
Safe Reinforcement Learning for
Reliable Systems

March ２０２１

Akifumi Wachi

Safe Reinforcement Learning for
Reliable Systems

Degree Programs in Systems and Information Engineering

University of Tsukuba

March ２０２１

Akifumi Wachi

Declaration

I hereby declare that except where specific reference is made to the work of others, the
contents of this dissertation are original and have not been submitted in whole or in part
for consideration for any other degree or qualification in this, or any other university. This
dissertation is my own work and contains nothing which is the outcome of work done in
collaboration with others, except as specified in the text and Acknowledgements.

Akifumi Wachi
February 2021

Acknowledgements

I’m grateful to my advisor Professor, Jun Sakuma, for the support throughout my PhD
study. He gave me the vision on how to view my research work from a long-term, bird’s-eye
view. Under the current COVID-19 situations, his flexible way of communications are very
comfortable for me.

I would like to sincerely thank Prof. Hiroyuki Kitagawa, Prof. Kazuhiro Fukui, Prof.
Yohei Akimoto, Prof. Yukino Baba, and Prof. Takayuki Osa who are on my research
committee, for their helpful discussions and suggestions.

A part of this thesis in based on the collaboration with Yanan Sui. I really appreciate his
continuous and helpful discussion and support.

My PhD study has been conducted while working at IBM. I would like to thank all the
colleagues in IBM Research AI for letting me pursue this PhD degree.

Last, I would like to give my deepest gratitude to my family for their endless love and
support.

Abstract

Autonomous agents are playing an ever-increasing role, including in automated driving
vehicles or house-care robots. When an autonomous agent interacts with humans, one of
the biggest requirement is safety. Especially in the autonomous driving examples, even a
single mistake might lead to terrible results; hence it is extremely important to guarantee the
soundness of the system after deployment at the development stage.

With the advancement of AI or machine learning technologies, the role of software is
becoming more and more complex and sophisticated. Automated driving systems need to
deal with extremely complex software involving image recognition, decision making, etc. In
order to improve the reliability and safety of software, construction and validation must be
steadily carried out in the development stage.

On the other hand, reinforcement learning is a promising paradigm for optimizing
an agent’s policy and has made significant advances in recent years in many domains.
Unfortunately, however, conventional reinforcement learning studies have been ignored
safety issues; hence, it is difficult to apply reinforcement learning techniques in safety-critical
systems because an agent is likely to execute unsafe actions for the environment or the agent
itself.

Therefore, we proposed a reinforcement learning algorithm that incorporates the agent’s
safety while seeking to optimize the policy maximizing the cumulative reward (i.e., utility).
This algorithm provides theoretical guarantees for both reward and safety; that is, with high
probability, the agent is guaranteed to achieve a near-optimal policy while executing only
safe actions even during training phase as well as inference phase.

In addition, under the consideration that reinforcement learning would be useful not only
for software construction but also software validation, we also propose a method to validate
an agent using multi-agent adversarial reinforcement learning. This method is not for training
an agent safely but for validate a target (either RL-based or rule-based) agent by training
other agents using adversarial reinforcement learning.

In this thesis, we discuss how to construct and validate the policy of an autonomous agent
for making it work properly in safety-critical applications, while leveraging reinforcement
learning techniques.

Table of contents

List of figures xi

List of tables xiii

Nomenclature xv

1 Introduction 1

1.1 Contributions . 4
1.2 Publications Relevant to this Dissertation 5

2 Background 7

2.1 Policy Optimization for Dynamical Systems 7
2.2 Optimal Control . 8
2.3 Reinforcement Learning . 8
2.4 Exploration and Exploitation . 10
2.5 Sample Complexity and PAC-MDP . 11

3 Safe Reinforcement Learning in Constrained Markov Decision Processes 13

3.1 Problem Statement . 14
3.2 Background . 16
3.3 Algorithm . 19

3.3.1 Exploration of Safety (Step 1) . 21
3.3.2 Exploration and Exploitation of Reward (Step 2) 21
3.3.3 Early Stopping of Exploration of Safety 22
3.3.4 More Practical Early Stopping Algorithm 24

3.4 Theoretical Results . 25
3.4.1 Safety Guarantee and Completeness 25
3.4.2 Near-Optimality . 26

3.5 Experiment . 28

x Table of contents

3.5.1 Synthetic GP-SAFETY-GYM Environment 28
3.5.2 Simulated Mars Surface Exploration 30

3.6 Conclusion . 31
3.7 Limitation . 32

4 Policy Testing with Multi-agent Adversarial Reinforcement Learning 33

4.1 Related Work . 35
4.2 Preliminaries . 35
4.3 Problem Statement . 37
4.4 FailMaker-AdvRL . 37

4.4.1 Adversarial Learning with Personal Reward 38
4.4.2 Contributors Identification (CI) 39
4.4.3 Adversarial reward allocation (AdvRA). 39
4.4.4 Prioritized Sampling by Replay Buffer Partition (PS-RBP) 40
4.4.5 Overview of FAILMAKER-ADVRL 41

4.5 Diverse FailMaker-AdvRL . 42
4.5.1 Key Variables for Diversity (KVfD) 44
4.5.2 Reward Function Characterized by KVfD 45
4.5.3 Determining Reg-KVfD . 45
4.5.4 Experience Storing with Filtration (ESwF) 46
4.5.5 Inheriting the Experience . 46
4.5.6 Overview of DIV-FAILMAKER-ADVRL 46

4.6 Experiments for FAILMAKER-ADVRL . 47
4.6.1 Simple Multi-agent Particle Environment 48
4.6.2 Autonomous Driving . 50

4.7 Experiments for DIV-FAILMAKER-ADVRL 52
4.8 Conclusion and Future Work . 54
4.9 Limitation . 54

5 Conclusion 57

5.1 Future Work . 57

References 59

Appendix A Appendix for Safe RL in Constrained MDPs 67

List of figures

3.1 Illustration of My, used in the ES
2 algorithm. The yellow and blue regions

represent X+
t and X

�
t , respectively. The red region (i.e., X \ X

+
t) is unsafe

with high probability. 22
3.2 Illustration of Mz. This MDP is characterized by the virtual state z and the

virtual transition probability P z. 24
3.3 Example screen capture from the GP-SAFETY-GYM environment. 28
3.4 Average reward over the episodes, comparing the performance of SNO-

MDP with ES
2 and the baselines. 29

3.5 Average reward over the episodes, showing the effects of ES
2 and P-ES

2.
The colored circles represent when the transition from safe exploration to
reward optimization happens for each method. 29

3.6 Mars terrain data. 31

4.1 Conceptual image. A blue car is a rule-based player, and two red cars are
adversarial RL-based NPCs. 34

4.2 Conceptual image of PS-RBP. 40
4.3 Problem with a player and N NPCs. NPCs can get the adversarial reward

when the player fails. 42
4.4 Conceptual image of our problem. Suppose failure-scenarios have already

been obtained by humans and trained agents (i.e., RL-agent A). Our ultimate
objective is to find diverse failure-scenarios. As such, we train other agents
(i.e., RL-agent B) to make the tested car fail in scenarios different from the
ones that were previously obtained. 43

4.5 Illustration of DIV-FAILMAKER-ADVRL. After each episode, the experi-
ences are categorized and stored in the replay buffer, D with the pre-defined
probability based on the category. For the experiences categorized with E2,
the reward is set to non-positive value, �c. 44

xii List of figures

4.6 Comparing performance in simple multi-agent particle environment with one
NPC. The player’s failure rate is measured over the previous 100 episodes. . 49

4.7 Example of failure of player (blue) induced by adversarial NPC (red). . . . 51
4.8 (a) Relationship between generation and variance of the matrix transformed

using PCA. (b, c) Plot of the Reg-KVfDs (i.e., collision location of the player).
Each figure is for (b) Pure-CompetMARL and (c) DIV-FAILMAKER-ADVRL

(m  5). 53
4.9 Effect of ESwF (magenta: with ESwF; cyan: without ESwF). The cumulative

reward is measured over the 1,000 previous episodes. 54

List of tables

3.1 Experimental results with real Mars data. 32

4.1 Percentage of failures of player and NPC(s). FAILMAKER-ADVRL outper-
forms other baselines in terms of its ability to foil the player while constrain-
ing the percentage of failures of NPCs. 48

4.2 Percentage of failures of player and NPC(s). FAILMAKER-ADVRL outper-
forms other baselines in terms of its ability to foil the player while constrain-
ing the percentage of failures of NPCs. 51

4.3 Covariance matrices for Pure-CompetMARL and DIV-FAILMAKER-ADVRL. 52

Nomenclature

Roman Symbols

↵ scaling factor for reward

� scaling factor for safety

� discount factor

A action space

L loss function

S state space

µ deterministic policy

! transition noise

⇡ policy

✓ parameter

a action

d(·, ·) distance metric

f transition

g safety function

h safety threshold

J objective function

K kernel matrix

xvi Nomenclature

kg kernel for safety

kr kernel for reward

L Lipschitz constant

Q Q-function

r reward function

s state

S0 initial safe space

t time step

V value function

Acronyms / Abbreviations

AdvRA Adversarial Reward Allocation

BEB Bayesian Exploration Bonus

CI Contributor Identification

CPO Constrained Policy Optimization

DDPG Deep Deterministic Policy Gradient

DEM Digital Elevation Model

DOM Document Object Model

DPG Deterministic Policy Gradient

ES2 Early-stopping of Exploration of Safety

ESwF Experience Storing with Filtration

GAN Generative Adversarial Net

GNN Graph Neural Network

GP Gaussian Process

KVfD Key Variables for Diversity

Nomenclature xvii

MADDPG Multi-agent Deep Deterministic Policy Gradient

MARL Multi-agent Reinforcement Learning

MDP Markov Decision Process

MPC Model Predictive Control

NPC Non-player Character

P-ES2 Practical Early-stopping of Exploration of Safety

PAC-MDP Provably Approximately Correct Markov Decision Process

PG Policy Gradient

POMDP Partially-observable Markov Decision Process

PSRBP Prioritized Sampling by Replay Buffer Partition

RBF Radial Basis Function

Reg-KVfD Registered Key Variables for Diversity

RKHS Reproducing Kernel Hilbert Space

RL Reinforcement Learning

SafeExpOptMDP Safe Exploration and Optimization of MDP

SNO-MDP Safe Near-optimal Markov Decision Process

Chapter 1

Introduction

Automobile and aircraft systems are called safety-critical systems [60] because their safety
is directly related to a serious accident. Recently, automated driving systems and advanced
driving support systems, which are typical examples of safety-critical systems, have been
actively researched and developed, and the importance of the software for these systems
has been attracting a great deal of attention. The research problem to be addressed in this
dissertation is,

How should we deal with safety in safety-critical systems?

Our ultimate objective is to deploy a safe system in a real environment. Safety is a broad
concept; hence it is associated with various aspects of the system (e.g., hardware, software).
In this dissertation, we focus on the policy (i.e., decision-making algorithm) of the agent. In
other words, we ignore other aspects of the system. For example, we do not handle hardware
or image-recognition sub-system.

The process until the system is deployed in the real environment can be generally
classified into mainly two steps; that is, 1) construction phase and 2) validation phase. To
enhance the probability of the agent working properly in real environments, both construction
and validation phases should be conducted properly. In other words, it is significant to design
a system with a safe policy of the agent in the construction phase, and then test it to find bugs
or defects in validation phase.

Reinforcement learning (RL, [79]) has become increasingly popular as a framework for
learning optimal control policies directly by interacting with an a priori unknown environment,
while recently making significant progress as being represented by robotic manipulation
[41, 32, 26, 27] and mastering games [69, 39, 51, 70]. The paradigm of reinforcement
learning is simple yet powerful, and it is known that the resulting policy tends to be more
efficient and robust. However, conventional RL algorithms were agnostic to safety. Because

2 Introduction

RL require agents to explore the environment first, random actions are likely to be executed
while learning the environment. This is a critical problems especially when the application
target is safety-critical such as autonomous driving and medical applications.

Construction of a safe policy

In the field of optimal control theory, there is a significant body of work on safety-constrained
decision-making [22, 65, 71, 14] under the problem setting that the “model” (i.e., state
transition and reward) is known a priori. Basically, safety is interpreted as stability, and
safety constraints can be implemented by carefully designing asymptotically stable control
[34], and one of the most notable methods is robust control [93, 25, 19]. For example, Aswani
et al. [5] considers all the admissible disturbances and obtains the tunes around the nominal
trajectory.

In RL settings where state transition function and/or reward function are unknown a priori,
Altman [2] considers constraints on expected performance under the name of constrained
Markov decision processes (CMDP). CMDPs have been extended to continuous state and
action spaces as being represented by trust region policy optimization (TRPO, [64]) or
constrained policy optimization (CPO, [1]). For example, Achiam et al. [1] and Chow et al.
[15] aimed to achieve a safe policy while constraining the Kullback-Leibler (KL) divergence
of the old and new policy. Also, Howard and Matheson [30] and Marcus et al. [47] introduced
risk-sensitivity in risk-sensitive Markov decision processes framework, and Bäuerle and Ott
[7] consider the value at risk of performance. In distributional RL settings, Bodnar et al. [11]
incorporated various risk distortion metrics such as conditional value at risk CVaR), which
enables robots to manage risk using a Deep RL control policy. They all assume, in general,
that the safety function has some additive structure over time steps, as the cumulative reward
is calculated. Hence, these methods are not appropriate for the purpose of guaranteeing
safety at every time step; thus, the required level of safety is relatively low.

For safe RL approaches that require the agent to guarantee safety at every time step, we
must provide agents with a certain prior knowledge. Eysenbach et al. [20] and Turchetta et al.
[84] aimed to achieve safety by leveraging a library of reset controllers as prior knowledge,
which are triggered and prevent further interactions with the environment when the agent is
about to execute unsafe actions. However, such an approach can be used only when the agent
is allowed to be reset in such cases where the agent is monitored by human during training in
a laboratory. Hence, the approaches based on reset controllers cannot be used when agents
are not allowed to start over from the beggining of the episode such as planetary rover or
autonomous driving applications. In the problem settings where the agent needs to guarantee
safety without resetting, [9] provided the agent with prior information of 1) what states are

3

safe and 2) a part of the parameters of the state transition function under the name of safe
model-based RL [21, 17, 45]. Thus, the resulting algorithm is well suited for such contexts
as a drone learning how to hover under the condition that the system dynamics of the drone
is partially unknown a priori. The parameters of a drone are not perfectly known a priori,
but we have prior knowledge on what states are unsafe (e.g., a pitch angle of more than 50
degrees is unsafe). The above previous work focused on the uncertainty of the dynamics of
the system (i.e., state transition function), and is not capable of dealing with the uncertainty
of the safety associated with the environment.

Under the problem settings where agents are extremely discouraged to make even a
single mistake during learning the environment (without resetting), several previous work
assumed that safety function associated with the environment has some desirable structure
under the name of safe exploration [10, 82, 78, 83, 87]. Specifically, Sui et al. [77] assumed
that the safety of the environment has some regularity that can be captured by a certain
kernel function; that is, the safety function value of a state is assumed to be similar to the
one of neighboring states. Under this assumption, in a safety-constrained MDP, Wachi et al.
[87] proposed an algorithm for maximizing the cumulative reward under safety constraints
while learning the safety function structure with Gaussian processes. This previous work
guaranteed safety with high probability, but there was no guarantee with regard to the
optimality of the acquired policy. Given that the primary objective is still to maximize the
cumulative reward, it is an open problem how to acquire the optimal policy while exploring
an environment with a priori unknown reward and safety functions without resetting.

Validation of the safety of a policy.

On the other hands, no matter how carefully a software is designed, bugs and glitches could
occur. Thus, efficient software testing is required for making software development more
productive. Automated software testing is preferable because human software testing is
expensive in terms of cost and efficiency. Artzi et al. [4] proposed a method for conducting
random test case generation for web applications written by JavaScript. They aimed to find
test suites with high coverage as well as sequences leading to programming errors. Marchetto
and Tonella [46] generated a test suite of AJAX applications using a meta-heuristic algorithm.
They ran the application to obtain a machine, and its state is the application’s DOM-tree
(Document object model) and its transitions (e.g., messages from the server and/or user
input). Their goal was to generate a test suite with a maximum variety of event interactions.
As a method for automated software testing, reinforcement learning has also been leveraged.
For example, Bauersfeld and Vos [8] proposed a reinforcement learning based approach
for finding bugs in Mac OSX software. They leveraged a Q-learning and used a manually

4 Introduction

defined Q-table, where a Q-value is learned for each state-action pair. Also, Harries et al.
[28] formulated a software testing task as an Markov decision process and solved it using
deep reinforcement learning called DRIFT. They regarded the tree-structured symbolic
representation of the software as the state, and then modeled a generalizeable Q-function
with Graph Neural Networks (GNNs). The above previous studies have typically addressed
discrete and tabular MDP. Also, in the field of autonomous driving, several previous studies
addressed how to test the software, but great deal of previous work [57, 81] has focused
on test-case-generation related to image recognition. Hence, it is open problem of how to
create test cases related to decision making of the autonomous driving vehicle in continuous
state and action spaces. As software testing technologies, Nonnengart et al. [55] proposed an
approach called CriSGen based on formal method for creating critical traffic scenarios in a
automated and complete manner. Wang et al. [88] incorporated planning and sensing aspects
of autnomous driving system and then proposed a method to create adversarial scenarios for
LiDAR-based self-driving cars.

1.1 Contributions

In this thesis, we discuss how to design and validate an autonomous agent for safety-critical
applications while leveraging RL paradigm with high performance.

Safe reinforcement learning with theoretical guarantee on near-optimality (Chapter 3).

First, we consider designing safe and reliable software of the agent using reinforcement
learning. We propose a safe reinforcement learning algorithm, called safe near-optimal
MDP, SNO-MDP algorithm, for achieving a near-optimal cumulative reward while guar-
anteeing safety at every time step without resetting. Our algorithm learns a priori unknown
environments while learning reward and safety function structures via Gaussian processes
under regularity assumptions. We examine SNO-MDP by applying PAC-MDP analysis
and prove that, with high probability, the acquired policy is near-optimal with respect to the
cumulative reward while guaranteeing safety. Additionally, we build an openly-available
test-bed called GP-SAFETY-GYM for synthetic experiments and empirically show that our
algorithm performs better than existing methods.

Multi-agent adversarial reinforcement learning for policy validation (Chapter 4). Sec-
ond, we consider validating the policy of the target agent using reinforcement learning with
continuous state and action spaces. For the purpose of finding as many failure cases as
possible before deployment, we propose a method for efficiently finding failure scenarios by

1.2 Publications Relevant to this Dissertation 5

training the (other) adversarial agents using multi-agent deep reinforcement learning such
that the target agent fails. We see two advantages in this method. First, due to the nature of
reinforcement learning, adversarial vehicles learn strategies by trial and error, which reduces
human intervention and human resources. Next, reinforcement learning agents optimize their
behavior by a reward function, which is completely different from the way humans create
failure cases. Thus, it may create a failure case that is difficult for humans to find.

Software’s Safety and RL. In this dissertation, we discuss how to leverage reinforcement
learning techniques for reliable agent’s policies. Comparing with conventional techniques,
RL (being represented by deep RL) has recently achieved remarkable success. Unfortunately,
however, the success of RL has not been sufficiently reflected in actual problems. In this
dissertation, under the consideration that RL is one of the most promising approaches for
optimize the policy of the agent, we propose two RL-based approaches for achieving reliable
societies: one aims to train an agent safely using RL, and the other aims to validate the policy
of the traget agent using multi-agent adversarial RL. We hope that the proposed approaches
contribute to the realization of a safer society, where autonomous agents behave in a safer
and more useful manner in the real environment.

1.2 Publications Relevant to this Dissertation

This thesis is based on the following peer-reviewed articles. The first article is for the policy
optimization and the last two are for the policy validation. To be noted that the first article is
under collaboration with Dr. Yanan Sui.

• Akifumi Wachi and Yanan Sui. Safe Reinforcement Learning in Constrained Markov
Decision Processes. In International Conference on Machine Learning (ICML), 2020.

• Akifumi Wachi. Failure-Scenario Maker for Rule-Based Agent using Multi-agent
Adversarial Reinforcement Learning and its Application to Autonomous Driving. In
International Joint Conference on Artificial Intelligence (IJCAI), 2019.

• å0≠o (2020). Í’K‚ k˛Yãu˛Ñ7�f“í(D_1W±¸π�
⇣K’.Í’ ÄS⇢÷á∆, 51, 950-955.

Chapter 2

Background

2.1 Policy Optimization for Dynamical Systems

Dynamical systems are key basis of both control theory and reinforcement learning. Under
the Markov property assumption, we now consider the dynamical system at discrete time
step t. Let st and at denote the state and action at time t. Here, the state transition from st to
st+1 by the action at can be described as

st+1 = f(st,at,!t), (2.1)

where the function f is a state transition function, which depends on the i.i.d transition noise
!t with E[!t] = 0. When we deal with deterministic system without stochasticity (i.e.,
! = 0, the state transition function (2.1) can be represented as

st+1 = f(st,at). (2.2)

The objective is to obtain a policy at = ⇡(st); that is, we aim to calculate the optimal
action given the state xt and time t. As an evaluation metric for the quality of the action, we
define the reward function r(s,a). Note that, in control theory, “cost” function is usually
employed instead of “reward” function. In summary, the optimization problem can be
formulated as the one maximizing the (discounted) cumulative reward J⇡ : S ! R as
follows:

max
⇡

J⇡(s) = E!t

" 1X

t=0

�tr(st, ⇡(st))

����� s0 = s

#

subject to st+1 = f(st, ⇡(st),!t),

8 Background

where � 2 [0, 1) is a discount factor.

2.2 Optimal Control

In the optimal control theory, the reward function r and transition model f are assumed to be
known a priori. Intuitively, the objective of the optimal control theory is to get a policy ⇡

so that the agent with dynamics f could continue to take good state-action pairs that enjoys
high rewards.

Policy optimization by approximate dynamic programming. A popular approach is
approximate dynamic programming. In approximate dynamic programming, the objective
function J⇡(s) for a given state s and policy ⇡ are modeled with a parametric function
approximator. Policy improvement by approximate dynamic programming is conducted as
follows. Let an approximation of J⇡ denote J̃⇡, we aim to optimize a policy ⇡✓ parameterized
by ✓. In summary,

max
✓

J⇡(s) = E!t

"
�T J̃⇡(sT) +

T�1X

t=0

�tr(st, ⇡(st))

#

subject to st+1 = f(st, ⇡(st),!t),

Model predictive control. An alternative approach is model predictive control [13]. In
model predictive control, the control input at is directly optimized over a finite horizon T ,
without parameterization. Policy is given by

⇡(s) = argmin
a0

min
a1:T

E!t

"
�T J̃⇡(sT) +

T�1X

t=0

�tr(st,at)

#

subject to st+1 = f(st, ⇡✓(st),!t),

where a0:T is an optimal control sequence from time t = 0 to T .

2.3 Reinforcement Learning

In reinforcement learning, the reward function r and/or the transition model f are assumed
to be unknown a priori. Reinforcement learning algorithms can be classified into several
metrics. The first metric is whether the model is explicitly considered. In the model-based
reinforcement learning, we first learn a model of a system using the data and then solve the

2.3 Reinforcement Learning 9

control problem using the learned model. On the other hand, in the model-free reinforcement
learning, we directly optimize the policy by means of the sampled trajectories without
explicitly modeling the system. Another metric is value-based RL vs. policy based RL. In
the following, background algorithm necessary for understanding Chapter 3 and Chapter 4.

Value-based RL algorithms. Value iteration is one of the most fundamental algorithms in
RL under the assumption that the transition is known. The optimal value function is given by

V ⇤(s) := max
⇡

V ⇡(s),

which is the largest value in terms of the long-term cumulative reward from a state s. A
optimal policy ⇡⇤ satisfies

V ⇡⇤
= V ⇤(s) 8s 2 S.

It is known that value iteration algorithm achieves the convergence guarantee. [79] Let n be
the number of iteration. Then, we have

lim
n!1

|Vn � V ⇤
| = 0.

To be noted that the value function and Q-function satisfy V ⇤(s) = maxa Q⇤(s, a).

When the state transition is unknown a priori, Q-learning is frequently used which
leverages action-value function

Q(s, a) = E
" 1X

t=0

�tr(st, at)

����� s = s0, a = a0

#
.

This Q-function is known to satisfy the following Bellman equation:

Q(s, a) = E [r(s, a) + �Q(s0, a0)] .

While conventional Q-learning methods have obtained the optimal policy using Q-table, deep
RL algorithms has been paid attention recently. In deep Q-networks (DQN), the action-value
function Q⇤ for the optimal policy ⇡⇤ is obtained by minimizing the following loss:

L(✓) = Es,a,r,s0
⇥
(Q⇤(s, a | ✓)� y)2

⇤
,

10 Background

where ✓ is a parameter of the network which is periodically updated. Also, y is defined as
follows using the target Q-function, Q̄⇤

y = r + �max
a0

Q̄⇤(s0, a0).

Policy-based RL. Policy gradient (PG) algorithms are popular in RL tasks. The key idea of
PG is to directly optimize the parameters ✓ of policy ⇡ to maximize the expected cumulative
reward by calculating the policy’s gradient with regard to ✓.

r✓J(✓) = E[r✓ log⇡✓(a | s)Q⇡(s, a)],

One of the main focus in PG algorithms is how to estimate Q⇡. When we simply use a
sample return

PT
⌧=t �

i�tri, it is called REINFORCE [89] algorithm.
Deterministic policy gradient (DPG) algorithms are variants of PG algorithms that extend

the PG framework to deterministic policy, µ✓ : S ! A. In the DPG framework, the gradient
of the objective function J(✓) = Es⇠pµ [R(s, a)] is written as:

r✓J(✓) = Es⇠D[r✓µ✓(s)raQ
µ(s, a)|a=µ✓(s)],

where ⇢µ is the state distribution, and D is the replay buffer that contains the tuple, (s, a, r, s0).
Deep deterministic policy gradient (DDPG) approximates the deterministic policy µ (i.e.,

actor) and critic Qµ (i.e., critic) using deep neural networks, which is a variant of actor-critic
algorithms [37] as with asynchronous advantage actor-critic (A3C) and advantage actor-critic
(A2C) algorithms (Mnih et al. [49]).

2.4 Exploration and Exploitation

Because the RL problems solve the problem with the unknown reward function and state
transition function, the agent cannot obtain the optimal policy the beginning. Hence, the
agent needs to learn the a priori unknown functions (i.e., get more knowledge on the
function structure). This process is called "exploration." On the other hand, once the agent
acquires precise reward and state transition functions, the agent could optimize the policy by
maximizing the cumulative reward on the basis of the known reward and safety functions.
This process is called "exploitation."

Intuitively, exploration-exploitation dilemma is exampled by the process to find a good
restaurant. Here, exploration is to go to the restaurant for which you do not have information
(i.e., price, taste), and exploitation is to go to your favorite restaurant. In order to identify the

2.5 Sample Complexity and PAC-MDP 11

best restaurant, you need to explore new restaurants, but a new restaurant may be terrible. For
the identification of the optimal solution, you must solve exploration-exploitation dilemma.

Exploration-exploitation dilemma. A fundamental problem in RL is called exploration
and exploitation dilemma. If the agent spend too much time for exploration, the agent could
not get much cumulative reward and the acquired policy is poor. If the agent tries to optimize
policy with imprecise reward and state transition, the acquired policy is not consistent with
the true environment. Therefore, the agent mush balance exploration and exploitation.

Safety in Exploration. A problem addressed in this dissertation is related to safety in
exploration. Exploration in RL usually conducted by randomly sampling the next action
(e.g., ✏-greedy); hence, the agent would execute unsafe actions. In the exploration phase,
the agent does not know the precise reward and/or state transition functions, so it would be
more difficult to avoid unsafe actions than in exploitation phase.1 Recently, several studies
[77, 82, 87, 83] addressed “safe exploration” problems, which tries to guarantee or encourage
safety during exploration phase as well as exploitation.

2.5 Sample Complexity and PAC-MDP

Over the decades, theoretical studies on RL have been conducted. A great deal of such
previous work has focused on efficiency in terms of acquiring the cumulative reward. Rep-
resentatives of such work are probably approximately correct Markov decision process
(PAC-MDP) algorithms [12, 33, 74]. Algorithms with the PAC-MDP property enable an
agent to learn a near-optimal behavior with a polynomial number of samples. The formal
definition of PAC-MDP algorithm is given as follows:

Definition 1 (Sample Complexity, Kakade et al. [31]) For any fixed ✏ > 0, the
sample complexity is defined as the number of time-steps t such that the policy ⇡ satisfies

V ⇡(st) < V ⇤(st)� ✏.

.
Definition 2 (PAC-MDP, Strehl and Littman [75]) An algorithm is said to be a PAC-

MDP algorithm if, for any ✏ > 0 and � 2 [0, 1], its per-timestep computational complexity,
1If we desire to guarantee safety only in the exploitation phase, we can provide the agent some penalty (i.e.,

negative reward) for discourage it from making the same mistake.

12 Background

space complexity, and the sample complexity of are less than some polynomial in the relevant
quantities, with probability at least 1� �.

In addition, Kolter and Ng [36] and Araya et al. [3] proposed algorithms to obtain an ✏-
close solution to the Bayesian optimal policy. For example, Kolter and Ng [36] approximated
the transition probability with some appropriate distribution (e.g., Dirichlet distribution) and
aimed to maximize expected reward over the probabilistic distribution.

Chapter 3

Safe Reinforcement Learning in

Constrained Markov Decision Processes

In many real applications, environmental hazards are first detected in situ. For example,
a planetary rover exploring Mars does not obtain high-resolution images at the time of its
launch. In usual cases, after landing on Mars, the rover takes close-up images or observes
terrain data. Leveraging the acquired data, ground operators identify whether each position
is safe. Hence, for fully automated operation, an agent must autonomously explore the
environment and guarantee safety.

In most cases, however, guaranteeing safety (i.e., surviving) is not the primary objective.
The optimal policy for ensuring safety is often extremely conservative (e.g., stay at the
current position). Even though avoiding hazards is an essential requirement, the primary
objective is nonetheless to obtain rewards (e.g., scientific gain).

As a framework to solve this problem, safe reinforcement learning (safe RL, Garcıa and
Fernández [24]) has recently been noticed by the research community. The objective of
safe RL is to maximize the cumulative reward while guaranteeing or encouraging safety.
Especially in problem settings in which the reward and safety functions are unknown a priori,
however, a great deal of previous work (e.g., Wachi et al. [87]) theoretically guarantees the
satisfaction of the safety constraint, but the acquired policy is not necessarily near-optimal in
terms of the cumulative reward. In this paper, we propose a safe RL algorithm that guarantees
a near-optimal cumulative reward while guaranteeing the satisfaction of the safety constraint
as well.

As the research community tries to apply RL algorithms to real-world systems, however,
safety issues have been highlighted. RL algorithms inherently require an agent to explore
unknown state-action pairs, and algorithms that are agnostic with respect to safety may

14 Safe Reinforcement Learning in Constrained Markov Decision Processes

execute unsafe actions without deliberateness. Hence, it is important to develop algorithms
that guarantee safety even during training, at least with high probability.

Our contributions.

We propose a safe near-optimal MDP, SNO-MDP algorithm, for achieving a near-optimal
cumulative reward while guaranteeing safety at every time step in a constrained MDP under
the regularity assumption. This algorithm first explores the safety function and then optimizes
the cumulative reward in the certified safe region. We further propose an algorithm called
Early Stopping of Exploration of Safety (ES

2) to achieve faster convergence while maintain-
ing probabilistic guarantees with respect to both safety and reward. We examine SNO-MDP

by applying PAC-MDP analysis and prove that, with high probability, the acquired policy is
near-optimal with respect to the cumulative reward while guaranteeing safety. We build an
openly-available test-bed called GP-SAFETY-GYM for synthetic experiments.

Source-code: https://github.com/akifumi-wachi-4/safe_near_optimal_mdp

The safety and efficiency of SNO-MDP are then evaluated with two experiments: one in
the GP-SAFETY-GYM synthetic environment, and the other using real Mars terrain data.

3.1 Problem Statement

A safety constrained MDP is defined as a tuple

M = hS,A, f, r, g, �i,

where S is a finite set of states {s}, A is a finite set of actions {a}, f : S ⇥ A ! S is
a deterministic state transition function, r : S ! (0, Rmax] is a bounded reward function,
g : S ! R is a safety function, and � 2 R is a discount factor. We assume that both the
reward function r and the safety function g are not known a priori. At every time step t 2 N,
the agent must be in a “safe” state. More concretely, for a state st, the safety function value
g(st) must be above a threshold h 2 R; that is, the safety constraint is represented as

g(st) � h.

A policy ⇡ : S ! A maps a state to an action. The value of a policy is evaluated
according to the discounted cumulative reward under the safety constraint. Let VM denote

https://github.com/akifumi-wachi-4/safe_near_optimal_mdp

3.1 Problem Statement 15

the value function in the MDP, M. In summary, we represent our problem as follows:

maximize: V ⇡
M(st) = E

" 1X

⌧=0

�⌧r(st+⌧)

����� st

#

subject to: g(st+⌧) � h, 8⌧ = [0,1].

Difficulties. In conventional safety-constrained RL algorithms, the safety function is as-
sumed to be known a priori. The key difference lies in the fact that we need to explore a safety
function that is unknown a priori while guaranteeing satisfaction of the safety constraint.

However, it is intractable to solve the above problem without further assumptions. First
of all, without prior information on the state-and-action pairs known to be safe, an agent
cannot take any viable action at the very beginning. Second, if the safety function does not
exhibit any regularity, then the agent cannot infer the safety of decisions.

Assumptions. To overcome the difficulties mentioned above, we adopt two assumptions
from Sui et al. [77] and Turchetta et al. [82]. For the first difficulty, we simply assume that
the agent starts in an initial set of states, S0, that is known a priori to be safe. Second, we
assume regularity for the safety function. Formally speaking, we assume that the state space
S is endowed with a positive definite kernel function, kg, and that the safety function has a
bounded norm in the associated reproducing kernel Hilbert space (RKHS, Schölkopf and
Smola [63]). The kernel function, kg is employed to capture the regularity of the safety
function. Finally, we further assume that the safety function g is L-Lipschitz continuous with
respect to some distance metric d(·, ·) on S .

As with the safety function, we also assume that the reward function has a bounded norm
in the associated RKHS, and that its regularity is captured by another positive definite kernel
function, kr.

The above assumptions allow us to characterize the reward and safety functions by
using Gaussian processes (GPs, see Rasmussen [59]). By using the GP models, the values
of r and g at unobserved states are predicted according to previously observed functions’
values. An advantage of leveraging GPs is that we can obtain both optimistic and pessimistic
measurements of the two functions by using the inferred means and variances. A GP is
specified by its mean, µ(s), and covariance, k(s, s0). The reward and safety functions are
thus modeled as

r(s) = GP(µr(s), kr(s, s0)),

g(s) = GP(µg(s), kg(s, s0)).

16 Safe Reinforcement Learning in Constrained Markov Decision Processes

Without loss of generality, let µ(s) = 0 for all s 2 S. For the reward and safety functions,
we respectively model the observation noise as

yr = r(s) + nr,

yg = g(s) + ng,

where nr
⇠ N (0, �2

r) and ng
⇠ N (0, �2

g). The posteriors over r and g are computed on the
basis of t observations at states {s1, . . . , st}. Then, for both the reward and safety functions,
the posterior mean, variance, and covariance are respectively represented as

µt(s) = k>
t (s)(Kt + �2I)�1yt,

�t(s) = kt(s, s),

kt(s, s
0) = k(s, s0)� k>

t (s)(Kt + �2I)�1kt(s
0),

where kt(s) = [k(s1, s), . . . , k(st, s)]>. Finally, Kt is called positive definite kernel matrix
and given by

K =

0

BBBB@

k(s1, s1) k(s1, s2) . . . k(s1, sn)

k(s2, s1) k(s2, s2) . . . k(s2, sn)
...

...
k(sn, s1) k(sn, s2) . . . k(sn, sn)

1

CCCCA
.

3.2 Background

We define two kinds of predicted safe spaces inferred by a GP as in Turchetta et al. [83].
First, we consider a pessimistic safe space, which contains states identified as safe with a
greater probability than a pre-defined confidence level. Second, we derive an optimistic safe
space that includes all states that may be safe with even a small probability.

Predicted pessimistic safe space. We use the notion of a safe space in Turchetta et al. [82]
as a predicted pessimistic safe space. For the probabilistic safety guarantee, two sets are
defined. The first set, S�

t , simply contains the states that satisfy the safety constraint with
high probability. The second one, X�

t , additionally considers the ability to reach states in
S�
t (i.e., reachability) and the ability to return to the previously identified safe set, X�

t�1 (i.e.,
returnability). The algorithm probabilistically guarantees safety by allowing the agent to visit
only states in X

�
t .

3.2 Background 17

Safety is evaluated in terms of the confidence interval inferred by the GP, which is
represented as

Qt(s) := [µg
t�1(s)± �1/2

t �g
t�1(s)],

where �t 2 R is a scaling factor for the required level of safety. We consider the intersection
of Qt up to iteration t, which is defined as

Ct(s) = Qt(s) \ Ct�1(s),

where C0(s) = [h,1] for all s 2 S0. The lower and upper bounds on Ct(s) are denoted by
lt(s) := minCt(s) and ut(s) := maxCt(s), respectively.

The first set S�
t contains states such that the safety constraint is satisfied with high

probability. It is formulated using the lower bound of the safety function, l and the Lipshitz
constant, L, as follows:

S�
t = {s 2 S | 9s0 2 X

�
t�1 : lt(s

0)� L · d(s, s0) � h}.

Next, the reachable and returnable sets are considered. Even though a state is in S�
t , it

might be surrounded by unsafe states. Given a set X , the states reachable from X in one step
are given by

Rreach(X) = X [{s 2 S | 9s0 2 X, a 2 A : s = f(s0, a)}.

Even after arriving at a state with reachability, the agent may not be able to move to another
state because of a lack of safe actions. Hence, before moving to a state s, we consider
whether or not there is at least one viable path from s. The set of states from which the agent
can return to a set X̄ through another set of states X in one step is given by

Rret(X, X̄) = X̄ [{s 2 X | 9a 2 A : f(s, a) 2 X̄}.

Thus, an n-step returnability operator is given by

Rn
ret(X, X̄) = Rret(X,Rn�1

ret (X, X̄)),with R1
ret(X, X̄) = Rret(X, X̄).

Finally, the set containing all the states that can reach X̄ along an arbitrary long path in X is
defined as

R̄ret(X, X̄) = lim
n!1

Rn
ret(X, X̄).

18 Safe Reinforcement Learning in Constrained Markov Decision Processes

Finally, the desired pessimistic safe space, X�
t is a subset of S�

t and also satisfies the
reachability and returnability constraints; that is,

X
�
t = {s 2 S�

t | s 2 Rreach(X
�
t�1) \ R̄ret(S

�
t ,X

�
t�1)}.

Predicted optimistic safe space. As defined in Wachi et al. [87] and Turchetta et al. [83],
an optimistic safe space has rich information for inferring the safety function. Let X+

t denote
the predicted optimistic safe space. Similarly to X

�
t , the optimistic safe space, X+

t , is defined
as

X
+
t = {s 2 S+

t | s 2 Rreach(X
+
t�1) \ R̄ret(S

+
t ,X

+
t�1)},

where S+
t is the set of states that may satisfy the safety constraint, which is written as

S+
t = {s 2 S | 9s0 2 X

+
t�1 : ut(s

0)� L · d(s, s0) � h}.

Intuitively, X+
t contains all states that may turn out to be safe even if the probability is low.

In other words, S \ X
+
t contains states that are unsafe with high probability.

Confidence interval. The correctness of X
+
t and X

�
t depends on the accuracy of the

confidence interval inferred by the GP. The conservativeness can be tuned by using the
parameter �, and the choice of this parameter was well-studied in Srinivas et al. [72] and
Chowdhury and Gopalan [16]. In the rest of this paper, we set the parameter to

�t = Bg + �g

q
2(�g

t�1 + 1 + log(1/�g)),

where Bg is a bound on the RKHS norm of g, �g is the allowed failure probability, and the
observation noise is �g-sub-Gaussian. Also, �g quantifies the effective degrees of freedom
associated with the kernel function, which represents the maximal mutual information that
can be obtained about the GP prior.

Under the above definitions and assumptions, we have guarantees regarding the correct-
ness of the confidence intervals. Hence, we have the following lemmas for both the reward
and safety functions.

Lemma 1. Assume that kgk2k  Bg and ng
t  �g, 8t � 1. If

�t = Bg + �g

q
2(�g

t�1 + 1 + log(1/�g)),

3.3 Algorithm 19

then the following inequality holds for all t � 1 with probability at least 1��r.

|g(s)� µg
t�1(s)|  �1/2

t �g
t�1(s).

Lemma 2. Assume that krk2k  Br and nr
t  �r, 8t � 1. If

↵t = Br + �r

q
2(�r

t�1 + 1 + log(1/�r)),

then the following inequality holds for all t � 1 with probability at least 1��r.

|r(s)� µr
t�1(s)|  ↵1/2

t �r
t�1(s).

Proof. These lemmas follow from Theorem 2 in Chowdhury and Gopalan [16].

Optimal solution. Here, we define the optimal policy in our problem setting. Under the
optimal policy, ⇡⇤, the value function, VM, satisfies the following Bellman equation:

V ⇤
M(st) = max

st+12R̄✏g (S0)
[r(st+1) + �V ⇤

M(st+1)] ,

where R̄✏g(S0) is the largest set that can be safely learned up to ✏g accuracy (for a formal
definition, see Appendix A or Turchetta et al. [82]). In our problem setting, in which the
reward and safety functions are unknown a priori, the above Bellman equation cannot be
solved directly. Our ultimate objective is to obtain a policy whose value is close to V

⇤
M while

guaranteeing satisfaction of the safety constraint.

3.3 Algorithm

We now introduce our proposed algorithm, SNO-MDP, for achieving a near-optimal policy
with respect to the cumulative reward while guaranteeing safety.

We first give an overview of SNO-MDP, which is outlined as Algorithm 1. We extend
a stepwise approach in Sui et al. [78] from state-less to stateful settings. Basically, our
algorithm consists of two steps. In the first step, the agent expands the pessimistic safe region
while guaranteeing safety (lines 2�17). Next, it explores and exploits the reward in the safe
region certified in the first step (lines 18�23). The reason for this stepwise approach is that
we can neglect uncertainty related to the a priori unknown safety function once the safe
region is fixed.

20 Safe Reinforcement Learning in Constrained Markov Decision Processes

Algorithm 1 SNO-MDP with ES
2

Input: states S , actions A, transition function f , kernel kr for reward, kernel kg for safety, GP prior
for reward, GP prior for safety, safety threshold h, discount factor �, Lipschitz constant L, initial safe
space S0.

1: C0(s) [h,1) for all s 2 S0

2: // Exploration of safety
3: loop

4: S�
t {s 2 S | 9s0 2 X

�
t�1 : lt(s

0)� L · d(s, s0) � h}
5: S+

t {s 2 S | 9s0 2 X
+
t�1 : ut(s

0)� L · d(s, s0) � h}
6: X

�
t {s 2 S�

t | s 2 Rreach(X
�
t�1) \ R̄ret(S

�
t ,X

�
t�1)}

7: X
+
t {s 2 S+

t | s 2 Rreach(X
+
t�1) \ R̄ret(S

+
t ,X

+
t�1)}

8: Gt {s 2 X
�
t | et(s) > 0}

9: ⇠ argmaxs2Gt
wt(s)

10: Update GPs for both reward and safety on way to ⇠
11: t t+ Tst�1!⇠ and st ⇠
12: // ES2 algorithm
13: Yt {s0 2 S

+
| 8s 2 X

�
t : s0 = f(s,⇡⇤

y(a | s))}

14: if Yt ✓ X
�
t then break

15: // Typical termination condition
16: if maxs2Gt wt(s) < ✏g then break

17: end loop

18: // Exploration and exploitation of reward
19: loop

20: Ut µr
t + ↵t+1 · �r

t

21: J⇤
Y(st) maxst+12Yt

⇥
Ut(st+1) + �J⇤

Y(st+1)
⇤

22: st+1 argmaxst+12Yt
J⇤
Y(st)

23: end loop

However, a pure stepwise approach does not stop exploring the safe region until the
convergence of the GP confidence interval (lines 15�16). This formulation often requires
the agent to execute a great number of actions for exploring safety. Hence, to achieve
near-optimality while executing a smaller number of actions, we also propose the ES

2

algorithm.1 This algorithm checks whether the current safe region is sufficient for achieving
near-optimality (lines 12�14), which maintains the theoretical guarantee with respect to both
the satisfaction of the safety constraint and the near-optimality of the cumulative reward. We
further propose a practical ES

2 algorithm, called P-ES
2, with better empirical performance,

although it does not provide a theoretical guarantee in terms of the near-optimality of the
cumulative reward.

1Both ES2 and P-ES2 do not affect the agent’s safety.

3.3 Algorithm 21

3.3.1 Exploration of Safety (Step 1)

First, we consider how to explore the safety function. As a scheme to expand the safe region,
we consider “expanders” as in Sui et al. [77] and Turchetta et al. [82]. Expanders are states
that may expand the predicted safe region, which is defined as

Gt = {s 2 X
�
t | et(s) > 0}

In the above equation, we have

et(s) = |s0 2 S \ S�
t | ut(s)� Ld(s, s0) � h|.

The efficiency of expanding the safe region is measured by the width of the safety
function’s confidence interval, defined as

wt(s) = ut(s)� lt(s).

The agent safely and efficiently expands the safe region by sampling the state with the
maximum value of w among the expanders, Gt. Hence, the agent sets the temporal goal
according to

⇠ = argmax
s2Gt

wt(s).

Then, within the predicted safe space X
�
t , it chooses a path to get to ⇠ from the current

state st�1 so as to minimize the cost (e.g., the path length). In our experiment, we simply
minimized the path length. By defining the cost as related to w (e.g., 1/w), however, the
agent could explore safety more actively on the way to ⇠.

The previous work [77, 82, 78] terminated safety exploration when the desired accuracy
was achieved for every state in Gt; that is,

max
s2Gt

wt(s)  ✏g. (3.1)

Unfortunately, this termination condition often requires a great number of iterations. For the
purpose of maximizing the cumulative reward, it often leads to the loss of reward. Therefore,
in Section 3.3.3, we propose the ES

2 algorithm to improve this point.

3.3.2 Exploration and Exploitation of Reward (Step 2)

Once expansion of the safe region is completed, the agent guarantees safety as long as it is
in X

� and does not have to expand the safe region anymore. Hence, all we have to do is

22 Safe Reinforcement Learning in Constrained Markov Decision Processes

Optimistic
safe space

Pessimistic
safe space

Unsafe space

Fig. 3.1 Illustration of My, used in the ES
2 algorithm. The yellow and blue regions represent

X
+
t and X

�
t , respectively. The red region (i.e., X \ X

+
t) is unsafe with high probability.

optimize the cumulative reward in X
�. As such, a simple approach is to follow the optimism

in the face of uncertainty principle as in Strehl and Littman [76] and Auer and Ortner [6], then
to consider the “exploration bonus” represented by R-MAX [12] and Bayesian Exploration
Bonus (BEB, Kolter and Ng [36]).

Specifically, in accordance with Lemma 2, we optimize the policy by optimistically
measuring the reward with the (probabilistic) upper confidence bound,

Ut(s) := µr
t (s) + ↵1/2

t+1 · �
r
t (s).

In this reward setting, the second term on the right-hand side corresponds to the exploration
bonus. For balancing the exploration and exploitation in terms of reward, we solve the
following Bellman equation:

J⇤
X (st, b

r
t , b

g
t) = max

st+12X�
t⇤

⇥
Ut(st+1) + �J⇤

X (st+1, b
r
t , b

g
t)
⇤
,

where br = (µr, �r) and bg = (µg, �g) are the beliefs over reward and safety, respectively.
Also, t⇤ is the time step when the termination condition (3.1) is satisfied. Note that br and
bg are not updated; hence, we can solve the above equation with standard algorithms (e.g.,
value iteration).

3.3.3 Early Stopping of Exploration of Safety

We have proposed a stepwise approach for exploring and optimizing the constrained MDP.
In the first step when the safe region is expanded, however, the existing safe exploration

3.3 Algorithm 23

algorithms [77, 82, 78] continue exploring the state space until convergence of the confidence
interval, w, which generally leads to a large number of iterations. Our primary objective
is to maximize the cumulative reward; hence, we should stop exploring safety if further
exploration will not lead to maximizing the cumulative reward.

While exploring the safety function, we check whether the step can be migrated. As such,
we consider the following additional MDP,

My = hX
+,A, f, r0, g, �i.

As shown in Figure 3.1, the differences from the original MDP, M, lie in the state space and
the reward function. The state space of My is defined as the optimistic safe space (i.e., X+),
while the reward function is defined as follows:

r0 :=

(
µr + ↵1/2�r if s 2 X

+
t \ X

�
t ,

µr
� ↵1/2�r if s 2 X

�
t .

(3.2)

In the pessimistic safe space, the reward is defined as the lower bound; otherwise, it is defined
as the upper bound. This definition of the reward function encourages the agent to explore
outside the predicted safe space, X�

t . Using the new MDP above, we consider the set of
states that the agent will visit at the next time step, defined as

Yt = {s0 2 S
+
| 8s 2 X

�
t : s0 = f(s, ⇡⇤

y(a | s))},

where ⇡⇤
y is the optimal policy for My, obtained by maximizing the following value function:

VMy(st) = max
st+12X+

t

[r0(st+1) + �VMy(st+1)]. (3.3)

Finally, we stop exploring the safety function if the following equation holds:

Yt ✓ X
�
t . (3.4)

Intuitively, we stop expanding the safe space if the direction of the optimal policy for My

heads for the inside of X�
t . If the agent tries to stay in X

�
t even under the condition that the

reward is defined as in (3.2), then we do not have to expand the safe region anymore.
When the ES

2 algorithm confirms satisfaction of the above condition, we move on to the
next step and then optimize the cumulative reward in Yt; that is,

J⇤
Y(st, b

r
t , b

g
t) = max

st+12Yt

⇥
Ut(st+1) + �J⇤

Y(st+1, b
r
t , b

g
t)
⇤
.

24 Safe Reinforcement Learning in Constrained Markov Decision Processes

!" !# !$%(!#,())

+ 1.0

%(!$,())

1 − %(!#,())

State space

1 − %(!$,())

Fig. 3.2 Illustration of Mz. This MDP is characterized by the virtual state z and the virtual
transition probability P z.

3.3.4 More Practical Early Stopping Algorithm

As we will prove in Section 3.4, the ES
2 algorithm provides us with a theoretical guarantee

with respect to the cumulative reward. Unfortunately, this guarantee is achieved at the
expense of empirical performance. The issue with the pure ES

2 algorithm lies in the state
constraint in (3.3); that is, the value function is calculated under the assumption that all the
states in the optimistic safe space, X+, will be identified as safe. This assumption is necessary
for the theoretical guarantee, but, in practice, it would be more reasonable to measure the
probability of a state being identified as safe. Because the safety function is inferred as a
Gaussian distribution for each state, an example of such a probability is a complementary
error function; that is, we define the following probability,

p(s, bg) = Pr [g(s) � h | bg]

⇡ 1�
1

2
erfc

✓
µg(s)� h
p
2�g(s)

◆
.

Here, we introduce a new virtual state, z. Concretely, for z, the reward and transition
probability are defined as r(z) = 0 and P (z | z, a, bg) = 1 for all a and bg, respectively.
Hence, using z, we define a virtual transition probability P z

x = Pr[x | st, at, b
g
t] as follows:

P z
x :=

(
p(st+1, b

g
t) if x = st+1,

1� p(st+1, b
g
t) if x = z.

Hence, by introducing z and P z, we define the following MDP with the smooth, continu-
ous transition probability:

Mz = hX
+
[{z},A, P z, r0, g, �i.

3.4 Theoretical Results 25

Figure 3.2 shows a conceptual image of this MDP. Intuitively, in Mz, the agent optimizes
the policy under the virtual condition that a state-action pair may lead to the extremely
undesirable state, z, with probability 1� p. Then, we solve the following equation instead of
solving (3.3):

VMz(st) = max
st+12X+

t

[P z
st+1

· {r0(st+1) + �VMz(st+1)}].

For this equation, we used r(z) = 0 and V (z) = 0. For the optimal policy ⇡⇤
z obtained by

solving the above equation, we stop exploring the safety function if the following equation
holds:

Zt := {s0 2 S
+
| 8s 2 X

�
t : s0 = f(s, ⇡⇤

z(a |s))} ✓ X
�
t .

Then, we optimize the cumulative reward in Zt by solving the following equation:

J⇤
Z(st, b

r
t , b

g
t) = max

st+12Zt

⇥
Ut(st+1) + �J⇤

Z(st+1, b
r
t , b

g
t)
⇤
.

3.4 Theoretical Results

We now provide theoretical guarantees on the safety and near-optimality of our proposed
algorithm. Theorem 1 is associated with the safe expansion stage (i.e., step 1), which
guarantees safety and convergence to the safe region. Theorem 2 ensures convergence toward
the near-optimal cumulative reward. Theorem 3 ensures that SNO-MDP still achieves the
near-optimal cumulative reward even when the ES

2 algorithm is used. In the rest of this
paper, let

Vmax =
Rmax

1� �
.

Also, let D : M! R be a diameter of an MDP, defined as

D(M) = min
⇡

max
s1 6=s2

T ⇡
s1!s2 ,

where T ⇡
s1!s2 is the expected number of time steps that policy ⇡ takes to move from s1 to s2.

3.4.1 Safety Guarantee and Completeness

We first present a theorem related to the safety guarantee and completeness.

Theorem 1. Assume that the safety function g satisfies kgk2k  Bg and is L-Lipschitz
continuous. Also, assume that S0 6= ; and g(s) � h for all s 2 S0. Fix any ✏g > 0 and
�g
2 (0, 1). Suppose that we conduct the stage of “exploration of safety” with the noise ng

t

26 Safe Reinforcement Learning in Constrained Markov Decision Processes

being �g-sub-Gaussian, and that

�t = Bg + �g

q
2(�g

t�1 + 1 + log(1/�g))

until maxs2Gt wt(s) < ✏g is achieved. Finally, let t⇤ be the smallest integer satisfying

t⇤

�t⇤�
g
t⇤
�

Cg|R̄0(S0)|

✏2g
D(M),

with Cg = 8/ log(1 + ��2
g). Then, the following statements jointly hold with probability at

least 1��g:

• 8t � 1, g(st) � h,

• 9t0  t⇤, R̄✏g(S0) ✓ X
�
t0 ✓ R̄0(S0).

A proof is presented in the supplemental material. Theorem 1 guarantees that SNO-

MDP is safe in the stage of exploration of safety (i.e., step 1), as well as in the stage of
optimization of reward (i.e., step 2), with high probability. In addition, after a sufficiently
large number of time steps, X� is guaranteed to be a super-set of R̄✏g(S0).

3.4.2 Near-Optimality

We next present a theorem on the near-optimality with respect to the cumulative reward.

Theorem 2. Assume that the reward function r satisfies krk2k  Br, and that the noise is
�r-sub-Gaussian. Let ⇡t denote the policy followed by SNO-MDP at time t, and let st and
brt , b

g
t be the corresponding state and beliefs, respectively. Let t⇤ be the smallest integer

satisfying
t⇤

�t⇤�
g
t⇤
�

Cg|R̄0(S0)|

✏2g
D(M),

and fix any �r
2 (0, 1). Finally, set ↵t = Br + �r

p
2(�r

t�1 + 1 + log(1/�r)) and

✏⇤V = Vmax · (�
g + ⌃r

t⇤/Rmax),

with ⌃r
t⇤ =

1
2

q
Cr↵t⇤�

r
t⇤

t⇤ . Then, with high probability,

V ⇡t(st, b
r
t , b

g
t) � V ⇤(st)� ✏⇤V

— i.e., the algorithm is ✏⇤V -close to the optimal policy — for all but t⇤ time steps, while
guaranteeing safety with probability at least 1��g.

3.4 Theoretical Results 27

A detailed proof of Theorem 2 is presented in the supplemental material. The proof
is based on the following idea. After the agent fully explores the safe space, X� satisfies
R̄✏g(S0)  X

�
 R̄0(S0), and states in X

� are safe with high probability. Once X
�

converges, the probability of leaving the “known” safe space is small; hence, Theorem 2
follows by adapting standard arguments from previous PAC-MDP results. The key condition
that allows us to prove the near-optimality of SNO-MDP is that, at every time step, the
agent is optimistic with respect to the reward, and this optimism decays given a sufficient
number of samples. By optimizing the cumulative reward in X

� according to the optimism
in the face of uncertainty principle, the acquired policy is ✏⇤V -close to the optimal policy in
the original safety-constrained MDP.

Finally, we present a theoretical result related to the ES
2 algorithm. Specifically, we

prove that ES
2 maintains the near-optimality of SNO-MDP.

Theorem 3. Assume that the reward function r satisfies krk2k  Br, and that the noise is
�r-sub-Gaussian. Let ⇡t denote the policy followed by SNO-MDP with the ES

2 algorithm
at time t, and let st and brt , b

g
t be the corresponding state and beliefs, respectively. Let t̃

be the smallest integer for which (3.4) holds, and fix any �r
2 (0, 1). Finally, set ↵t =

Br + �r

p
2(�r

t�1 + 1 + log(1/�r)) and

✏̃V = Vmax · (�
g + ⌃r

t̃/Rmax),

with ⌃r
t̃
= 1

2

q
Cr↵t̃�

r
t̃

t̃
. Then, with high probability,

V ⇡t(st, b
r
t , b

g
t) � V ⇤(st)� ✏̃V

— i.e., the algorithm is ✏̃V -close to the optimal policy — for all but t̃ time steps while
guaranteeing safety with probability at least 1��g.

The proof of Theorem 3 is presented in the supplemental material. The proof is based
on the following idea. When the condition in (3.4) is satisfied, the agent will not leave Y ,
and a near-optimal policy is obtained by optimizing the cumulative reward only in Y with
the optimistically measured reward. Also, as long as the agent is in Y (✓ X

�), safety is
guaranteed with high probability. The proof is similar to that for Theorem 2.

28 Safe Reinforcement Learning in Constrained Markov Decision Processes

Fig. 3.3 Example screen capture from the GP-SAFETY-GYM environment.

3.5 Experiment

In this section, we evaluate the performance of SNO-MDP through two experiments. One
used a synthetic environment, while the other simulated Mars surface exploration. We also
show the effectiveness of our ES

2 and P-ES
2 algorithms.

3.5.1 Synthetic GP-SAFETY-GYM Environment

Settings. We constructed a new open-source environment for safe RL simulations named
GP-SAFETY-GYM. This environment was built based on OpenAI Safety-Gym [61]. As
shown in Figure 3.3, GP-SAFETY-GYM represents the reward by a color (yellow: high; green:
medium; blue: low), and the safety by height.

We considered a 20 ⇥ 20 square grid in which the reward and safety functions were
randomly generated. At every time step, an agent chose an action from stay, up, right, down,
and left. The agent predicted the reward and safety functions by using different kernels on
the basis of previous observations. In this simulation, we allowed the agent to observe the
reward and safety function values of the current state and neighboring states. The kernel for
reward was a radial basis function (RBF) with the length-scales of 2 and prior variance of 1.
The kernel for safety was also an RBF with the length-scales of 2 and prior variance of 1.
Finally, we set the discount factor to � = 0.99, and confidence intervals parameters to ↵t = 3

and �t = 2 for all t � 1.

3.5 Experiment 29

Fig. 3.4 Average reward over the episodes, comparing the performance of SNO-MDP with
ES

2 and the baselines.

Fig. 3.5 Average reward over the episodes, showing the effects of ES
2 and P-ES

2. The
colored circles represent when the transition from safe exploration to reward optimization
happens for each method.

30 Safe Reinforcement Learning in Constrained Markov Decision Processes

Baselines. We empirically compared the performance of our SNO-MDP with

• SAFEMDP (Turchetta et al. [82])

• SAFEEXPOPT-MDP (Wachi et al. [87])

• SAFE/REWARD KNOWN

In SAFEMDP, the agent tries to expand the safe region without considering the reward. In
SAFEEXPOPT-MDP, the agent attempts to maximize the cumulative reward while leveraging
the difference between the value function in X

+
t and that in X

�
t . Finally, SAFE/REWARD

KNOWN is a non-exploratory case (i.e., oracle agent) in which the safety and reward functions
are known a priori.

Metrics. We used the cumulative reward and the number of unsafe actions as comparison
metrics to measure the performance of the agent.

Results. Figure 3.4 compares the performance of SNO-MDP and the baselines in terms
of the reward. For these results, the average reward was measured over the previous 50
time steps. SNO-MDP achieved the optimal reward after shifting to the stage of reward
optimization, which outperforms SAFEMDP and SAFEEXPOPT-MDP in terms of the reward
after a sufficiently large number of time steps. The SAFEMDP agent did not aim to maximize
the cumulative reward, and the SAFEEXPOPT-MDP agent was sometimes stucked in a
local optimum when the expansion of the safe region was insufficient. Figure 3.5 shows the
empirical performance of the ES

2 and P-ES
2 algorithms. P-ES

2 achieved faster convergence
in terms of the reward than the original ES

2 did. Also, all methods, including the baselines,
did not take any unsafe actions.

3.5.2 Simulated Mars Surface Exploration

Settings. We then conducted an experiment based on a Mars surface exploration scenario,
as in Turchetta et al. [82] and Wachi et al. [87]. In this simulation, we used a publicly available
Mars digital elevation model (DEM) that was created from observation data captured by the
high-resolution imaging science experiment (HiRISE) camera [48].

We created a 40 ⇥ 30 rectangular grid-world by clipping a region around latitude 30�6’
south and longitude 202�2’ east, as shown in Figure 3.6. At every time step, the rover took
one of five actions: stay, up, down, left, and right. We assumed that any state in which the
slope angle was greater than 25� were unsafe. The safety function g was defined as the slope
angle calculated from the DEM, and the safety threshold was h = � tan(25�).

3.6 Conclusion 31

0 10 20 30
x

0

5

10

15

20

25

y

−10.0

−7.5

−5.0

−2.5

0.0

2.5

5.0

7.5

10.0

Fig. 3.6 Mars terrain data.

The rover predicted the elevation by using a GP with a Matérn kernel with ⌫ = 5/2. The
length-scales were 15 m, and the prior variance over elevation was 100 m2. We assumed
a noise standard deviation of 0.075 m. For the reward, we randomly defined a smooth,
continuous reward. To predict the reward function, the rover used a GP with RBF kernel
having length-scales of 2 and a prior variance over the reward of 2. We set the confidence
levels as ↵t = 3 and �t = 2, 8t � 0, and the discount factor as � = 0.9.

Baselines and metrics. We used the same baselines and metrics as in the previous synthetic
experiment.

Results. Table 3.1 summarizes the results. The reward was accumulated over the episode,
which was normalized with respect to the SAFE/REWARD KNOWN case. Our SNO-MDP

with either P-ES
2 or ES

2 outperformed SAFEMDP and SAFEEXPOPT-MDP in terms of
the reward. This was expected, because SafeMDP does not aim to maximize the cumulative
reward, and SAFEEXPOPT-MDP does not guarantee the near-optimality of the cumulative
reward. Also, no unsafe action was executed by any of the tested algorithms.

3.6 Conclusion

We have proposed SNO-MDP, a stepwise approach for exploring and optimizing a safety-
constrained MDP. Theoretically, we proved a bound of the sample complexity to achieve

32 Safe Reinforcement Learning in Constrained Markov Decision Processes

Table 3.1 Experimental results with real Mars data.

REWARD UNSAFE ACTIONS

SNO-MDP W/ P-ES
2

0.81 0

SNO-MDP W/ ES
2

0.78 0

SNO-MDP 0.49 0

SAFEMDP 0.34 0
SAFEEXPOPT-MDP 0.59 0
SAFE/REWARD KNOWN 1.00 0

✏V -closeness to the optimal policy while guaranteeing safety, with high probability. We also
proposed the ES

2 and P-ES
2 algorithms for improving the efficiency in obtaining rewards.

We developed an open-source environment, GP-SAFETY-GYM, to test the effectiveness of
SNO-MDP. We also demonstrated the advantages of SNO-MDP using the real Mars
terrain data.

3.7 Limitation

In this section, we discuss the limitations of the current algorithm, SNO-MDP. First,
our algorithm assumes the regularity and Lipschitz continuity of the safety function as
a fundamental scheme for guaranteeing safety. This assumption does not hold in many
environments. For example, safety in autonomous driving environments drastically changes
depending on the existence of pedestrians or other vehicles. Hence, we need to extend our
current algorithms to the one that is applicable to the environment with such steep changes
of degree of safety. Second, it is known that the computational cost of a GP is extensive. The
computational cost of a GP is O(N3), where N is the number of samples. Given that our
theoretical result has been achieved after a large number of time steps, it is not desirable
to use such an algorithm with the above computational complexity. In order to develop an
algorithm that is applicable to large-scale, real-world environments, we need to use less
computationally-expensive algorithm. Simple solutions would be to use GPs with small
computational cost (e.g., [90, 91]) or (generalized) linear models [52, 66] for characterizing
reward and safety functions.

Chapter 4

Policy Testing with Multi-agent

Adversarial Reinforcement Learning

If the decision-making algorithm in safety-critical applications does not work properly, the
resulting failure may be catastrophic. To prevent such results occurring after deployment,
we must determine as many failure cases as possible and then improve the algorithm in
the development phase [73]. Autonomous driving and flight algorithms especially must
work properly in a multi-agent environment [85, 35], which requires us to craft adversarial
situations for the tested algorithm by incorporating the interactions with other agents.

Reinforcement learning (RL) has recently achieved significant results; examples range
from robotics manipulation [41] to game playing [50, 68]. However, most of the software
in the practical applications are still rule-based because of the explainability or backwards
compatibility. This is true with autonomous driving algorithms as well; hence, we need the
algorithms to craft adversarial situations for the rule-based algorithm.

As such, it makes sense to train adversarial RL-based agents (i.e., non-player characters,
NPCs) such that the agent with the tested rule-based algorithm (i.e., player) fails. By training
NPCs in RL frameworks, we create various adversarial situations without specifying the
details of the NPCs’ behaviors. We focus on the decision-making aspect rather than image
recognition; hence, the failure means collisions in most cases. Figure 4.1 gives a conceptual
image of the agents in our research. By training NPCs (red) in an adversarial manner, we
aim to obtain the failure cases of the player (blue).

In this problem set, however, we encounter the following four problems. First, pure
adversarial training often results in obvious and trivial failure. For example, if multiple NPCs
intentionally try to collide with the player, the player will surely fail; however, such failure
cases are useless for improving the rule-based algorithm. Second, when the player fails,
it is not always clear which NPCs induce the failure. For efficient and stable learning, we

34 Policy Testing with Multi-agent Adversarial Reinforcement Learning

Fig. 4.1 Conceptual image. A blue car is a rule-based player, and two red cars are adversarial
RL-based NPCs.

should present the adversarial reward only for the NPCs that contribute to the player’s failure.
Third, the player does not have a notion of reward, and it is often possible to know only
whether or not the player fails. That is, from the perspective of the NPCs, the reward for the
player’s failure is extremely sparse (e.g., if the player fails, NPCs get the adversarial reward
of “1”; otherwise, they get “0”).1 Finally, if the player rarely fails, NPCs are trained using the
imbalanced past experience. The imbalanced experience, dominated by the player’s success
scenarios, prevents NPCs from acquiring a good policy.

Our contributions.

We propose a novel algorithm, FAILMAKER-ADVRL; this approach trains the adversarial
RL-based NPCs such that the tested rule-based player fails. In addition, to address the four
problems discussed above, we present the following ideas.

Adversarial learning with personal reward. To train NPCs to behave in an adversarial but
natural manner, we consider personal reward for NPCs as well as the adversarial reward.
This is because we consider that, if it behaves unnaturally, an NPC itself loses the personal
reward. When an NPC tries to collide with the player, the personal reward is lost. NPCs
should have their own objective (e.g., safely arrive at the goal as early as possible), and we
consider the loss of the personal reward to ensure natural behavior.

Contributor identification (CI) and adversarial reward allocation (AdvRA). To identify
the NPCs that should be provided with an adversarial reward, we propose contributor

1We have an option to define a virtual reward for the player. However, it is often difficult to precisely define
the (virtual) reward.

4.1 Related Work 35

identification (CI). This algorithm classifies all the NPCs into several categories depending
on their degree of contribution by re-running the simulation with the subsets of NPCs. In
addition, to handle sparse (episodic) adversarial reward, we propose adversarial reward
allocation (AdvRA), which properly allocates the adversarial reward to the NPCs. This
algorithm allocates the sparse adversarial reward among each state and action pair that
contributes to the player’s failures.

Prioritized sampling by replay buffer partition (PS-RBP). To address the problem caused
by imbalanced experience, we partition the replay buffer depending on whether or not the
player succeeds, and then train the NPCs using the experience that is independently sampled
from the two replay buffers.

We demonstrated the effectiveness of FAILMAKER-ADVRL with two experiments using
both a simple environment and a 3D autonomous driving simulator.

4.1 Related Work

In this section, we briefly review previous work on MARL with continuous state and
action spaces. The relationship among multiple agents can be categorized into cooperative,
competitive, and both. Most previous work on MARL addresses cooperative tasks, in which
the cumulative reward is maximized as a group [40, 56]. In particular, [23] proposed a
method with a centralized critic for a fully cooperative multi-agent task.

Algorithms on MARL applicable with competitive settings have recently been proposed
by [58, 44, 42]. [58] consider a two-player zero-sum game in which the protagonist gets
a reward r while the adversary gets a reward �r. In [44], a centralized critic approach
called multi-agent deep deterministic policy gradient (MADDPG) is proposed for mixed
cooperative and competitive environments; MADDPG is a similar idea as that in [23]. Finally,
Li et al. [42] proposed an algorithm called M3DDPG so that the agent is generalized in terms
of the robustness against adversaries’ policies alter. In most cases, however, previous studies
have aimed to train the protagonist in more robust way while improving the adversary; hence,
unlike our method, their objectives are not to obtain failure-scenario of the protagonist (i.e.,
tested agent).

4.2 Preliminaries

In this section, we briefly present the preliminaries for understanding our method.

36 Policy Testing with Multi-agent Adversarial Reinforcement Learning

Markov games. Partially observable Markov games are a multi-agent extension of POMDPs
[43]. A Markov game associated with N agents is defined by a set of states S meaning
all the possible configuration of N agents, a set of observations O1, . . . ,ON , and a set of
actions A1, . . . ,AN . Agent i decides the action using a stochastic policy ⇡✓i : Oi ⇥Ai !

[0, 1], by which the next state is produced on the basis of the state transition function
T : S ⇥ A1 ⇥ . . . ⇥ AN ! S. Each agent i obtains the reward of ri : S ⇥ Ai ! R in
accordance with the state and agents’ action and acquires a new observation oi : S ! Oi.
The initial states are based on a probabilistic distribution ⇢ : S ! [0, 1]. Let T be the time
horizon. The objective of each agent i is to maximize the expected cumulative reward,

Ri =
TX

t=0

�trti(s, a),

where � is a discount factor.
When the number of agents is more than one, it becomes more difficult for an agent to

behave in a good manner. The relationship among multiple agents can be categorized into
cooperative, competitive, and both. Most previous work on MARL addresses cooperative
tasks, in which the cumulative reward is maximized as a group [40, 56]. In particular,
[23] proposed a method with a centralized critic for a fully cooperative multi-agent task.
Algorithms on MARL applicable with competitive settings have recently been proposed
by [58, 44, 42]. In [44], a centralized critic approach called multi-agent deep deterministic
policy gradient (MADDPG) is proposed for mixed cooperative and competitive environments;
MADDPG is a similar idea as that in [23].

Multi-Agent Deep Deterministic Policy Gradient (MADDPG). MADDPG is a multi-
agent version of the DDPG in which agents learn a centralized critic [44]. MADDPG
algorithm is based on the assumption that a policy of an agent can be optimized based on the
observations and actions of all agents.

More specifically, consider a game with N agents whose policies are parameterized by
✓ = {✓1, . . . , ✓N}, and let µ = {µ1, . . . ,µN} = {µ✓1 , . . . ,µ✓N} be the set of policies of
all agents. Then the gradient of the expected return for agent i 2 [1, N] with policy µi,
J(✓i) = E[Ri] is given by:

r✓iJ(✓i) = Ex,a⇠D[r✓iµi(oi)raiQ
µ
i (x,a1:N)|ai=µi(oi)],

where a1:N = {a1, . . . , aN}. For example, x is defined as x = (o1, . . . , oN). In the replay
buffer D, the tuples (x,x0, a1:N , r1, . . . , rN) (i.e., the recorded experiences of all agents) is

4.3 Problem Statement 37

contained. The Q-function, Qµ
i is updated as:

L(✓i) = Ex,a,r,x0 [(Qµ
i (x,a1:N)� y)2],

y = ri + �Qµ0

i (x0,a0
1:N)|a0l=µ0

l(ol)
,

where µ0 = {µ✓01
, . . . ,µ✓0N

} is the set of target policies with (delayed) parameters ✓0i.

4.3 Problem Statement

We consider a multi-agent problem with a rule-based player and single or multiple NPCs.2

At every time step, the player chooses an action on the basis of the deterministic rule (i.e.
tested algorithm). Our objective is to train the NPCs adversarially to create situations in
which the player makes a mistake.

We model this problem as a subspecies of multi-agent Markov games. For a player and
N NPCs, this game is defined by a set of states S meaning all the possible configuration of
agents, a set of actions A0,A1, . . . ,AN , and a set of observations O0,O1, . . . ,ON . In the
rest of this paper, the subscript “0” represents variables that are for the player. The player
chooses an action on the basis of the deterministic rule µ0, which does not evolve throughout
the training of NPCs.3 Each NPC uses a stochastic policy ⇡✓i : Oi ⇥Ai ! [0, 1]. The next
state is produced depending on the state transition T : S ⇥ A0 ⇥ A1 ⇥ . . . ⇥ AN ! S.
The player does not obtain a reward from the environment but receives a new observation
o0 : S ! O0. Each NPC i obtains a personal reward as the function r̂i : S ⇥ Ai ! R in
accordance with the state and NPCs’ action, and at the same time, receives a new observation
oi : S ! Oi. The initial states are characterized by a probabilistic distribution ⇢ : S ! [0, 1].
The ultimate goal of the NPCs is to make the player fail. At the end of each episode, NPCs
obtain the binary information on whether or not the player failed.

4.4 FailMaker-AdvRL

Algorithm 2 outlines FAILMAKER-ADVRL. At each iteration, the agents execute the
actions on the basis of their policy (Line 2 � 9). If the player succeeds in the episode,
the experience is stored in D

+. If not, the experience is stored in D
� after identifying the

contributing NPCs and allocating the appropriate adversarial reward (Line 10� 16). Finally,
2Some of the key ideas in this paper can be employed in problem settings where the player is an RL agent.
3We assume that µ0 consists of the numerous number of such deterministic rules as “if the signal is red,

then stop.”

38 Policy Testing with Multi-agent Adversarial Reinforcement Learning

Algorithm 2 FAILMAKER-ADVRL

1: for e = 1 to M do

2: Initialize a random process N for exploring action
3: Obtain the initial state x
4: for t = 1 to T do

5: The player executes the action a0 on the basis of the rule µ0.
6: For the adversarial NPC i, select the action ai = µ✓i(oi) +Nt

7: NPCs execute the actions a = (a1, . . . , aN) and observe their personal reward r̂
and next state x0

8: Store (x, a, r̂,x0) in temporal replay buffer Dtmp

9: x x0

10: end for

11: if the player succeeds then

12: Samples in Dtmp are moved to D
+

13: rti r̂ti
14: else

15: After executing CI and AdvRA, the samples in Dtmp are moved to D
�

16: rti r̂ti + ↵ · r̄ti
17: end if

18: for NPC i = 1 to N do

19: Randomly choose ⌘(e)S samples from D
+ and (1� ⌘(e))S samples from D

� and
create a random minibatch of S samples with PS-RBP

20: Update the critic and actor
21: end for

22: Update the target network parameters
23: end for

the NPCs are adversarially trained using the experiences that are independently sampled from
D

+ and D
� (Line 17� 21). In this section, we first explain three key ideas and then describe

the overall algorithm. The detailed pseudocode is given in the supplemental material.

4.4.1 Adversarial Learning with Personal Reward

When we simply train NPCs in an adversarial manner, they will try to make the player fail in
whatever way they can. This often results in unnatural situations in which all NPCs try to
collide with the player. Considering real applications, it is essentially useless to obtain such
unnatural failure cases.

We obtain the player’s failure cases by considering a personal reward for NPCs as well
as the adversarial reward. For, we consider unnatural situations to be ones in which NPCs
themselves lose a large personal reward. Therefore, we train the NPCs while incentivizing

4.4 FailMaker-AdvRL 39

them to maximize the cumulative personal and adversarial reward. Let r̂ti and r̄ti denote the
NPC i’s personal and adversarial reward. The reward is written as

rti = r̂ti + ↵ · r̄ti , (4.1)

where ↵ 2 R is the scaling factor.
When the player fails in an episode, the NPCs receive the adversarial reward. How,

though, should we reward each NPC? For efficient and stable training, we should reward the
state and action pairs that contribute to the player’s failure.

4.4.2 Contributors Identification (CI)

First, to restrict the NPCs that obtain the adversarial reward, we identify the NPCs that
contributed to the player’s failure. More precisely, for K 2 N, we classify NPCs into class k
contributors (k = 1, 2, . . . , K). Specifically, class 1 contributors can foil the player alone,
and class 2 contributors can foil the player with another class 2 contributor (though they are
not class 1 contributors). To identify the class 1 contributors, we re-run the simulation with
the player and a single NPC. If the player fails, the NPC is classified as a class 1 contributor.
Next, to identify class 2 contributors within the NPCs excluding for the class 1 contributors,
we re-run the simulation with the player and two NPCs while seeding the randomness of
the simulation. The above steps are continued until we identify the class K contributors.
In the rest of the paper, we denote Ck as the set of class k contributors and C as the set of
contributors; that is,

C = C1 [. . . [CK .

When identifying the class k contributors, the number of simulations is NCk; hence, K
should be small for a large N . Practically, since traffic accidents are caused by the interaction
among a small number of cars, setting small K does not usually affect the practicality.

4.4.3 Adversarial reward allocation (AdvRA).

After identifying the contributors, we assign the adversarial reward to each state and action
pair. Let g denote the measure of the contribution to the player’s failure, which we will call
the contribution function. Suppose NPC i⇤ is the biggest contributor to the player’s failure.
The biggest contributor is identified by:

i⇤ = argmax
i2Ckmin

⇣
max

t
git(x, ai)

⌘
,

40 Policy Testing with Multi-agent Adversarial Reinforcement Learning

Fig. 4.2 Conceptual image of PS-RBP.

where kmin = min{k 2 [1, K] | Ck 6= ;}. Here, we allocate the adversarial reward to each
state and action pair of the NPCs as follows. First, the adversarial reward of “1” is allocated
to each state and action pair of NPC i⇤ depending on the contribution function g:

r̄ti⇤(x, ai⇤) = gti⇤(x, ai⇤)/
X

t

gti⇤(x, ai⇤).

The adversarial reward is then allocated to the all contributors, C in accordance with their
contributions. For NPC i 2 Ck, we set

r̄ti(x, ai) = w(k) · r̄ti⇤(x, ai⇤) · g
t
i(x, ai)/g

t
i⇤(x, ai⇤), (4.2)

where w(k) 2 [0, 1] is the monotone non-increasing function with regard to k, which
represents the weight between the classes of the contributors. Empirically, to prevent NPCs
from obstructing other NPCs, w should not be too small. In our simulation, the contribution
function gti is simply defined using the distance between the player and NPC i; that is,

gti = exp(�� · kst0 � stik), (4.3)

where � is a positive scalar, and st0 and sti are the positions of the player and NPC i,
respectively. Intuitively, this contribution function is based on the consideration that the
action inducing the player’s failure should be taken when NPC i is close to the player. An
alternative would be to define the contributor function using commonly used safety metrics
such as headway and time-to-collision [86].

4.4.4 Prioritized Sampling by Replay Buffer Partition (PS-RBP)

In the case that the player rarely fails, most of the experiences in the replay buffer are ones
in which the player succeeds. As a result, we are required to train adversarial NPCs with

4.4 FailMaker-AdvRL 41

imbalanced experiences. To address this problem, we propose PS-RBP. We partition the
replay buffer into two parts to separate the experience according to whether or not the player
succeeds. During an episode, the experience is temporally stored in Dtmp. After finishing the
episode, the experiences in Dtmp are transferred to D

+ if the player succeeds and to D
� if the

player fails. A conceptual image is shown in Figure 4.2.
Let e denote the episode number. In training the NPCs, we employ ⌘(e) · S samples from

D
+ and (1� ⌘(e)) · S samples from D

�, where ⌘(e) 2 [0, 1] is the coefficient between the
number of samples from D

+ and D
�. S is the number of samples employed in the training of

the neural network.

4.4.5 Overview of FAILMAKER-ADVRL

An overall structure of FAILMAKER-ADVRL is shown in Figure 4.3. As a framework for
training multiple agents, we employ the MADDPG algorithm proposed in [44]. The MAD-
DPG algorithm is a type of multi-agent PG algorithm that works well in both cooperative
and competitive settings. MADDPG is a decentralized-actor-and-centralized-critic approach,
which allows the critic to know the observations and policies of all agents. In this paper, we
also allow the critic to know the observations and policies of the player and all NPCs. We
consider applying FAILMAKER-ADVRL in the development of the player’s rule; hence, this
assumption is not restrictive.

Suppose that the policies of N NPCs are parameterized by ✓ = {✓1, . . . , ✓N}. Also, let
µ = {µ1, . . . ,µN} = {µ✓1 , . . . ,µ✓N} be the set of all agent policies. The gradient of the
expected cumulative reward for NPC i, J(✓i) = E[Ri] is written as:

r✓iJ(✓i) = Ex,a⇠D± [r✓iµi(oi)raiQ
µ
i (x,a0:N)|a0=µ0,ai=µi],

where a0:N = {a0, . . . , aN}. D± represents the replay buffer partitioned into D
+ and D

�;
that is, the experience is sampled from the two replay buffers using PS-RBP. Note that the
experiences in D

� contains the reward after executing CI and AdvRA.
Using the reward function in (4.1) characterized by the personal and adversarial reward,

the action-value function Qµ
i is updated for all NPC i as follows:

L(✓i) = Ex,a,r,x0 [(Qµ
i (x,a0:N)� y)2],

y = ri + �Qµ0

i (x0,a0
0:N)|a00=µ0

0(o0),a
0
l=µ0

l(ol)
,

42 Policy Testing with Multi-agent Adversarial Reinforcement Learning

Fig. 4.3 Problem with a player and N NPCs. NPCs can get the adversarial reward when the
player fails.

where µ0 = {µ0,µ✓01
, . . . ,µ✓0N

} is the set of target policies with delayed parameters ✓0i.
Practically, we employ a soft update as in

✓0i ⌧✓i + (1� ⌧)✓0i,

where ⌧ is the update rate.
Note that our proposed AdvRA and CI are varieties of credit assignment methods [18, 54].

Most existing methods allocate the proper reward to each agent by utilizing difference reward
[92] under the assumption that all agents are trained by RL. Also, prioritized experience-
sampling techniques were previously proposed in [62] and [29]; these techniques enable
efficient learning by replaying important experience frequently.

4.5 Diverse FailMaker-AdvRL

FAILMAKER-ADVRLis a method for finding failure-scenarios, but there is one critical issue;
that is, failure-scenarios created by FAILMAKER-ADVRLare not diverse. Let us consider
what kinds of characteristics valuable failure-scenarios are useful for improving or debugging
your tested algorithm. We consider the following instances of such characteristics.

• Diversity: Diverse failure-scenarios should be obtained.

• Possibility: Unrealistic failure-scenarios are useless.

• Severity: More severe failure-scenarios should be found.

4.5 Diverse FailMaker-AdvRL 43

Fig. 4.4 Conceptual image of our problem. Suppose failure-scenarios have already been
obtained by humans and trained agents (i.e., RL-agent A). Our ultimate objective is to find
diverse failure-scenarios. As such, we train other agents (i.e., RL-agent B) to make the tested
car fail in scenarios different from the ones that were previously obtained.

• Commonality: failure-scenarios that help improve or debug the fundamental part of
the tested algorithm or system are preferable.

When testing software or algorithms for a safety-critical application, we should obtain the
failure-scenarios that are rich in quantity and quality.

In this paper, we focus on the problem of diversity. For example, are one hundred
similar failure-scenarios really useful? Similar failure-scenarios are essentially worth a single
failure-scenario. To enhance the reliability and quality of the tested algorithm, it is significant
to find diverse failure-scenarios and improve the algorithm so that it does not fail in situations
similar to the ones previously obtained.

As such, we consider applying multi-agent reinforcement learning (MARL) in order to
obtain scenarios different from the ones that were previously obtained. More concretely, we
train adversarial RL-based agents to make the tested agent fail in a scenario different from
the ones obtained by humans or previously trained RL-based agents. One advantage of using
RL is that we do not have to manually tune the various parameters of the agents. Conceptual
image of this work is shown in Figure 4.4.

DIV-FAILMAKER-ADVRL is outlined in Algorithm 3 and illustrated in Figure 4.5. First
of all, we aim to get the diverse failure-scenarios by updating the generation of the NPCs;
that is, we train m-th generation of NPCs to make the player fail in scenarios different from
those obtained by the first to (m � 1)-th generation of NPCs, where m 2 Z denotes the
generation. When updating the generation of the NPCs, we identify the key variables for
diversity (KVfD), and then train the m-th generation of NPCs to create failure-scenarios with
different KVfDs from previous ones.

At each iteration, the agents (the player and the NPCs) execute actions based on their
policy (Line 3�8). After calculating the KVfDs, the experiences (x, a, r,x0, b) are stored in

44 Policy Testing with Multi-agent Adversarial Reinforcement Learning

Fig. 4.5 Illustration of DIV-FAILMAKER-ADVRL. After each episode, the experiences are
categorized and stored in the replay buffer, D with the pre-defined probability based on the
category. For the experiences categorized with E2, the reward is set to non-positive value,
�c.

the temporal replay buffer Dtmp (Line 9). To prevent the replay buffer D from being filled
with experiences in which the player does not fail or similar failure-scenarios, we dump the
less useful experiences with a probability depending on the category (Line 12�22). Also, if
the KVfD of the currently obtained failure-scenario is similar to the one in the previously
obtained failure-scenarios, the reward is set to a negative value or zero (Line 17). Finally,
the NPCs (i.e., the critic and actor) are trained using the experiences that are sampled from
the replay buffer (Line 23�29). After the training of the NPCs is terminated, the set of the
registered KVfDs (Reg-KVfDs) is updated (Line 31), then the experiences in the replay
buffer are transferred to the next generation (Line 32).

In this section, we explain several key ideas, then describe the overall algorithm.

4.5.1 Key Variables for Diversity (KVfD)

Our objective is to find the diverse failure-scenarios; that is, we need to make the following �

diverse:
 = (x0:T ,a0:T

0 , . . . ,a0:T
N)

How then, can we make diverse?
In a competitive multi-agent reinforcement learning setting, the next states of agents

(i.e., x0) are determined by the dynamics of each agent and the interactions between agents.
Because the failure-scenarios are created by a combination of each agent’s actions and their
interactions, making the failure-scenarios diverse directly is particularly difficult.

We gained insight into the characteristic of certain variables tending to be similar. In
the autonomous driving testing example, the position of the player’s failure tended to be
especially similar when there were unsafe spots in the environment or the player had weak
points. Therefore, we introduce a new variable b and denote the set of b as B. Here, the

4.5 Diverse FailMaker-AdvRL 45

probabilistic distribution of failure-scenarios P () satisfies

P () =

Z

B

P (| B)P (B).

In this paper, b represents the variable that tends to be similar among similar scenarios and
we call b the key variables for diversity (KVfD). For example, in our experiment, b represents
the player’s positions of the player at the moment of its failures (i.e., collisions). Intuitively,
we aim to create diverse failure-scenarios by making P (B) as uniform as possible. As for
P (| B), we achieved diversity by randomly choosing the initial state and/or changing the
random noise for action exploration.

Also, we define Reg-KVfDs as the set of KVfDs registered as the ones that are frequently
obtained by previously trained NPCs.

4.5.2 Reward Function Characterized by KVfD

To make the KVfD more diverse, we define the reward function as r(x, a, b) using the KVfD
as well as the state-action pair. Supposing we now train m-th generation NPCs and let �m�1

denote the set of the Reg-KVfD whose failure-scenarios are often created by (m � 1)-th
generation NPCs, we also denote ⇤m�1 as the set of Reg-KVfD already obtained by the
(previously trained) first to (m� 1)-th generation NPCs; that is, ⇤m�1 = �1 [. . . [�m�1.
We train m-th generation NPCs in failure-scenarios different from those obtained by previous
generation NPCs. For diverse failure-scenarios, we set the reward as a non-positive value if
the KVfD of the failure-scenario is similar with the one in ⇤m�1 as follows:

r(x, a, b̄) = �c if min
b2⇤m�1

kb� b̄k  h, (4.4)

where b̄ is the currently obtained KVfD, c 2 R is a non-negative scalar, and h 2 R is a
threshold. We explain how to determine � and ⇤ below.

4.5.3 Determining Reg-KVfD

When the training of m-th generation of NPCs is terminated (i.e., converged), the set of Reg-
KVfDs, ⇤, is updated with ⇤m = ⇤m�1 [�m. Here, we present two methods of identifying
the Reg-KVfD at the m-th generation NPCs (i.e., �m). The first method is simply performing
a Monte-Carlo simulation with the trained NPCs; the second is using the scenarios obtained
in the last several percent of the episodes. Both methods are count-based; that is, we create a

46 Policy Testing with Multi-agent Adversarial Reinforcement Learning

histogram with regard to b, then identify them as Reg-KVfDs if the number of b (or the ratio
of b regarding the number of test episodes) is more than a threshold.

4.5.4 Experience Storing with Filtration (ESwF)

The experience is temporally stored in Dtmp during an episode, then transferred to the replay
buffer D afterwards. If we simply transfer all the experiences from Dtmp to D, most of
the experiences in D might be ones in which the player succeeds or the player fails in the
scenarios similar to the ones that were previously obtained. To find the diverse failure-
scenarios, we should store and sample the experiences in which the player fails in scenarios
different from the previously obtained ones.

As such, we propose the Experience Storing with Filtration (ESwF) algorithm. This
algorithm sorts all the experiences into three categories (E1, E2, and E3). Category E1 is
when the player succeeds, E2 is when the player fails in a scenario similar to a previously
obtained one, and E3 is when the player fails in a new scenario.

Then, we transfer the experiences from Dtmp to D with a probability p{1,2,3} 2 [0, 1],
where p{1,2,3} is a priori allocated value for each experience category (i.e., E1, E2, and E3).
Note that p3 should be p3 ⇡ 1 because the experiences categorized as E3 are particularly
useful for training and not frequently obtained. We dump the experiences that are not
transferred to D are dumped.

4.5.5 Inheriting the Experience

In many cases, E3 experiences are not frequently obtained, so we need to collect sample
experiences by running a number of episodes in the early stage of the training for each
generation. Therefore, after calculating the Reg-KVfDs for the m-th generation of NPCs, we
take the experiences over to the (m+ 1)-th generation. However, to prevent later generations
from making the player fail in similar ways to m-th generation, the experiences with the �m

are removed without being inherited. By reusing the experiences, we can efficiently train
later generations.

4.5.6 Overview of DIV-FAILMAKER-ADVRL

The training structure of the NPCs is on the left in Figure 4.3. We adopt the MADDPG
algorithm [44] as a framework for training multiple agents.

As with the MADDPG algorithm, DIV-FAILMAKER-ADVRL is a decentralized-actor-and-
centralized-critic approach, which means we allow the NPCs to get access to the observations

4.6 Experiments for FAILMAKER-ADVRL 47

and actions of the player and all NPCs (i.e., {o0, a0, o1, a1, . . . , oN , aN}). We consider apply-
ing DIV-FAILMAKER-ADVRL when developing the player’s algorithm that are implemented
in a fully simulated virtual environment; hence, this assumption is not restrictive.4

Suppose that the policies of N NPCs are parameterized by ✓1:N = {✓1, . . . , ✓N}. Also,
let

µ1:N = {µ1, . . . ,µN} = {µ✓1 , . . . ,µ✓N}

be the set of all agent policies. The gradient of the expected cumulative reward for NPC i is
calculated as:

r✓iJ(✓i) = Ex,a⇠D[r✓iµi(oi)raiQ
µ
i (x,a0:N)|a0=µ0,ai=µi],

where a0:N = {a0, . . . , aN}, and the replay buffer D contains the experiences stored with
the probability p{1,2,3} using the ESwF. The centralized action-value function Qµ

i is updated
for all NPC i using the reward function defined in (4.4) as follows:

L(✓i) = Ex,a,r,x0 [(Qµ
i (x,a0:N)� y)2],

y = ri + �Qµ0

i (x0,a0
0:N)|a00=µ0

0(o0),a
0
l=µ0

l(ol)
,

where µ0
0:N = {µ0,µ✓01

, . . . ,µ✓0N
} is the set of target policies with delayed parameters ✓0i.

Specifically, a soft update is employed as in

✓0i ⌧✓i + (1� ⌧)✓0i,

where ⌧ 2 R is the update rate.
Note that NPC training is conducted from scratch for each generation despite inherited

experiences. Also, the reward function is consistent in each generation.

4.6 Experiments for FAILMAKER-ADVRL

We present empirical results from two experiments. The first is in a multi-agent particle
setting, and the second is in an autonomous driving setting.

48 Policy Testing with Multi-agent Adversarial Reinforcement Learning

Table 4.1 Percentage of failures of player and NPC(s). FAILMAKER-ADVRL outperforms
other baselines in terms of its ability to foil the player while constraining the percentage of
failures of NPCs.

Simple environment

N = 1 N = 3

Player NPC Player NPC 1 NPC 2 NPC 3

Good Agent 2.4 1.3 5.2 1.6 1.1 1.3
Attacker 98.9 98.0 100.0 98.0 99.5 99.2
P-Adv 8.6 1.2 12.9 1.5 1.6 1.1
P-Adv_AdvRA 60.8 1.2 74.3 1.7 1.6 1.6
P-Adv_AdvRA_CI 79.6 1.0 82.9 1.5 1.4 1.9
P-Adv_PS-RBP 11.4 0.9 23.0 1.4 1.5 0.9
FAILMAKER-ADVRL 95.6 1.0 99.2 1.4 1.2 1.1

4.6.1 Simple Multi-agent Particle Environment

We first tested FAILMAKER-ADVRL using simple multi-agent environments [53]. In this
simulation, we consider a player and N NPCs with N = 1 and 3. Put simply, the player
attempts to approach the goal on the shortest path. The player’s goal is set as (0, 0.7).
However, when the player gets close to any NPCs, the player acts to maintain its distance
from the NPC. In contrast, NPCs get the adversarial reward at the end of the episode if the
player collides with another agent or a wall (i.e. a boundary) in at least one time step. At
the same time, NPCs receive the personal reward by staying close to the goals. NPCs also
try to avoid losing their personal reward; we do this to maintain the NPCs’ natural behavior.
More specifically, the personal reward decreases when arriving at the goal late or colliding
with another agent or wall. For the N = 1 case, the goal of the NPC is set as (0.5, 0). For
the N = 3 case, the goals are set as (±0.5, 0) and (0,�0.5).

We implemented FAILMAKER-ADVRL. Our policies are modeled by a two-layer ReLU
neural networks with 64 units per layer. In our experiment, The optimizer was the Adam
optimizer with a learning rate of 0.01. The sizes of D+ and D

� are both 1 ⇥ 106, and the
batch size is set as 1024 episodes. In addition, the discount factor, � is set to 0.95. For N = 1

and 3, K is set to K = 1 and 2, respectively. The contribution function g is defined as in
(4.3) with � = 2.0. The weight w in (4.2) is set as w(k) = 0.9k�1. In our simulation, through
trial and error, ⌘(e) in PS-RBP is set as ⌘ = 0.5 for e < 2500 and ⌘ = 0.25 otherwise.

4We suppose that DIV-FAILMAKER-ADVRL is used in model-in-the-loop (MIL) or software-in-the-loop
(SIL) simulators rather than in hardware-in-the-loop (HIL) simulators or field tests.

4.6 Experiments for FAILMAKER-ADVRL 49

Fig. 4.6 Comparing performance in simple multi-agent particle environment with one NPC.
The player’s failure rate is measured over the previous 100 episodes.

Baselines. We compared FAILMAKER-ADVRL with the following six baselines.

• Good Agent: Good NPCs that maximize their cumulative personal reward (i.e. only r̂

is considered).

• Attacker: Pure adversaries that maximize the cumulative adversarial reward (i.e. only
r̄ is considered).

• P-Adv: Adversaries with the personal reward.

• P-Adv_AdvRA: Adversaries with the personal reward using AdvRA (without PS-RBP
and CI).

• P-Adv_AdvRA_CI: Adversaries with the personal reward using AdvRA and CI (with-
out PS-RBP).

• P-Adv_PS-RBP: Adversaries with the personal reward using PS-RBP (without Ad-
vRA and CI).

We used the same parameters as in FAILMAKER-ADVRL for the above baselines. For the
baselines without PS-RBP, the size of the replay buffer was 1⇥ 106.

Metrics. We used the following as the metrics: 1) the number of the player’s failures, and
2) the number of NPCs’ failures. The first metric measures the quality of being adversarial,
and the second measures the naturalness (i.e. usefulness) of the adversarial situations.

50 Policy Testing with Multi-agent Adversarial Reinforcement Learning

Results. The left half in Table 4.1 compares the test performance of FAILMAKER-ADVRL

and that of the baselines. Each value indicates the percentage of failure in 1000 episodes. For
both N = 1 and 3, FAILMAKER-ADVRL outperforms the other baselines except for Attacker
in terms of its ability to make the player fail. Attacker has a larger percentage for the player’s
failure, but this is because Attacker intentionally tries to collide with the player. Figure 4.6
represents the percentage of the player’s failure over the number of episodes. Observe that
FAILMAKER-ADVRL and Adversary achieve stable and efficient learning. Also note that
P-Adv_AdvRA and P-Adv_AdvRA_CI execute relatively late convergence compared with
FAILMAKER-ADVRL.

4.6.2 Autonomous Driving

We then applied FAILMAKER-ADVRL to the multi-agent autonomous driving problem using
Microsoft AirSim [67]. We consider a rule-based player and N adversarial RL-based NPCs.
We tested for N = 1 and 2. In this simulation, the objective of the NPCs is to make the
player cause an accident or arrive at the goal destination very late.

In this simulation, we assumed that the player and NPCs have reference trajectories,
which are denoted as ⌅i = {⇠1i , . . . , ⇠

T
i }, where ⇠ti is the reference position and orientation

(i.e. yaw angle) at time t for agent i. In our experiment, the reference trajectory is obtained
through manual human demonstration. We used the coastline environment in the AirSim
simulator, so all the agents drive on a two-lane, one-way road. For simplicity, we assumed
that 1) the reference trajectories of all agents are identical (i.e., ⌅0 = . . . = ⌅N) and that 2)
all agents can observe the true state at every time step.

The player aims to follow the reference trajectory, ⌅0 using PD feedback control. De-
pending on the difference between the actual state ⇣t0 and the reference state ⇠t0, the player
chooses its own action. Therefore, the player follows the reference trajectory by feed-backing
⇣t0 � ⇠

t
0. The player also avoids colliding with NPCs. When the player gets closer to NPCs

than a threshold, the player acts to keep its distance from the closest NPC. NPCs act to
optimize their personal reward (i.e., r̂) and adversarial reward (i.e., r̄). The NPCs’ personal
reward is defined using 1) the distance with the reference trajectory and 2) the velocity. In
other words, NPCs are trained to keep to the center of the read and arrive at the destination
in a short time. Also, NPCs are trained to behave in an adversarial way on the basis of the
adversarial reward.

The FAILMAKER-ADVRL algorithm is implemented as follows. Our policies are modeled
by a three-layer ReLU neural networks with 256 units per layer. We used the Adam with a
learning rate of 0.01. The sizes of D+ and D

� are both 1⇥ 106, and the batch size is set as

4.6 Experiments for FAILMAKER-ADVRL 51

Table 4.2 Percentage of failures of player and NPC(s). FAILMAKER-ADVRL outperforms
other baselines in terms of its ability to foil the player while constraining the percentage of
failures of NPCs.

Autonomous driving

N = 1 N = 2

Player NPC Player NPC 1 NPC 2

Good Agent 3.4 2.9 5.2 3.0 2.0
Attacker 98.0 98.0 100.0 98.1 98.2
P-Adv 5.4 1.9 6.9 2.5 2.9
P-Adv_AdvRA 42.3 1.8 56.7 1.7 2.1
P-Adv_AdvRA_CI 65.6 2.0 69.2 3.1 3.3
P-Adv_PS-RBP 8.1 2.6 8.5 3.6 3.1
FAILMAKER-ADVRL 78.1 2.8 84.5 3.2 3.4

Fig. 4.7 Example of failure of player (blue) induced by adversarial NPC (red).

1024 episodes. Also, for the discount factor, � is set to be 0.95. We used the same baselines
and metrics as in Section 4.6.1 to evaluate FAILMAKER-ADVRL.

Results. The right half in Table 4.2 compares FAILMAKER-ADVRL and the baselines.
Each value indicates the failure rate of the player and NPCs in 1000 episodes. FAILMAKER-

ADVRL outperforms the other baselines except for Attacker in terms of its ability to make the
player fail. Figure 4.7 shows an example of the simulation results using the 3D autonomous
driving simulator. An adversarial NPC successfully induces the player’s collision with a rock.
Note that the NPC does not collide with the player or any obstacles. A sample video is in the
supplemental material.

52 Policy Testing with Multi-agent Adversarial Reinforcement Learning

Table 4.3 Covariance matrices for Pure-CompetMARL and DIV-FAILMAKER-ADVRL.

Covariance matrix

Pure-CompetMARL

7.5⇥ 10�4 1.2⇥ 10�4

1.2⇥ 10�4 1.8⇥ 10�4

�

Proposed (m  2)


2.9⇥ 10�2
�3.9⇥ 10�3

�3.9⇥ 10�3 1.6⇥ 10�3

�

Proposed (m  5)

1.7⇥ 10�2 1.4⇥ 10�2

1.4⇥ 10�2 4.8⇥ 10�2

�

4.7 Experiments for DIV-FAILMAKER-ADVRL

We tested our DIV-FAILMAKER-ADVRL in a 2D multi-agent particle environment [53].

Settings. The problem we used consisted of a player and an NPC. At every time step, the
rule-based deterministic policy, µ0 made the player head for its own goal. We trained an NPC
to make the player fail. Collisions between the player and another agent or a boundary (e.g.,
a wall) were regarded as failures. We set the player’s goal as (0, 0). We set the x-coordinate
to �0.8 for the initial positions of the player and randomly defined the y-coordinate within
the range of [�1, 1] We randomly defined the initial position of the NPC within the range of
[�0.5, 0.5]. We made the relationship between the player and the NPC imbalanced; that is,
the NPC could know the observations and actions of all agents. Also, to make it easier for
the NPC to make the player fail, we set the NPC’s maximum velocity higher than player’s.

Implementation. In this experiment, we implemented the DIV-FAILMAKER-ADVRL algo-
rithm as follows. The policy of the NPC was parameterized by a three-layer ReLU multi-layer
perceptron (MLP) with 64 units per layer. In our experiment, The optimizer was the Adam
with a learning rate of 0.01 and ⌧ = 0.01 for the soft update of the target network. We made
the size of the replay buffer 1⇥ 106, and the batch size 1024. We set the filtration ratios for
the E1 experience category as p1 = 0.1, E2 as p2 = 1.0, and E3 as p3 = 1.0. We set the
discount factor to � = 0.95, the maximum episode length to emax = 30. The cost and the
threshold in (4.4) are set to c = 1 and h = 0.1, respectively. We set the number of episodes
for to 3.5⇥ 104 per generation and the maximum generation to mmax = 5.

Reg-KVfDs were identified as follows. After terminating the training of the NPC, we ran
the simulation 5,000 times, then created a 2D histogram based on b with 100 bins for both
x and y axes. If the proportion of b for a bin to the total number of failure cases exceeded
0.5%, we identified them as Reg-KVfDs.

4.7 Experiments for DIV-FAILMAKER-ADVRL 53

(a) (b) (c)

Fig. 4.8 (a) Relationship between generation and variance of the matrix transformed using
PCA. (b, c) Plot of the Reg-KVfDs (i.e., collision location of the player). Each figure is for
(b) Pure-CompetMARL and (c) DIV-FAILMAKER-ADVRL (m  5).

Baselines. We compared our DIV-FAILMAKER-ADVRL with the pure adversarial RL
without diversity (i.e., Pure-CompetMARL). More specifically, in this baseline, the NPC
was given the reward regardless of whether or not the player failed in similar scenarios
(with similar KVfD). We expected Pure-CompetMARL to create similar failure-scenarios
of the player because the NPC tried to make the player fail in the easiest way for them. We
also set the number of episodes for Pure-CompetMARL to 3.5 ⇥ 104, which is identical
with that for each generation of our method. Also, other parameters were identical with
DIV-FAILMAKER-ADVRL.

Metrics. We measured the diversity of the failure-scenarios with two metrics. The first
metric is simply the covariance matrix of the KVfDs, and the second metric is the diagonalized
matrix obtained using principle component analysis (PCA).

Results. Figure 4.8(a) represents the relationship between the variance and the generation of
the NPC. The blue line is on the variance for the first principle component, and the green line
is for the second component, obtained using PCA. The first and second principle components
both monotonically increase with the generation. Also, Figure 4.8(b-c) represents the plot of
Reg-KVfDs for Pure-CompetMARL and DIV-FAILMAKER-ADVRL. Table 4.3 shows the
original covariance matrices regarding ⇤ for Pure-CompetMARL and DIV-FAILMAKER-

ADVRL.
In Pure-CompetMARL, the (trained) NPC tries to make the player fail at the origin (i.e.,

the destination of the player) because just waiting is the easiest way for the NPC. However,
DIV-FAILMAKER-ADVRL succeeds in making the player fail at different locations; that is,
the NPC diversifies the KVfDs as the generation increases.

54 Policy Testing with Multi-agent Adversarial Reinforcement Learning

Fig. 4.9 Effect of ESwF (magenta: with ESwF; cyan: without ESwF). The cumulative reward
is measured over the 1,000 previous episodes.

Effects of ESwF. Figure 4.9 compares the cumulative reward of DIV-FAILMAKER-ADVRL

with ESwF and without ESwF and shows that we achieve a higher expected cumulative
return with a small standard deviation with ESwF. When we did not use ESwF, category
E1 (i.e., the experiences in which the player succeeded) dominated the replay buffer, D. By
employing ESwF, the balanced experiences were sampled for the training of the NPC.

4.8 Conclusion and Future Work

We introduced a MARL problem with a rule-based player and RL-based NPCs. We then
presented the FAILMAKER-ADVRL algorithm, which trains NPCs in an adversarial but
natural manner. By using the techniques of CI, AdvRA, and PS-RBP, FAILMAKER-ADVRL

efficiently trains adversarial NPCs. We demonstrated the effectiveness of FAILMAKER-

ADVRL through two types of experiments including one using a 3D autonomous driving
simulator.

As future work, it would be an interesting direction to consider how to create adversarial
situations while incorporating recognition capability of the autonomous vehicles [80, 38].

4.9 Limitation

The limitations of the current algorithm are as follows. First, we achieve only the similar
failure scenario to the ones that humans could easily create. For example, failure-scenarios
by FAILMAKER-ADVRL could be created by making the adversarial NPCs get close the
player. In order to making our algorithm more useful in real applications, we need to develop
more sophisticated one so that the coverage of the failure-scenario is increased. Second, the

4.9 Limitation 55

decision-making algorithm in the player we used in our experiments is not very intelligent,
which is easy to fail. We should try using our FAILMAKER-ADVRL and DIV-FAILMAKER-

ADVRL whether they could obtain failure-scenarios of the player with more reliable and
well-constructed algorithm.

56 Policy Testing with Multi-agent Adversarial Reinforcement Learning

Algorithm 3 DIV-FAILMAKER-ADVRL

1: for m = 1 to mmax do

2: for e = 1 to emax do

3: Initialize a random process N for exploring an action
4: Obtain the initial state x
5: // Execution
6: for t = 1 to T do

7: The player executes the action a0 according to the rule µ0.
8: For the adversarial NPC i, select the action ai = µ✓i(oi) +Nt

9: NPCs execute the actions a = (a1, . . . , aN) and get their personal reward r and new
state x0

10: Calculate KVfD and store (x, a, r,x0, b) in temporal replay buffer Dtmp
11: x x0

12: end for

13: // Experience Storing with Filtration (ESwF)
14: if the player succeeds (i.e., NPCs fail) then

15: Samples in Dtmp are moved to D with a probability of p1
16: else

17: if a similar failure-scenario is in ⇤m�1 then

18: Reward is set as �c
19: Samples in Dtmp are moved to D with a probability of p2
20: else

21: Samples in Dtmp are moved to D with a probability of p3
22: end if

23: end if

24: // Training of the NPCs
25: for NPC i = 1 to N do

26: Set yj = rji + �Qµ0

i (x0, a00, a
0
1, . . . , a

0
N)|a00=µ0

0(o
j
0),a

0
l=µ0

l(o
j
l)

27: Update critic using the following loss function L(✓i) =
1
S

P
j

⇣
yj �Qµ

i (x
j , aj0, a

j
1, . . . , a

j
N)

⌘2

28: Update actor by:

r✓iJ ⇡
1

S

X

j

r✓iµi(o
j
i)raiQ

µ
i (x

j , aj0, a
j
1, . . . , a

j
N)|a0=µ0(o

j
0),ai=µi(o

j
i)

29: end for

30: Update the target network parameters: ✓0i ⌧✓i + (1� ⌧)✓0i
31: end for

32: Get registered KVfDs (Reg-KVfDs) �m, and update the set by ⇤m = �1 [. . . [�m

33: Transfer D to (m+ 1)-th generation NPCs after deleting the experiences with �m

34: end for

Chapter 5

Conclusion

In this dissertation, we have studied how to utilize reinforcement learning for achieving safe,
reliable systems.

In Chapter 3, we have presented a safe reinforcement learning algorithm called SNO-
MDP. This algorithm theoretically guarantees near-optimality and safety not only during
inference but also during training by (conservatively) learning the structure of reward and
safety functions using GPs. Empirically, SNO-MDP achieves better performance in terms
of the cumulative reward while guaranteeing safety with high probability. As an additional
contribution, the experiment was conducted using a newly developed simulation environment
called GP-Safety-Gym, which has been open-sourced in GitHub.

In Chapter 4, we then introduced a MARL algorithm for testing a rule-based player
by training RL-based NPCs in an adversarial way. Our algorithm is called FailMaker-
AdvRL, which trains NPCs in an adversarial yet natural manner. Our techniques called
CI, AdvRA, and PS-RBP enable us to train adversarial NPCs efficiently. We demonstrated
the effectiveness of our method through two types of experiments including one using a
3D autonomous driving simulator, AirSim. Also, we proposed Div-FailMaker-AdvRL for
obtaining diverse failure-scenarios of the tested agent.

5.1 Future Work

There are several possible direction as future work.
First, our safe RL algorithm works for tabular MDPs; hence, we cannot apply it to contin-

uous control problems. Many safety-critical RL problems (e.g., robot control, autonomous
driving) are essentially associated with continuous control. Therefore, it would be an interest-
ing direction to consider safe RL algorithm which can be applied in continuous state-action
spaces. Given its tremendous success especially in the large state-action spaces, deep RL

58 Conclusion

algorithms will be more and more reasonable solutions in real problems. Our current safe
RL algorithms are based on traditional method (e.g., value iteration, policy iteration), but it
would be better if we could incorporate safety in deep RL frameworks for achieving a policy
to cope with more complicated and difficult environments.

Second, our proposed algorithm, SNO-MDP is based on regularity and Lipschitz assump-
tions, which are not true in many real applications. Hence, to develop an algorithm useful
in real-world problems, we need to remove the above strong assumptions. In this case, it is
reasonable to assume that the agent can observe the multiple states of its neighbors so that
the assumptions on the properties of the safety function are not required.

Third, to develop a safe RL algorithm which is practically useful in real problems such
as autonomous driving or autonomous flight systems, it is required to be applicable with
multi-agent systems. It is important to develop safe RL algorithms which enable agents to
behave properly in multi-agent environments.

Fourth, it will be important to apply our method to more realistic environments that
include pedestrians or traffic signs. The first step to accomplishing this would be to craft an
adversarial environment (e.g., the shape of the intersection). Also, in this work, we do not
consider computer vision aspects. It will be significant to create an integrated adversarial
situation while incorporating perception capabilities.

Finally, in order to apply method (either policy development and testing) in real systems,
explainability and interpretability are essential requirements. It would be significant direction
to consider how to get the policy of the agent in some explainable form of representation.

References

[1] Achiam, J., Held, D., Tamar, A., and Abbeel, P. (2017). Constrained policy optimization.
In International Conference on Machine Learning (ICML).

[2] Altman, E. (1999). Constrained Markov decision processes, volume 7. CRC Press.

[3] Araya, M., Buffet, O., and Thomas, V. (2012). Near-optimal BRL using optimistic local
transitions. In International Conference on Machine Learning (ICML).

[4] Artzi, S., Dolby, J., Jensen, S. H., Møller, A., and Tip, F. (2011). A framework for
automated testing of javascript web applications. In International Conference on Software
Engineering (ICSE), pages 571–580.

[5] Aswani, A., Gonzalez, H., Sastry, S. S., and Tomlin, C. (2013). Provably safe and robust
learning-based model predictive control. Automatica, 49(5):1216–1226.

[6] Auer, P. and Ortner, R. (2007). Logarithmic online regret bounds for undiscounted
reinforcement learning. In Neural Information Processing Systems (NeurIPS).

[7] Bäuerle, N. and Ott, J. (2011). Markov decision processes with average-value-at-risk
criteria. Mathematical Methods of Operations Research, 74(3):361–379.

[8] Bauersfeld, S. and Vos, T. (2012). A reinforcement learning approach to automated
gui robustness testing. In Fast abstracts of the 4th symposium on search-based software
engineering (SSBSE 2012), pages 7–12.

[9] Berkenkamp, F., Turchetta, M., Schoellig, A., and Krause, A. (2017). Safe model-
based reinforcement learning with stability guarantees. In Neural Information Processing
Systems (NeurIPS).

[10] Biyik, E., Margoliash, J., Alimo, S. R., and Sadigh, D. (2019). Efficient and safe
exploration in deterministic markov decision processes with unknown transition models.
In 2019 American Control Conference (ACC), pages 1792–1799. IEEE.

[11] Bodnar, C., Li, A., Hausman, K., Pastor, P., and Kalakrishnan, M. (2019). Quantile
qt-opt for risk-aware vision-based robotic grasping. arXiv preprint arXiv:1910.02787.

[12] Brafman, R. I. and Tennenholtz, M. (2002). R-max - a general polynomial time
algorithm for near-optimal reinforcement learning. Journal of Machine Learning Research
(JMLR), pages 213–231.

[13] Camacho, E. F. and Alba, C. B. (2013). Model predictive control. Springer Science &
Business Media.

60 References

[14] Cannon, M. and Kouvaritakis, B. (2005). Optimizing prediction dynamics for robust
mpc. IEEE Transactions on Automatic Control, 50(11):1892–1897.

[15] Chow, Y., Nachum, O., Faust, A., Duenez-Guzman, E., and Ghavamzadeh, M.
(2019). Lyapunov-based safe policy optimization for continuous control. arXiv preprint
arXiv:1901.10031.

[16] Chowdhury, S. R. and Gopalan, A. (2017). On kernelized multi-armed bandits. In
International Conference on Machine Learning (ICML).

[17] Cowen-Rivers, A. I., Palenicek, D., Moens, V., Abdullah, M., Sootla, A., Wang, J., and
Ammar, H. (2020). Samba: Safe model-based & active reinforcement learning. arXiv
preprint arXiv:2006.09436.

[18] Devlin, S., Yliniemi, L., Kudenko, D., et al. (2014). Potential-based difference rewards
for multiagent reinforcement learning. In International Conference on Autonomous agents
and Multi-Agent Systems (AAMAS).

[19] Doyle, J. (1996). Robust and optimal control. In Proceedings of 35th IEEE Conference
on Decision and Control, volume 2, pages 1595–1598. IEEE.

[20] Eysenbach, B., Gu, S., Ibarz, J., and Levine, S. (2018). Leave no trace: Learning to
reset for safe and autonomous reinforcement learning. In International Conference on
Learning Representations.

[21] Fisac, J. F., Akametalu, A. K., Zeilinger, M. N., Kaynama, S., Gillula, J., and Tomlin,
C. J. (2018). A general safety framework for learning-based control in uncertain robotic
systems. IEEE Transactions on Automatic Control.

[22] Fleming, W. H. and McEneaney, W. M. (1995). Risk-sensitive control on an infinite
time horizon. SIAM Journal on Control and Optimization, 33(6):1881–1915.

[23] Foerster, J., Farquhar, G., Afouras, T., et al. (2018). Counterfactual multi-agent policy
gradients. In AAAI Conference on Artificial Intelligence (AAAI).

[24] Garcıa, J. and Fernández, F. (2015). A comprehensive survey on safe reinforcement
learning. Journal of Machine Learning Research (JMLR), 16(1):1437–1480.

[25] Green, M. and Limebeer, D. J. (2012). Linear robust control. Courier Corporation.

[26] Gu, S., Holly, E., Lillicrap, T., and Levine, S. (2016). Deep reinforcement learning for
robotic manipulation. arXiv preprint arXiv:1610.00633, 1.

[27] Gu, S., Holly, E., Lillicrap, T., and Levine, S. (2017). Deep reinforcement learning for
robotic manipulation with asynchronous off-policy updates. In 2017 IEEE international
conference on robotics and automation (ICRA), pages 3389–3396. IEEE.

[28] Harries, L., Clarke, R. S., Chapman, T., Nallamalli, S. V., Ozgur, L., Jain, S., Leung, A.,
Lim, S., Dietrich, A., Hernández-Lobato, J. M., et al. (2020). Drift: Deep reinforcement
learning for functional software testing. arXiv preprint arXiv:2007.08220.

[29] Horgan, D., Quan, J., Budden, D., et al. (2018). Distributed prioritized experience
replay. In International Conference on Learning Representation (ICLR).

References 61

[30] Howard, R. A. and Matheson, J. E. (1972). Risk-sensitive markov decision processes.
Management science, 18(7):356–369.

[31] Kakade, S. M. et al. (2003). On the sample complexity of reinforcement learning. PhD
thesis, University of London London, England.

[32] Kalashnikov, D., Irpan, A., Pastor, P., Ibarz, J., Herzog, A., Jang, E., Quillen, D., Holly,
E., Kalakrishnan, M., Vanhoucke, V., et al. (2018). Scalable deep reinforcement learning
for vision-based robotic manipulation. In Conference on Robot Learning, pages 651–673.
PMLR.

[33] Kearns, M. and Singh, S. (2002). Near-optimal reinforcement learning in polynomial
time. Machine Learning, 49(2-3):209–232.

[34] Khalil, H. K. and Grizzle, J. W. (2002). Nonlinear systems, volume 3. Prentice hall
Upper Saddle River, NJ.

[35] Kim, H. J. and Shim, D. H. (2003). A flight control system for aerial robots: algorithms
and experiments. Control engineering practice, 11(12):1389–1400.

[36] Kolter, J. Z. and Ng, A. Y. (2009). Near-Bayesian exploration in polynomial time. In
International Conference on Machine Learning (ICML).

[37] Konda, V. R. and Tsitsiklis, J. N. (2000). Actor-critic algorithms. In Advances in neural
information processing systems, pages 1008–1014. Citeseer.

[38] Kurakin, A., Goodfellow, I., and Bengio, S. (2016). Adversarial examples in the
physical world. arXiv preprint arXiv:1607.02533.

[39] Lample, G. and Chaplot, D. S. (2017). Playing fps games with deep reinforcement
learning. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 31.

[40] Lauer, M. and Riedmiller, M. (2000). An algorithm for distributed reinforcement
learning in cooperative multi-agent systems. In International Conference on Machine
Learning (ICML).

[41] Levine, S., Finn, C., Darrell, T., et al. (2016). End-to-end training of deep visuomotor
policies. The Journal of Machine Learning Research (JMLR), 17(1):1334–1373.

[42] Li, S., Wu, Y., Cui, X., et al. (2019). Robust multi-agent reinforcement learning via
minimax deep deterministic policy gradient. In AAAI Conference on Artificial Intelligence
(AAAI).

[43] Littman, M. L. (1994). Markov games as a framework for multi-agent reinforcement
learning. In International Conference on Machine Learning (ICML).

[44] Lowe, R., Wu, Y., Tamar, A., et al. (2017). Multi-agent actor-critic for mixed
cooperative-competitive environments. In Advances in Neural Information Processing
Systems (NeurIPS).

[45] Lütjens, B., Everett, M., and How, J. P. (2019). Safe reinforcement learning with model
uncertainty estimates. In 2019 International Conference on Robotics and Automation
(ICRA), pages 8662–8668. IEEE.

62 References

[46] Marchetto, A. and Tonella, P. (2011). Using search-based algorithms for ajax event
sequence generation during testing. Empirical Software Engineering, 16(1):103–140.

[47] Marcus, S. I., Fernández-Gaucherand, E., Hernández-Hernandez, D., Coraluppi, S., and
Fard, P. (1997). Risk sensitive markov decision processes. In Systems and control in the
twenty-first century, pages 263–279. Springer.

[48] McEwen, A. S., Eliason, E. M., Bergstrom, J. W., et al. (2007). Mars reconnaissance
orbiter’s high resolution imaging science experiment (HiRISE). Journal of Geophysical
Research: Planets, 112(E5).

[49] Mnih, V., Badia, A. P., Mirza, M., Graves, A., Lillicrap, T., Harley, T., Silver, D., and
Kavukcuoglu, K. (2016). Asynchronous methods for deep reinforcement learning. In
International conference on machine learning, pages 1928–1937. PMLR.

[50] Mnih, V., Kavukcuoglu, K., Silver, D., et al. (2015). Human-level control through deep
reinforcement learning. Nature, 518(7540):529.

[51] Mnih, V., Kavukcuoglu, K., Silver, D., Graves, A., Antonoglou, I., Wierstra, D., and
Riedmiller, M. (2013). Playing atari with deep reinforcement learning. arXiv preprint
arXiv:1312.5602.

[52] Montgomery, D. C., Peck, E. A., and Vining, G. G. (2021). Introduction to linear
regression analysis. John Wiley & Sons.

[53] Mordatch, I. and Abbeel, P. (2017). Emergence of grounded compositional language in
multi-agent populations. arXiv preprint arXiv:1703.04908.

[54] Nguyen, D. T., Kumar, A., and Lau, H. C. (2018). Credit assignment for collective
multiagent RL with global rewards. In Advances in Neural Information Processing
Systems (NeurIPS).

[55] Nonnengart, A., Klusch, M., and Müller, C. (2019). Crisgen: Constraint-based genera-
tion of critical scenarios for autonomous vehicles. In International Symposium on Formal
Methods, pages 233–248. Springer.

[56] Panait, L. and Luke, S. (2005). Cooperative multi-agent learning: The state of the art.
Autonomous Agents and Multi-Agent Systems, 11(3):387–434.

[57] Pei, K., Cao, Y., Yang, J., et al. (2017). Deepxplore: Automated whitebox testing of
deep learning systems. In Symposium on Operating Systems Principles (SOSP).

[58] Pinto, L., Davidson, J., Sukthankar, R., et al. (2017). Robust adversarial reinforcement
learning. In International Conference on Machine Learning (ICML).

[59] Rasmussen, C. E. (2004). Gaussian processes in machine learning. In Advanced
Lectures on Machine Learning, pages 63–71. Springer.

[60] Rausand, M. (2014). Reliability of safety-critical systems: theory and applications.
John Wiley & Sons.

[61] Ray, A., Achiam, J., and Amodei, D. (2019). Benchmarking safe exploration in deep
reinforcement learning.

References 63

[62] Schaul, T., Quan, J., Antonoglou, I., et al. (2016). Prioritized experience replay. In
International Conference on Learning Representation (ICLR).

[63] Schölkopf, B. and Smola, A. J. (2001). Learning with kernels: support vector machines,
regularization, optimization, and beyond. MIT press.

[64] Schulman, J., Levine, S., Abbeel, P., Jordan, M., and Moritz, P. (2015). Trust region
policy optimization. In International conference on machine learning, pages 1889–1897.
PMLR.

[65] Schwarm, A. T. and Nikolaou, M. (1999). Chance-constrained model predictive control.
AIChE Journal, 45(8):1743–1752.

[66] Seber, G. A. and Lee, A. J. (2012). Linear regression analysis, volume 329. John Wiley
& Sons.

[67] Shah, S., Dey, D., Lovett, C., et al. (2017). Airsim: High-fidelity visual and physical
simulation for autonomous vehicles. In Field and Service Robotics (FSR).

[68] Silver, D., Huang, A., Maddison, C. J., et al. (2016). Mastering the game of Go with
deep neural networks and tree search. Nature, 529(7587):484.

[69] Silver, D., Hubert, T., Schrittwieser, J., Antonoglou, I., Lai, M., Guez, A., Lanctot,
M., Sifre, L., Kumaran, D., Graepel, T., et al. (2018). A general reinforcement learning
algorithm that masters chess, shogi, and go through self-play. Science, 362(6419):1140–
1144.

[70] Silver, D., Schrittwieser, J., Simonyan, K., Antonoglou, I., Huang, A., Guez, A., Hubert,
T., Baker, L., Lai, M., Bolton, A., et al. (2017). Mastering the game of go without human
knowledge. nature, 550(7676):354–359.

[71] Singh, S., Chow, Y., Majumdar, A., and Pavone, M. (2018). A framework for time-
consistent, risk-sensitive model predictive control: Theory and algorithms. IEEE Transac-
tions on Automatic Control, 64(7):2905–2912.

[72] Srinivas, N., Krause, A., Kakade, S. M., and Seeger, M. (2010). Gaussian process
optimization in the bandit setting: No regret and experimental design. In International
Conference on Machine Learning (ICML).

[73] Stanton, N. A. and Young, M. S. (1998). Vehicle automation and driving performance.
Ergonomics, 41(7):1014–1028.

[74] Strehl, A. L., Li, L., Wiewiora, E., Langford, J., and Littman, M. L. (2006). PAC
model-free reinforcement learning. In International Conference on Machine Learning
(ICML).

[75] Strehl, A. L. and Littman, M. L. (2005). A theoretical analysis of model-based interval
estimation. In International Conference on Machine Learning (ICML).

[76] Strehl, A. L. and Littman, M. L. (2008). An analysis of model-based interval estimation
for Markov decision processes. Journal of Computer and System Sciences, 74(8):1309–
1331.

64 References

[77] Sui, Y., Gotovos, A., Burdick, J. W., and Krause, A. (2015). Safe exploration for
optimization with Gaussian processes. In International Conference on Machine Learning
(ICML).

[78] Sui, Y., Zhuang, V., Burdick, J. W., and Yue, Y. (2018). Stagewise safe Bayesian
optimization with Gaussian processes. In International Conference on Machine Learning
(ICML).

[79] Sutton, R. S., Barto, A. G., et al. (1998). Introduction to reinforcement learning, volume
135. MIT press Cambridge.

[80] Szegedy, C., Zaremba, W., Sutskever, I., et al. (2013). Intriguing properties of neural
networks. arXiv preprint arXiv:1312.6199.

[81] Tian, Y., Pei, K., Jana, S., and Ray, B. (2018). Deeptest: Automated testing of
deep-neural-network-driven autonomous cars. In International Conference on Software
Engineering (ICSE).

[82] Turchetta, M., Berkenkamp, F., and Krause, A. (2016). Safe exploration in finite
Markov decision processes with Gaussian processes. In Neural Information Processing
Systems (NeurIPS).

[83] Turchetta, M., Berkenkamp, F., and Krause, A. (2019). Safe exploration for interactive
machine learning. In Neural Information Processing Systems (NeurIPS).

[84] Turchetta, M., Kolobov, A., Shah, S., Krause, A., and Agarwal, A. (2020). Safe
reinforcement learning via curriculum induction. arXiv preprint arXiv:2006.12136.

[85] Urmson, C., Anhalt, J., Bagnell, D., et al. (2008). Autonomous driving in urban
environments: Boss and the urban challenge. Journal of Field Robotics, 25(8):425–466.

[86] Vogel, K. (2003). A comparison of headway and time to collision as safety indicators.
Accident analysis & prevention, 35(3):427–433.

[87] Wachi, A., Sui, Y., Yue, Y., and Ono, M. (2018). Safe exploration and optimization of
constrained MDPs using Gaussian processes. In AAAI Conference on Artificial Intelligence
(AAAI).

[88] Wang, J., Pun, A., Tu, J., Manivasagam, S., Sadat, A., Casas, S., Ren, M., and Urtasun,
R. (2021). Advsim: Generating safety-critical scenarios for self-driving vehicles. arXiv
preprint arXiv:2101.06549.

[89] Williams, R. J. (1992). Simple statistical gradient-following algorithms for connection-
ist reinforcement learning. Machine learning, 8(3-4):229–256.

[90] Wilson, A. and Nickisch, H. (2015). Kernel interpolation for scalable structured
gaussian processes (kiss-gp). In International Conference on Machine Learning, pages
1775–1784. PMLR.

[91] Wilson, A. G., Dann, C., and Nickisch, H. (2015). Thoughts on massively scalable
gaussian processes. arXiv preprint arXiv:1511.01870.

References 65

[92] Wolpert, D. H. and Tumer, K. (2002). Optimal payoff functions for members of
collectives. In Modeling complexity in economic and social systems, pages 355–369.
World Scientific.

[93] Zhou, K. and Doyle, J. C. (1998). Essentials of robust control, volume 104. Prentice
hall Upper Saddle River, NJ.

Appendix A

Appendix for Safe RL in Constrained

MDPs

A.1. Preliminary Lemma

Lemma 3. For two arbitrary functions f1(x) and f2(x), the following inequality holds:

max
x

f1(x)�max
x

f2(x) � min
x

(f1(x)� f2(x)).

Proof. For two arbitrary functions f4(x) and f5(x), the following inequality holds:

max
x

f4(x) + max
x

f5(x) � max
x

{f4(x) + f5(x)}.

Let f2(x) = f4(x) + f5(x) and f3(x) = �f4(x). Then,

max
x

{�f3(x)}+max
x

{f2(x) + f3(x)} � max
x

f2(x),

max
x

{f2(x) + f3(x)}�max
x

f2(x) � �max
x

{�f3(x)},

max
x

{f2(x) + f3(x)}�max
x

f2(x) = min
x

f3(x).

Finally, let f1(x) = f2(x) + f3(x). Then, the desired lemma is obtained.

68 Appendix for Safe RL in Constrained MDPs

A.2. Near-optimality

Lemma 4. Let J⇤
X (st, b

r
t , b

g
t) be the value function calculated by SNO-MDP without the

ES
2 algorithm. Then, J⇤

X (st, b
r
t , b

g
t) satisfies the following inequality:

J⇤
X (st, b

r
t , b

g
t) � V ⇤(st).

Proof. Consider a state st and beliefs brt and bgt . Also, let I denote the following safety
indicator function:

I(s) :=

(
1 if s 2 R̄✏g(S0),

0 otherwise.
(A.1)

Then, the following chain of equations and inequalities holds:

J⇤
X (st, b

r
t , b

g
t)� V ⇤(st)

= max
st+12X�

t⇤

[Ut(st+1) + �J⇤
X (st+1, b

r
t , b

g
t)]� max

st+12R̄✏g (S0)
[r(st+1) + �V ⇤

M(st+1)]

� max
st+12R̄✏g (S0)

[Ut(st+1) + �J⇤
X (st+1, b

r
t , b

g
t)]� max

st+12R̄✏g (S0)
[r(st+1) + �V ⇤

M(st+1)]

= max
at

[I(st+1) · {Ut(st+1) + �J⇤
X (st+1, b

r
t , b

g
t)}]�max

at
[I(st+1) · {r(st+1) + �V ⇤

M(st+1)}]

� min
at

[I(st+1) · {Ut(st+1)� r(st+1)}+ �I(st+1)J
⇤
X (st+1, b

r
t , b

g
t)� �I(st+1)V

⇤(st+1)]

= min
at

[I(st+1) · {Ut(st+1)� r(st+1)}+ �I(st+1){J
⇤
X (st+1, b

r
t , b

g
t)� V ⇤(st+1)}] .

The third line follows from X
�
t⇤ ◆ R̄✏g(S0) in Theorem 1. Also, the fourth line follows

from the definition of I , and the fifth line follows from Lemma 3. Because s is arbitrary in
the above derivation, we have

min
st

[J⇤
X (st, b

r
t , b

g
t)� V ⇤(st)]

�min
st+1

[I(st+1){Ut(st+1)� r(st+1)}+ �I(st+1){J
⇤(st+1, b

r
t , b

g
t)� V ⇤(st+1)}] .

By Lemma 2, the following equation holds with probability at least 1��r:

min
st

[J⇤
X (st, b

r
t , b

g
t)� V ⇤(st, b

r
t , b

g
t)] � � ·min

st+1

[I(st+1){J
⇤
X (st+1, b

r
t , b

g
t)� V ⇤(st+1)}]

69

Repeatedly applying this equation proves the desired lemma. Therefore, we have

J⇤
X (st, b

r
t , b

g
t) � V ⇤(st)

with high probability.

Lemma 5. (Generalized induced inequality) Let br, bg, r and b̂r, b̂g, r̂ be the beliefs (over
reward and safety, respectively) and reward functions (including the exploration bonus) that
are identical on some set of states ⌦— i.e., br = b̂r, bg = b̂g, and r = r̂ for all s 2 ⌦. Let
P (A⌦) be the probability that a state not in ⌦ is generated when starting from state s and
following a policy ⇡. If the value is bound in [0, Vmax], then

V ⇡(s, br, bg, r) � V ⇡(s, b̂r, b̂g, r̂)� VmaxP (A⌦),

where we now make explicit the dependence of the value function on the reward.

Proof. The lemma follows from Lemma 8 in Strehl and Littman [75].

Lemma 6. Assume that the reward function r satisfies krk2k  Br, and that the noise nr
t is

�r-sub-Gaussian. If ↵t = Br + �r

p
2(�r

t�1 + 1 + log(1/�r)) and Cr = 8/ log(1 + ��2
r),

then the following holds:
1

2

r
Cr↵t⇤�r

t⇤

t⇤
� ↵1/2

t⇤ �r
t⇤(s),

with probability at least 1��r.

Proof. The lemma follows from Lemma 4 in Chowdhury and Gopalan [16].

A.3. ES
2

algorithm

Lemma 7. Assume that Yt ✓ X
�
t holds. Suppose that we obtain the optimal policy, ⇡⇤

y on
the basis of J⇤

Y(st, b
r
t , b

g
t) = maxst+12Yt

⇥
Ut(st+1) + �J⇤

Y(st+1, brt , b
g
t)
⇤
. Then, for all t, the

following holds:
st 2 Yt =) st+1 2 Yt.

Proof. When Yt ✓ X
�
t holds, we have

{s0 2 S
+
| 8s 2 Yt : s

0 = f(s, ⇡⇤
y(a | s))} ✓ {s0 2 S

+
| 8s 2 X

�
t : s0 = f(s, ⇡⇤

y(a | s))}

= Yt.

This means that the next state st+1 will be within Yt if the agent is in Yt and decides the
action based on ⇡⇤

y . Therefore, we have the desired lemma.

70 Appendix for Safe RL in Constrained MDPs

Lemma 8. Assume that Yt ✓ X
�
t holds, and let J⇤

Y(st, b
r
t , b

g
t) be the value function calcu-

lated by SNO-MDP with the ES
2 algorithm. Then, for all st 2 X

�
t , J⇤

Y(st, b
r
t , b

g
t) satisfies

the following equation:
J⇤
Y(st, b

r
t , b

g
t) � V ⇤(st).

Proof. Consider a state st 2 X
�
t and beliefs br and bg. Also, we define the function I as in

(A.1). Then, the following chain of the equations and inequalities holds:

J⇤
Y(st, b

r
t , b

g
t)� V ⇤(st)

= max
st+12Yt

⇥
Ut(st+1) + �J⇤

Y(st+1, b
r
t , b

g
t)

⇤
�max

at
[I(st+1) · {r(st+1) + �V ⇤

M(st+1)}]

= max
st+12Yt

⇥
Ut(st+1) + �J⇤

Y(st+1, b
r
t , b

g
t)

⇤
� max

st+12X+
t

[I(st+1) · {r(st+1) + �V ⇤
M(st+1)}]

= max
st+12Yt

⇥
Ut(st+1) + �J⇤

Y(st+1, b
r
t , b

g
t)

⇤
� max

st+12Yt

[I(st+1) · {r(st+1) + �V ⇤
M(st+1)}]

� min
st+12Yt

⇥
Ut(st+1) + �J⇤

Y(st+1, b
r
t , b

g
t)� I(st+1) · {r(st+1) + �V ⇤

M(st+1)}
⇤

� min
st+12Yt

⇥
Ut(st+1) + �J⇤

Y(st+1, b
r
t , b

g
t)� {r(st+1) + �V ⇤

M(st+1)}
⇤

= min
st+12Yt

⇥
Ut(st+1)� r(st+1) + �J⇤

Y(st+1, b
r
t , b

g
t)� �V ⇤

M(st+1)
⇤
.

The second and third lines follow from the definitions of I and V ⇤
M. The forth line follows

from the definition of Y and the assumption of Yt ✓ X
�
t . The fifth line follows from

Lemma 3.
Then, by Lemma 2, the following equation holds with probability at least 1��r:

min
st2X�

t

⇥
J⇤
Y(st, b

r
t , b

g
t)� V ⇤(st)}

⇤
� � · min

st+12Yt

⇥
J⇤
Y(st+1, b

r
t , b

g
t)� V ⇤

M(st+1)
⇤

� �2
· min
st+22Yt

⇥
J⇤
Y(st+2, b

r
t , b

g
t)� V ⇤

M(st+2)
⇤
.

The second line follows from Lemma 7. Repeatedly applying this equation proves the desired
lemma. Therefore, for all st 2 X

�
t , we have

J⇤
Y(st, b

r
t , b

g
t) � V ⇤(st).

71

A.4. Main Theoretical Results

Theorem 1. Assume that the safety function g satisfies kgk2k  Bg and is L-Lipschitz
continuous. Also, assume that S0 6= ; and g(s) � h for all s 2 S0. Fix any ✏g > 0

and �g
2 (0, 1). Suppose that we conduct the stage of “exploration of safety” with the

noise ng
t being �g-sub-Gaussian, and that �t = Bg + �g

p
2(�g

t�1 + 1 + log(1/�g)) until
maxs2Gt wt(s) < ✏g is achieved. Finally, let t⇤ be the smallest integer satisfying

t⇤

�t⇤�
g
t⇤
�

Cg|R̄0(S0)|

✏2g
·D(M),

with Cg = 8/ log(1 + ��2
g). Then, the following statements jointly hold with probability at

least 1��g:

• 8t � 1, g(st) � h,

• 9t0  t⇤, R̄✏g(S0) ✓ X
�
t0 ✓ R̄0(S0).

Proof. This is an extension of Theorem 1 in Turchetta et al. [82] to our settings, where t

represents not the number of samples but the number of actions.

Theorem 2. Assume that the reward function r satisfies krk2k  Br, and that the
noise is �r-sub-Gaussian. Let ⇡t denote the policy followed by SNO-MDP at time t,
and let st and brt , b

g
t be the corresponding state and beliefs, respectively. Let t⇤ be the

smallest integer satisfying t⇤

�t⇤�
g
t⇤
�

Cg |R̄0(S0)|
✏2g

D(M), and fix any �r
2 (0, 1). Finally, set

↵t = Br + �r

p
2(�r

t�1 + 1 + log(1/�r)) and

✏⇤V = Vmax · (�
g + ⌃r

t⇤/Rmax),

with ⌃r
t⇤ =

1
2

q
Cr↵t⇤�

r
t⇤

t⇤ . Then, with high probability,

V ⇡t(st, b
r
t , b

g
t) � V ⇤(st)� ✏⇤V

— i.e., the algorithm is ✏⇤V -close to the optimal policy — for all but t⇤ time steps, while
guaranteeing safety with probability at least 1��g.

Proof. Define r̃ as the reward function (including the exploration bonus) that is used by SNO-

MDP. Let r̂ be a reward function equal to r on ⌦ and equal to r̃ elsewhere. Furthermore, let
⇡̃ be the policy followed by SNO-MDP at time t, that is, the policy calculated on the basis

72 Appendix for Safe RL in Constrained MDPs

of the current beliefs, (i.e., brt and bgt) and the reward r̃. Finally, let A⌦ be the event in which
⇡̃ escapes from ⌦. Then,

V ⇡t(r, st, b
r
t , b

g
t) � V ⇡̃(r̂, st, b

r
t , b

g
t)� VmaxP (A⌦)

by Lemma 5. In addition, note that, for all t � t⇤, because r̂ and r̃ differ by at most ↵1/2
t⇤ �r

t⇤

at each state,

|V ⇡̃(r̂, st, b
r
t , b

g
t)� V ⇡̃(r̃, st, b

r
t , b

g
t)| 

1

1� �
· ↵1/2

t⇤ �r
t⇤(s)

 Vmax/Rmax · ⌃
r
t⇤ . (A.2)

For the above inequality, we used Lemma 6. Here, consider the case of ⌦ = X
�
t⇤ . Once the

safe region is fully explored, P (A⌦)  �g holds after t⇤ time steps. Then, the following
chain of equations and inequalities holds:

V ⇡t(R, s, b) � V ⇡̃(R̂, s, b)� Vmax · P (A⌦)

= V ⇡̃(R̂, s, b)� Vmax · P (AX�)

� V ⇡̃(R̂, s, b)� Vmax ·�
g

� V ⇡̃(R̃, s, b)� Vmax · (�
g + ⌃r

t⇤/Rmax)

= J⇤
X (R̃, s, b)� Vmax · (�

g + ⌃r
t⇤/Rmax)

� V ⇤(R, s)� Vmax · (�
g + ⌃r

t⇤/Rmax).

In this derivation, the second line follows from the assumption of ⌦ = X
�, the third line

follows from P (AX�)  �g, the fourth line follows from (A.2), the fifth line follows from
the fact that ⇡̃ is precisely the optimal policy for R̃ and b, and the final line follows from
Lemma 4.

Theorem 3. Assume that the reward function r satisfies krk2k  Br, and that the noise
is �r-sub-Gaussian. Let ⇡t denote the policy followed by SNO-MDP with the the ES

2

algorithm at time t, and let st and brt , b
g
t be the corresponding state and beliefs, respectively.

Let t̃ be the smallest integer for which (3.4) holds, and fix any �r
2 (0, 1). Finally, set

↵t = Br + �r

p
2(�r

t�1 + 1 + log(1/�r)) and

✏̃V = Vmax · (�
g + ⌃r

t̃/Rmax),

73

with ⌃r
t̃
= 1

2

q
Cr↵t̃�

r
t̃

t̃
. Then, with high probability,

V ⇡t(st, b
r
t , b

g
t) � V ⇤(st)� ✏̃V

— i.e., the algorithm is ✏̃V -close to the optimal policy — for all but t̃ time steps while
guaranteeing safety with probability at least 1��g.

Proof. The proof of Theorem 3 is analogous to that of Theorem 2. Define r̃ as the reward
function (including the exploration bonus) that is used by SNO-MDP. Let r̂ be a reward
function equal to r on Y and equal to r̃ elsewhere. Furthermore, let ⇡̃ be the policy followed
by SNO-MDP with the ES

2 algorithm at time t, that is, the policy calculated on the basis of
the current beliefs, (i.e., brt and bgt) and the reward r̃. Finally, let AY be the event in which ⇡̃

escapes from Y . Then,

V ⇡t(r, st, b
r
t , b

g
t) � V ⇡̃(r̂, st, b

r
t , b

g
t)� VmaxP (AY)

by Lemma 5. In addition, note that, for all t � t̃, because r̂ and r̃ differ by at most ↵1/2

t̃
�r
t̃

at
each state,

|V ⇡̃(r̂, st, b
r
t , b

g
t)� V ⇡̃(r̃, st, b

r
t , b

g
t)| 

1

1� �
· ↵1/2

t̃
�r
t̃ (s)

 Vmax/Rmax · ⌃
r
t̃ . (A.3)

For the above inequalities, we used Lemma 6. Then, the following chain of equations and
inequalities holds:

V ⇡t(R, s, b) = V ⇡̃(R̂, s, b)� Vmax · P (AY)

� V ⇡̃(R̂, s, b)� Vmax ·�
g

� V ⇡̃(R̃, s, b)� Vmax · (�
g + ⌃r

t̃/Rmax)

= J⇤
Y(R̃, s, b)� Vmax · (�

g + ⌃r
t̃/Rmax)

� V ⇤(R, s)� Vmax · (�
g + ⌃r

t̃/Rmax).

In this derivation, the second line follows from P (AY)  �g, the third line follows from
(A.3), the fourth line follows from the fact that ⇡̃ is precisely the optimal policy for R̃ and b,
and the final line follows from Lemma 8.

	Table of contents
	List of figures
	List of tables
	Nomenclature
	1 Introduction
	1.1 Contributions
	1.2 Publications Relevant to this Dissertation

	2 Background
	2.1 Policy Optimization for Dynamical Systems
	2.2 Optimal Control
	2.3 Reinforcement Learning
	2.4 Exploration and Exploitation
	2.5 Sample Complexity and PAC-MDP

	3 Safe Reinforcement Learning in Constrained Markov Decision Processes
	3.1 Problem Statement
	3.2 Background
	3.3 Algorithm
	3.3.1 Exploration of Safety (Step 1)
	3.3.2 Exploration and Exploitation of Reward (Step 2)
	3.3.3 Early Stopping of Exploration of Safety
	3.3.4 More Practical Early Stopping Algorithm

	3.4 Theoretical Results
	3.4.1 Safety Guarantee and Completeness
	3.4.2 Near-Optimality

	3.5 Experiment
	3.5.1 Synthetic GP-Safety-Gym Environment
	3.5.2 Simulated Mars Surface Exploration

	3.6 Conclusion
	3.7 Limitation

	4 Policy Testing with Multi-agent Adversarial Reinforcement Learning
	4.1 Related Work
	4.2 Preliminaries
	4.3 Problem Statement
	4.4 FailMaker-AdvRL
	4.4.1 Adversarial Learning with Personal Reward
	4.4.2 Contributors Identification (CI)
	4.4.3 Adversarial reward allocation (AdvRA).
	4.4.4 Prioritized Sampling by Replay Buffer Partition (PS-RBP)
	4.4.5 Overview of FailMaker-AdvRL

	4.5 Diverse FailMaker-AdvRL
	4.5.1 Key Variables for Diversity (KVfD)
	4.5.2 Reward Function Characterized by KVfD
	4.5.3 Determining Reg-KVfD
	4.5.4 Experience Storing with Filtration (ESwF)
	4.5.5 Inheriting the Experience
	4.5.6 Overview of Div-FailMaker-AdvRL

	4.6 Experiments for FailMaker-AdvRL
	4.6.1 Simple Multi-agent Particle Environment
	4.6.2 Autonomous Driving

	4.7 Experiments for Div-FailMaker-AdvRL
	4.8 Conclusion and Future Work
	4.9 Limitation

	5 Conclusion
	5.1 Future Work

	References
	Appendix A Appendix for Safe RL in Constrained MDPs

