high after an oxygen vacancy channel 
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is formed in the oxide layer. Then if an opposite polarity of the voltage is applied, oxygen ions move 

back, causing the device conductance to reset to low state. Therefore, its IV characteristic exhibits 

bipolar switching behaviour. The redox reaction formula can be written as: 

𝑂𝑂 ⇌
1

2
𝑂2(𝑔) + 𝑉𝑂

∙∙ + 2𝑒′ 

where 𝑂𝑂  and 𝑉𝑂
∙∙  denote oxygen ions on regular lattice sites and oxygen vacancies, 

respectively. The switching picture in Figure 1.2a requires an asymmetry of oxygen distribution, 

needing careful consideration during device preparation. If simple polycrystalline oxide materials 

replace the insulating layer, the devices usually exhibit a unipolar switching behaviour, as shown in 

Figure 1.3d for a Pt/polycrystalline Ni/Pt memristive device132. In this case, localized oxygen vacancy 

sites which naturally exist at defect positions seeding the formation of oxygen vacancy channel. For 

this type of memristive device, the required switching voltage reduces, and the device resistance state 

can only be reset by posing sufficient temperature such as large Joule heat. In both thermal dominated 

or electrical field dominated switching mode, we can see once the device switches to ON state, its 

conductance state stays at a high value until a reset process, indicating a non-volatile memory 

switching nature of the anion-based memristive device. Later we will introduce a group of memristive 

device lose its conductance state at low voltage bias even after switching to ON state, known as 

volatile threshold memristor.   

Despite properties of the materials in a memristive device, size of electrode, the thickness of 

the oxide layer, power of the electric field and Schottky barrier at the electrode/insulator interface 

also affect the formation of the conductive filament and change the IV characteristics in the real 

device. In all cases, four main driving forces work independently or together to influence atomic 

motion or rearrangement in memristive nanomaterials: electric potential gradient (field), electron 

kinetic energy, species concentration gradient and temperature gradient. The microscopic picture of 

how exactly these factors drive the mobile species to actuate a particular type of switching is still 

under debate. Therefore, experiments that could visualize the switching in real-time and at nanoscale 

resolution could be precious.133 The conductive oxygen filament formation of an anion-based device 

was first confirmed by conductive atomic force microscope, which demonstrated insulate-metal 

transition of nano spots in single-crystalline SrTiO3 under electrical field 88. Later in a Pt/TiO2/Pt 

device, visual observation of a conical shaped Ti4O7 filament phase was taken under a scanning 

electron microscope (TEM) 134. Further effort can be made by cooling the oxygen ions to speed down 

the quick and dynamical motion for detailed observation. A new technique which allows high-

resolution observation at ambient condition is also urgently needed.  
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Figure 1.3. Simplified schematics of conduction channels (red) in insulating materials (blue) in four 

typical switching devices, in which both the electric field and Joule heating drive the switching. Inset to each 

schematic shows typical IV characteristic of bipolar nonlinear switching131 (a), bipolar linear switching135(b), 

unipolar non-volatile switching136 (c) and unipolar threshold switching132 137 (d).138 

For a cation-based filament, active metal electrode, for example, Ag or Cu, is integrated into 

the MIM structure. The metal atoms at the cathode can be easily oxidized as metal ions, transport to 

cathode along the electrical field and reduced on the way to or at the cathode. Depending on the ion 

mobility (µ) and the redox rates (Γi), the cation-based filament has diverse morphologies. Yang at el. 
139-140extensively studied the electrochemical dynamics of nanoscale metallic inclusions in different 

dielectric and observed four different morphologies of the filament formation, as shown in Figure 1.4. 

When both µ and Γi are high (Figure 1.4a), metal ion easily can transport to the cathode, resulting in 

a cone-shaped filament growth from the cathode metal electrode. This type of filament growth has 

been widely observed on a cation-based device with an insulating layer which contains enormous 

anions for redox action 108, 141-142, for example, Ag2S based atomic switch, Ag/Cu electrode with a 

solid electrolyte. In contrast, if both µ and Γi are low (Figure 1.4b), metal ions easily reach the critical 

nucleation conditions inside the dielectric and migrate to metal clusters from the anode side, further 

filament growth in the form of cluster displacement via repeated splitting-merging processes. On 

Ag/amorphous Si/Pt device researchers have observed such discontinues metal clusters143. The 

filament growth occurs with a slightly different manner if redox rate Γi is high while µ is still low, as 

shown in Figure 1.4c. Large amounts of metal ions will be reduced in the dielectric, forming a big 

cluster and move towards the anode. In the last case for metal ions high µ and low Γi (Figure 1.4d), 

metal ions could fast transport to the anode but have a limited amount. Therefore nucleation 

predominately occurs at the edges with high electrical field strength, leading to a dendrite-like 

filament growth towards the anode. For Ag ions transport in sputtered SiO2 films or water144, 

researchers observed such dendrite-like branches.  
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Figure 1.4. Qualitative model showing four different filament growth dynamics governed by kinetic 

parameters.140 

 

Figure 1.5. Morphological changes induced by surface diffusion. (a) Simulation results of the 

rearrangement of a silver conductive filament with initial diameter d0 = 2 nm at increasing times, (b) 

Same as a, but for a conductive filament with an initial diameter d0 = 0.4 nm. 145 

As we can see, even for the same Ag as the active metal electrode, in the different insulating 

material, the filament growth dynamic differs. The material properties, local electrical field, ionic 

speed could significantly affect the final morphology. However, a transition between different 

filament growth dynamics could take place by tuning one of those factors and can be reflected in the 

IV characteristic. Though in all action-based memristive devices, there exhibits bipolar switching 
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behaviour due to the polarity dependence of the metal oxidation146, researchers noticed that non-

volatile memory switching usually appears in a system with high ion mobility. In contrast, a threshold 

switching usually takes place in the system with low ion mobility, where current flows between 

neighbour in a tunnelling mode. Sun et al. observed a conversion between memory switching to 

threshold switching in Ag/SiO2/Pt device, where the local electrical field was tuned by increasing the 

thickness of the SiO2 layer147.  

Compared with the oxygen vacancy channel in the anion-based memristive device, the metal 

filament in the cation-based device has shorter retention time. Once the electrical filed is removed or 

reduced, in order to reach a chemical/physical equilibrium of the system, the metal atoms start to 

dissolve in the dielectric to minimize the surface energy. Depending on the size of metal aggrgates148, 

surface energy at the metal/dielectric interface and temperature state,  there exhibits different lifetime 

of the metal filament and the volatility of the resistance state. Wang et al. 145 studied the lifetime of 

the Ag filament with different size with molecular dynamics simulation method, as shown in Figure 

1.5. For a filament of considerable size, it is gently deteriorated simultaneously to one side of the 

electrode, demonstrating a non-volatile switching behaviour on its IV characteristic. On the contrary, 

if the filament size is reduced by five times (Figure 1.5 b), a fast rapture occurs, and the filament lift 

time is reduced about 150 times.   

1.3.3 Theoretical models for memristor 

In 1971, Leon Chua published a theoretical work and introduced the concept of ‘memristor’, 

which is short for memory resistor 97, 149.  Memristor (M) follows a nonlinear functional relationship 

between charge (q) and flux (φ), = 𝑀𝑑𝑞 , taken as the forth fundamental passive circuit element 

along with resistor, capacitor and inductor (Figure 1.6). Later in 1976 he and his student Kang 

generalized the concept of the memristive system, introducing a state variable w 149. Two equations 

can describe its nonlinear dynamic, a quasi-static conduction equation connecting voltage and current 

across a device and a dynamical equation: 

𝑣 = 𝑅(𝑤, 𝑖)𝑖 
𝑑𝑤

𝑑𝑡
= 𝑓(𝑤, 𝑖) 

In the following 40 years, many nanosystems had shown similar resistance switching 

behaviour 90, 150-153, but a direct relation to memristor or this physical model did not present. In 2008, 

Strukov et al. proposed a physical model based on Chua’s equation and successfully reproduced the 

hysteresis IV curves of a resistance switch96, 154. Since then, Chua’s memristor model has been widely 

accepted and used to elucidate different resistance switching behaviours.155-156 

The physical model proposed by Strukov et al. 96 was for a two-terminal electrical device to 

modulate the current transmission based on an atomic rearrangement. In this model, a thin TiO2 film 

of thickness D sandwiched between two metal electrodes (Figure 1.7). The total resistance of the film 

is determined by two variable resistors connected in series, corresponding to regions with a high 

concentration of dopants (has low resistance Ron) and low dopant concentration (high resistance Roff) 

respectively. With the application of an external bias v(t), the boundary of two regions will move by 

causing the charged dopants to drift. The dynamical movement in the film thus leads to a change of 

total resistance. It can be described by: 

𝑣(𝑡) = (𝑅𝑜𝑛

𝑤(𝑡)

𝐷
+ 𝑅𝑜𝑓𝑓 (1 −

𝑤(𝑡)

𝐷
)) 𝑖(𝑡) 
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𝑑𝑤(𝑡)

𝑑𝑡
= 𝜇𝜈

𝑅𝑜𝑛

𝐷
𝑖(𝑡) 

where 𝜇𝜈  is the average ion mobility. The model well reproduced the hysteresis as in the 

experimental IV curve.  

 

 

Figure 1.6. The four fundamental two-terminal circuit elements: resistor, capacitor, inductor and 

memristor, proposed by Leo Hua. 96, 154 

 

Figure 1.7. The coupled variable-resistor model for a memristor by Strukov et al. 96 (a) Illustration 

with a simplified equivalent circuit. V, voltmeter; A, ammeter. (b) The applied voltage and resulting current 

as a function for time t for a typical memristor with  𝑅𝑜𝑛 𝑅𝑜𝑓𝑓 =⁄ 160 . IV curve shows hysteresis loop.  
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Strukov’s model can be applied to typical bipolar memristor or the memory switching 

memristor. For a nonvolatile threshold switching memristor (mostly cation-based memristor), after 

removing the external bias voltage conductive filament has a limited lifetime and start to dissolve, a 

dissolution process should also be considered. 151-152 157Then equation can be rewritten as, 

𝑑𝑤(𝑡)

𝑑𝑡
= [𝜇𝜈

𝑅𝑜𝑛

𝐷
𝑖(𝑡)] [

𝑤(𝐷 − 𝑤)

𝐷2 ] − 𝜏(𝑤 − 𝐷) 

where 𝜏 is a parameter related to filament dissolution and w is in range of (0,D).  
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1.3.4 Applications: approach, architecture and algorithm 

Conventional non-Neumann architecture-based computer systems show significant 

advantages on mathematical calculation and permanent memory storage with large volume, compared 

with the biological brain. Data is transferred and processed in serial through the bus between 

memories with computing kernels, which dramatically slow down the information process speed and 

increase the designing complexity, especially for graphic process and more advanced recognition task. 

This data bus is known as von-Neumann bottleneck. In contrast, the nervous system in the biological 

brain is characterized as massive parallelism, distributed storage and processing, self-organization, 

self-adaptation and self-learning. Information process and storage are integrated, showing no clear 

boundary between the memory units and computing units. Therefore, building a new computer system 

like the biological nervous system is considered as an effective way to break through the von-

Neumann bottleneck in future industry. 

 In this section, we first briefly explain the structure and the working principle of a biological 

neuron, which is the basic unit of information process in the biological brain. Then we will introduce 

the emergent interests of memristive materials toward the artificial brain and show some examples of 

the architecture and algorithms of memristive materials for artificial intelligence (AI).  

The nervous system in the biological brain is composed of enormous neurons connected 

intricately (Figure 1.8)158. Each neuron cell consists of three components: the dendrites, the soma and 

the axon. It is surrounded with ion fluid with which different ions (mainly K+, Cl-, and Na+) transfer 

through neuron cell membrane out and in to reach a dynamical concentration balance. When a neuron 

is at rest state, K+ shows high concentration inside the neuron while Na+ and Cl- show lower 

concentrations, resulting in a potential difference (-10 ~ -100 mV) between the inside and outside of 

the neuron cell membrane, named rest potential. When the neuron is stimulated, the dynamical 

balance of the ion concentration breaks, generating an action potential which transfers along the cell 

membrane. An action potential is an electrical spike, typically has an amplitude of about 90~130mV 

and duration of 1-2 ms (Figure 1.8b, inset).  The transmission position between neurons is known as 

synapse. In a typical synaptic transmission process (Figure 1.8), when an action potential arrives in 

the presynaptic (axon terminal), the depolarization of the terminal membrane causes voltage-gated 

calcium channels to open, which trigger the neurotransmitters to release from synaptic vesicles into 

the synaptic cleft and then captured by specific receptors in the postsynapse (dendrite terminal or 

soma). After this, Ca2+ channels will slowly close, and the neurotransmitters stop the release. If the 

second spike comes earlier than the Ca2+ channels close, more neurotransmitters release at the same 

time, enhancing the connection between neurons159-160. This spike-time-dependent plasticity (STDP) 

of the synapse is known as Hebbian learning rule, which was proposed by psychologist Donald Hebb 

in 1949 to describe an updated synaptic weight between neurons due to previous spike event.  

The capture of neurotransmitter increases the membrane potential of the postsynaptic neuron, 

causing excitatory postsynaptic potential (EPSP). The EPSP can be integrated spatiotemporally from 

different sites of the neuron, and once it reaches a threshold value, neuron fires, accompanied with a 

generation of an action potential which further triggers the synaptic transmission to next neuron. 

Figure 1.9 shows how an action potential is generated in the postsynaptic neuron161, showing an 

integrate and firing process. In 1943, Rosenblatt and McCulloch162 proposed a computational neuron 

model which can mimic some feature of the integrate-and-fire process, paving the way for current AI 

algorithm. Neuroscientists believe the memory and cognition function in the biological brain are the 
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results of dynamical updated synaptic weight and complex connections between neurons, where 

neural codes hide in the spatiotemporal spikes in the whole system.   

 

Figure 1.8.  (a) Neurons in the brain. (b) Illustration of neuron, synapse and the action 

potential.158 



24 

 

 

Figure 1.9. A postsynaptic neuron (i) receives input from two presynaptic neurons (j). (a) Only 

one presynaptic neuron fires, causing an excitatory postsynaptic potential (EPSP) in the postsynaptic 

neuron. (b) Two presynaptic neurons fires in sequence, inducing the accumulated EPSP. (c) Intensive 

spikes train from presynaptic neurons, firing the post neuron. ui(t): postsynaptic membrane potential, 

urest, rest potential, θ: membrane firing threshold.161 

In the past decades, computer scientist has been committed to using non-linear circuits with 

very-large-scale integration to emulate the function of bio neurons or more advanced cognitive 

functions, boosting the development of soft AI systems such as Google’s AlphaGo163-164 and new AI 

accelerators with non-von Neumann architecture like the TrueNorth165 launched by IBM, Loihi 
166from Intel and Tianjic167 from the University of Tsinghua. A brief timeline of most significant 

discoveries in the field is shown in Figure 1.10 168. With the continuous improvement of the 

computational framework on the neuromorphic network, memristor as the ideal artificial synaptic 

component has been integrated into the neuromorphic chips, forming an artificial neural network 

(ANN) which can be trained and processed with knowledge in soft AI like machine learning. Based 

on the algorithm used behind the neuromorphic chips, there are two main architectures has been 

designed and studied for memristor integration: crossbar structure and random network. 
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Figure 1.11. (a-d) Training scheme for pattern classification. (a) Input image. (b) Algorithm graph of 

a single-layer perceptron for classification of 3×3 binary images. (c) The input training pattern set. (d) The 

flow chart of one epoch with in situ training algorithm. (e) Memristor crossbar: Integrated 12×12 crossbar 

with an Al2O3/ TiO2-x memristor at each crosspoint. (f) An implementation of the single-layer perceptron using 

a 10×6 fragment of the memristive crossbar. (g) The evolution of output signals during training. If the output 

signal fi corresponding to the correct class of the applied pattern was larger than all other outputs, 

the classification was considered successful. 169  

Neuromorphic chips with crossbar architecture can take advantage of the current 

complementary metal-oxide-semiconductor (CMOS) fabrication platform, which aiming at large 

scale integration and operations, but they require high uniformity of constituting units. The algorithm 

used for neuromorphic computation is based on matrix multiplication, in which the conductance of 

each memristor, function as a synaptic weight, forms a transformation matrix to convert the input 

information into output cognition. According to the training scheme, algorithms for some machine 

learning networks can be adopted, such as convolutional neural networks and recurrent neural 

networks. Figure 1.11 shows a typical crossbar architecture used to implement a simple artificial 

neural network for pattern cognition.169 Bottom electrodes of the memristive crossbar are the input 

terminals while three pairs of top electrodes function as the output terminals. The network is a single-

layer perceptron, consists of an input layer, one hidden layer and one output layer, fully connected 

with 10×3= 30 synaptic weight (conductance of each memristor at the crosspoint).  The outputs 𝑓𝑖 

(i=1,2,3) are calculated with an activation function: 

𝑓𝑖 = 𝑡𝑎𝑛ℎ⁡(𝛽𝐼𝑖) 
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𝐼𝑖 = ∑𝑊𝑖𝑗𝑉𝑗

10

𝑗=1

 

where β is a constant controlling the function’s nonlinearity, Wij is the synaptic weight and Vj is the 

input signal for the input electrode. Since in this memristive crossbar each synapse is implemented 

with two memristors, the synaptic weight is represented by a differential conductance: 

𝑊𝑖𝑗 = 𝐺𝑖𝑗
+ − 𝐺𝑖𝑗

− 

where 𝐺𝑖𝑗
±⁡is the effective conductance of each memristor. The training process requires repeated input 

and read to adjust the synaptic weights after each iteration. During one epoch, all patterns are 

presented one by one, and the output signals are recorded with external electronic. At the end of one 

epoch, the synaptic weights are updated by following a Manhattan update rule: 

𝛥𝑊𝑖𝑗 = 𝜂𝑠𝑔𝑛 ∑ 𝛥𝑖𝑗(𝑛)

𝑁

𝑛=1

 

with 

𝛥𝑖𝑗(𝑛) = 𝛿𝑖(𝑛)𝑉𝑗(𝑛) 

𝛿𝑖(𝑛) = [𝑓𝑖
(𝑔)

(𝑛) − 𝑓𝑖(𝑛)]
𝑑𝑓

𝑑𝐼
|𝐼=𝐼𝑖(𝑛) 

where 𝜂 is a constant scales the training rate. 𝑓𝑖
(𝑔)

 is the target value of the i th output for the nth input 

pattern (set as +0.85 for correct pattern class and -0.85 for wrong class). As a result, N=30 patterns, 

the training patterns, have been classified into the three outputs by the crossbar chip. 

In the above training process, the weight update calculation relies on the external calculation 

but not from a self-adaption process of the network itself. Chips work in a supervised way with pre-

defined parameters and consume immense computing energy as the soft AI. With the increasing 

matrix size and layers, the entire process takes longer time than soft AI. To achieve an unsupervised 

learning scheme has been the main challenging for such crossbar architecture. On contrast, brain is 

self-adaptive and self-organized without pre-defined parameters. Though the mechanism underlying 

the brain’s functionalities is still unknown, general concepts that neurons are connected randomly 

and spiking firing event happens in certain regions for specific tasks could inspire the development 

of a self-adaptive system. The random network, as the second architecture, has shown such possibility 

and attracted increasing attention in recent years. 

Random networks emerge as a neuromorphic chip with the development of reservoir 

computing (RC), which is a type of spiking neural network (SNN) and based on the spike rate firing 

of neurons in a reservoir to transform the information (Figure 1.12) 170. The firing condition also 

mimic the biological neuron condition, has models like leaky integrate-and-fire (LIF) model and 

Hodgkin-Huxley model (mimic the ion penetration process), and spike transfer only correlates to the 

presynaptic and postsynaptic neuron, following the Hebbian learning rule. However, in a physical 

random network device, information transfer is activated by potential bias has defined directions 

between artificial neurons. The synaptic weight, or the conductance at each connection node, is 

primarily influenced by the potential distribution in the whole network. Works on these have been 

concentrated on neuromorphic nanowire network; this part we will introduce in the next section. 
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Figure 1.12. Schematic of a reservoir computing (RC) system, containing one input layer, a 

reservoir with internal dynamics and an output layer. The weight matrix Θ which connects the 

reservoir state x(t) and the output y(t) is the only parameter vector needs to be trained.170 

1.3.5 Neuromorphic nanowire network 

Neuromorphic nanowire networks are complicated ensembles of self-assembled nanowires 

whose interconnections have memristive properties similar as neurosynapses.171-174 The local 

electrical properties at the interconnections contribute to the final functionality of the network, 

material science to synthesis nanowires with a metallic core and insulating shell has growing attention. 

Some candidates are metal oxide nanowire (NiOx, CuOx),
175-176 metal/organic nanowire 

(Ag@PVP)177 and metal/dielectrics nanowire such as Ag@TiO2.
146 Compared with conventional 

cross-bar architectures, though single memristive junctions are not individually controlled in such 

neuromorphic networks, high density of memristive junctions is achieved through high connectivity 

between nanowires178.  

In recent years, research has also revealed the rich interplay between the complex topology of 

the network and the memristive dynamics at the level of individual junctions.178-182 These networks 

intrinsically have small-world topology after deposition178-179 and emergent or self-organized 

dynamics appear by application of electrical stimulation,180-182 where threshold or critical activation 

occurs after electrical pathway formation, causing a transition from a low-conductance state to a high-

conductance state.183 Moreover, this activation seems to be dominated by competing processes 

between possible current transmission pathways embedding the electrodes for providing electrical 

stimulation.181-182 This has been proposed for an information processing device with auto-association 

between shared network pathways.184 The studies on memristive interface properties and network 

systems, which mimic either topological or dynamical properties of neural systems, indicate that 

nanowire networks are promising for neuromorphic computing technology.  
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1.4 PURPOSE OF THESIS 

In this thesis, I describe my PhD research work on two different integrated nanosystems. First, 

I introduce a graphene-cavity system where a graphene sheet is suspended over SiO2/Si microcavity. 

I studied the optical interaction between the graphene sheet and the microcavity with Raman 

spectroscopy, and I demonstrate that concentric intensity oscillation rings appear over the graphene 

sheet. This is an example of a "designed" top-down approach to highlight the optical property of an 

integrated nanosystem. Then I focus on a self-assembled neuromorphic nanowire network, in which 

adaptive and memristive behaviours appear at nanowire-nanowire junctions, to show the exciting 

interplay between the topology of network with the memristive properties in the network. Owing to 

a "designless" self-assembled architecture, emerging properties are found in the neuromorphic 

network. Under the framework of sleep-dependent memory consolidation process in a biological 

brain, I proposed a demonstration of such process in this complex topological network and studied 

the connectivity revolution during the process at the level of individual junctions theoretically. 

Furthermore, I introduce research using lock-in thermography (LIT) to visualize current flowing 

pathways through the network. Dynamical formation and association of current pathways have been 

observed for the first time. 
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Chapter 2: Experimental methods 

This chapter introduces the details about the experimental methods used in this thesis, 

including but not only the sample preparation and measurement methods. The first section lists the 

detail information of the sample preparation process handled by the author. For graphene/micro-

cavity device, a wet transfer technique was present. Moreover, for the memristive network, a chemical 

synthesise process of Ag@TiO2 nanowires and test device fabrication was introduced. In the second 

section, a brief explanation of the working principle of several frequently used measurement systems 

was given, including Raman spectroscopy, Lock-in Thermography and electrical measurements. The 

introduction is limited to the facilities primarily used in this thesis, and more detailed information like 

teat sample preparation is omitted. 

2.1 SAMPLE PREPARATION 

2.1.1 Graphene over the micro-structured substrate 

In this thesis, we used single/double-layer graphene obtained by chemical vapour deposition 

(CVD) on copper foil. The as-grown CVD-grown graphene sheets185 were transferred onto the 

SiO2/Si substrate with pre-etched circular cavities by wet-transfer method186.  

We prepared SiO2/Si substrates with pre-etched cavities of diameter 6µm, 9µm and 12µm and 

depth of 3.7µm. Figure 2.1 shows the process of sample preparation. First, a thin layer PMMA layer 

(MicroChem, 950,000 MW, 5 wt.% in anisole) was spin-coated (30 s @ 4000 rad/s) on top of the 

graphene/copper film to protect graphene layer and heated under 180 ℃ for 3 minutes. After that, the 

film was rinsed in a 0.02g/ml (NH4)S2O4 aqueous solution for 3-4 hours to thoroughly remove the 

copper foil and then was washed with deionized water to remove acidic impurities. The remaining 

PMMA/graphene layer was then transferred onto the micro-fabricated SiO2/Si substrate. The top 

PMMA layer was removed with acetone, and finally, graphene sheet over micro-patterned SiO2/Si 

substrate was obtained. 

 

Figure 2.1. Schematic view of the graphene transfer process. CVD-grown graphene (pink layer) on 

copper foil (yellow layer) first spin-coated with PMMA (grey layer) and then transferred on Au (blue layer)/Si 

(textured layer) substrate after etching copper with (NH4)2SO4 solution, then PMMA is removed by acetone. 
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2.1.2 Synthesis of Ag@TiO2 nanowires and device fabrication 

Ag@TiO2 nanowires are prepared with two steps. First Ag nanowires were synthesised by a 

salt-mediated process187,  then a thin layer of  TiO2 polycrystalline was coated on the surface of Ag 

nanowire by the hydrothermal method using titanium tetrabutoxide as the titanium source188-190.  

In a standard process to synthesis Ag nanowire, 0.277g AgNO3 was dissolved in 16ml EG at 

room temperature, while 0.757g PVP ( M = 40000, Sigma-Aldrich) and 1.84 mg NaCl were dissolved 

in 32 ml EG at 120 ℃ under continuous magnetic stirring (600 rpm).  After PVP/NaCl/EG solution 

naturally cooled down to room temperature, add it to the AgNO3/EG solution drop by drop under 

vigorous stirring. Then the combined solution was allowed to mix for 2 mins and then transferred 

into a 50 mL Teflon-lined autoclave. The autoclave was heated at 160 ℃ for 7 hours and then 

naturally cooled down to the room temperature. The final solution was diluted in methanol (volume 

ration: 1:4) and centrifuged at 3000 rpm for 30 mins. After centrifugation, the supernatant which 

dissolved EG and NaCl was removed by syringe. Then methanol was added again. The purification 

process repeated three times more. The resulting Ag nanowires were dispersed into 12 ml ethanol. 

To modify the Ag nanowire with TiO2, 1 ml of as-prepared Ag nanowire solution was 

dispersed in a mixed solution of 2 mL ethanol and 15 µL titanium tetrabutoxide, respectively. The 

mixed solution then was transferred into the 50mL Teflon-lined autoclave. After sealing, the 

autoclave was heated to 150 ℃ for 10 hours then naturally cooled down to room temperature.  The 

resulting supernatant was decanted, and the precipitate was washed with deionized water and ethanol 

with centrifuge for three times. The final nanowires were dissolved in method and sealed.  

The experimental devices were prepared by spin-coating the Ag@TiO2 nanowires on glass 

substrates with pre-deposited Au/Ti electrodes to form randomly connected networks. The electrodes 

were deposited on the glass substrates by maskless photolithography with the thickness of Au/Ti = 

50nm /10 nm and width of 40 um. The distance between counter electrodes has two different sizes: 

40 µm and 500 µm, for different measurements.  
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2.2 METHODS OF PHYSICAL MEASUREMENTS 

2.2.1 Raman spectroscopy 

Raman spectroscopy is a spectroscopic technique to observe the inelastic scattering when 

monochromatic light incidents on an object. It provides rich information on the chemical structures 

and physical forms to identify or qualify the substances in a whole range of physical states.  

When monochromatic light (usually a laser beam) incidents on the object, electrons around 

the Fermi surface of the object could absorb photons and jump to a higher energy state (Figure 2.2)191. 

Some experience the infrared absorption, jump to a high energy state then stay excited. But mostly 

excited electron will return to lower energy state, it will emit a photon with the same frequency or 

different frequency. The middle energy states are called virtual energy state. For a process to emit a 

photon with the same frequency, the scattering is elastic scattering, called Rayleigh scattering. For a 

process to emit a photon with different frequency, it can have either higher frequency or low 

frequency, the scattering then is Anti-Stokes or Stokes, respectively. Both are inelastic scatterings 

and give information about the electronic state of the material. Therefore they are Raman active 

scatterings.  

 

Figure 2.2. Excitation and relaxation of the electron under light irradiation, resulting in infrared 

absorption, Rayleigh scattering, Stokes and anti-Stokes inelastic scattering.  

A Raman system consists of four major components: laser source, sample illumination system 

and light collection optics, optical filter and detector (Figure 2.3). Laser source generates a beam of 

very intense monochromatic light. It usually is in the ultraviolet, visible or near-infrared range, 

depending on the properties of the test materials. The sample illumination system and light collection 

optics are integrated into an optical microscope. When the laser beam is ejected from the laser source 

and incidents on the sample, light scattered from the sample surface. The scattered light is collected 

with the lens and sent through an optical filter to exclude the elastic scattering light. A commonly 
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used optical filter is known as Notch filter, which is a band-stop filter to reject signals in a specific 

frequency band, here, the light in the same frequency as the laser source is filtered. After scattered 

light passes through the Notch filter, only Raman active scattering signal remains and is collected by 

a CCD detector (commonly used) and sent to a computer for final analysis.  

 

Figure 2.3. Set-up of Raman spectroscopy. 

2.2.2 Lock-in thermography (LIT) 

Lock-in thermography (LIT) is a form of dynamical infrared (IR) thermography which 

provides a time-dependent thermal image of an object.192 It has a high signal-to-noise ratio, built-in 

compensation for non-uniform light radiation and capability of depth information and high noise 

suppression. With the rapid development of highly sensitive IR cameras, LIT as a rapid and non-

destructive test method has an extensive application on the electronic component, for which localized 

device fault and material failure can be evaluated. 

Figure 2.4 shows the general scheme of a LIT system integrated with a power supply for 

investigating the electronic component. Depending on the purpose of the test, the power supply could 

be electrical stimulation, light irradiation or magnetic field. The two central units of a LIT system is 

the lock-in signal correlation system and the IR detection system. The generated pulsed heat radiation 

is collected by the IR camera and sent to the lock-in correlator.  

Each body at finite temperature would spontaneously and continuously emit some 

electromagnetic wave, in name as thermal radiation. The magnitude of the thermal radiation Mλ is 

called the spectral radiance, describing the unit emission power at a specific light wavelength. The 
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spectral radiance of a black body as a function of wavelength λ at thermal equilibrium is given by 

Planck’s law192: 

𝑀𝜆(𝑇) =
2𝜋ℎ𝑐2

𝜆5
(𝑒

ℎ𝑐
𝜆𝑘𝐵𝛵 − 1)−1 

where h is Planck constant, c is the velocity of light, kB is Boltzmann constant, and T is the 

absolute temperature in Kelvin. Figure 2.5 shows the spectral radiance at a different wavelength. The 

noticeable radiation starts at 3 µm and reaches a maximum around 10 µm, covering a broad infrared 

light wavelength range to above 30 µm. At high temperature, it shows higher radiation at all 

wavelength.  In a real object with different materials, the emission efficiency varies, thereby at the 

same room temperature the total radiation varies. Thereby thermography can also be used to evaluate 

the boundary of materials, for example, components distribution in an integrated circuit.  

 

 

Figure 2.4. Schematic of lock-in thermography.  
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Figure 2.5. Black body radiation for two different room temperature, with higher radiation at a higher 

temperature. 192 

 

Figure 2.6. Principle of two-channel lock-in correlation procedure in lock-in thermography. 192  

The lock-in correlation procedure is mathematical multiplication of the detected signal F(t) 

with a correlation function K(t), K(t) is a periodical wave function is synchronized with the input 

lock-in frequency signal. For a fix-number of sampling event n per lock-in period, if the measurement 

is averaged over N lock-in periods, the digital lock-in correlation for synchronous correlation is given 

by: 

𝑆 =
1

𝑛𝑁
∑∑𝐾𝐽𝐹𝑖,𝑗

𝑛

𝑗=1

𝑁

𝑖=1
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In a real test, as shown in Figure 2.6, two-channel correlation method is used to retrieve the 

in-phase signal and out of phase-signal. The correlation functions are: 

𝐾𝑗
0° = 2 𝑠𝑖𝑛 (

2𝜋(𝑗 − 1)

𝑛
)⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡𝐾𝑗

90° = 2𝑐𝑜𝑠 (
2𝜋(𝑗 − 1)

𝑛
) 

The resulting 𝑆0°  and 𝑆90°  are called the in-phase signal and the quadrature signal, 

respectively. Thus the lock-in amplitude A and signal phase Φ can be expressed as: 

𝐴 = √(𝑆0°)2 + (⁡𝑆90°)2 

𝛷 = 𝑎𝑟𝑐𝑡𝑎𝑛 (
⁡𝑆90°

𝑆0°
) ⁡(-180° is S

0°
 is negative) 

Compared with steady-state thermography, which is limited to detecting hot spots at least 100 

mK (0.100°C) and dissipate at least 20 mW of power, lock-in thermography has a high sensitivity to 

1mK (0.001°C) and dissipation below 100 µW (Figure 2.7). Higher sensitivity can be achieved by 

applying long test time to average the thermal images for several lock-in periods. With LIT, thermal 

amplitude image and thermal phase image could be obtained simultaneously. When test on an 

electrical component under the electrical power supply, the image of the local heat source within the 

electronic component can be visualized in the amplitude image, in which Joule heating, carrier 

recombination or Peltier effect in the sample can be evaluated. From the phase image, information 

about the heat dissipation rate to the surrounding/ adjacent area could be obtained. Different lock-in 

frequency could also provide different information. Lock-in measurement performed at lower 

frequencies could improve test signals/noise due to efficient heating to sample, while at higher 

frequency hot spot spatial resolution is improved because of a reducing thermal diffusion into 

adjacent areas of the device. 

 

Figure 2.7. (a) A steady-state thermograph and (b) lock-in thermal amplitude image of a crystalline 

silicon solar cell. 192  

In recent years, LIT has shown a wide range of applications in the study of nanomaterials, 

evaluating physical properties or state variation in nanomaterials, for example, heating power in 

superparamagnetic iron oxide nanoparticles193-194, localized defect in a graphene sheet195. In this 

thesis, we use LIT to detect the time-dependent formation of the current pathway in a neuromorphic 
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network. The network is powered by a pulsed current source. Due to Joule heat, the lock-in amplitude 

signal shows higher intensity along the current transmission pathway. Thus the dynamical formation 

of a current pathway can be visualized.  

2.2.3 Electrical measurements 

The resistance of the memristor can be modulated by the external power stimulation. In this 

thesis, we used the two-wire method to measure the conductance evolution of the memristive 

nanowire network under bias voltage, as shown in Figure 2.8. Experimental setup for electrical 

measurement. We used a two-wire test configuration terminated by Keithley 4200 Semiconductor 

characterization system (SCS) SourceMeter (Figure A-2).  

 

Figure 2.8. Experimental setup for electrical measurement. We used a two-wire test configuration 

terminated by Keithley 4200 Semiconductor characterization system (SCS) SourceMeter (Figure A-2).  
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Chapter 3: Emergent physical properties of 

integrated nanomaterials 

In this chapter, we introduce the emergent physical properties found on two integrated 

nanosystems. We first introduce the unconventional Raman intensity rings observed on the 

graphene/micro-cavity system and then propose a theoretical model which explain the observed 

features. The second part of this chapter, we present the work on memristive nanowire network, which 

is composed by core-shell Ag@TiO2 nanowires. For such a system, each nanowire-nanowire junction, 

with Ag/TiO2/Ag structure, shows non-volatile threshold switching behaviour. We apply such 

nanowire random network to mimic certain biological functions in the bio-nervous system, 

extensively studied the sleep-dependent memory consolidation process in such network with 

theoretical simulation. In the third section, with LIT, we studied the dynamical current fluctuation in 

the network and found an association behaviour between different current pathways. 

3.1 EMERGENT PHYSICAL PROPERTIES OF GRAPHENE ON A MICRO-

STRUCTURED SUBSTRATE 

3.1.1 Raman spectroscopy of graphene-integrated device 

Raman spectroscopy is a widely-used, versatile and non-invasive tool for graphene 

characterization. For single-layer graphene, each unit cell has two carbon atoms. It has six phonon 

branches, three acoustic (A) and three optical (O) branches, named as iLO, iTO, oTO, iLA, iTA and 

oTA (Figure 3.1 a). Among them iTO mode phonons have E2g representation, they are Raman active 

phonons. In a typical Raman spectrum, as shown in Figure 3.1 b of single-layer graphene, there exist 

three main Raman peaks, named D, G, and 2D, which is located around 1350 cm-1, 1582 cm-1 and 

2700 cm-1, respectively. Among them, D peak appears when there are defects at test graphene position. 

G and 2D bands of graphene are sensitive to strain196-198, doping199, the number of layers200 and 

thermal variation 196-197, 199-201. They have been ultimately analyzed for developing fast and precise 

investigation of graphene and its derivatives. For example, a previous study reported that strain and 

doping distributions of graphene on a SiO2 substrate could be optically separated through Raman 2D 

band and G band frequency change ration202. Such phenomena were revealed through a detailed 

analysis of spatially-resolved Raman measurements (Raman mapping, hereinafter). By removing the 

substrate, phonon-cavity coupling observed on graphene drum is also an exciting topic towards 

electronic application57. A comprehensive Raman mapping analysis of graphene drum can provide 

valuable information for future NEMS.   

In this section, we use Raman mapping to study the effect of substrate structure on the physical 

properties of graphene. Raman mapping was carried out at ambient condition by a confocal HR800 

micro-Ramman spectrometer (Figure A-3). We used a 532 nm diode-pumped laser (𝑃0 = 2.8𝑚𝑊) 

and the spot diameter is around 1um. A piezo-actuated XY scanner was equipped to achieve Raman 

mapping with a specific step of 74nm. 
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Figure 3.1. (a) Calculated phonon dispersion of single-layer graphene showing all six phonon 

branches. (b) Raman spectrum of a graphene edge, showing the main Raman features D, G and 2D bands 

(laser energy is 2.41eV). 

3.1.2 Characterization of graphene over micro-cavities 

Figure 3.2 shows the scanning electron microscope (SEM, Figure A-6) images of graphene 

over SiO2/Si cavities with a diameter of 6.4 µm, 9 µm and 12 µm. The acceleration voltage for 

imaging is 2kV. Bare SiO2 surface gives a brighter contrast while the graphene covered regions 

exhibit dark contrast. Double-layer graphene (DLG) region is darker than the single-layer graphene 

(SLG) region in the SEM image because of larger screening of secondary electrons from the substrate 

in the DL region. Over cavities, both suspended SLG and DLG are found as circled. SEM images of 

the cross-section of the cavity reveal a flat bottom but slight curvature near the sidewall, as shown in 

Figure 3.3. The depth is ~3.7µm for all cavities. The quality and the number of layers of graphene 

were also characterized by micro-Raman spectroscopy (Figure 3.4). The absence of D peak in all 

spectra indicates good quality of graphene sheet after transfer. We point out that the Raman intensity 

of both G and 2D of suspended part is three times smaller than that of standing graphene, which will 

be discussed later. 
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Figure 3.2. Characterization of graphene device. (a) Schematic of final device. (b-d) SEM images of 

graphene sheets over SiO2/Si cavities of different diameters: 6 µm (d), 9 µm (c), and 12 µm (d). Regions of 

single layer graphene and double layer graphene are indicated with dash and solid lines, respectively. 

Acceleration voltage: 2kV. 

 

Figure 3.3. Cross-sectional SEM images of SiO2/Si cavities of different diameter: 6.2 µm (d), 9.6 µm 

(c), and 11.9 µm (d). The depth of all cavities are 3.7 µm. 
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Figure 3.4. Raman spectra of suspended and supported SLG and DLG. D arrow points to 1350 cm-1.  

3.1.3 Raman intensity oscillation on graphene over micro-cavity 

Raman mappings carried out on SLG are shown in Figure 3.5 (a) and (b), showing the peak 

position and intensity maps of the G mode vibration. Despite several fringes exist around the edge of 

the micro-cavity which correspond to folding graphene, we recognize a downward shift of G band 

from supported graphene (~1596 cm-1) to suspended graphene (~1593 cm-1), owing to a softening of 

graphene. The lowest G band wavenumber appears in the vicinity of the edge of the cavity. In contrast, 

clear oscillations appear on its intensity map. The lowest intensity is not at the same position as in G 

band map but in the middle between edge and center, as indicated in the cross-sectional intensity 

profile below the map. Similar behaviour is also observed for 2D band maps, as shown in Figure 3.5 

(c) and (d).  
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Figure 3.5. (a-d) Raman maps of a 6.4um SLG: (a) G band position/P(G), (b) Intensity of G band/I(G), 

(c) 2D band position/P(2D), (d) Intensity of 2D band/I(2D). Below each map is the profile of the green dash 

line. (e-i) Raman intensity maps of 2D band: (e) a 6.4µm DLG, (f) a 9.6µm DLG, (g) a 12µm graphene with 

SLG and DLG interconnected, (h) a broken 6.4µm DLG, inset shows the corresponding SEM image, (i) a 

9.6µm DLG measured with reduced laser power (0.7mW). Scale bar: 1µm  

To better understand the origin of oscillations in Raman intensity maps, we investigated the 

Raman maps of suspended DLG and also changed the size of micro-cavities. Figure 3.5 (e – g) show 

the Raman intensity maps of DLG over micro-cavities with different diameters. In Figure 3.5 (e) 

(cavity diameter: 6.4um), similar features shown in Figure 3.5 (d) are recognized: six concentric rings 

appear and the lowest intensity located at the similar position. Such consistency in SLG and DLG 

suggests that the number of layers does not contribute to the period of oscillation. In Figure 3.5 (f) 

(cavity diameter: 9.6um), ring number increases but the contrast decreases from edge to center. With 

increasing the cavity size, both ring number and contrast decrease to the center [Figure 3.5 (g)]. This 

tendency implies laser position affects phonon vibration efficiency in graphene.    

There are several possible mechanisms could lead to the observed concentric oscillation in 

the Raman intensity maps. The electronic properties of graphene can be easily tuned by strain or 

doping, which usually cause Raman peak shift as well as intensity variation202. However, the 

difference between band position map and intensity map manifests the rising of intensity oscillation 

is not due to intrinsic property variation in graphene. Thermal effect could be another reason for such 

oscillation, which has been reported in a graphene bubble 203, where incident Raman laser and laser 

reflected from SiO2 substrate interfere at graphene surface. However, in order to form the same 

number of rings as that in our observations, the height difference of the suspended graphene surface 

from center to edge for a 6.4µm cavity should be⁡𝑛 ∙
𝜆0

2
= 1.33⁡𝜇𝑚 ( take 𝑛 = 5⁡ and 𝜆0 = 532𝑛𝑚). 
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But except a slight height difference (~500nm) close to the edge, both the graphene surface and the 

bottom of cavity (Figure 3.3(c) and (d)) are sufficiently flat excluding this possibility. Taking into 

account of the super impermeability of graphene204, we also considered about the possibility of 

expansion of the air sealed by graphene in the cavity owing to Raman laser irradiation. Figure 3.5 (h) 

shows Raman 2D intensity map of a slightly broken DLG. Compared with the fully covered one in 

Figure 3.5 (e), two maps show no big disparities. Therefore, the observed oscillation seems to be 

more like projecting some features from the cavity itself. 

3.1.4 Theoretical simulation and discussions 

We propose that the oscillation is caused by multiple-beam interference. When the laser 

irradiates the Si bottom and sidewall, part of the laser contributes to Rayleigh scattering at the Si 

surface and the intensity oscillation results from the superposition of the reflected field from all 

direction. Stokes phonons at the detector are created by two contributions: the incident laser⁡𝐸𝐺 , and 

the Rayleigh reflection from the Si cavity⁡𝐸𝑆𝑖. Thus the intensity at the detector can be integrated over 

all the possible incident/reflected angles and finally approximated as: 

𝐼⁡~⁡|∫(𝐸𝐺 +⁡𝐸𝑆𝑖) 𝑑𝛺|
2

⁡~⁡𝐴0
2⁡|∫ ∫ 𝑓(𝜃)𝑅(𝜃, 𝑟)𝑒𝑖𝛥𝛿 𝑠𝑖𝑛𝜃 𝑑𝜃 𝑑𝜑

𝜃𝑚𝑎𝑥

0

2𝜋

0

|

2

 

where Ω is the integration solid angle with θ is the polar angle and φ is the azimuth angle. θ 

is limited by the numerical aperture (NA) of the objective lens with 𝜃𝑚𝑎𝑥 = 𝑎𝑟𝑐𝑠𝑖𝑛(𝑁𝐴). 𝐴0 is the 

amplitude of laser beam. 𝑓(𝜃) = 𝑒−2𝑠𝑖𝑛2 𝜃/ 𝑠𝑖𝑛2 𝜃𝑚𝑎𝑥2𝜋 𝑐𝑜𝑠 𝜃  is the Gaussian laser beam profile. 

𝑅(𝜃, 𝑟)~
2 𝑐𝑜𝑠 𝜃

∆𝑙(𝜃,𝑟)𝜆0
4 is the Rayleigh scattering coefficient of Si substrate and ∆𝛿 =

2𝜋𝛥𝑙

𝜆0
+ 𝜋 is the phase 

difference of incident and reflected laser beams, with 𝛥𝑙 as the optical path difference. Because of the 

existence of sidewall of the cavity, 𝛥𝑙⁡depends on the laser position⁡(𝑟)⁡on the suspended graphene 

and cavity depth. 

Figure 3.6 (a) and (b) compares the experimental and theoretical intensity oscillation of a 

9.6µm graphene. We neglect the unflatten region of bottom nearby the edge of cavity and compare 

the intensity from 1µm away from the edge. In Figure 3.6 (b), the first destruction point appears at 

1.4µm, and 8 peaks appear afterwards. The intensity rises and drops along a horizontal line as seen 

both experimental and calculated data, which is unlike the decreased oscillation in the graphene 

bubble model186. We noticed the shift of oscillation peaks in theoretical results from experimental 

results, which may result from the unsmooth sidewall and bottom of the cavity (Figure 3.3).  Figure 

3.6 (c) collates the experimental and calculated positions of the rings for 9.6µm and 12µm, showing 

a good agreement between them. The multiple-beam interference model is a plausible one for our 

observations. With this model, it is expected that laser power will not affect the peak position, but 

reduce the contrast of rings, which is confirmed on the 9.6 um graphene with a less powerful laser 

beam (𝑃 =
1

4
𝑃0 = 0.7𝑚𝑊), as shown in Figure 3.5 (i).  

The numerical aperture and cavity depth mainly contribute to the appearance of Raman 

intensity oscillation. In our proposed model, when laser only irradiates the flat cavity bottom, the 

integrated intensity does not depend on the position of the incident laser beam, as we observed in the 

central part of the 12 µm graphene (Figure 3.5 (g)). On the other hand, as a cavity depth decreases, 

the number of rings decreases, and the oscillation finally disappears. The proposed model also 
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explains why no clear intensity oscillation observed in the previous report 205, where the distance 

from graphene to the substrate was designed to be less than 500nm. 

 

Figure 3.6. (a) I(2D) extracted from a 9.6µm DLG in Fig. 2f, the horizontal axis is measured from 

edge to centre. (b) Theoretically calculated approximation of I(2D) of a 9.6µm graphene, grey dot: raw data, 

red line: smooth fitting. (c) Comparison of experimental and theoretical peak position for 9.6µm and 12µm 

graphene. 

3.1.5 Conclusions 

In this chapter, Raman laser interaction within the cavity was projected onto a graphene sheet. 

This results in the formation of concentric rings in nanoscale on its Raman intensity mapping on the 

suspended graphene area, revealing Raman intensity oscillation from the edge of the suspended area 

to the central. Though no clear evidence shown for electronic modification on the graphene sheet in 

such drum architecture, we expect further application on graphene sheet to sense the underlying cavity 

structure. And same phenomena may be observed on other 2D materials with cavity structure and 

used to modify the electronic state of materials which are sensitive to thermal heating.   
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3.2 SLEEP-DEPENDENT MEMORY CONSOLIDATION IN AG@TIO2 NANOWIRE 

NETWORK 

3.2.1 Introduction to sleep-dependent memory consolidation 

Formation and retrieval of memory are basic abilities of biological systems, which allow the 

individual to adapt to the changing environment and survive. The memory process consists of three 

stages： encoding, storage and retrieval. Encoding is the process of how information stores in the 

nervous system, during which a new memory trace (storage) is formed but could be easily interrupted 

or erased. Depending on the retention time, there are three main types of memory: sensory memory, 

short-term memory (STM) and long-term memory (LTM). When an organism perceives the 

environment, a certain amount of information enters the nervous system from the senses and is stored 

as sensory memory. Sensory memory has a very short retention time and can be easily lost, for 

example, human visual memory lasts only 0.25s~1s. The sensory memory can be transferred to short-

term memory if special attention is paid to the information. Short term memory lasts from several 

seconds to several minutes. For example, if a new phone number is learned only a few times, it will 

be forgotten after several minutes. However, if the phone number is used very frequently, it will form 

a long-term memory that will retain for several weeks, several months and even a lifetime.  

The process that memory transfers from a short one to a long one is known as memory 

consolidation, which involves cellular and system-level modification of neural structure and 

connection. In the standard two-stage process of the memory consolidation, information is first 

encoded as spike train to a rapid learning region (hippocampus) and then gradually consolidated into 

a slow learning region (neocortex) for long term storage. In the studies of the human brain’s memory 

system, it is generally accepted that sleep plays a key role in memory consolidation. The sleep of 

human brain is composed of ~ 90-minute cycles, for each cycle consists of rapid-eye-movement sleep 

(REM) and non-REM sleep (NREM), with NREM containing stages 1 to 4 (a higher number indicates 

a deeper sleep involves)206. Neural activities in different sleep stage contain its typical 

electroencephalogram (EEG) signals, for example, ponto-occipitogeniculate waves and theta rhythm 

during REM, sleep spindles in stage 2 and slow oscillation during slow-wave sleep (stage 3 and stage 

4). At the same time, eye movements, muscle tone, regional brain activation and communication 

between memory systems also show a difference in different sleep stages. Detection of such 

difference has been a powerful method to understand the brain’s functionalities. More studies207-210 

have shown that during sleep brain will replay the learned information during awake, spatial-temporal 

patterns of neuronal activity become re-activated and assist the communication between hippocampus 

and neocortex (Figure 3.7). Neuroscientists found that total or partial sleep deprivation results in a 

reduction the learning improvement consistently though in different learning tasks and the failure of 

hippocampus directly prevents the formation of new long term memories206, 208, 211-216. 

The replay of information during sleep not only strength the memory traces quantitatively but 

also facilitates the formation of new associations and extraction of generalized features217-218. 

However, how replay promotes memory consolidation is still unclear at the cellular level. However, 

such a sleep-dependent memory consolidation process in a biological system could help to inspire the 

memory retention and memory trace re-organization in a physical neural network.  
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Figure 3.7. Sleep dependent memory consolidation. (a) Standard two-stage process of memory 

consolidation. (b) Sleep dependent memory consolidation relies on a dialogue between neocortex and 

hippocampus under top-down control by the neocortical slow oscillations (red). The depolarizing up phases 

of the slow oscillations drive the repeated reactivation of hippocampal memory representations together with 

sharp-wave ripples (green) in the hippocampus and thalamo-cortical spindles (blue). This synchronous drive 

allows for the formation of spindle-ripple events where sharp-wave ripples and associated reactivated memory 

information becomes nested into single troughs of a spindle (shown at larger scale).219 

3.2.2 Characterization of Ag@TiO2 nanowire 

The structure and element distribution of the Ag@TiO2 nanowires were characterized by 

transmission electron microscopy (TEM) with energy-dispersive X-ray spectroscopy (EDX) (Figure 

A-4). As shown in Figure 3.8, nanowires have uniform Ag cores covered with uniform polycrystalline 

TiO2 coating. The inner Ag cores have an average diameter of 40 ± 6 nm, and the Ag@TiO2 nanowires 

have an average diameter of 115 ±17 nm (Figure 3.9). The length of nanowires follows a gamma 

distribution with an average length of 10 µm. The nanowire network device shows a functional 

nanowire network area of 40×40 µm2 between two electrodes under an optical microscope (Figure 

3.8c). 
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Figure 3.8. Characterization of Ag@TiO2 nanowires. (a) Transmission electron microscope (TEM) 

image of the Ag@TiO2 nanowires. (b) Energy-dispersive X-ray spectroscopy (EDX) mapping results on 

Ag@TiO2 nanowire of three elements: Ag(yellow), Ti(green), and oxygen (red). (c)Optical images of the 

nanowire network device.  

 

Figure 3.9. Statistics results of Ag@TiO2 nanowire. (a) Diameter distribution of Ag core of Ag@TiO2 

nanowire. (b). Diameter distribution of Ag@TiO2 nanowire. (c) Length distribution of Ag@TiO2 nanowire. 

3.2.3 Electrical properties of Ag@TiO2 nanowire network  

We performed continuous I-V sweeps with increasing compliance currents on these Ag@TiO2 

nanowire networks. The uniformity of the memristive device is important for future applications.220 

For our random networks, this can be achieved by controlling the network density. In Figure 3.10a, 

we show the results obtained from two networks which have a similar density. In the first sweep, the 

network initially remains at a nonconductive state and, as voltage increases, it switches to a 

conductive state at a threshold voltage (Vth). With decreasing voltage, the current decreases almost 

linearly from the compliance current (20 nA) and returns to the noise level (3 pA) at a voltage (Vhold) 

close to 0 V. Then, in the second sweep, the current compliance is set at 100 nA, and we observe both 

a decrease in Vth and an increase in the slope of the linear part. A similar behaviour appears for a 

voltage sweep in the opposite bias polarity. Such behaviour is known as a volatile threshold 

switching147, 174. Despite a slight shift of the Vth in the two networks, the IV behaviours for two 

networks are the same. In the case of the present nanowire networks, when the applied voltage 

increases, Ag aggregates are precipitated in TiO2 regions at Ag/TiO2/Ag junctions, eventually 
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evolving towards a conducting filament bridging the junctions (Figure 3.10 a, inset).146, 221 This 

creates a collection of highly conductive junctions that link the nanowires together to a conductive 

pathway between the electrodes. When the voltage decreases, filaments between individual nanowire 

junctions are ruptured,145, 222 reducing the flow of current as conducting pathways are disconnected. 

In the second sweep, the threshold voltage decreases, indicating that the connectivity of previously 

used pathways is to some extent retained within the network.  

 

Figure 3.10. (a) Typical looped IV characterization of Ag@TiO2 network for different programmed 

compliance currents. Inset: schematic of the experimental device where Ag@TiO2 nanowires are connected 

by Ag aggregates in the TiO2 shell.  (b) Typical conductance plotted against the current compliance (log-log 

scale) in the network (grey dots) and its smoothed curve (green line). The conductance was calculated as the 

slope of the linear dependence region in the IV curve before Vhold. Clear plateaus appear as indicated by black 

arrows. (c) The current response of a network when a voltage pulse train with high power (0V, 0.5s; 25V, 2s) 

is applied between the electrodes. td represents a time scale when the current response is in the level of 

background noise. (d) The current response of the network immediately after (c) while a voltage pulse train 

with a lower power (0V, 24.5s; 25V, 0.5s) is applied. 

We further explored the dynamical properties of current pathways in the network by tuning 

the compliance current (maximum flowing current), which was reported to be an efficient way of 

modifying the filament growth in a single memristor, leading to a volatile-to-nonvolatile switching 

transition.145, 147, 223 The test was done by applying continuous positive voltage sweeps with increasing 

current compliance. As shown in Figure 3.10b, clear plateaus appear in conductance as current 
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compliance increases, indicating that energy barriers exist and some of the barriers are clearly higher 

than the others in the process of expanding a network of conductive junctions. An application of 

higher voltage and/or larger current establishes higher conductance state after activation, and longer 

retention time and stronger connection in the network is realized.145, 224 The appearance of plateaus, 

suggesting the formation of multiple current pathways, is rather well observed under the present 

experimental conditions.  Note that such plateaus are not observed in a single nanowire test,181 in 

which usually one filament growth picture explains the memristive behaviour, and the same switching 

picture would also be plausible for the small memristive network.145, 225 In the complex nanowire 

network, however, the stability of memory stored as current pathways was improved by increasing 

the number of conductive pathways. After lowering the compliance current to form a minimum 

number of pathways, the conductance state of the network became sensitive to random fluctuations 

of the physical state of some critical junctions distributed along the pathways. This behaviour was 

investigated after setting the maximum flowing current to 100 nA in our measurement system. 

Figure 3.10 c and d show the current response of the network to the application of trains of 

voltage pulses with different frequencies and duty ratios. After the application of pulse train as 

illustrated in the inset of Figure 3.10c, the network initially remains at a low-conductance state for a 

time (td), which is necessary for Ag filaments to grow at individual junctions before opening a 

conductive pathway through the entire network. After td, the conductance exponentially increases to 

a high-conductance state. When the network reaches the compliance current, a voltage pulse was 

switched to that with a lower frequency and a smaller duty ratio as shown in the inset of Figure 3.10d. 

The network conductance decreases and is finally lost as seen in Figure 3.10d.  The increase and 

decrease in the conductance of the network indicate that the physical process controlling the network 

connectivity can be tuned by the frequency and duty ratio of the voltage pulses applied to the network. 

  Next, we further explore the retention of the network conductance. Figure 3.11a and b show 

how the network responds to the consecutive application of pulse train stimuli with different 

frequencies/duty ratios and offset bias potentials (Vbias), respectively. Frequency and duty ratio were 

controlled by changing the interval time (ti) between pulses and by keeping the ON time of the pulse 

to be 0.25 s. By setting Vbias, the network is always biased even during the interval between adjacent 

voltage pulses. Before each measurement, the network was activated to a high-conductance state in a 

similar way as in Figure 3.10c. Application of the voltage pulses with ti=1.25 s results in an increase 

in current (Figure 3.11a, left), indicating that the network connectivity is consolidated. By increasing 

ti, the increase in current is suppressed and finally the current decreases as seen in the cases of ti > 

3.25 s, where the decrease in the current indicates a loss of network connectivity. A similar behaviour 

appears when decreasing Vbias as shown in Figure 3b. Apparent conductance growth (consolidation) 

is observed with Vbias = 15 V, while, lowing Vbias below 9V results in a loss of the network 

conductance. 

The measured current values during the application of voltage pulses in Figure 3.11 a and b 

have been fitted using a time-dependent exponential equation: 

𝐼 = 𝐼0𝑒
𝛼𝑡 

Here, the sign of the α index, when it is positive (negative), indicates a consolidation (loss) of 

memory (conductive pathway) stored inside the network. It also corresponds to a growth or retention 

time constant, |
1

𝛼
|, of memory. As shown in Figure 3.11c, α shows a gradual shift from a negative to 

a positive value both with an increase in ti or with a decrease in Vbias. The ti- and Vbias-dependent 

curves cross at α = 0, suggesting that it is the critical point in which the network could preserve the 
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conductance state optimally with minimum power. The connectivity stored in the nanowire network, 

with deliberate control, can be precisely maintained for an arbitrarily long duration if the network 

does not fluctuate at all. 

 

Figure 3.11. (a) Current responses of the network upon voltage pulse train stimulation with a different 

pulse time interval ti. From left to right: 1.25 s, 3.25 s, 6.75 s, 11.75 s and 24.75 s. Each measurement was 

taken after activating the network to a current of 100nA with high-power voltage pulses (0 V, 0.5 s; 20 V, 2 s). 

(b) Current responses of network upon voltage pulse train stimulation with different bias potential Vbias. From 

left to right: 15 V, 12 V, 9 V, 6 V and 0 V. Each measurement was taken after the same preactivation process 

as in (a). (c) Index (α) vs. time interval (blue) and bias potential (red), extracted from (a) and (b), respectively.  
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Index α was calculated from the fitting curve of the current response as illustrated in (a). Two curves intersect 

at α=0.  

3.2.4 Sleep-dependent memory consolidation in Ag@TiO2 nanowire network 

Inspired by the framework of sleep-dependent memory consolidation processes occurring in 

the human brain,207, 210 the connectivity controllability during a period of the nonconductive state of 

the network was further investigated. We have designed a learning-sleep-recovery cycle to mimic the 

sleep-dependent memory consolidation process (Figure 3.12a). We have adopted two types of sleep 

mode: the active sleep (AS) mode that aims to mimic functional neural activities during the biological 

sleep period with the intermittent application of voltage stimuli, and the normal sleep (NS) mode in 

which no stimuli are applied to the network.  

In  Figure 3.12b, we show the current response of the network during a learning-sleep-

recovery cycle with the sleep in the AS mode. Here, we used  Vbias = 0 V, ti = 0.5 s and pulse height 

and width of 8 V and 2 s, respectively [hereinafter, we simply describe such a condition as (0 V, 0.5 

s; 8 V, 2 s)] for learning and recovery processes while we adopted (0V, 24.5 s; 8 V, 0.5 s) for the 

sleep in the AS mode. The initially nonconducting network was activated to a conducting state 

(Learning) with a high-frequency train of pulses and a large pulse voltage. Since the nanowire 

networks were prepared in a randomly assembling fashion, required pulse conditions for such 

learning were somewhat dependent on the samples. In the case of  Figure 3.12b, a learning period, to 

form a conducting connection through the network, initially took a long time (to = 545s). Once the 

current reached a given compliance current of 100 nA, the AS-mode sleep was automatically 

triggered. It is very important to point out that, in each 8 V pulse application during the sleep period 

(AS1), the network response is flat and only current below the background noise is detected, indicating 

that the memory of the high-conductance pathway is lost. Then the recovery process started 

(Recovery1) and the network again reached the compliance current in a significantly shorter time (tr
1
 

=64s). This implies that, although the network conductance drops to the low state during sleep, the 

connection of the current pathway (memory) was somewhat maintained in the network. Interestingly, 

this behaviour is repeatable and controllable. Gradually increasing the total sleep time while 

maintaining the same pulse train parameters results in increases in the recovery time as seen in AS2 

and Recovery2 processes in Figure 3.12b, for example. If no control pulse train is applied to the 

network during sleep (the NS mode), the recovery times are longer. Figure 3.12c summarizes the 

recovery time versus the sleep time for both the AS and NS modes, and we observe a linear 

dependence in both but with a larger slope for AS mode. Every data point is averaged over 6 AS and 

2 NS cycles within the same network. For sleep-recovery cycles both in the AS and NS modes, the 

recovery time becomes smaller when the sleep time is short. It is also recognized that, as the sleep 

time increases, the difference between the AS and NS modes becomes smaller.  

The results in Figure 3.12 suggest two similar behaviours of our Ag@TiO2 nanowire network 

to the human memory system. First, recent memory is easily recalled. Second, sparse stimuli during 

sleep help to consolidate the memory. To account for the origin of these behaviours in our network 

device, at first, we have to consider the processes occurring in individual nanowire-nanowire 

junctions during current transmission. In a typical metal/oxide/metal memristor with a similar 

stacking structure of junctions in our network, mobile metal ions drift towards the cathode and are 

neutralized and precipitated in the oxide layer when an electric field is applied, which leads to a 

diffusive growth of a metal filament along the ion drifting pathway.139-140, 222 The growing speed of 
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the filament depends on the electric field as well as the ion mobility inside the oxide layer.140, 147 As 

the end of filament approaches to the cathode, a tunnelling current starts to flow through the junction 

and a conducting channel is formed inside the junction followed by the further increase in 

conductance owing to further growth of the filament physically bridging the gap between the anode 

to cathode. However, when the electric field is removed, the metal filament starts to rupture and, 

depending on the interfacial energy between the oxide layer and metal filament and thermal effect 

induced by joule heat, retention of the filament differs.145, 226 Wang et al. have reported the rupture of 

filament after 0.7 s in a planar Au/SiOxNy:Ag/Au device,222 the broken filament later reshaped to 

long-lifetime clusters that contribute to the volatile characteristics of memory as observed in our 

network. 

 

Figure 3.12. (a) Illustration of the learning-sleep-recovery scheme where an active sleep (AS) process 

or a normal sleep (NS) process is integrated. (b) Current response during learning-sleep-recovery cycle when 

AS process was embedded. During the learning and recovery periods (blue lines) continuous intensive pulses 

(0 V, 0.5 s; 8 V, 2 s) were applied, whereas during the sleep periods (orange lines), reduced pulses (0 V, 24.5 

s; 8 V, 0.5 s) were applied. (c) Plots of recovery time vs. sleep time for measurement cycles with AS or NS 

process. 

3.2.5 Theoretical simulation and discussions 

We used python (Appendix C) to build a theoretical model of the nanowire network to further 

understand the process of sleep-dependent memory consolation at level of individual level, with 
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assuming a volatile switching caused by the growth and reduction of the Ag filament at every junction 

between nanowires. The dynamical equation that defines the evolution of the filament with time in 

the presence of an electrical field is : 

𝑑𝑤(𝑡)

𝑑𝑡
= 𝜇

𝑣

𝑡𝑔
−

𝑤(𝑡)

𝑡𝑟
 

⁡𝑤(𝑡 + 𝑑𝑡) = 𝑤(𝑡) + 𝑑𝑤 

where 𝑤 ∈ [0,1] is the width of Ag filament in one junction at the current time and µ is the Ag ion 

mobility inside a polycrystalline TiO2 layer. 𝜏𝑔 and 𝜏𝑟  are the characteristic constants of filament 

growth and reduction, respectively. The conduction equation relating to voltage v and current i is 

defined as: 

𝑖 = 𝐺(𝑤) ∙ 𝑣 

𝐺 =
𝐺𝑜𝑛 − 𝐺𝑜𝑓𝑓

𝑒
1
𝜏0 − 1

(𝑒
𝑤
𝜏0 − 1) + 𝐺𝑜𝑓𝑓 

where 𝐺𝑜𝑛, ⁡𝐺𝑜𝑓𝑓 are the conductance of junction when filament width is 0 or 1, respectively, and 𝜏0 

is a predefined parameter. The result conductance of one junction is exponentially growing with 

filament width. We use 
𝜏𝑔

µ
= 3⁡𝑠, 𝜏𝑟 = 5𝑠, 𝐺𝑜𝑛(𝑤 = 1) = 1 ∗ 10−7𝑆, 𝐺𝑜𝑓𝑓(𝑤 = 0) = 10−12⁡𝑆  and 

𝜏0 = 0.02⁡⁡ in the simulation.  

 

Figure 3.13. (a) Setup illustration for single nanowire simulation, consists of two electrodes (gold 

rectangular boxes) and one nanowire (blue line). The contact points are marked with blue dots are the 

positions of the junctions. (b) Simulated IV characteristic of the single nanowire. (c) Morphology of the 

nanowire network in the simulation. (d) Nanowire length distribution in (c). 

A threshold switching activation dynamics for single nanowire was equally observed with this 

simulation, as shown in Figures 3.13 a and b. With continuous voltage sweeps applied between the 

source and drain in the simulation, the switching voltage decrease. We constructed a nanowire 

network following the experimental network, with same nanowire density (0.137 /µm2) and length 

distribution (Figures 3.13 c and d). The dynamical simulation of current and filament distribution in 
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the network was conducted with general nodal analysis (1)a)Appendix B), in which the current 

fluctuation in each junction node was calculated based on the Kirchhoff‘s law.  

In the simulation, a voltage pulse train with same voltage value in the experiment (0.05s, 0V; 

0.05s, 15V) was first applied to activate the network to a high conductance state (current reach 150 

nA) (Learning). Then two schemes were performed for 20s: normal sleep (NS) process and an active 

sleep (AS) process. During normal sleep period, no external voltage was applied, while during the 

AS period, a spare voltage pulse train (1.76s,0V; 0.24s, 15V) was applied. After that, the same pulse 

train as in the learning process was applied to reactive the network to the same high conductance state 

(Recovery).  

Figure 3.14a shows the simulated current responses during the learning-sleep-recovery cycles 

with sleep in the NS and AS modes. The behaviour illustrated in Figure 3.12 is well retrieved from 

the network simulation, that is, the sleep in the AS mode results in a shorter time to recover the 

conductance than in the NS mode after the same sleep time. Here, we show a snapshot of the simulated 

network at time t1, just before sleep.  At t1, several current pathways are active within the network, 

as graphically shown in Figure 3.14b. The histogram of the Ag filament widths over the network at 

this time is shown in Figure 3.14c. When the external voltage is shut down during the sleep, current 

stops flowing and the filament width starts to decay, as shown in Figure 3.14 d-f. If the sleep duration 

in the NS mode is longer than the lifetime of all the grown Ag filaments, the network will reset to the 

original condition before learning. This is indeed observed in Figure 3.14f where all the widths of the 

Ag filaments are reset to zero. However, even for the same sleep duration, if the sleep is in the AS 

mode, the volatility of junctions is compensated by the intermittent regrowth of the Ag filaments as 

seen in Figure 3.14g-k. Therefore, the information of the conductance pathway is not completely lost 

and recovery requires a shorter time. 

 It is very interesting to compare Figure 3.14 c just before sleep and Figure 3.14 g-k during 

the sleep in the AS mode: Most of the junctions within the network have not completely decayed but 

those with a large width (w > 0.8) have disappeared. This explains why the conductance of the 

network disappears during the sleep in the AS mode even when many of the Ag filaments are still 

surviving as we have seen in the experiment (Figure 3.14 b) and the simulation (Figure 3.14 a). In 

other words, when the network is activated after the learning process (t1), there is a broad and 

dispersed distribution in filament width, and several filaments grow and largely contribute to current 

transport throughout the network, namely, there are critical junctions formed in the network.  
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Figure 3.14. (a) Current responses during learning-sleep-recovery tests for a NS process or AS 

process in a simulated nanowire network. The network reaches the same state at time t1 in two cases under 

high-frequency voltage pulses (0 V, 0.05 s; 15 V, 0.05 s). During AS, a low frequency voltage pulse train (0 V, 

1.76 s; 15 V, 0.24 s) was applied.  (b) Map of current and filament width distributions in the simulated network 

after the learning process (time t1, both values were normalized to the same color bar scale). (c) Histogram 

of filament width distribution in (b). (d-f) Filament width distributions during NS process at different times 

(indicated in (a)). Inset: corresponding map of distribution. (g-k) Filament width distributions during the AS 

process at different times. Inset: corresponding map of distribution. 

If we consider that all the Ag filaments decay at the same rate, filaments at critical junctions 

do not disappear spontaneously but effectively shut off the current through the network. During the 

sleep in the AS mode, a Ag filament at a junction intermittently grows and dissolves in response to 

the intermittently applied bias voltages, and finally, its length starts to oscillate (Figure 3.15). This 

situation is the same for the filaments that formed along the current pathways, but they can stay as 

relatively long filaments even after sleep time. The sleep in the AS mode does have the effect of 

selectively stabilizing junctions along the previous current pathway, so that the consolidation of the 

memory occurs. As a consequence, when the recovery cycle is performed, the previously established 

pathway tends to be readily restored instead of opening another pathway.  

The simulation results have revealed a self-adaptive behaviour of individual junctions with 

the sparse stimulus during sleep, which leads to the selective retention of connectivity in the network. 

This effect is significantly important when handling a multi-terminal information process in such a 
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complex structure. Compared with one single nanowire device or other metal/insulate/metal stacking 

devices, the memory consolidation process observed in the present network ensures that the 

information is only stored within a minimum number of junctions. The active sleep consolidates the 

memory to stabilize the information storage for a long time and also to improve the recovery 

efficiency compared with the normal sleep, being somehow a similar process of memory 

consolidation in the human memory system.  

In this nanowire network system, the TiO2 layer was used as the diffusive media for Ag ions. 

Compared with Ag@PVP nanowire224 or metal oxide nanowire,175-176, 183 relatively thick TiO2 coating 

increased the diffusive barrier for Ag ions and a higher voltage and lower operation current were used 

to drive the network in our study. However, these conditions can be controlled by tuning the network 

density and topological structure. It is worthwhile to point out that the TiO2 layer in this work enables 

a volatile switching process at each nanowire-nanowire junction, which allows the system to stay 

with high connectivity but with high resistance, and therefore avoiding the jumbled conductance 

association between different pathways in the network.184, 224 Conductance correlation between 

neighbours sites in either a crossbar-type neural network or a random neural network has been a 

practical problem towards a highly accurate and efficient process in neuromorphic cognition or 

computation devices. Materials design of the diffusive memristor with high switching on/off ration, 

low switching energy and long endurance are certainly important issues for further advancing 

neuromorphic technologies. 

 

Figure 3.15. Voltage, conductance and filament width evolutions with time for an NS process (a) and 

AS process (b) in the network.   
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3.2.6 Conclusions 

In this work, we demonstrated a sleep-dependent memory consolidation in a neuromorphic 

network formed by Ag@TiO2 nanowires. In analogy with biological neuronal systems, memory arises 

as a complex interplay between the topological constraints imposed by a complex network and the 

plasticity of its constituting elements, the memristive nanowire junctions comprising of 

metal/dielectric/metal interfaces. We investigated a long-term decay of the connectivity in the 

network by controlling the voltage pulses of different amplitudes and duty ratios. Furthermore, on the 

basis of the regulated activity cycles during sleep used by the human brain to consolidate memories, 

we investigated the controllability of the established pathway in the neuromorphic network by 

introducing a learning-sleep-recovery cycle. We found that the network can quickly restore previous 

states of conductance after switching off the power source (sleep) when sparse voltage pulses are 

regularly applied during the sleep. Moreover, controlling the filament decay with periodic pulses 

during the sleep has the effect of selectively enhancing critical junctions within the network, which 

were part of a previously used pathway. This allows us to restore the same pathways when a learning 

or recovery process is resumed. These results provide clues to new learning designs in neuromorphic 

networks for achieving longer memory retention.  By introducing appropriate sleep while providing 

a sparse but controlled voltage pulse, we may realize parts of a large network with strengthened 

junctions and effectively retain information, and finally, improve the ability to capture and store 

information within neuromorphic networks. 
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3.3 ASSOCIATIVE CURRENT PATHWAY FORMATION IN AG@TIO2 NANOWIRE 

NETWORK 

3.3.1 Introduction to associative memory 

Memories in the brain are not isolated stored but ensemble into associative network227-229. In 

the cellular level, they show synchronous neural activities though in different regions of the brain, 

indicating linked pathways between memories230 (neurons wire together fire together). Such 

association can occur naturally. When memories are encoded close in time, first memory encoding 

triggers a temporary increase in neuronal excitability that biases the subsequent memory to integrate 

the memory encoding to the first memory231-233. From this, we can easily understand that events 

happened on the same day are naturally linked together in the human brain. On the other hand, the 

association can be generated artificially, by consciously training the brain to integrate different 

memories, for example, classical conditioning and instrumental conditioning 234-235. One famous 

physiological study of classical conditioning is known as Pavlov’s dog, where the dog shows response 

(salivation) to the sound of a bell (unconditional stimulus, US) after repeatedly pairing the 

presentation of the meat (conditional stimulus, CS) with the sound of the bell (Figure 3.16). This 

study shows the association of memory from the viewpoint of behavioural response where an 

increased response of the US after pairing it with CS. In a study of cellular responses in mice, 

associated memories showed overlapped memory trace (the engram cell ensemble which indicates 

the location of corresponding memory)234 where shared memory cells link different memory events 

together. Either naturally generated or artificially generated, we can see, one essential requirement to 

form memory association is the temporal close stimulus involved during memory encoding, by which 

the enhanced synaptic strength opens the possibility to link neurons firing together and increases the 

neuronal connectivity as feedback. 

 

Figure 3.16. Classical conditioning-Pavlov’s dog model. (a) Before conditioning, the dog salivates by 

the sight of a piece of meat (the unconditional stimulus, NS) but has no response by the sound of a bell (the 
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conditional stimulus, CS). (b) After conditioning, the dog learns to associate sound of  bell with meat and will 

salivate when the bell rings without the meat.236 

 

Figure 3.17. Electronic realization of Pavlov’s dog learning scheme with one memristor. (a) 

Illustration of the learning model. (b) The proposed electronic version of the model in (a). (c) Time-dependent 

voltage inputs (CS and US) and output (response) demonstrating the associative learning scheme in the 

circuit.237 

The concept of associative memory already has application in computer science, known as 

content-addressable memory where memory searching is not based on the physical address but on the 

similarity or correlation of the content, which allows fast searching and fuzzing address match.  In 

recent years, with the development of artificial intelligence, researches have been seeking possible 

hardware integration of associative memory237-244, mainly focusing on the classical conditioning. 

Figure 3.17 shows the commonly used physical architecture for Pavlov’s dog learning scheme 

integrated with one memristor237. The association of the US and NS is established within a temporal 

window ruled by the STDP and only if the NS inputs after the US the association takes place, which 
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is in consistence with biological Pavlov’s dog learning results. Such architecture requires specially 

voltage waveform encodings for NS and US to generate a functional threshold voltage-time window 

to switch on the memristor (Figure 3.17. Electronic realization of Pavlov’s dog learning scheme with 

one memristor. (a) Illustration of the learning model. (b) The proposed electronic version of the model 

in (a). (c) Time-dependent voltage inputs (CS and US) and output (response) demonstrating the 

associative learning scheme in the circuit.237). Previously in our group, we used artificial neural 

network formed by memristive nanowire network and achieved associative memory storage and 

retrieval for 9-bit image184. In the random network, nanowires connect randomly, and the memory 

pattern only depends on the previous spatiotemporal input, these are largely in parallel with 

associative memory in biological brain morphologically and functionally. It is of fundamental 

importance to understand how memory associated in the nanowire network. Previous studies have 

used scanning emission microscopy and thermography for such propose180-181. But it was either 

performed in a high vacuum environment or had low resolutions where current transmission 

observation even between small groups is not reachable.  

In this section, we further introduce a LIT study on visualizing the memory trace in the same 

memristive nanowire network but with a larger size, in which memory association is naturally formed 

within the time-dependent training scheme. Lock-in thermography gives high-resolution and 

sensitive detection of thermal irradiation distribution by lock-in correlating the input periodically 

pulsed electrical signal with the infrared emission signal from the sample surface. It is a non-

destructive method which can perform under different experimental environments. We applied this 

technique to visualize the infrared irradiation distribution from the Ag@TiO2 nanowire network under 

electrical stimulation in the ambient condition. The two stimulus input from two different channels 

and there is one output from the same channel. We show that current pathways, indicating the memory 

trace, naturally associates partly and modified the memory trace structure at the adjacent point 

sometimes. With continuous lock-in imaging, we show the dynamical fluctuation of the current 

pathway and controlling of pathway weight by enhanced stimulus time. The results manifest that 

pathway association naturally forms in such memristive nanowire network. 

3.3.2 Characterization of the nanowire network 

The nanowire networks were spin-coated onto glass substrates with pre-patterned Au/Ti 

electrodes (Figure 3.18). The distance between the counter electrodes is 500 µm, and the electrode 

width is 40 µm. From the images, we can see most nanowires are forming small or big ensembles and 

connected by several critical nanowires, together establish multiple connection pathways from one 

electrode to another. 
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Figure 3.18. Microscopic images of the Ag@TiO2 nanowire network. (a-b) Bright-field image and 

corresponding dark filed image. The white dash lines indicate the functional network area. (c) Enlarge image 

of the blue rectangular part in both (a) and (b). 

3.3.3 Visualize current pathway formation with LIT 

We took sequential thermal images on the Ag@TiO2 nanowire networks under current 

stimulus with LIT (Figure A-1)245-246. Figure 3.19a shows the experimental setup, and periodical 

current pulses are injected to the nanowire network, during which a thermal camera images the 

network continuously and send the signals to the computer to perform lock-in process. In a typical 

LIT test, we can obtain three images simultaneously for each imaging process: steady-state 

thermograph which give topographic information of the device under test, lock-in thermal amplitude 

image which indicates the sensitive thermal distribution and a lock-in phase image demonstrating the 

thermal dissipation in the device. Figure 3.19 c-d show the corresponding images of our Ag@TiO2 

nanowire network under periodical current stimulus with a spatial resolution of 2 µm. The current 

inputs switched equally between 1 µA and 0 µA with a speed of 10 Hz (Keithley 2410 SourceMeter). 

Voltage compliance of 1000 V was applied to avoid break-down the nanowires, and the integration 

time for each image process was 10 s. From lock-in amplitude (phase images), exact collective red 

spots (green feature) connect the source and the ground in the network, implying there is current 

transmission through the network. When current inputs from one side of the nanowire network, Ag 

aggregates in the TiO2 of the nanowire-nanowire junctions (in the form of Ag/TiO2/Ag) to form 

conductive filaments and connect nanowires to form a current pathway between electrodes. This 

results in an increase of thermal temperature of nanowires along the current pathway due to joule heat, 

leading high intensity of infrared emissions along the current transmission ways. For junctions along 

the current pathway with high resistances, under Joule-Lenz law, generate larger heat and irradiate 

higher intensity of infrared light. This can be observed after overlapping the lock-in amplitude image 

to the topographic image (Figure 3.19d) that at red spots locate at low density area and seem to bridge 

the nearby nanowire clusters to form a complete pathway. We conclude that lock-in thermal images 

show parallel information of the current transmission in our Ag@TiO2 nanowire network.  
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Figure 3.19. Lock-in thermography to visualize current pathway. (a) Experimental set-up. Nanowire 

network on glass substrate were terminated by one periodical current source and ground. Nanowires along 

the current transmission pathway are colored as white. An infrared camera collects the infrared emissions 

from the network surface and sends the signals to computer for lock-in process. (b-d) Images obtained during 

LIT test of the Ag@TiO2 nanowire network: topography (steady-state thermal image) (b), lock-in amplitude 

image (c) and lock-in phase image (d). Is = 1µA (1 Hz, duty: 50%), voltage compliance = 1000V and the image 

integration time = 10 s. (e) Overlapped image of topography and amplitude. Scale bar: 40µm. 

 

Figure 3.20. Formation and expansion of current pathway. Lock-in amplitude images with an increase 

in current source of the Ag@TiO2 nanowire network. Is = 1 µA(a), 3 µA(b), 7 µA(c), 15 µA(d) (1 Hz, duty: 

50%), voltage compliance = 1000 V and the image integration time = 10 s. Scale bar: 40 µm. 

With LIT, we first explored the formation and expansion of current pathway in a new network 

with an increase in current source input, the results are shown in Figure 3.20. When the input current 

source is small, only one steady current pathway appears (Figure 3.20 a and b). As the input current 

increases, new pathway branches appear (indicated by arrows 1, 2 and 3). The old pathway branches 

could not be observed clearly in the images, which may be limited by the spatial resolution of the 

camera. The observed features can be expected by considering the growing number of conductive 

Ag/TiO2/Ag junctions in the network (Figure 3.14 in section 3.2). With the different field potentials 

actual working in the different junctions, Ag filaments grow in different speed. Therefore pathway 

which needs the lowest activation energy will form first, in the lock-in amplitude image it shows up 

first. The results are consistent with the “winner-takes-all” model proposed by Manning et al181. As 

the current flow in the network reaches the setting value, the voltage applied between the source and 

the ground starts to decrease. The decreasing voltage keeps the Ag filaments that are in the junctions 

along the current transmission pathway but prohibits or reduces the growth of Ag filaments in other 
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junctions, resulting in current transmission only through pathways first reach conductive state 

(winner-takes-all).  

3.3.4 Associative current pathways in Ag@TiO2 nanowire network 

Memory association is one primary function and naturally happens in the biological brains, 

owing to the high connectivity between neurons and time-dependent plasticity at each neuronal 

contact point -- synapse. During association, the memory traces, an exciting neuronal ensemble which 

is believed as the location where memory stores, for different learning events merge partially or open 

new connecting paths, depending on the learning scheme229-230, 233-234. Our Ag@TiO2 nanowire 

network exhibits complex connectivity feature similar to the biological brain and has functional time-

dependent connectivity plasticity at the nanowire-nanowire junction, is a promising platform to study 

the memory association in a physical device. We did the study on the nanowire network with two 

input terminals by altering the current input channel(s) sequentially and recording dynamical lock-in 

thermal images simultaneously. The nanowire network acts as the nervous system and its two 

terminals accepting stimulus signals (periodical current pulses) can be considered as different senses 

(for example, eyes and nose) receiving information encoding. The current pathways imaged by the 

LIT can be considered as the memory trace which stores the sensing stimulus information.  

The results are shown in Figure 3.21. The current was first injected from terminal X, opening 

current pathways as showing in Figure 3.21b. When altering the input channel to a different terminal 

Y (immediately after X), the current transmission did not open a completely new one but shared 

partial pathway with previous activated one (X) from the middle part to the ground electrode (Figure 

3.21c). The pathway overlap between two individual tests indicates a memory association between 

two signals from the two terminals. After activating the network from terminal X, Ag filaments 

formed in the junctions along the current pathway and retained, biasing the current transmission from 

terminal Y to flow along the existing high conductive pathway. A similar mechanism can be applied 

when the current inputted from both terminals after Y, the lock-in thermal image (Figure 3.21d) 

merges the feature of the two individually obtained pathways due to pathway retention from historical 

stimulations in the network. The results show many equivalent features as the time-correlated 

memory association in the biological systems, especially for memories stored morphologically close.    

Figure 3.21d also indicates parallel current transmission from both terminals, which usually 

occurs when conductance states of the pathways are comparable. This is a rare case in our nanowire 

network tests. Furthermore, in the biological system, since the first learning memory can be easily 

interrupted or erased by new coming information, a strong association of memories requires repeated 

learning, for example, classical conditional learning. We show below that the asymmetric conductive 

pathways between two terminals can be improved by increasing the stimulation period from the weak 

terminal.  

 Figure 3.22 show sequential lock-in amplitude images for a training test.  The current 

transmission pathway was formed after continuous injecting periodical current pulse for 40 s from 

terminal Y. One intermediate sate is shown in Figure 3.22 b, with only several thermal dots observed. 

The associated pathway was formed immediately after switching the input terminal (to X), similar to 

Figure 3.21 c. However, when input from both terminals (Figure 3.22 e) current pathways only copied 

the shape from terminal Y, indicating current only transmitted from this terminal. The technique used 

to strengthen the pathway from terminal X was by continues applying current stimulus from the 

terminal (for 55 s), to imitate the highly concentrated forced learning in the human learning 



64 

 

experience. The result was quite efficient as shown in Figure 3.22 h that parallel pathways observed 

from both terminals.  

We showed above how forced training changes the current transmission pattern from two 

inputs. However, the mechanism lying behind our Ag@TiO2 nanowire network is quite different from 

that of a biological system. Current transmission in our network obeys strict physical laws, from high 

electrical potential to low electrical potential, while in nervous system signal transmission combines 

chemical-physical conversion acting under the integrate-and-firing scheme. However, at the 

individual junction (synapse), the time-dependent plasticity plays the crucial role in pathway 

(memory trace) formation, the same in the two systems.  

 

Figure 3.21. Lock-in amplitude images of the network while switching the input between two input 

electrodes. (a) Electrical setups for different measurements. From left to right: input only from channel X, 

input only from channel Y and input from both X and Y channels. All the counter electrodes were grounded. 

(b-d) Associative routing between two input channels. The source channel was changed sequentially as image 

order. Is = 5µA (1 Hz, duty: 50%), voltage compliance = 800V and the image integration time = 5 s.  
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Figure 3.22. A record of lock-in amplitude images of the network while switching the input between 

two input electrodes. Image edge and its input correlate in the following way: green(X), orange(Y) and red-

(X+Y). (a-c) A pathway is formed between source and ground electrodes. (d) New pathway is formed quickly 

after switching the input electrode. (e) Only pathway from one channel was shown when input from 2 channels. 

(f-g) Training one channel by continues input current for a time period. (h) Pathways from both channels were 

shown when input from 2 channels. Is = 5 µA (1 Hz, duty: 50%), voltage compliance = 600 V and the image 

integration time = 5 s. (i) Input time line for the record. Each color pixel indicate corresponding input event 

for 5 s.  

3.3.5 Conclusions 

In this section, we imaged the current pathway in the Ag@TiO2 nanowire network with the 

high-performance LIT. We demonstrated the current expansion in the network, revealing a “winner-

takes-all” formation scheme. By terminating the nanowire network with two inputs, we observed 

clear current pathway association in the network structure. Pathway association formed naturally, and 

the strength of association can be modified by forced training.   
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Chapter 4: Summary and prospect 

Integration of nanomaterials would be necessary for all ranges of nanomaterials that have or 

not have been discovered. The outstanding or ordinary features in these integrated systems pave the 

way for high performance and energy-efficient systems in the future. In this thesis, I picked up two 

different integrated nanosystems, graphene integrated with the microstructured substrate and self-

assembled memristive nanowire system, for each is a representative integration architecture in this 

field. In chapter 1, we introduced the background of the general integrated nanomaterials and 

reviewed a short history and specific aspects of the application related to our integrated nanosystems. 

In chapter 2, we presented the experimental methods applied in this thesis. A wet transfer method of 

graphene to any substrate and a hydrothermal method to synthesis high-quality Ag@TiO2 nanowires 

were included. For the physical measurement part, we briefly introduce the mechanism of Raman 

spectroscopy and two-wire method for the electrical test; these two are frequently used for material 

characterization and electrical properties measurement. We showed more detailed information on the 

working principle of LIT, which is a sensitive thermal detection technique emerging in recent years 

and we first applied it in the thesis to detect the current fluctuation with high spatial resolution in the 

memristive system. Chapters 1 and 2 give a general understanding of the two integrated systems and 

lead the reader to specified physical properties we mainly contributed in chapter 3. 

In chapter 3, three emergent physical properties of the integrated systems were presented. The 

first section describes the micro-Raman study of graphene/micro-cavity system, including five parts 

from background to experimental and theoretical discussions. The second and third sections are about 

the Ag@TiO2 nanowire network system. We had a relatively comprehensive study on such system, 

showing the sample characterization, memristive IV behaviours and spiking-time memory learning 

and forgetting. Besides, we particularly studied the sleep-dependent memory consolidation process 

and associative memory in such network system, to mimic the biological brain’s functionalities. The 

main results in chapter 3 are as follows:  

★ Raman laser interaction within the cavity was projected onto the graphene sheet. This 

results in the formation of concentric rings in nanoscale on its Raman intensity mapping on the 

suspended graphene area, revealing Raman intensity oscillation from the edge of the suspended area 

to the central. Though no clear evidence shown for electronic modification on the graphene sheet in 

such drum architecture, we expect further application on graphene sheet to sense the underlying cavity 

structure. Furthermore, the same phenomena may be observed on other 2D materials with cavity 

structure and used to modify the electronic state of materials which are sensitive to thermal heating.   

★ We demonstrated a sleep-dependent memory consolidation in a neuromorphic network 

formed by Ag@TiO2 nanowires. In analogy with biological neuronal systems, memory arises as a 

complex interplay between the topological constraints imposed by a complex network and the 

plasticity of its constituting elements, the memristive nanowire junctions comprising of 

metal/dielectric/metal interfaces. We investigated a long-term decay of the connectivity in the 

network by controlling the voltage pulses of different amplitudes and duty ratios. Furthermore, based 

on the regulated activity cycles during sleep used by the human brain to consolidate memories, we 

investigated the controllability of the established pathway in the neuromorphic network by 

introducing a learning-sleep-recovery cycle. We found that the network can quickly restore previous 
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states of conductance after switching off the power source (sleep) when sparse voltage pulses are 

regularly applied during the sleep. Moreover, controlling the filament decay with periodic pulses 

during the sleep has the effect of selectively enhancing critical junctions within the network, which 

were part of a previously used pathway. This allows us to restore the same pathways when a learning 

or recovery process is resumed. These results provide clues to new learning designs in neuromorphic 

networks for achieving longer memory retention.  By introducing appropriate sleep while providing 

a sparse but controlled voltage pulse, we may realize parts of a large network with strengthened 

junctions and effectively retain information, and finally, improve the ability to capture and store 

information within neuromorphic networks. 

★ We visualized the current pathway in the Ag@TiO2 nanowire network with the high-

performance LIT. We demonstrated the current expansion in the network, revealing a “winner-takes-

all” formation scheme. By terminating the nanowire network with two inputs, we observed clear 

current pathway association in the network structure. Pathway association formed naturally and the 

strength of association can be modified by forced training. 

In conclusion, through my PhD research works on the two different integrated nanosystems, 

I have convinced that integrating or self-assembling different nanomaterials and other 

materials/structures is an important and promising direction we should take for the future. Although 

this thesis describes only a part of possibilities, I believe that the results and discussion would 

contribute to a new realm of nanotechnology and nano architectonics. However, in the future research 

on these two integrated systems, there are several points we should carefully consider: 

★ Graphene as the first experimental obtained 2D materials has attracted numerous attention 

and been widely studied in the past decades. It has been marked as the materials of the future and 

triggered the research boom of other 2D materials like transition metal dichalcogenides (MoS2). 

However, practical applications of the graphene-integrated system in electronic device are still under 

debate, which due to its intrinsic semi-metal feature. Approaches to integrated graphene with other 

materials or other morphology have opened a new aspect to graphene engineering. Taking account 

the Raman oscillation rings observed on graphene/micro-cavity structure, substrate engineering in 

graphene or 2D materials can be a promising direction. 

★ For the memristive nanowire system, we should state that in biological neural system 

neuron and synapse has more complex structure and functions. The out layer of the axon is covered 

with myelin which is insulating. Neural synapse can be either inhibitive or excitatory, increase the 

complexity of the whole neural system. Our efforts to use memristive nanowire network to achieve 

brain-like functionalities are only very small or preliminary results of the approach. Materials 

designing should not only limit in solid-state materials, but interdisciplinary material integration and 

method should also be considered. On the other side, circuit designing to emulate the function to 

different types of biological synapse/neurons could also help for achieving neuromorphic computing. 

★ Another aspect of neuromorphic computing, for cross-bar architecture and random network 

architecture, both applications are based on the development of soft AI, where training frame and 

algorithm play an essential role. To the specific reservoir computing, the promising LIF or Hodgkin-

Huxley model is not applicable for current memristive materials. More efforts on such direction 

should be considered.  

★ However, we would see the potential of the random network in understating or emulating 

the brain’s functionalities, in the future work, we may more focus on the biological emulating and 

take it as a platform to grasp the secrets of the biological brain.  
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Appendices 

Appendix A          Measurement facilities 

1. Lock-in thermography 

 

Figure A-1. Image of Enhanced Lock-in Thermal Emisson (ELITE) system (DCG Systems, Inc.) for 

lock-in thermography measurement. The camera head contains a high-performance indium antimonide (InSb) 

focal plane array (FPA) detector. The FPA is cooled by a rotary stirling cooler.  
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2. Keithley 4200 Semicondutor Characterization System (SCS) 

 

Figure A-2. Keithley 4200 semiconductor characterization system (SCS) for electrical measurement.  
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3. Raman spectroscopy 

 

Figure A-3. Confocal HR800 micro-Ramman spectrometer (Horiba Jovin Yvon), having a 100× 

objective (NA= 0.8), 532 nm diode-pumped laser (2.8mW) with the spot diameter is around 1um and a piezo-

actuated XY scanner. 
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4. Transmission electron microscope (TEM) 

 

Figure A-4. JEM-2100F field emission transmission electron microscope (FE-TEM), equipped with 

Energy dispersive X-ray spectrometer (EDX) and electron energy loss spectrometer (EELS). The acceleration 

voltage is 200 kV to give an ultrahigh spatial resolution of 0.1 nm. 
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5. Scanning electron microscope (SEM) 

 

Figure A-5. Hitachi SU8230 FE-SEM with EDX. It employs a novel cold field emission gun to improve 

the imaging and analytical performance. The spatial resolution can be 0.8 nm (@15 kV) and 1.1 nm (@ 1kV). 
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Figure A-6. Hitachi SU8000 FE-SEM with EDX (Bruker Quantax FQ5060). The accelerate voltage is 

0.5 ~ 5 kV with a maximum magnification of 800k. 
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Appendix B          Nodal Analysis 

For the theoretical simulation used in section 3.2, we applied nodal analysis to solve the time-

dependent current evolution problem in the network. Here we employ a simple model which consists 

one voltage source and three resistors to demonstrate this method. 

 

Figure B-1. A circuit with one voltage source and three resistors. 

Consider the circuit in Figure B-1, taking the ground as reference, with Kirchhoff’s current 

law, at each node we have:  

𝑁𝑜𝑑𝑎⁡1:⁡⁡⁡𝑖v +
𝑣1 − 𝑣2

𝑅1
+

𝑣1 − 𝑣2

𝑅2
= 0⁡ 

⁡𝑁𝑜𝑑𝑎⁡2:⁡⁡
𝑣2 − 𝑣1

𝑅1
+

𝑣2 − 𝑣1

𝑅2
+

𝑣2

𝑅3
= 0 

and with 

𝑣1 = V 

.The equations are equivalent to: 
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[

𝑣1

𝑣2
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] = [

0
0
𝑉
] 

. 

The matrix equation has a form of: 

Ax = z 

This form is the general form for all circuits composed by only passive elements and 

independent current and voltage source. For the simulation model for voltage biased nanowire 

network, there was only one voltage source (assume it connects to node 1 with value V). We can 

construct the matrix in the following way:  
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A(𝑚+1)×(𝑚+1) =⁡ [
𝐺𝑚×𝑚 𝐵𝑚×1

𝐶1×𝑚 0
] , 𝑥 = ⁡ [

𝑣𝑚×1

𝑖
] , 𝑧 = [

0𝑚×1

𝑉
] 

For the circuit above, we have  

𝐺 =
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𝐵 = ⁡𝐶𝑇 = [
1
0
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𝑥 = [
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] 

𝑧 = [
0
0
𝑉
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. If we carefully examine the form of G, we know each element in the diagonal matrix is equal to 

the sum of the conductance of the each element connected to the corresponding node, and the off 

diagonal elements are the negative conductance of the element connected between the pair of 

corresponding node. B and C are m dimensional matrix of 0 except the first element as 1. Then 

unknown x matrix can be calculated by  

𝑥 = 𝐴−1𝑧 

. 
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Appendix C Python code for simulation 

creat_network.py 

1. # import any external libraries   
2.    
3. import math as math# several basic trigonometric functions    
4. import random as random# generate random nanowire positions, etc.   
5. import scipy.stats as stats # generate gamma-distributed nanowire lengths   
6. import numpy as np # linear algebra routines   
7. import matplotlib.pyplot as plt # graphing library   
8. import matplotlib.patches as patches # to graph electrodes   
9. import networkx as nx   
10. import Savelib   
11.    
12. # define network parts   
13. filepath=[]   
14. density = 0.317   
15. box_x = 100   
16. box_y = 100   
17. elec_len = 40   
18. s_num=2   
19.    
20. def single_nanowire(center_x, center_y, length, angle):   
21.     end_x = center_x + math.cos(angle)*length/2   
22.     start_x = center_x - math.cos(angle)*length/2   
23.     end_y = center_y + math.sin(angle)*length/2   
24.     start_y = center_y - math.sin(angle)*length/2   
25.     single_nw = np.array(((start_x,start_y),(end_x, end_y)))   
26.     return single_nw   
27.    
28. def create_electrodes(box_x, box_y, length):   
29.     source = single_nanowire(0,box_y/2,length,math.pi/2)   
30.     drain = single_nanowire(box_x, box_y/2,length,math.pi/2)   
31.     return source, drain   
32.    
33. def create_wires(box_x, box_y, density, lalpha, lloc, lbeta):   
34.     nws_number = int( density*box_x*box_y)   
35.     wire_length = stats.gamma.rvs(lalpha,lloc, lbeta, size=nws_number)   
36.     wires=[]   
37.     source, drain = create_electrodes(box_x, box_y, elec_len)   
38.     wires.append(source)   
39.     for i in range(nws_number):   
40.         new_nw_length = abs(wire_length[i])   
41.         new_nw_angle = random.uniform(0, math.pi)   #0   
42.         new_nw_cx=random.uniform(0, box_x)   
43.         new_nw_cy = random.uniform(0, box_y)   
44.         new_nw = single_nanowire(new_nw_cx, new_nw_cy,new_nw_length,new_nw_angle)   
45.         wires.append(new_nw)   
46.     wires.append(drain)   
47.     plt.hist(wire_length,10)   
48.     plt.savefig(filepath+'nanowire_distribution',dpi=300)   
49. #    plt.show()   
50.     plt.clf()   
51.     plt.close()   
52.     data_saveDirectory = Savelib.createSaveDirectory(filepath,'nanowire_distribution')   
53.     Savelib.saveExperiment(data_saveDirectory,wire_length= wire_length)    
54.     return wires   
55.    
56. def line_intersection(line1, line2):   
57.     xdiff = (line1[0][0] - line1[1][0], line2[0][0] - line2[1][0])   
58.     ydiff = (line1[0][1] - line1[1][1], line2[0][1] - line2[1][1])   
59.    
60.     def det(a, b):   
61.         return a[0] * b[1] - a[1] * b[0]   
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62.    
63.     div = det(xdiff, ydiff)   
64.     boole_cross = False   
65.     new_junction=[]   
66.     if not div == 0:   
67.         d = (det(*line1), det(*line2))   
68.         new_junction = np.array((det(d, xdiff) / div, det(d, ydiff) / div))   
69.         if (np.all((new_junction[0]-line1[0][0])*(new_junction[0]-line1[1][0])<=0)   
70.             and np.all((new_junction[0]-line2[0][0])*(new_junction[0]-line2[1][0])<=0)   
71.             and np.all((new_junction[1]-line1[0][1])*(new_junction[1]-line1[1][1])<=0)   
72.             and np.all((new_junction[1]-line2[0][1])*(new_junction[1]-line2[1][1])<=0)):   
73.             boole_cross = True   
74.     return boole_cross, new_junction   
75.    
76. def create_junctions(wires):   
77.     col = len(wires)   
78.     junctions=[]   
79.     junction_matrix=[]   
80.     network_map = np.zeros((col,col))   
81.     for i, nwa in enumerate(wires):   
82.         for j, nwb in enumerate(wires):   
83.             if i<j:   
84.                 boole_cross, new_junction= line_intersection(nwa,nwb)   
85.                 if boole_cross:   
86.                     network_map[i][j]=network_map[j][i]=1   
87.                     junctions.append(new_junction)   
88.                     junction_matrix.append([i,j])   
89.     return network_map, junctions, junction_matrix   
90.    
91.    
92. def plot_network(wires, junctions,ax):   
93.     """Plot a network."""   
94.     ax.set_axis_off()   
95.     sE=patches.Rectangle((0.,(box_y-elec_len)/2),-

10,elec_len,facecolor='gold') #set electrode transparent  add alpha=0.5   
96.     ax.add_patch(sE)   
97.     dE=patches.Rectangle((box_x,(box_y-elec_len)/2),10,elec_len,facecolor='gold')   
98.     ax.add_patch(dE)   
99.     for i ,wire in enumerate(wires):   
100.         #color = 'blue' if network else 'red'   
101.         if i==0 or i == len(wires)-1:   
102.             plt.plot([wire[0][0],wire[1][0]],[wire[0][1],wire[1][1]], color='gold',linewid

th=1)    
103.                
104.         else:   
105.             plt.plot([wire[0][0],wire[1][0]],[wire[0][1],wire[1][1]], color='dodgerblue',l

inewidth=1.2)   
106.     for _,junction in enumerate(junctions):   
107.         plt.plot([junction[0]], [junction[1]], 'o',color='dodgerblue',markersize=3)   
108.    
109. def isolate_wire(wires,network_map):   
110.     isolate_list=[]   
111.     sim_wires = wires.copy()   
112.     sim_map = network_map.copy()   
113.     wires_number = len(sim_wires)   
114.     for loop in range(int(wires_number/2)):   
115.         for i in range(wires_number):   
116.             if np.sum(sim_map[i])<2 and i not in [0, wires_number-1]:   
117.                 isolate_list.append(i)   
118.                 sim_wires[i]='0'   
119.                 sim_map[i]=sim_map[:,i]=np.zeros(wires_number)   
120.     while '0' in sim_wires:   
121.         sim_wires.remove('0')   
122.     return  sim_wires, isolate_list,sim_map   
123.    
124. def create_map():   
125.     lalpha = 12 #12   
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126.     lloc = 0.05 #0.05   
127.     lbeta= 0.85  #0.99   
128.     wires = create_wires(box_x, box_y, density, lalpha, lloc, lbeta)   
129.     network_map, junctions,junction_matrix= create_junctions(wires)   
130.     print('N(nanowire)=', len(wires),'; N(junction)=', len(junctions))   
131.     _,ax=plt.subplots()   
132.     plt.title('original network')       
133.     ax.set_xlim(-10,box_x+10)   
134.     ax.set_ylim(-5,box_y+5)   
135.     plot_network(wires,junctions,ax)   
136.     plt.savefig(filepath+'original_network',dpi=300)   
137. #    plt.show()   
138.     plt.clf()   
139.     plt.close()   
140.        
141.     sim_wires,isolate_list,sim_map = isolate_wire(wires,network_map)   
142.     input_map, sim_junctions,sim_junction_matrix = create_junctions(sim_wires)   
143.     print('N(nanowire)=', len(sim_wires),'; N(junction)=', len(sim_junctions))   
144.     _,ax2=plt.subplots()   
145.     plt.title('simulated network D='+str(density))   
146.     ax.set_xlim(-10,box_x+10)   
147.     ax.set_ylim(-5,box_y+5)   
148.     plot_network(sim_wires,sim_junctions,ax2)   
149.     plt.savefig(filepath+'isolated_network',dpi=300)   
150.     #plt.show()   
151.     plt.clf()   
152.     plt.close()   
153.     return input_map, sim_wires, sim_junctions,sim_junction_matrix   
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network_simulation_config.py 

1. import networkx as nx   
2. import numpy as np   
3. import math    
4. import matplotlib.pyplot as plt   
5. from numpy import genfromtxt   
6. import create_network as create_nw   
7. from decimal import Decimal as de   
8. import scipy.stats as stats # generate gamma-distributed width distribution   
9. import Savelib   
10. '''''   
11. define initial parameters:  
12.     w_in: length of filament at t0  
13.     w_out: length of filament at t1  
14.     V_diff: voltage drop across one junction  
15.     t_rise: time constant of filament growth  
16.     t_fall: time constant of filament disolve  
17.     w_len: insulator thickness at each junction  
18.       
19. '''   
20. class simulation_config(object):   
21.     def __init__(self):   
22.         self.input_map, self.wires, self.junctions, self.sim_junction_matrix= create_nw.cr

eate_map()   
23.         self.P = nx.MultiGraph(self.input_map)   
24.    
25.    
26.         self.w_ini = 0.001       #define width initial value   
27.         self.wl_ini = 40        #defin width lenth initial value   
28.         self.E_cut = 0.005    #thermal break down of single junction, E_default = 0.000005

   
29.         self.filepath=[]   
30.    
31.         self.w_cut = 100     #width cut for conductance functon    
32.         self.t_rise = 5   
33.         self.t_fall = 20   
34.         self.t_con=0.1   
35.    
36.         self.walpha = 2   
37.         self.wloc = 0.05   
38.         self.wscale = 0.8   
39.            
40.         self.G_comp=1E7   
41.         self.G_on = 1E-7   
42.         self.G_off = 1E-12   
43.         self.m = self.P.number_of_nodes() #node number, nanowires   
44.         self.n = self.P.number_of_edges() #edge number, junctions   
45.         print('N(nanowire)=', self.m,'; N(junction)=', self.n)   
46.     #define functions:   
47.     def V_func(self, V_high,k,time_len): #voltage input waveform   
48.         if k==1:   
49.             v_input=V_high*np.ones(time_len)   
50.         elif k == 2:   
51.             v_input=np.linspace(0,V_high,time_len//2)   
52.             v_input=np.append(v_input,np.linspace(V_high,0,time_len//2))   
53.         elif k == 3:   
54.             v_input=np.linspace(0,V_high,time_len//4)   
55.             v_input = np.append(v_input,np.linspace(V_high,-V_high,time_len//2))   
56.             v_input = np.append(v_input, np.linspace(-V_high,0,time_len//4))   
57.         elif k==4:   
58.             v_input=V_high*np.ones(time_len//2)   
59.             # v_input = np.append(v_input,0.1*V_high*np.ones(time_len//2))   
60.             v_input = np.append(v_input,np.zeros(time_len//2-2))   
61.             v_input = np.append(v_input,V_high*np.ones(2))   
62.         return v_input   
63.    
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64.     def pulse_V(self, V_high, V_low, t_high, t_low, t_res):   
65.         v_input = V_low*np.ones(int(de(str(t_low))/de(str(t_res))))   
66.         v_input = np.append(v_input, V_high*np.ones(int(de(str(t_high))/de(str(t_res))))) 

  
67.         return v_input   
68.    
69.     def pulse_train(self, write_V_high,write_V_low,read_V_high,read_V_low, write_n, read_n

, write_t_high, write_t_low, read_t_high, read_t_low, t_res):   
70.         v_input=[]   
71.         Time=[]   
72.         T = (de(str(write_t_high))+de(str(write_t_low)))*write_n+(de(str(read_t_low))+de(s

tr(read_t_high)))*read_n   
73.         for i in range(write_n):   
74.             v_input = np.append(v_input,self.pulse_V(write_V_high,write_V_low,write_t_high

, write_t_low,t_res ))   
75.         for i in range(read_n):   
76.             v_input = np.append(v_input,self.pulse_V(read_V_high,read_V_low,read_t_high, r

ead_t_low,t_res ))   
77.         Time = np.linspace(0, float(T),len(v_input))   
78.         return v_input, Time   
79.        
80.     def pulse_train_rw(self, write_V_high,write_V_low,read_V_high,read_V_low, write_n, rea

d_n, write_t_high, write_t_low, read_t_high, read_t_low, t_res):   
81.         v_input=[]   
82.         Time=[]          
83.         T = (de(str(write_t_high))+de(str(write_t_low)))*write_n+(de(str(read_t_low))+de(s

tr(read_t_high)))*read_n   
84.         for i in range(read_n):   
85.             v_input = np.append(v_input,self.pulse_V(read_V_high,read_V_low,read_t_high, r

ead_t_low,t_res ))   
86.         for i in range(write_n):   
87.             v_input = np.append(v_input,self.pulse_V(write_V_high,write_V_low,write_t_high

, write_t_low,t_res ))   
88.         Time = np.linspace(0, float(T),len(v_input))   
89.         return v_input, Time   
90.        
91.     def pulse_train2(self, write_V_high,write_V_low,read_V_high,read_V_low, write_n, read_

n, write_t_high, write_t_low, read_t_high, read_t_low, t_res):   
92.         v_input=[]   
93.         T= (de(str(write_t_high))+de(str(write_t_low)))*write_n*2+(de(str(read_t_low))+de(

str(read_t_high)))*read_n   
94.         for i in range(write_n):   
95.             v_input = np.append(v_input,self.pulse_V(write_V_high,write_V_low,write_t_high

, write_t_low,t_res ))   
96.         for i in range(read_n):   
97.             v_input = np.append(v_input,self.pulse_V(read_V_high,read_V_low,read_t_high, r

ead_t_low,t_res ))   
98.         for i in range(write_n):   
99.             v_input = np.append(v_input,self.pulse_V(write_V_high,write_V_low,write_t_high

, write_t_low,t_res ))   
100.         Time = np.linspace(0, float(T),len(v_input))   
101.         return v_input, Time   
102.       
103.         #generate width_ini and Conductance_ini   
104.     def ini_cond(self):   
105.         width_ini = np.zeros((self.m,self.m))   
106.         cond_ini = np.zeros((self.m,self.m))   
107.         l=0   
108.         for i in range(self.m):   
109.             for j in range(self.m):   
110.                 if j>i and self.input_map[i][j]>0:   
111.                     width_ini[i][j]=width_ini[j][i] = np.random.normal(self.w_ini,0.001,se

lf.n)[l]   
112.                     cond_ini[i][j]=cond_ini[j][i] = self.condc(width_ini[i][j],1)   
113.                     l+=1   
114.         return cond_ini, width_ini   
115.  
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116.     def width_distribute(self):   
117.         width_array = np.zeros((self.m,self.m))   
118.         w_array = stats.gamma.rvs(self.walpha,self.wloc, self.wscale, size=self.n)   
119.         l=0   
120.         for i in range(self.m):   
121.             for j in range(self.m):   
122.                 if j>i and self.input_map[i][j]>0:   
123.                     width_array[i][j]=width_array[j][i] = w_array[l]   
124.                     l+=1   
125.         plt.hist(w_array,10)   
126.         plt.savefig(self.filepath+'junction_length_distribution',dpi=100)   
127.         plt.clf()   
128.         plt.close()   
129.         data_saveDirectory = Savelib.createSaveDirectory(self.filepath,'junction_length_di

stribution')   
130.         Savelib.saveExperiment(data_saveDirectory,width= w_array)   
131.         return width_array   
132.    
133.     def width_grow(self, w_in,V_diff, delt_t, w_len):   
134.    
135.         delt_w1 = delt_t*V_diff/self.t_rise   
136.         delt_w2= -delt_t*math.fabs(w_in)/self.t_fall   
137.         w_out = math.copysign(math.fabs(w_in + delt_w1)+ delt_w2,w_in+delt_w1)   
138.        
139.         if math.fabs(w_out)>w_len:   
140.             w_out = math.copysign(w_len,w_out)   
141.         elif math.fabs(w_out)-math.fabs(w_in)<0 and w_in*V_diff>0 and w_out*V_diff<0 :   
142.             w_out=0   
143.             # print('weight erro')   
144.         return w_out   
145.    
146.     def width_G_convert(self,width,w_len):   
147.         func1 = self.G_on*math.fabs(width)+self.G_off*(w_len-math.fabs(width))   
148.         return func1   
149.    
150.     def condc(self, width, w_len):   
151.         width=math.fabs(width)   
152.         if width<self.w_cut:   
153.             func = self.width_G_convert(width, w_len)   
154.         elif width >= self.w_cut:   
155.             G_cut = self.width_G_convert(self.w_cut, w_len)   
156.             g_para1=(self.G_on-G_cut)/(math.exp(1/self.t_con)-

math.exp(self.w_cut/self.t_con))   
157.             g_para2=self.G_on-g_para1*math.exp(1/self.t_con)   
158.             func = g_para1*math.exp(math.fabs(width)/self.t_con)+g_para2   
159.         return func   
160.    
161.     def v_array(self, G_pre,I_input):   
162.         G=np.zeros((self.m,self.m))   
163.         for i in range(self.m):   
164.             for j in range(self.m):   
165.                 if self.input_map[i][j]>0:   
166.                     G[i][i]+=G_pre[i][j]    
167.                     G[i][j]=-G_pre[i][j]   
168.         G[0][0]+=self.G_comp   
169.         G=G[:self.m-1,:self.m-1]   
170.         B=np.zeros((self.m-1,1))   
171.         B[0]=1   
172.         C=B.transpose()   
173.         A = np.zeros((self.m,self.m))   
174.         A[:-1,:-1]=G   
175.         Z= np.zeros((self.m,1))   
176.         Z[0]=I_input   
177.    
178.         X=np.linalg.solve(A,Z)   
179.         v_sum = -np.copy(X[0])   
180.         v_node =np.copy(X)   
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181.         v_node[-1]=0   
182.         v_node = np.transpose(v_node)   
183.         return v_node, v_sum   
184.        
185.     def v_convert(self, X):   
186.         vmap=np.zeros((self.m,self.m))   
187.         for i in range(self.m):   
188.             for j in range(self.m):   
189.                 if self.input_map[i][j]>0 and i<j:   
190.                     vmap[i][j]=vmap[j][i]=(X[i]-X[j])   
191.         return vmap   
192.        
193.     def weigh_convert(self, W):   
194.         W_out = np.zeros((W.shape[0],self.n))   
195.         for k in range(W.shape[0]):   
196.             l=0   
197.             for i in range(W.shape[1]):   
198.                 for j in range(W.shape[2]):   
199.                     if j>i and self.input_map[i][j]>0:   
200.                         W_out[k][l]=math.fabs(W[k][i][j])   
201.                         l+=1   
202.         return W_out   
203.        
204.     def i_convert(self, I):   
205.         i_out = np.zeros((I.shape[0], self.m))   
206.         for k in range(I.shape[0]):   
207.             for i in range(self.m):   
208.                 for j in range(self.m):   
209.                     if I[k][i][j]>0:   
210.                         i_out[k][i]+= I[k][i][j]   
211.            
212.         return i_out   
213.     #start simulation with G_grow   
214.     def sim_net(self,v_input,Time):               
215.         time_len = len(Time)   
216.         width = np.zeros((time_len,self.m,self.m))   
217.         I=np.zeros((time_len,self.m,self.m))   
218.         G=np.zeros((time_len,self.m,self.m))   
219.         V=np.zeros((time_len,self.m,self.m))   
220.         E=np.zeros((self.m,self.m))   
221.         delt_t = Time[1]-Time[0]   
222.         v_node=np.zeros((time_len,self.m))   
223.         cond_ini, width_ini = self.ini_cond()   
224.         width_len = self.width_distribute()   
225.         I_sum = np.zeros(time_len)   
226.         #get G_t1, I_map!!!   
227.         for k,t in enumerate(Time):   
228.             G[k]=cond_ini   
229.             v_node[k,:], I_sum[k] = self.v_array(cond_ini, v_input[k])    
230.             V[k]=self.v_convert(v_node[k])   
231.             for i in range(self.m):   
232.                 for j in range(self.m):   
233.                     I[k][i][j]=V[k][i][j]*G[k][i][j]   
234.                     if j>i and self.input_map[i][j]>0:   
235.                         E[i][j] += I[k][i][j]*V[k][i][j]*delt_t   
236.                         if E[i][j]> self.E_cut:   
237.                             width[k][i][j]= width[k][j][i]= width_ini[i][j]=0   
238.                             cond_ini[i][j]=cond_ini[j][i] = self.condc(width_ini[i][j],wid

th_len[i][j])   
239.                             E[i][j]=0   
240.                         else:   
241.                             width[k][i][j]= width[k][j][i]=width_ini[i][j]                

   
242.                             width_ini[i][j]=self.width_grow(width_ini[i][j],V[k][i][j],del

t_t,width_len[i][j])   
243.                             cond_ini[i][j]=cond_ini[j][i] = self.condc(width_ini[i][j],wid

th_len[i][j])   
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244.         I_edge = self.weigh_convert(I)   
245.         I_node = self.i_convert(I)   
246.         G_edge = self.weigh_convert(G)   
247.         W_edge = self.weigh_convert(width)   
248.         return I, V, G ,E, width, v_node,I_sum, I_edge, G_edge, W_edge,I_node   
249.        
250.     def sim_net2(self,v_input,Time,cond_ini,width_ini):               
251.         time_len = len(Time)   
252.         width = np.zeros((time_len,self.m,self.m))   
253.         I=np.zeros((time_len,self.m,self.m))   
254.         G=np.zeros((time_len,self.m,self.m))   
255.         V=np.zeros((time_len,self.m,self.m))   
256.         E=np.zeros((self.m,self.m))   
257.         delt_t = Time[1]-Time[0]   
258.         v_node=np.zeros((time_len,self.m))   
259.         I_sum = np.zeros(time_len)   
260.         width_len = self.width_distribute()   
261.         #get G_t1, I_map!!!   
262.         for k,t in enumerate(Time):   
263.             G[k]=cond_ini   
264.             v_node[k,:], I_sum[k] = self.v_array(cond_ini, v_input[k])    
265.             V[k]=self.v_convert(v_node[k])   
266.             for i in range(self.m):   
267.                 for j in range(self.m):   
268.                     I[k][i][j]=V[k][i][j]*G[k][i][j]   
269.                     if j>i and self.input_map[i][j]>0:   
270.                         E[i][j] += I[k][i][j]*V[k][i][j]*delt_t   
271.                         width[k][i][j]= width[k][j][i]=width_ini[i][j]                   
272.                         width_ini[i][j]=self.width_grow(width_ini[i][j],V[k][i][j],delt_t,

width_len[i][j])   
273.                         cond_ini[i][j]=cond_ini[j][i] = self.condc(width_ini[i][j],width_l

en[i][j])   
274.         I_edge = self.weigh_convert(I)   
275.         I_node = self.i_convert(I)   
276.         G_edge = self.weigh_convert(G)   
277.         W_edge = self.weigh_convert(width)   
278.         return I, V, G ,E, width, v_node,I_sum, I_edge, G_edge, W_edge,I_node   
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simulation.py 

1. import network_simulation_config as config   
2. import networkx as nx   
3. import numpy as np   
4. import matplotlib.pyplot as plt   
5. from decimal import Decimal as de   
6. import Savelib    
7. import matplotlib.colors as pcolors   
8. import matplotlib.patches as patches # to graph electrodes   
9. import create_network as create_nw   
10.    
11. filepath = 'data/net_p89/'   
12.    
13. create_nw.filepath =  filepath   
14. create_nw.density = 0.1   
15. create_nw.box_x=60   
16. create_nw.box_y=60   
17.    
18. dataname =  'datafile'   
19. data_saveDirectory = Savelib.createSaveDirectory(filepath, dataname)   
20. Savelib.copyFiles(filepath)   
21. cf = config.simulation_config()   
22. cf.w_cut =0   
23. cf.E_cut = 5000  #thermal break down of single junction, E_default = 0.000005   
24.    
25.    
26. pos = nx.spring_layout(cf.P)   
27. #pos = nx.circular_layout(cf.P)   
28. options = {'node_color':'black','node_size':10, 'width': 1, 'pos':pos, 'edge_camp':plt.cm.

spring}   
29. nx.draw(cf.P,**options,)   
30. nx.draw_networkx_nodes(cf.P,pos,nodelist=[0],node_color = 'red', node_size = 150, alpha = 

0.8)   
31. nx.draw_networkx_nodes(cf.P,pos,nodelist=[cf.m-

1],node_color = 'blue', node_size = 150, alpha = 0.8)   
32. plt.savefig(filepath+'map'+'.png',dpi=300)   
33. #plt.show()   
34. plt.clf()   
35.    
36. input_map = cf.input_map   
37. con_ini, width_ini= cf.ini_cond()   
38.    
39. V_high = np.array([25])  
40. t_fall = np.array([5])  
41. t_rise = np.array([3,2.5,2])  
42. t_con = np.array([0.02,0.05,0.1])   
43.    
44. t_low= np.array([2])   
45. t_high = np.array([0.2])  
46. t_sleep = np.array([20])   
47. t_res = 0.005   
48.    
49. def create_data(write_V_high,write_V_low,read_V_high,read_V_low, write_n, read_n, write_t_

high, write_t_low,read_t_high,read_t_low,t_res,con_ini, width_ini):      
50.     '''''define pulse train'''   
51.     v_input, Time = cf.pulse_train_rw(write_V_high,write_V_low,read_V_high,read_V_low, wri

te_n, read_n, write_t_high, write_t_low,read_t_high,read_t_low,t_res)   
52.     '''''start simulation'''   
53.     print('measure time = ', Time[-1], ' frame = ', len(v_input))    
54.     I, V, G ,E, width, v_node,I_sum, I_edge, G_edge, W_edge,I_node= cf.sim_net2(v_input,Ti

me, con_ini, width_ini)   
55.     return I, V, G ,E, width, v_node,I_sum, I_edge, G_edge, W_edge,I_node, Time, v_input   
56.    
57. def fd_save(Time,v_input,v_node,I_sum, I_edge, G_edge, W_edge,I_node,savename):   
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58.     subtitle_name ='V:'+str(write_V_high)+'V/mesT:'+"{:.1f}".format(Time[-
1])+'s\n'+'tau:R='+"{:.1f}".format(rise)+',F='+"{:.1f}".format(fall)+' ,tcon='+"{:.2f}".fo
rmat(tcon)   

59.     plt.figure(figsize=(5,20))   
60.       
61.     plt.subplot(611)   
62.     plt.plot(Time, v_input)   
63.     plt.title('V-t\n'+subtitle_name)   
64.     plt.subplot(612)   
65.     plt.plot(Time,I_sum)   
66.     plt.title('I-t\n'+ subtitle_name)   
67.     plt.subplot(613)       
68.     plt.plot(v_input,I_sum)   
69.     plt.title('I-V\n'+subtitle_name)   
70.     plt.subplot(614)   
71.     plt.plot(Time,I_node)   
72.     plt.title('I_node-t\n'+subtitle_name)    
73.     plt.subplot(615)       
74.     plt.plot(Time,G_edge)   
75.     plt.title('G_edge-t\n'+subtitle_name)     
76.     plt.subplot(616)   
77.     plt.plot(Time,W_edge)   
78.     plt.title('width-t\n'+subtitle_name)   
79.     plt.tight_layout()   
80.     plt.savefig(filepath+savename+'.png')   
81.     plt.clf()  
82.   
83.     #save data   
84.     data_saveDirectory = Savelib.createSaveDirectory(filepath, savename)   
85.     Savelib.saveExperiment(data_saveDirectory,input_map = cf.input_map, I_edge=I_edge, G_e

dge=G_edge, v_input =v_input, W_edge=W_edge, Time = Time, I_sum = I_sum,v_node = v_node,I_
node=I_node, wires = cf.wires, junctions = cf.junctions)   

86.    
87. def CSS_sim(write_V_high,savename,t_high,t_low,fall, rise, tcon):      
88.     cf.t_fall = fall   
89.     cf.t_rise = rise   
90.     cf.t_con=tcon   
91.        
92.     '''''define pulse train'''   
93.     write_V_low = 0   
94.     write_t_high = 0.1   
95.     write_t_low = 0.1   
96.     write_n= int(de('10')/(de(str(write_t_high))+de(str(write_t_low))))   
97.        
98.    
99.     read_V_low = 0    
100.     read_V_high = write_V_high   
101.       
102.     '''''get write_n'''   
103.     con_ini0=np.copy(con_ini)   
104.     width_ini0=np.copy(width_ini)   
105.     I0, V0, G0 ,E0, width0, v_node0,I_sum0, I_edge0, G_edge0, W_edge0,I_node0, Time0, v_in

put0 = create_data(write_V_high,write_V_low,0,read_V_low, write_n, 0, write_t_high, write_
t_low,0,0,t_res,con_ini0, width_ini0)   

106.     fd_save(Time0, v_input0,v_node0,I_sum0, I_edge0, G_edge0, W_edge0,I_node0,savename)   
        

107.     write_n_list=[]   
108.     for f in range(len(I_sum0)):   
109.         if 0.96E-7<I_sum0[f]<2E-7:   
110.             write_n_list.append(int(f*de(str(t_res))/(de(str(write_t_high))+de(str(write_t

_low)))))   
111.     write_n = write_n_list[0]   
112.     print(write_n,f, I_sum0[f])   
113.             
114.     '''''learning innput'''   
115.     con_ini1=np.copy(con_ini)   
116.     width_ini1=np.copy(width_ini)   
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117.     I1, V1, G1 ,E1, width1, v_node1,I_sum1, I_edge1, G_edge1, W_edge1,I_node1, Time1, v_in
put1 = create_data(write_V_high,write_V_low,0,0, write_n,0, write_t_high, write_t_low,0,0,
t_res,con_ini1, width_ini1)   

118.        
119.     def css(read_V,read_t_high,read_t_low, appendname):   
120.         t_rel=0   
121.         con_ini2=np.copy(G1[-1])   
122.         width_ini2=np.copy(width1[-1])   
123.         I2, V2, G2 ,E2, width2, v_node2,I_sum2, I_edge2, G_edge2, W_edge2,I_node2, Time2, 

v_input2 = create_data(write_V_high,write_V_low,read_V,read_V_low, write_n, read_n, write_
t_high, write_t_low,read_t_high,read_t_low,t_res,con_ini2, width_ini2)   

124.   
125.         for p in range(len(I_sum2)):   
126.             if I_sum1[-1]*0.7<I_sum2[p]<=I_sum1[-1]:   
127.                 t_rel = int(p*de(str(t_res)))   
128.    
129.         I_sum = np.append(I_sum1, I_sum2)   
130.         I_edge=np.zeros((len(I_sum),cf.n))   
131.         G_edge=np.zeros((len(I_sum),cf.n))   
132.         W_edge=np.zeros((len(I_sum),cf.n))   
133.         I_node=np.zeros((len(I_sum),cf.m))   
134.         v_node=np.zeros((len(I_sum),cf.m))   
135.         I_edge[:len(Time1),:]=I_edge1   
136.         I_edge[len(Time1):,:]=I_edge2   
137.         G_edge[:len(Time1),:]=G_edge1   
138.         G_edge[len(Time1):,:]=G_edge2   
139.         W_edge[:len(Time1),:]=W_edge1   
140.         W_edge[len(Time1):,:]=W_edge2   
141.         I_node[:len(Time1),:]=I_node1   
142.         I_node[len(Time1):,:]=I_node2   
143.         v_node[:len(Time1),:]=v_node1   
144.         v_node[len(Time1):,:]=v_node2   
145.         Time = np.append(Time1, Time2+Time1[-1])   
146.         v_input= np.append(v_input1,v_input2)   
147.    
148.         fd_save(Time,v_input,v_node,I_sum, I_edge, G_edge, W_edge,I_node,savename+appendna

me)   
149.         return Time1[-1], t_rel   
150.        
151.    
152.     t_scale=[]      
153.     for g, read_t_high in enumerate(t_high):   
154.         for j, t_s in enumerate(t_sleep):       
155.             for l, read_t_low in enumerate(t_low):   
156.                 read_t_low=read_t_low-read_t_high   
157.                 read_n = int(de(str(t_s))/(de(str(read_t_low))+de(str(read_t_high))))   
158.                 t_l, t_rl = css(read_V_high,read_t_high,read_t_low,'_'+str(g)+'_'+str(j)+'

_'+str(l)+'CSS')   
159.                 t_rl=t_rl-t_s   
160.                 t_scale.append((read_t_high, t_s,read_t_low,1, t_l,t_rl))   
161.     print(t_scale)   
162.     return t_scale   
163.           
164. for n, tcon in enumerate(t_con):   
165.     for i, write_V_high in enumerate(V_high):   
166.         for k, fall in enumerate(t_fall):   
167.             for m,rise in enumerate(t_rise):                          
168.                 savename=dataname +'_'+str(n)+'_'+str(i)+'_'+str(k)+'_'+str(m)   
169.                 time_scale = CSS_sim(write_V_high,savename,t_high,t_low,fall, rise, tcon)  
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