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Chapter 1

Introduction

Automated facial image analysis (AFA) has attracted substantial attention in recent

decades. As AFA can obtain a wide range of information about people, including

human identity, expression, age, gender and race, the technology can be applied to

a wide range of applications, such as user authentication, border monitoring, social

robots, driver monitoring, online learning, gaming, marketing, and medical treat-

ment [83, 95, 52]. In many real-world scenarios, AFA’s robustness to unconstrained

environments, such as arbitrary pose, illumination change, or occlusion, is crucial.

The objective of this thesis is to improve AFA across pose, which is one of the

major challenges encountered by AFA systems. To improve the performance of AFA

systems, a great number of approaches have been proposed, including image-based,

video-based, and 3D-based approaches (See [96, 83, 91] for face recognition, and

[52, 95] for facial expression recognition). Though these versatile approaches have

been steadily improving the performance of AFA systems, they still suffer from

arbitrary pose situations. To mitigate the problem, another possible solution is

to use approaches involving the design of new feature representation or matching

methods for arbitrary pose situations. However, these approaches make it hard to

take advantage of well-studied versatile approaches because they cannot directly

use well-studied existing feature representation or matching methods. We there-

fore believe that developing methods extending versatile approaches for arbitrary

pose situation is important to tackle the problem. Our methods strengthen ver-

satile approaches by utilizing the information specific to arbitrary pose situations.

Specifically, we set three AFA applications across pose (face recognition, continuous

11
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authentication, and facial expression recognition) as our targets, and then propose

new methods extending existing versatile approaches for arbitrary pose. Experimen-

tal results outperform existing works, and show the effectiveness of our methods.

Our methods can easily be combined with other versatile approaches to leverage

state-of-the-art approaches.

In this chapter, we first overview the representative approaches for AFA in Chap-

ter 1.1. We next discuss the motivation and objective of this thesis in Chapter 1.2.

Finally, we provide the organization of this thesis in Chapter 1.3.

1.1 Approaches for automated facial image analysis

We overview three mainstream approaches for AFA: image-based, video-based and

3D-based approaches. We mainly discuss the two representative applications (face

recognition and facial expression recognition), but the same discussion is applicable

to other AFA applications as well.

Image-based approaches

Image-based approaches that usually analyze one static image are the most well-

studied approaches. Compared with video-based or 3D-based approaches, the ad-

vantage of image-based approaches is a wide range of applications because neither

multiple images or special devices are required. There has been a significant trend

of image-based approaches in terms of feature representation. Wang and Deng [91]

categorized feature representation for face recognition into four groups according

to the time period when they were used: 1) holistic approaches in the 1990s (e.g.,

Eigenface [86] and Fisherface [13]); 2) handcrafted local descriptors in the early

2000s (e.g., Gabor [57], local binary pattern (LBP) [3]); 3) shallow learning in the

early 2010s; and 4) deep learning after 2014. Similarly, for facial expression recog-

nition, Li and Deng [52] classified facial expression recognition into three categories:

1) handcrafted, 2) shallow learning, and 3) deep learning. In 2014, the deep-learning

based face recognition approach DeepFace [81] showed compatible results with hu-

man performance for the first time. The achievement triggered the transformational

shift to deep-learning based approaches, which occurred not only for face recognition

but also for other AFA applications. For facial expression recognition, we can see

the same shift in the Facial Expression Recognition & Analysis Challenge (FERA
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2015 [87], FERA 2017 [88]). In 2015, only a single deep learning method [33]

entered the Challenge. It ranked 3rd and 4th in occurrence and intensity detec-

tion, respectively. Two years later, deep-learning based approaches dominated the

medal podium by a large margin [82, 97]. It is clear that advances in deep learning

techniques have been key to the recent huge performance improvement for AFA

systems.

Video-based approach

Unlike image-based approaches, video-based approaches use a series of images to

recognize the human identification or facial expression. Taskiran et al. [83] review

image-based approaches for face recognition, and Li and Deng [52] review them for

facial expression recognition. In [83], video-based face recognition approaches are

categorized into two groups: set-based methods, and sequence-based methods. In

set-based methods, frames of a video are treated as a set of image samples and the

temporal order is not considered while sequence-based methods employ the temporal

information that exists in a video. The video-based approaches can analyze the

information that image-based approaches cannot, such as facial dynamics though

applicable scenarios could be limited.

3D-based approach

Many 3D-based approaches have also been proposed. These approaches are becom-

ing a realistic solution for some scenarios as 3D sensors are becoming more accurate,

smaller, and inexpensive. Zhou and Xiao [96] surveyed 3D based approaches for face

recognition, and categorized them into three groups: pose-invariant, expression-

invariant and occlusion invariant recognition. The main objective of each group is

to provide more robust recognition algorithms under unconstrained environments.

1.2 Motivation and objective

The objective of this thesis is to improve automated facial image analysis (AFA)

across pose, which is one of the major challenges for AFA systems. While AFA

has been making significant progress in recent decades, arbitrary pose situations

are still challenging because there are specific problematic issues in these situations.
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Ding and Tao [25] identify four challenges for face recognition across pose: a) self-

occlusion, b) loss of semantic correspondence, c) nonlinear warping of facial textures,

and d) accompanied variations in resolution, illumination, and expression.

One consideration to bear in mind in addressing these challenges is that while

versatile approaches cannot leverage the information specific to arbitrary pose sit-

uations, approaches involving the design of new feature representation or matching

methods only for arbitrary pose situations cannot take advantage of well-studied

versatile approaches. Therefore, our methods extend versatile approaches by lever-

aging the information specific to arbitrary pose, rather than proposing new features

or matching methods for the specific situations. More specifically, we set three AFA

applications across pose (face recognition, continuous authentication, and facial ex-

pression recognition) as our targets, and then propose the new methods as described

below.

Multi-view face recognition via 3D model based pose regularization

Face recognition across pose is critical for many real-world applications, such as

criminal identification, and face tagging. In these applications, there is a strong

possibility that the face images are obtained without the cooperation of subjects.

To tackle the situation, we propose a fully automatic method for multi-view face

recognition. We first build a 3D model from each frontal target face image, and

also estimate the pose of a query face image using a multi-view face detector. We

next generate synthetic target images to resemble the pose in query face images.

We then align the synthetic target images and the query image by applying Pro-

crustes analysis [32], and extract block based MLBP features for face matching. We

conducted the experiments on two public-domain database (Color FERET [68] and

PubFig [47]) and the Mobile face databases collected using mobile phones. The ex-

perimental results show promising results. We also show that the proposed approach

can be easily extended to leverage existing face recognition methods for multi-view

face recognition.

Continuous authentication using soft biometric traits

Most existing systems authenticate a user only at the initial login session, but this

could be a critical security flaw for many systems. To mitigate the problem, a great
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number of continuous authentication systems that continuously monitor and authen-

ticate users even after the login session has been proposed. Previous methods for

continuous authentication primarily used hard biometric traits, such as fingerprints

and faces. However, the use of these biometric traits is not only inconvenient for the

user, but is also not always feasible due to the user’s posture in front of the system.

To solve the problem of the previous methods, we propose a new framework for

continuous user authentication that primarily uses soft biometric traits (e.g., facial

skin color and clothing). The proposed framework automatically enrolls soft bio-

metric traits every time the user logs into the system, and combines soft biometric

matching with the conventional authentication schemes (password and face biomet-

ric traits). Experimental results show that the proposed scheme has high tolerance

to the user’s posture in front of the console for continuous user authentication.

Systematic evaluation for deep-learning based facial expression recogni-

tion across pose

In most of the scenarios of facial expression recognition, it is necessary to analyze

facial expression from natural communication or reactions that include arbitrary

poses. To tackle the situation, many deep-learning based approaches have been

proposed. While these approaches showed promising results, the contribution of

critical design choices remains largely unknown. To address the problem, we sys-

tematically evaluate design choices for deep-learning based facial expression recog-

nition in pre-training, feature alignment, model size selection, and optimizer details.

In our experiments, the Facial Expression Recognition and Analysis (FERA 2017)

database, which includes synthesized face images with 9 head poses [88], was used.

By utilizing all the insights we found, we developed an architecture that exceeds the

state-of-the-art on FERA 2017 both in detection of the occurrence and intensity of

facial actions. We also report the cross-pose and cross-domain generalizability of

our architecture.

1.3 Thesis organization

The rest of this thesis is organized as follows. We propose multi-view face recognition

via 3D model based pose regularization in Chapter 2, and continuous authentication

using soft biometric traits in Chapter 3. In Chapter 4, we describe systematic eval-
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uation for deep-learning based facial expression recognition across pose. Chapter 5

concludes with directions for future research.



Chapter 2

Multi-view face recognition via

3D model based pose

regularization

2.1 Introduction

Automated face recognition has attracted tremendous interest in the past decades

due to its wide applications [72] including border control, surveillance, criminal

identification, login authentication, purchase authentication, and face tagging. Au-

tomated face recognition in controlled conditions has shown impressive performance,

such as frontal poses, neutral expressions and near uniform illumination. How-

ever, automated face recognition in uncontrolled environments remains a challeng-

ing problem, such as arbitrary poses, non-uniform illumination, and occlusion [72].

One typical example of automated face recognition across pose is identification or

authentication of individuals with face images captured by mobile devices, such as

smart phones, handheld terminals, or surveillance cameras. Another well-known

application is face tagging provided by many photo storage services, such as Google

Photos. Fig. 2.1 shows some examples.

Since the face images are captured without the user’s cooperation in many of

these scenarios, faces in the query images can be of arbitrary poses. An example

where a profile face image resulted in the arrest of a robbery suspect is shown in

Fig. 2.1 (a). The arbitrary pose variations have become one of the primary problems

17
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Figure 2.1: Examples of images of face recognition across pose. (a) Profile face

image which led to arrest, (b) Non-frontal face image in FERET dataset [68], (c)

Non-frontal face image in the Mobile dataset collected using a mobile phone in our

laboratory, (d) Non-frontal face image in PubFig dataset [47].

for most existing systems to perform automated face recognition.

To tackle the problem, we propose a new fully automatic multi-view face recog-

nition method:

1. The proposed approach does not require manual landmark annotations or the

assumption of known poses within a limited range.

2. The proposed approach achieves higher performance than two baseline match-

ers (FaceVACS [1] and MKD-SRC [55]) in several scenarios with different pose

variations.

3. The proposed approach has the good extensibility. We show that by replacing

our MLBP based face matcher with two baseline face matchers.
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Table 2.1: A comparison of existing methods for multi-view face recognition.

Publication Approach
Pose assumed

Manual annotation
Databases used

to be known?
required for non-

(pose variations)
frontal face image?

Sharma et al. [74]

Partial Least Squares,

Yes Yes

FERET (±60◦)

Bilinear Model, CMU-PIE (±90◦)

Canonical Correlation Analysis Multi-PIE (±90◦)

P
o
se

in
v
a
ri

a
n
t

fe
a
tu

re
e
x
tr

a
c
ti

o
n

H
o
li

st
ic

Li et al. [50] Partial Least Squares Yes Yes
Multi-PIE(±90◦)

CMU-PIE (±90◦)

Fischer et al. [29] Partial Least Squares Yes Yes Multi-PIE (±90◦)

Prince et al. [70] Tied Factor Analysis Yes Yes

FERET (±90◦)

CMU-PIE (±90◦)

XM2VTS (±90◦)

Li et al. [49] Linear Regression Yes Yes
FERET (±60◦)

CMU-PIE(±90◦)

Blanz and Vetter [15] 3D Morphable Model No Yes
FERET (±60◦)

CMU-PIE(±90◦)

Wang et al. [90]
Orthogonal

No No

FERET(±25◦)

Discriminant Vector
CMU-PIE(±15◦)

Yale B, AR

L
o
c
a
l

Kanade and Yamada [42]
Subregion Based

Yes Yes CMU-PIE (±90◦)
Probabilistic Model

Ashraf et al. [7] Probabilistic Stack-flow Yes Yes FERET (±60◦)

Lucey and Chen [59]
Patch-whole

No Yes FERET (±60◦)
Sparse Registration

Castillo and Jacobs [17] Stereo Matching No Yes CMU-PIE (±90◦)

Arashloo and Kittler [6] Markov Random Field No No1
CMU-PIE (±90◦)

XM2VTS

Liao et al. [55] Multi-keypoint Descriptor No No PubFig (Arbitrary)

Chai et al. [18] Linear Regression Yes No CMU-PIE(±45◦)

Sarfraz and Hellwich [73] Multivariate Regression Yes No
CMU-PIE (±90◦)

FERET (±60◦)

Li et al. [51] Morphable Displacement Field Yes No
FERET (±60◦)

CMU-PIE (±90◦)

P
o
se

N
o
rm

a
li

z
a
ti

o
n

T
o

fr
o
n
ta

l Teijeiro-Mosquera et al. [84] Active Appearance Model No No CMU-PIE(±45◦)

Asthana et al. [8] No No

FERET(±40◦)

View Based CMU-PIE(±45◦)

Active Appearance Model Multi-PIE(±45◦)

FacePix(±45◦)

Ding et al. [26]
Random Forest Embedded

No No

FERET(±60◦)

Active Shape Model
CMU-PIE(±67.5◦)

CAS-PEAL(±45◦)

T
o

n
o
n

-f
ro

n
ta

l Prabhu et al. [69] 3D Generic Elastic Model No No
Multi-PIE (±60◦)

Video Clips

Han and Jain [34] 3D Modeling from two images No Yes FERET (±22.5◦)

Our approach 3D Based Pose Regularization No No

FERET(±90◦)

Mobile (±90◦)

PubFig (Arbitrary)

1 A bounding box is required, but it is not clear if the bounding box is obtained manually or automatically.
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2.2 Related work

Table 2.1 shows existing approaches for automated face recognition across pose.

These approaches for multi-view face recognition can be grouped into two main

categories: Pose invariant feature extraction, and pose normalization.

Pose invariant feature extraction

The approaches usually provide a common representation which maximizes the cor-

relation among subject’s face images with different poses. We can further classify

them into two groups: (i) holistic representation, and (ii) local representation:

(i) Holistic representation: For this group, Linear regression, partial least

squares (PLS), Bilinear Model (BLM), Canonical Correlation Analysis (CCA),

3D Morphable Model, are widely used approaches [15, 29, 49, 50, 70, 74,

90]. They obtain a pose-independent representation by projecting face images

with different poses into latent spaces. While these approaches can solve the

pose variation problem and feature representation at the same time, holistic

representation can easily be affected by face deformations due to large pose

variations. Additionally, many holistic methods assume that the face poses are

known. For example, they directly used the poses provided in the databases

to build pose-specific models, and used only the model covering the pose of a

testing image for recognition.

(ii) Local representation: Local representations extract features from individ-

ual patches of a face. In comparison with holistic representation, the ap-

proaches are usually more robust to large pose variations. The representa-

tive approaches of this category includes Markov Random Field [6], subregion

based probabilistic model [42], probabilistic stack-flow [7], patch-whole sparse

registration [59], and stereo matching [17]. One of the drawbacks of the cat-

egory is that most local representation based approaches [6, 7, 17, 42, 59]

require manual landmark annotation to establish the local patch correspon-

dence between frontal and non-frontal face images.
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Pose normalization

Pose normalization approaches convert face images with different poses into face

images with the same pose. Unlike approaches for pose invariant feature extraction

that usually involves the design of new feature representation and matching meth-

ods, the approaches in this category can directly use existing feature representation

and matching methods. Many approaches in this group transform non-frontal face

images into frontal images using either 2D or 3D based approaches because face

recognition techniques for frontal or near-frontal poses have been widely studied.

The representative approaches are Linear and multivariate regressions, Active Shape

Model (ASM), and Active Appearance Model (AAM) [8, 18, 26, 51, 73, 84]. How-

ever, the recovered frontal face images can be inadequate due to the self-occlusion

under large poses as observed in [8]. To avoid the matching of corrupted facial

regions in the recovered frontal images, Li et al. [51] utilized occlusion masks.

Instead of recovering frontal images from non-frontal images, a different ap-

proach is to generate non-frontal images from frontal images. More specifically, the

approaches generate non-frontal views that resemble the poses in testing face im-

ages. Park et al. [65] used 3D face data to generate non-frontal views. However, the

approach requires 3D sensing that is still expensive and can be slow. Additionally,

because 2D images constitute the legacy databases, their 3D images may not be

available. Therefore, 3D face models reconstructed from frontal face images can

be the substitutions for real 3D faces. To generate non-frontal images from frontal

images, typical approaches are 3D Morphable Model and 3D generic elastic model

(3D GEM) [34, 69].

Though many approaches in pose invariant feature extraction and pose normal-

ization have been proposed, most face recognition systems cannot perform fully

automatic multi-view face recognition; manual landmark annotations and assump-

tion of known poses are required. These requirements limit the application of these

methods in real-world scenarios.

2.3 Proposed method

We propose a new fully automatic multi-view face recognition method via 3D model

based pose regularization. The proposed approach extends existing face recognition
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Figure 2.2: An overview of the proposed approach for multi-view face recognition

consisting of 3D model based pose regularization and face matching.

systems into multi-view scenarios. As shown in Fig. 2.2, the proposed approach

consists of two main modules:

1. 3D model based pose regularization

2. Face matching with block based multi-scale LBP (MLBP) features

Most previous pose normalization approaches transformed non-frontal face im-

ages into frontal images. Unlike the existing approaches, the proposed 3D model

based pose regularization method generates synthetic target images to resemble the

pose variations in query images. Note that it is much easier and more accurate to

generate non-frontal images from frontal views than generate frontal images from

non-frontal views. This is because detecting accurate landmarks automatically un-

der large pose variations is more difficult. In addition, it is problematic to recover

the frontal view for the occluded facial regions, especially when many face areas are

significantly occluded under large pose variations.

Our approach is similar to the novel view rendering based on 3D GEM [69],

but there are some important differences. First, in our approach, a simplified 3D

Morphable Model [15] is used. In addition, our face alignment is performed using

Procrustes analysis [32] under large pose variations instead of aligning the synthetic

target and query images based on eye positions. For face images with large pose

variations, one of the two eyes is occluded. Face alignment based on two eyes does

not work under these circumstances. Furthermore, we utilized a face matching
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method with blocked MLBP features that provides better robustness against an un-

constrained environment, such as face illumination and expression variations. Han

et al. [35] suggested that additional face preprocessing methods might be integrated

with MLBP to further improve the robustness. Finally, the proposed approach has

the good extensibility. We show the extensibility of the proposed framework by

replacing our MLBP based face matcher with two face matching systems (Face-

VACS [1] and MKD-SRC [55]).

2.3.1 3D Model Based Pose Regularization

Fig. 2.2 illustrates how to perform our 3D model based pose regularization. We

first build a 3D model from each frontal target face image. We next estimate the

pose of a non-frontal query face image, and generate synthetic target face images

that resemble the pose variation of a query face image. By generating the synthetic

target face images, we are able to perform holistic face alignment between the target

and query images. We align the target and query images by utilizing Procrustes

analysis.

3D Modeling from A Frontal Image

Our 3D shape model is obtained from the USF Human ID 3-D database [2]. The

database consists of 3D face shape and texture of 100 subjects captured with a

3D scanner. To build a 3D model, a simplified 3D Morphable Model [15] without

the texture fitting is utilized. The original 3D face includes 75,972 vertices, but 76

vertices are interactively selected based on the 76 keypoints for efficient computation.

We utilize open source Active Shape Model (Stasm [62]) to select the vertices. We

can represent the 3D shape of a new face using a PCA model as follows:

S = S̄ +

K∑
k=1

αkWk, (2.1)

where S is the shape of a new 3D face, S̄ is the mean 3D shape of 100 3D faces from

the USF Human ID 3-D database, Wk is the shape eigenvector corresponding to

the k-th largest eigenvalue, and αk is a coefficient for the k-th shape eigenvector.

A 3D face is projected onto a 2D plane under a set of transformations and then

a 2D face image is obtained. Based on such a face imaging process, we can recover
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the shape of a 3D face from its 2D projection by minimizing the cost function [66]

e(P,R,T, s, {αk}Kk=1) = ||P2D − s ·PRTS||L2 , (2.2)

where P2D is a set of facial landmarks that Stasm detects, P is an orthogonal

projection from 3D to 2D, and R,T, s indicate the rotation, translation and scaling

operations for the 3D face shape S, respectively.

The input frontal face image is directly used as the texture corresponding to the

frontal 3D facial shape. When we generate a novel view, the frontal face image

is directly mapped to a novel view based on Delaunay triangulation of the 2D

facial landmarks. In comparison with a statistical face texture model used in 3D

Morphable Model, our mapping method can retain detailed and realistic features

that are important for face recognition. In addition, our texture mapping method

is more efficient.

Generating Synthetic Target Images

Since the recovered 3D facial shape S from (2.1) and (2.2) is with a frontal pose,

novel synthetic target images can be easily generated from a target face image by

transforming S using different translation, rotation, scaling, and projection transfor-

mations. Three target face images and their synthetic images under 19 novel views

(±90◦ with an interval of 10◦) are shown in Figs. 2.3 (a) and (b). The synthetic

target images are generated using our 3D face model. To reduce the pose difference

between a target face image and a query face image, we generate the synthetic target

face images that resemble the pose of a query face image. Fig. 2.3 (c) shows query

images, and the red rectangles in Fig. 2.3 (b) indicate the images selected by our

online selection based on the pose estimation for each query image.

To generate the synthetic target images, the poses of query images are required.

However, in many practical multi-view face recognition scenarios, we cannot as-

sume that the poses are known. Under these circumstances, automatic pose esti-

mation from arbitrary face images is necessary in order to perform fully automatic

face recognition. In our approach, a mixture of tree-structured part models (MT-

SPM) [98] is utilized to estimate the pose from each query image. Based on the pose

estimation for a query image, only synthetic target face images with similar poses

will be generated for face matching.
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Figure 2.3: Examples of synthetic target images generated by our approach. (a)

original target images, (b) synthetic target images, and (c) query images. The red

rectangles show the online selection of synthetic target images based on the pose

estimation from query images.

Because generating synthetic target images online would increase the computa-

tional cost of face matching, we adopt a more efficient strategy. Specifically, after

we build a 3D model from each target face image, we generate 19 synthetic target

images for each target image offline as shown in Fig. 2.3, and select only synthetic

images with similar poses to the query image for matching. Additionally, we select

multiple synthetic images with similar poses for matching instead of using only one

synthetic image. That is because the pose estimated by MTSPM is prone to error.

In our experiments, we select five synthetic target images for face matching. The red

rectangles in Fig. 2.3 indicates the selected synthetic target images. According to

this strategy, our system can conduct large scale face recognition without increasing

the computational cost seriously.

Face Alignment

A widely used approach in face alignment is holistic face alignment based on two

eyes. This approach works for frontal or near-frontal face images [69]. However,

the face alignment method based on two eyes is problematic for non-frontal poses

because one of the two eyes is often not visible under large pose variations. In

addition, even when both eyes are visible in non-frontal images, the face alignment
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method based on two eyes can generate an artificial increase in the overall size of

the face image.

To tackle these problems with face alignment based on two eyes, our approach

applies Procrustes analysis [32]. By using Procrustes analysis, we can align the

synthetic target and query images based on the facial keypoints from a 3D face model

and facial keypoints detected by MTSPM. The numbers of keypoints defined in a

3D face model and MTSPM are different. To establish the keypoint correspondence

between a 3D face model and MTSPM, we have manually identified 19 landmarks

between two models. We perform Procrustes analysis based on 19 corresponding

landmark pairs.

2.3.2 Face Matching

We used a face matching method with block based multi-scale LBP (MLBP) fea-

tures [64], which provides robustness against face illumination and expression vari-

ations. More specifically, MLBP features which are a concatenation of LBP his-

tograms with 8 neighbors sampled at different radii R = {1; 3; 5; 7} are used in our

experiments. A holistic face image (256×192) is divided into 768 sub-regions (8×8

non-overlapped blocks), and then, MLBP features are extracted from individual

blocks and concatenated together.

We extract two MLBP histograms x and y with n dimensions from two face

images, and then calculate chi-squared distance χ2 as a measure of similarity between

two face images:

χ2(x,y) =

n∑
i=1

(xi − yi)2

(xi + yi)/2
(2.3)

where xi and yi are the features for i-th bin. A separate distance is calculated for

each synthetic image. We have 5 distances for each query image since we generate 5

synthetic target images in our experiments. We calculate the final distance between

a target and a query by selecting the minimum of these distances. We also tried some

other score fusion methods such as the median or the mean of multiple distances,

and decided to use the minimum of multiple distances in our experiments.
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2.4 Experiments

2.4.1 Databases

We evaluate our approaches using 3 datasets:

Color FERET

The Color FERET database [68] consists of facial images with multiple poses from

994 subjects. In our experiments, one frontal image (fa) per subject is used as the

target, and images with 6 non-frontal poses (ql, qr, hl, hr, pl, pr) are used as the

query. While the FERET database has been widely used to evaluate many existing

face recognition approaches, its limitation is that the dataset was collected under

a well controlled scenario. For example, the participants are required to rotate the

head and body to pre-designed directions, and the background and illumination in

face images are nearly uniform.

Mobile

We collected a Mobile dataset including 112 subjects using iPhone 4S. Fig. 2.7

shows some examples of the images. By using the dataset, we can evaluate the

scenarios of face recognition from images or videos captured using mobile devices.

For each subject, we captured one or two frontal face images and around 10 non-

frontal face images at several locations inside a building. In our experiments, we

use only one frontal face image per subject as a target. In comparison with the

FERET database, the Mobile dataset is more challenging in terms of background

variation and illumination variation, and motion blurs due to the movement of the

hand though it has fewer subjects.

PubFig

The PubFig database [47] includes 200 famous personalities collected from the In-

ternet. In the dataset, 60 subjects are assigned to algorithm development, and the

remaining 140 subjects are assigned to algorithm evaluation. We directly evaluate

our method using the 140 subjects from the evaluation set because our method is

a non-learning based approach. One frontal face image per subject is used as the

target set, and 513 non-frontal images with arbitrary poses are used as the query set.
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Note that the LFW database [37] also consists of arbitrary pose variations, but

the images of many subjects are captured in the same environment.

2.4.2 Baselines

We compare our approach with two baseline systems (for fair comparison, both

of the baseline systems are fully automatic in multi-view face recognition, like our

approach):

1. Multi-keypoint descriptor based sparse representation (MKD-SRC) [55]

2. FaceVACS [1] (Commercial-Off-The-Shelf (COTS) face matching system)

We evaluate the proposed approach under three scenarios. Note that FaceVACS

is not used for large yaw rotations because it cannot enroll any face under the

situation as discussed in Chapter 2.4.4:

1. Small yaw rotations (two eyes are visible)

2. Large yaw rotations (only one eye is visible)

3. Arbitrary pose variations.

We perform face verification under the three scenarios because face verification ex-

periments are more convincing than face identification experiments with limited

subjects and images. We report the performance in terms of receiver operating

characteristic (ROC) curve. The extensibility of the proposed method is also in-

vestigated by incorporating pose regularization in our approach with two baseline

matchers (MKDSRC and FaceVACS).

2.4.3 Small Yaw Rotations

The results for small yaw rotations are shown in Fig. 2.4. Fig. 2.4 (a) shows the

performance of the proposed approach, MKD-SRC, and FaceVACS on the FERET,

and Fig. 2.4 (b) shows the performance on Mobile datasets.

Fig. 2.4 (a) shows that, for the FERET database, while there is not a signifi-

cant difference between the COTS system FaceVACS and multi-view face matcher
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MKD-SRC, the proposed approach achieves more than 15% higher face verifica-

tion rate than MKD-SRC and FaceVACS at 0.1 False Alarm Rate (FAR). Fig. 2.4

(b) shows that, for the Mobile dataset, MKD-SRC is more robust than FaceVACS.

However, the proposed approach achieves 20% higher face verification rate than

MKD-SRC at 0.1 False Alarm Rate (FAR). Note that the COTS system FaceVACS

is mainly designed for near-frontal face recognition. As we discussed above, the

FERET database is collected under a more controlled condition than the Mobile

database.

Overall, both Fig. 2.4 (a) and (b) indicate that the proposed approach is more

effective than MKD-SRC and FaceVACS in handling small pose variations. In ad-

dition, the comparison between Fig. 2.4 (a) and (b) demonstrates that both the

proposed approach and MKD-SRC are more robust to variations of background and

illumination, as well as motion blurs in the Mobile database than FaceVACS.

Figure 2.4: Face verification results under small yaw rotations on the (a) FERET

and (b) Mobile datasets.

2.4.4 Large Yaw Rotations

The results for large yaw rotations are shown in Fig. 2.5. Under the scenario of large

yaw rotations, FaceVACS is no longer available as a baseline because no faces can be

enrolled. Fig. 2.5 (a) shows the performance of the proposed approach and MKD-

SRC on the FERET, and Fig. 2.5 (b) show the performance on Mobile databases.

While MKD-SRC obtains around 20% verification rates at 0.1 False Alarm Rate

(FAR) under large yaw rotations, the propose approach achieves much better per-
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formance (50%). However, we can see the performance degradation compared with

that under the scenario of small pose variations in Chapter 2.4.3. The performance

degradation can be attributed as follows. According to our manual inspection of

the images, 90% of the query images are 90 profile images. The eyes and eyebrows

have been identified to have the most discriminative ability under small poses [78].

However, these discriminative features are no longer available in 90◦ profile face

images.

Figure 2.5: Face verification results under large yaw rotations on the (a) FERET

and (b) Mobile datasets.

2.4.5 Arbitrary pose variations

The PubFig dataset is more challenging than the other two datasets (FERET and

Mobile) for multi-view face recognition systems because face images in the PubFig

dataset are taken with non-cooperative subjects in completely uncontrolled situa-

tions. Therefore, unlike the FERET and Mobile databases, the dataset includes

arbitrary variations in pose, illumination, expression. In this experiment, only face

images that can be enrolled by FaceVACS are used as the query set in order to use

FaceVACS as a baseline. Though a query set does not contain faces with large pose

variations, it covers yaw, pitch, and roll rotations.

Fig. 2.6 shows the performance of the proposed approach, MKD-SRC and Face-

VACS. The proposed approach outperforms MKD-SRC; The proposed approach

achieved 45% at 0.1 False Alarm Rate (FAR) while MKD-SRC achieves 30%. How-

ever, the performance of the proposed approach is nearly the same as the one of the
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COTS matcher FaceVACS. This can be attributed to the other types of variations

such as expression, illumination and aging. A score level fusion of the proposed

approach and FaceVACS achieves a leading performance on PubFig.

Figure 2.6: Face verification results under arbitrary poses on the PubFig dataset.

2.4.6 Successful examples

Fig. 2.7 shows examples where the proposed approach successfully identifies query

and target images at 0.1 False Alarm Rate (FAR). Fig. 2.7 demonstrates that the

proposed pose regularization reduces the pose gap between target and query images.

Figure 2.7: Examples of successful matches by the proposed approach at 0.1 False

Alarm Rate (FAR) on the FERET, Mobile and PubFig datasets. (a) target images,

(b) synthetic target images that lead to correct matching of the query and target

images, and (c) query images.
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Table 2.2: Face verification performance of MKD-SRC and FaceVACS at 0.1

False Alarm Rate (FAR) without and with the proposed pose regularization (with-

out/with).

Matchers
Small Pose Arbitrary Pose

FERET Mobile PugFig

MKD-SRC 65.8%/77.0% 58.7%/70.5% 26.7%/30.6%

FaceVACS 60.4%/81.8% 48.3%/75.6% 41.5%/48.0%

2.4.7 Extensibility of the Proposed Approach

By replacing our MLBP based matcher with another matcher, we can easily leverage

other sophisticated face matchers. To evaluate the extensibility of our approach, our

MLBP based matcher is replaced with MKD-SRC and FaceVACS. The experiments

are performed under the scenarios of small and arbitrary pose variations to use

FaceVACS. Table 2.2 shows the performance of MKD-SRC and FaceVACS without

and with the proposed pose regularization. In all cases, our pose regularization

method greatly enhance the performance of the two face matchers. These results

demonstrate the good extensibility of the proposed approach.

2.5 Summary

We have proposed a new fully automatic face recognition approach across multiple

views. First, we build 3D face models from frontal target face images, and gener-

ate synthetic target images to resemble the poses in query face images. We next

align synthetic target face images and query face images using Procrustes analysis.

Finally, we extract blocked based MLBP features for face matching. The proposed

approach does not require manual landmark annotations or known poses so that

it can conduct fully automatic multi-view face recognition. Our experimental re-

sults on the FERET, Mobile, and PubFig databases demonstrate that the proposed

approach outperforms two baseline face matchers. We also show that the good

extensibility of the proposed approach.

The limitation of our current approach includes the performance degradation

with large yaw rotations compared to that with small yaw rotations. One of the

main reasons for this degradation is the difference between our 3D model and the
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real 3D shape of each face, which widely affects the performance with large yaw

rotations. To mitigate the problem, one possible approach is to have multiple 3D

models and select one of them for each face image based on the attributes, such as

sex, age, and race.



Chapter 3

Continuous authentication using

soft biometric traits

3.1 Introduction

Most computer or network systems require user authentication when the user logs

into the systems. Because user authentication is extremely important to protect the

system security, a wide range of login authentication methods have been utilized

depending on the circumstances. The methods include knowledge-based methods

(e.g., passwords), token-based methods (e.g., smart cards), textual and graphical

passwords [79], public key infrastructure (PKI), and biometric authentication [30].

However, all of the login methods have a common security flaw. Specifically,

they authenticate a user only at the initial log-in session, and do not reauthenticate

the user after that. The user is reauthenticated only after the user logs out or there

is a substantial time interval between the user’s activities on the system. Anyone

can access the system resources if the legitimate user leaves the system unattended

without logging out. This could be a critical security weakness not only for high-

security systems, but also for low-security systems, such as personal computers in a

general office environment.

To resolve this common problem in login authentication methods, we need con-

tinuous authentication systems that continuously monitor and authenticate the user

after the initial login session. While it is strongly desirable that the continuous au-

thentication system has good usability by authenticating a user without his active

34
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cooperation, the available methods for continuous authentication can only provide

limited usability. For example, systems that request that a user enter his password

frequently for continuous authentication are annoying to the user. Additionally, the

method utilizing hard biometric traits is also not adequate. The user will face the

inconvenience of limited privilege whenever the system fails to obtain the user’s hard

biometric trait. We therefore believe that the more appropriate approach to contin-

uous authentication is to utilize biometric traits that can be captured regardless of

the user’s passive posture in terms of user involvement.

To address this problem in the existing methods for continuous authentication,

we propose a new method for continuous user authentication that continuously au-

thenticate a user by combining soft biometric traits and hard biometric traits. In

particular, the colors of the user’s clothing and face are used as the soft biometric

traits for continuous authentication, and PCA-based face features are used as the

hard biometric traits for relogin authentication. To the best of our knowledge, the

proposed method is the first to use soft biometric traits for continuous authentica-

tion.

The block diagram of the proposed continuous user authentication system is

shown in Fig. 3.1. The arrow from Mode I to Mode II represents process flow

and all other arrows represent possible transitions. Our method also addresses the

issues if 1) relogin authentication which handles a short absences of the user, and 2)

template update to handle illumination change. These issues are explained in more

detail Chapter 3.4.

3.2 Related Work

There have been many proposed methods for continuous user authentication [4, 10,

9, 16, 43, 45, 63, 75]. These studies used one or more hard biometric traits, such as

fingerprint and face. Sim et al. [75] and Kwang et al. [48] captured the user’s face

and fingerprint for continuous authentication. They captured faces using a camera

and captured fingerprints using a mouse with a built-in fingerprint sensor. While

these two studies showed promising authentication results, their system ran into low

availability of the biometric traits. A fingerprint can only be authenticated when

the user keeps his finger on the sensor embedded in the mouse. Similarly, when a

user is entering a document, the user often needs to turn her head away from the
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camera. Another situation where face image is not properly captured is when the

user takes a break from typing and does not look directly at the monitor.

Sim et al. [75] defined three criteria for continuous authentication using hard

biometric traits:

1. Different reliability of various modalities must be accounted for.

2. Older biometric observations must be discounted to reflect their increasing

uncertainty about the continued presence of the legitimate user.

3. User authentication certainty needs to be established at any point of time even

when no observation of any of the biometric traits is available.

Sim et al. also proposed a system based on the genuine and imposter matching score

densities of face and fingerprint, Ωintra and Ωinter. The decision criterion for a user

being genuine (system being safe) is, P (xt = safe|Zt) > P (xt = compromised|Zt),

where Zt = {Z0, ..., Zt} denotes the set of biometric observations until time t and

xt denotes the system state (safe or compromised) at time t. A decaying function

p = ek∆t was introduced to control the influence of a biometric trait, where k(k < 0)

is a constant indicating the decaying speed, and t is the elapsed time since the last

observation of biometric traits. The drawbacks of the system are summarized as

follows:

1. The system needs intraclass and interclass score distributions (Ωintra and

Ωinter) of both fingerprint and face biometrics.

2. The system needs a decaying function because continuous stream of hard bio-

metric traits are not always available. The decay function comes at the expense

of sacrificing the system security while the decaying function indeed enables

continuous authentication. While the authentication decisions can be made to

accept the user based on the decaying function, the system may already have

been compromised.

3. The assumption P (x0 = safe|Z0) = 1 is not always valid (i.e., that the user is

genuine at the login time). By using hard biometric traits, the user’s identity

can be verified. However, we cannot assume that the initial state is always

safe (P (x0 = safe|Z0) = 0) in case an attacker logs into the system with a

stolen password.
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Figure 3.1: Proposed framework using soft biometric traits for continuous user au-

thentication.

3.3 Soft biometric traits for continuous authentication

Soft biometric traits include a wide range of information, such as gender, ethnicity,

color of eye/skin/hair, height, weight, and SMT (scars, marks, and tattoos). Jain

et al. [39] defined the traits as “those characteristics that provide some information

about the individual, but lack the distinctiveness and permanence to sufficiently

differentiate any two individuals”. Jain et al. [39, 40] also shows that the security of

login authentication can be improved by combining soft biometric traits with hard

biometric traits (e.g., fingerprint, face, iris, palm vein) even though it do not have

enough discriminatory information to identify the user. Though the soft biometric

traits cannot identify a user uniquely, it can be used to decide whether the user

who is currently using the system is the same as the user who initially logged into

it. Use of soft biometrics in a continuous authentication system has the following

advantages:

1. The system can authenticate a user even when no hard biometric traits are

available.

2. The system does not require preregistration of the soft biometric traits. Every

time the user logs into the system, our proposed method automatically enrolls

the soft biometric traits, and then automatically registers the user by combin-

ing the soft biometric traits with the hard biometric traits or the conventional
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login authentication (e.g., face recognition authentication, password).

In comparison with the method that only relies on hard biometrics described in

Chapter. 3.2, we can summarize the advantages of our system as follows:

1. The system does not need Ωintra or Ωinter to be available.

2. The system does not need the decaying function because the soft biometric

traits enable richer observations (Zt).

3. The assumption P (x0 = safe|Z0) = 1 is true on our system because soft

biometric template is enrolled at each login time.

Note that soft biometric traits do not provide higher security at the login time.

For example, a stolen password can still be used. However, our problem formula-

tion starts with correct assumptions. Table 3.1 summarizes the differences between

continuous authentication systems using hard and soft biometric traits.

Table 3.1: Summary of differences between the continuous authentication systems

using hard biometric traits and soft biometric traits. In the table, Ωintra and Ωinter

represent the intraclass and interclass matching score distributions, respectively

Hard biometrics Soft biometrics

Confidence of decision

with each observation
High to medium Medium to low

Frequency of observation Medium to low High

Pre-registration Required Not required

Ωintra and Ωinter Available Not available

Our system also satisfies the three criteria for continuous authentication intro-

duced by Sim et al. [75]:

1. Our system uses a reliability factor of the different modalities.

2. Our system uses a time decaying function in relogin authentication mode to

make older observations increasingly uncertain.

3. Our system can determine authentication certainty at any point of time.
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Note that, in comparison with the hard biometric based continuous authentication

systems, the third criterion is not as important in our system because of the high

availability of soft biometric traits. The criterion is critical for the hard biometric

based continuous authentication system because the hard biometric trait is often

unavailable. On the other hand, in our system, the soft biometric is always avail-

able in continuous authentication. When the soft biometric is not available, our

system moves to relogin authentication mode, and reauthenticates the user using a

combination of the time decay function and hard and soft biometrics.

We use the similarity scores to make the authentication decision. Unlike the

system proposed by Sim et al. [75], our system does not use Ωintra and Ωinter to

make the system more flexible even though we can obtain Ωintra and Ωinter by

running continuous authentication sessions with a number of subjects. Our system

does not require preregistration of soft biometric traits.

In our system, the color histogram of user’s clothing color and face color are used

as soft biometrics. As a hard biometric for relogin authentication, the PCA-based

face features [86] is used (the PCA-based face matcher can easily be replace with

another matcher). Let Zsf
t , Zhf

t , and Zc
t denote the set of observations of soft-face,

hard-face, and clothing color, respectively, at time t and Z0 be the observation at

the login time. The similarity scores for the three biometric traits are represented

as follows:

Ssoftface = S(Zsf
t , Zsf

0 ) (3.1)

Shardface = S(Zhf
t , Zhf

0 ) (3.2)

and

Sclothes = S(Zc
t , Z

c
0) (3.3)

where s(., .) denotes the similarity score based on the Bhattacharyya coefficient [14].

We use the three-dimensional RGB color histograms as the features of soft face and

clothes, fsoftface and fclothes. The length of each dimension is lsoft. Therefore, the

dimensions of feature vectors of both fsoftface and fclothes are lsoft× lsoft× lsoft. All

feature values are transformed to a one-dimensional vector to calculate the similarity

using the Bhattacharyya coefficient. The Bhattacharyya coefficient between two

feature vectors a and b of length D1 is given as

ΣD1
i=1

√
(aibi) (3.4)
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The total soft biometric score Scont is calculated as the weighted sum

Scont = wSsoftface + (1− w)Sclothes (3.5)

where w is the weighting factor in combining soft biometric traits of face and clothing

(in our experiments, w is set to 0.5). The hard face feature fhardface is a set of Eigen

vectors (length = leig) with each Eigen vector of length lhardface. The dimensions of

feature vectors of fhardface are leig × hardface.

The decision criterion for a user being genuine is simply Scont ≥ tcont, where

tcont is a threshold value. If Scont < tcont, the system status moves to relogin

authentication mode. The main idea underlying the proposed methods is that the

system uses only the soft biometric traits in the continuous authentication mode,

and hard biometric traits are used only for the relogin authentication. If we use hard

biometric traits in the continuous authentication mode, we will experience the same

problem that the existing methods including Sim et al.’s method faced because the

hard biometric trait is often unavailable. Instead of identifying each subject at every

single instance, our system continuously monitors the user to determine whether the

user is the same person who initially logged into the system. The similarity score of

the hard face biometric Shardface is used only in the relogin authentication stage as

Srelogin = F (Tcur − Treject)Scont (3.6)

where F (∆t) = ek∆t denotes a time decaying function with the decay rate k (k <

0), Tcur denotes the current time when Shardface is above a threshold, thardface,

and Treject denotes the time when the system rejected a user in the continuous

authentication mode. In Srelogin, both hard and soft biometric traits are used to

make the relogin process more secure. Note that Srelogin becomes small if Tcur −
Treject is large. If Tcur − Treject is larger than a threshold, the system status moves

to the initial login authentication mode (mode I). On the other hand, if the user is

absent for a short time, (Tcur − Treject is small), the user will be accepted again by

giving valid soft and hard biometric traits.

In the continuous authentication mode, Treject or Tcur is not considered because

the system uses Scont as the criterion to accept the user instead of Srelogin. Overall,

relogin authentication must satisfy the following three conditions:

Shardface ≥ thardface (3.7)

Tcur − Treject ≤ tdelay (3.8)
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and

Srelogin ≥ trelogin (3.9)

All the conditions in 3.7, 3.8 and 3.9 are incorporated in equation 3.6.

Fig. 3.2 compares conventional and continuous authentication systems. Dur-

ing the login session, the user logins to the system by inputting his identifying

information (e.g., password or hard biometric information), and when the user is

authenticated at the login authentication, the system registers soft biometric traits,

such as color of user’s clothing, as a “one-time” enrollment template. Finally, the

system continuously authenticates the user using the enrolled ”one-time” soft bio-

metric traits.

Fig. 3.3 shows some example images of user’s posture, where any hard biometric

traits cannot be captured, such as hard facial biometric information. While con-

tinuous authentication systems using only hard biometric traits cannot handle such

cases, our system can continuously authenticate the user because some of the soft

biometric traits can be continuously observed. In Fig. 3.3, red and green ellipses in-

dicate clothing and facial color histogram. The four different modes of the proposed

continuous authentication system shown in Fig. 3.1 is explained in Chapter 3.4.

Figure 3.2: Diagram demonstrating the difference between conventional and contin-

uous authentication systems.
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Figure 3.3: Examples of user’s posture. Any hard biometric traits cannot be reliably

captured. The red ellipses indicate the face regions and the green ellipses indicate

clothing region identified by our system.

3.4 Proposed method

We propose a versatile framework combining continuous authentication with conven-

tional authentication. The proposed framework consists of four modes as described

in Fig. 3.1. The first mode is initial login authentication (Mode I). During the mode,

the user is authenticated using a conventional login authentication method, and a

new enrollment template (color histogram of a user’s clothing and face) is regis-

tered. In the continuous authentication mode (Mode II), the system authenticates

the user continuously by using the enrollment templates. For relogin authentication

(Mode IV), both hard biometric traits (i.e., face) and soft biometric traits are used

to achieve high usability and security.

3.4.1 Initial Login Authentication (Mode I)

The first mode (initial login authentication) consists of the following four steps:

1) Initial authentication: We can use any conventional login authentication method

for this step. In our current system, a password-based authentication is used.

2) Face detection: We use Haar classifier [56, 89] to detect a face. We assume

that a user is typically looking in the frontal direction during the login session.

This assumption is reasonable because the user typically looks at the monitor

at the login session to input login information. Additionally, the user wants

to be authenticated.

3) Body localization: We estimate the location and size of the user’s body with

respect to his face based on Jaffre and Joly’s method [38]. We assume that
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the area under the face is always the user’s body and the size of this area is

proportional to the one of the face.

4) Template enrollment: We obtain histogram of soft face (face color), and his-

togram of the clothing color, as well as features of hard face (Eigenface repre-

sentation [86] of the face) and store them as enrollment templates. We use top

100 Eigenfaces to construct the template of hard face. In order to generate

the color histograms of face and clothing, the RGB color space is quantized

into 16x16x16 bins.

Fig. 3.4 (a), (b), and (c) depict the intermediate processes of steps 2), 3), and

4), respectively.

Figure 3.4: Enrollment steps during initial login authentication mode. (a) Face

detection, (b) body localization, and (c) registration.

3.4.2 Continuous Authentication (Mode II)

After the user is authenticated in the initial login authentication mode, the system

status changes to this mode (continuous authentication mode). In this mode, the

system authenticates the user continuously by using the “soft face” and “clothing”

enrollment templates registered in the initial login authentication mode (Mode I).

The system status moves to Mode III (enrollment template update) when the system

recognizes that the user leaves the system. The continuous authentication mode

includes the following three steps:

1) Face and body identification using color histograms: by applying the mean

shift algorithm [22, 23], the system tracks the face and the body separately. To

track them, the histograms registered in the initial login authentication mode
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(Mode I) are used, and the similarities Ssoftface and Sclothes are calculated.

We use the Bhattacharyya coefficient [14] to calculate the similarity between

two histograms.

2) Face recognition: in our system, we use a PCA-based face recognition tech-

nique (Eigenface) [86] to extract facial features. However, we can easily replace

it with other matchers. Note that Shardface is not directly used in continuous

authentication but it is stored for use in relogin authentication. Face recogni-

tion is executed at regular intervals (1 second).

3) Computing the final similarity: the final similarity Scont is calculated based

on equation 3.5. If Scont is below a threshold (tcont), the system enters Mode

III to determine whether it is due to user’s absence in front of the console or

the illumination change.

3.4.3 Enrollment Template Update (Mode III)

When the similarity Scont falls below tcont in continuous authentication mode (Mode

II), the system status changes to Mode III. We introduce this mode to reduce the

false rejects caused by illumination changes. This process consists of two steps.

1) Illumination change detection: every time Scont is lower than tcont in contin-

uous authentication mode (Mode II), the system analyzes whether: i) there

has been a change in the ambient illumination or ii) the user is no longer in

front of the system. To detect the illumination change, the simple method

of image subtraction is used. We use a pair of images for image subtraction:

one just before the time when Scont ≤ tcont, and the other immediately after

the time when Scont ≤ tcont. The system counts the number of pixels that

show a large difference in brightness between the two images, and decides that

there has been an illumination change if the difference image shows intensity

differences all over the image. Fig. 3.5 shows two image subtractions results;

there is an illumination change between Fig. 3.5 (d) and (e), while there is no

change between Fig. 3.5 (a) and (b).

2) Enrollment template update: the system updates the user’s biometric tem-

plate when an illumination change is detected in this mode [z0 in 3.1, 3.2,
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and 3.3] to keep successful continuous authentication in the modified oper-

ating environment without reauthentication. After the enrollment template

update, the system status moves to continuous authentication mode (Mode

II) again.

Figure 3.5: Example of image subtraction for illumination change detection. The

difference image in (f) shows an illumination change between (d) and (e), but the

difference image in (c) does not show a change in illumination between (a) and (b).

3.4.4 Relogin Authentication (Mode IV)

When the system identifies that the user is no longer in front of the system, the

status changes to this mode and the system is locked. In this mode, the system

tries to reauthenticate the user automatically. The status moves to the continuous

authentication mode (Mode II) again if the system detects a user and reauthenticates

the user as genuine. The relogin authentication mode includes four steps. Steps 1),

2), and 3) are the same procedures as those used in steps 2), 3), and 4) in Mode I. In

step 4) of the relogin authentication mode, the system authenticates the user using

both soft (face and clothing color) and hard biometrics (hard face). The similarity

score Srelogin shown in 3.6 is used to determine whether the user is genuine in the

relogin authentication mode.
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3.4.5 Overall Flow of Proposed Algorithm

Fig. 3.6 presents a detailed flowchart of the proposed algorithm. We address the

problem of existing methods for continuous authentication by using both soft and

hard biometric traits. The system enters relogin authentication mode when there is

a discontinuity in the similarity scores based on the soft biometric. In the relogin

authentication mode, valid soft and hard biometric traits need to be provided.

Figure 3.6: Overall flowchart of proposed algorithm.
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Figure 3.7: Continuous authentication system setup used in our experiments: laptop

with a webcam.

3.5 Experiments

3.5.1 System Configuration

As shown in Fig. 3.7, we used a laptop and a webcam to collect videos for our

experiments. The system has the following characteristics that are conducive to

users, especially for PC or laptop users

• Robustness to changes in user’s posture.

• No requirement for user to preregister.

• Real-time continuous user authentication capability.

• No requirement for a specific background (robust to cluttered background).

3.5.2 Database

Using the system shown in Fig. 3.7, videos of 20 subjects were collected to evaluate

the proposed continuous authentication approach. We asked each user to sit in front

of the webcam, and perform the following set of actions.

• Scenario A: turning head to the left;
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• Scenario B: turning head to the right;

• Scenario C: turning head down;

• Scenario D: leaning back in chair;

• Scenario E: stretching arms;

• Scenario F: walking away.

The video length ranges from 54 to 143 seconds. The frame rate of the videos is

15 frames/s, and the frame size is 640x480 pixels. Fig. 3.8 shows some example

images of the videos. The red and green ellipses show the face and body regions

automatically tracked by the system.

Figure 3.8: Example of video frames. The red ellipses indicate the face regions and

the green ellipses indicate clothing region identified by our system. (a) Turning head

to left; (b) turning head to right; (c) turning head down; (d) leaning back in chair;

(e) stretching arms; and (f) walking away.

3.5.3 Performance Evaluation

We use false accept (FA) and false reject (FR) to measure our system’s performance.

The false accept and false reject are defined below:
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• False Reject (FR): The system wrongly identifies that a user is not in front of

the console even though the user is still in front of the camera. False rejects

lower the usability of the system.

• False Accept (FA): The system incorrectly identifies that a legitimate user is

in front of the console even though the legitimate user is not in front of the

camera. False accepts lower the security of the system.

Various performance metrics such as Time to Correct Reject (TCR), Probability

of Time to Correct Reject (PTCR), Usability, and Usability-Security Characteristic

Curve (USC) were proposed by Sim et al. [75] for continuous authentication using

hard biometric traits. However, they are not suitable to evaluate the continuous au-

thentication system using soft biometric traits. Because more frequent observations

on a user’s biometric traits are available in the proposed continuous authentication

system, we use false accept (FA) and false reject (FR) for each event (e.g., turning

head away) to measure our system’s performance rather than the delayed time until

a correct decision is made. Our system can make an immediate decision since the

continuous and frequent soft biometric observation is available in our system.

Table 3.2: Performance evaluation (False Reject Rate and False Accept Rate) of the

continuous authentication system

Scenario False Reject Rate False Accept Rate

A) Turning head to the left 0%(= 0/20) 0%(= 0/20)

B) Turning head to the right 0%(= 0/20) 0%(= 0/20)

C) Turning head down 10%(= 2/20) 0%(= 0/20)

D) Leaning back in a chair 5%(= 1/20) 0%(= 0/20)

E) Stretching arms overhead 10%(= 2/20) 0%(= 0/20)

F) Walking away 0%(= 0/20) 0%(= 0/20)

Table 3.2 shows our experimental results based on data collected on 20 users.

There is a small number of false rejects in Scenario C (10%), D (5%) and E(10%). We

have selected the parameters (w = 0.5, tcont = 0.6, thardface = 0.8, and trelogin = 0.6)

after trying several different threshold values. The main factors of false rejects are:

• Because of the illumination variations, the color histogram of the user’s cloth-

ing significantly changed. We typically observed this problem when the color
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of the user’s clothing is white as shown in Fig. 3.9. Clothing that is white in

color is more susceptible to change in illumination compared to other colors,

especially in scenarios D and E.

• The user’s face is completely occluded. In this case, no color histogram of the

face could be computed [Fig. 3.16 (c)].

Figure 3.9: Example of False Reject (FR). (a) Enrollment. (b) Authentication.

Fig. 3.10 shows the changes in similarity values (Sclothes, Ssoftface, Shardface, and

Scont) while the user performs various actions in front of the webcam according to our

scenarios. The corresponding video frames are shown in Fig. 3.11. In Fig. 3.10, green

lines indicate the transition of Sclothes, red lines indicate the transition of Ssoftface,

blue lines indicate the transition of Shardface, and black dots represent Shardface.

Hard face authentication is only performed every 1 second. The range of similarity

scores (Sclothes, Ssoftface, Shardface, and Scont) is [0, 1], and a higher score represents

a better matching. Fig. 3.12 shows a plot similar to Fig. 3.10, but a Commercial-Off-

The-Shelf (COTS) face matching system FaceVACS [1] was used instead of our PCA-

based methods. Since both Eigenface and FaceVACS show similar performance,

Eigenface was used in the remaining experiments (Figs. 3.13, 3.15, 3.17, 3.19, 3.22,

and 3.25).
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Figure 3.10: Example 1 of similarity scores versus time graph. Eigenface is used to

calculate hardface.

Figure 3.11: Examples of images used to generate the graphs in Figs. 3.10 and 3.12

. (a) Turning head to left; (b) turning head to right; (c) turning head down; (d)

leaning back in chair; (e) stretching arms; and (f) walking away.
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Figure 3.12: Example 1 of similarity score versus time graph. FaceVACS is used to

calculate hardface.

Figs. 3.13 and 3.15 show the results for the different users. The correspond-

ing video frames are shown in Figs. 3.14 and 3.16, respectively. In Figs. 3.10

and 3.13, the similarities Sclothes, Ssoftface, and Shardface remain high regardless of

the user’s posture (scenarios A–E), and they go down rapidly as soon as the user

walks away from the console (scenario F) while the hard face similarity is not very

stable depending on the user’s posture. The results demonstrate the advantage of

our approach using soft biometric traits for continuous authentication. In Fig. 3.15,

false reject (FR) occurs during scenario C. This is because the system failed to track

both the face and body correctly as the user was looking down. Fig. 3.16 (c) shows

the corresponding input video frames leading to FR. The user’s face is completely

occluded.
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Figure 3.13: Example 2 of similarity scores versus time graph. Eigenface is used to

calculate hardface.

Figure 3.14: Examples of images used to generate the graphs in Fig. 3.13. (a)

Turning head to left; (b) turning head to right; (c) turning head down; (d) leaning

back in chair; (e) stretching arms; and (f) walking away.
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Figure 3.15: Example 3 of similarity scores versus time graph. Eigenface is used to

calculate hardface.

Figure 3.16: Examples of images used to generate the graphs in Fig. 3.15. (a)

Turning head to left; (b) turning head to right; (c) turning head down; (d) leaning

back in chair; (e) stretching arms; and (f) walking away.
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To further demonstrate the robustness of the proposed system, we also performed

the following additional experiments: 1) illumination change detection, 2) relogin

authentication, 3) occlusion, and 4) laptop with a built-in camera.

Illumination Change Detection

Fig. 3.18 show two frames of the user where where illumination change is observed.

For the scenario in Fig. 3.18, the results of various similarity computation over time

without and with enrollment update are shown in Fig. 3.17 (a) and (b), respectively.

In Fig. 3.17 (a), the similarity values of soft biometric traits decrease rapidly as

soon as the illumination change occurs. On the other hand, in Fig. 3.17 (b), due

to template update, the similarity values of soft biometric traits remain high even

after the illumination change. Note that the scores of face recognition also decline

after the illumination change. To tackle the problem, we can replace our PCA-based

face matcher with a more advanced face recognition engine, but it will still fail with

large pose variations, as shown in Fig. 3.12. Another example is shown in Fig. 3.19

(corresponding video frames are shown in Fig. 3.20). In this case, the user also

shifted his position along with the illumination change. The transition of the results

of various similarity computations without and with enrollment update, are shown in

Fig. 3.19 (a) and (b), respectively. Fig. 3.19 (b) demonstrates that the system is able

to successfully identify the user even after the illumination change with only slight

fluctuations in the similarity scores of soft biometric traits. The false illumination

detection rates using the same data used in Section 3.5.3 are shown in Table 3.3. In

the experiment, we do not observe any false detection due to illumination change.

Table 3.3: False reject (FR) rates in the presence of illumination change

Scenario False Reject Rate

A) Turning head to the left 0%

B) Turning head to the right 0%

C) Turning head down 0%

D) Leaning back in a chair 0%

E) Stretching arms overhead 0%

F) Walking away 0%
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Figure 3.17: Example 1 of similarity scores versus time graphs with and without

enrollment update. (a) Without enrollment update. (b) With enrollment update.

Figure 3.18: Examples of images before and after the illumination change used to

generate graphs in Fig. 3.17. (a) Dark room. (b) Bright room.
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Figure 3.19: Example 2 of similarity scores versus time graphs with and without

enrollment update. (a) Without enrollment update. (b) With enrollment update.

Figure 3.20: Examples of images before and after the illumination change used to

generate graphs in Fig. 3.19. (a) Dark room. (b) Bright room.
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Relogin Authentication

We evaluated the proposed relogin authentication method using video clips. The

video clips illustrate the following scenario: a) an authorized user logs in, b) the

user leaves the console (without logging out), and then c) another user (an impostor)

appears in the field of view of the webcam. Fig. 3.21 shows this scenario. In Fig. 3.21,

the colored ellipses show that the system recognized the valid user, and the black-

and-white images show that the system recognized the absence of the valid user. As

shown in Fig. 3.21, the system successfully recognized both the valid user and the

impostor.

Figure 3.21: Example results of relogin authentication experiments. (a) Authentic

user; (b) authentic user walks away; (c) imposter user; (d) imposter user walks away;

and (e) authentic user returns.

Occlusion

We partly evaluated occlusion in earlier experiments (turning head down to occlude

both face and clothing in Figs. 3.10, 3.13, and 3.15), but we conducted experiments

with a more explicit occlusion scenario with a paper file.
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Figure 3.22: Example of similarity scores versus time graph with occlusion.

Figure 3.23: Examples of images used to generate the graph in Fig. 3.22. (a), (b),

(c), (d), and (e) correspond to time instants A, B, C, D, and E in Fig. 3.22.
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Fig. 3.22 show the results. The corresponding video frames are shown in Fig 3.23.

The results indicate that the proposed system successfully authenticated the user

with the occlusion event. While the user is occluded, the system status is in relo-

gin authentication mode. After the user’s face and clothes become available, he is

reauthenticated successfully, and the system status moves back to continuous au-

thentication mode. In the current system, if the occlusion occurs for a long time,

the user will not be accepted by the system. In this case, the system status moves

to initial login mode, and the user needs to start over from the initial login mode.

Note that, in Fig. 3.22, the hard face biometric has similar performance as the soft

biometrics because the face is frontal in most of the video frames.

Laptop With Built-In Webcam

We have also conducted experiments using a built-in webcam while in the previous

experiments we used a webcam externally mounted on the laptop screen.

Fig. 3.24 shows the laptop with a built-in camera (red ellipse). The frame rate

and the image size are the same as the ones with a external webcam (frame rate:

15 frames/s, image size: 640x480 pixels). The images captured from the built-in

webcam are slightly blurry and show low saturation. Regardless of that, Figs. 3.25

and 3.26 show that our system successfully authenticates the user continuously.

Figure 3.24: (a) Laptop with a built-in webcam and (b) close up view of the built-in

camera.
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Figure 3.25: Example of similarity scores versus time graph for the built-in webcam.

Figure 3.26: Example of images from built-in webcam used to construct the similar-

ity score versus time graph of Fig. 3.25. (a) Turning head to left; (b) turning head

to right; (c) turning head down; (d) leaning back in chair; (e) stretching arms; and

(f) walking away.
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3.5.4 System Attacks

This section discusses vulnerability of the proposed system, and possible approaches

to improve the systems’ vulnerabilities.

1. Initial login time with stolen password: In case a stolen password is used

in the login process, utilizing multiple login authentication methods, such as

hard biometric authentication, is a practical method to prevent the system

attack. It should be noted, however, this approach does not prevent all the

attacks because the hard biometric trait itself can be compromised.

2. Continuous authentication mode: If an attacker has soft biometric traits

that are very similar to those of the authorized user, the attacker can breach

the system. To minimize the problem, we introduce the relogin authentication

mode. Whenever the system recognizes that the legitimate user is not in front

of the console, the system status moves to the relogin authentication mode,

and the reauthentication using both hard and soft biometrics are required.

In addition, when there is a sudden lighting change, the system first checks

whether it is due to the change in the soft biometric trait (absence of the user)

or the lighting change as shown in Chapter 3.4.3. If the change is due to the

absence of the user, the system enters relogin authentication mode. If the

change is due to the lighting condition, the system automatically updates the

templates (soft and hard biometric traits), and continuously authenticates the

user in the continuous authentication mode.

3. Relogin authentication mode: When the user has very similar soft biomet-

ric traits (i.e., clothing and face color) and face appearance, an attacker can

breach the system at the relogin authentication mode. To mitigate the prob-

lem, the time decaying function is used in the relogin authentication mode.

This can block an attacker after a certain time lapse.

3.6 Summary

To tackle the problem of existing methods for continuous authentication, we have

proposed a new framework that uses soft biometric traits as well as hard biometric

traits. The proposed framework enables the system to effectively use soft biometric
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traits by enrolling a new template every time the user logs into the system. Face

color and clothing color histograms are used as soft biometrics. Because the soft

biometric traits are available regardless of the user’s posture, the proposed frame-

work is robust to the variation of user’s posture. In addition, it has the capability

for enrollment template update mode and relogin authentication. Experimental re-

sults demonstrate the effectiveness of the proposed framework for continuous user

authentication.



Chapter 4

Systematic evaluation of design

choices for deep facial action

coding across pose

4.1 Introduction

Emotion recognition technologies have made a significant contribution in a wide

range of applications including remote communication, online education, products

evaluation, and social robots. Facial action units (AU) that correspond to discrete

muscle contractions have been widely used to recognize human emotion. Individually

or in combinations, they can account for nearly all possible facial expressions of

emotion.

The performance of automated facial affect recognition systems have improved

steadily in detection of the occurrence and intensity of facial actions. While early

work focused on relatively controlled laboratory settings, more recent work empha-

sizes less-constrained in-the-wild scenarios [20, 52, 95]. For facial affect recognition

systems, robustness to pose variation is essential since frontal face views cannot be

assumed in less constrained settings. The Facial Expression Recognition and Analy-

sis 2017 (FERA 2017) provided the first common protocol to evaluate robustness to

pose variation [88]. In FERA 2017, deep-learning based approaches have shown the

best performance in sub-challenges ([82] for occurrence detection, [97] and intensity

estimation).

64
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The advantage of modern deep learning techniques is clear, but little is known

about critical design choices among them. Most studies use default or ad-hoc param-

eters provided by the deep learning frameworks, and neglect to examine the effect

of different parameter settings on facial action unit (AU) detection. Therefore, little

is known about the relative contribution of different design choices in pre-training,

feature alignment, model size, and optimizer details.

In this study, we specifically focus on design choices in two scenarios that are

important for real-world applications.

1. Robustness to pose variation: Until recently, most systems were concerned

with near-frontal face views. However, because pose variation is common in

real-world settings, robustness to pose variation is critical.

2. Transfer to new domains: Many real-world applications are required to be

applicable in new contexts. Therefore, it is crucial for systems to perform well

in the domains to which they may be applied, as well as the domains from

which they come. However, evaluation of domain transfer in AU systems is

relatively new [21, 28].

To tackle these two questions, we systematically evaluated the combinations

of different components and their parameters in a modern deep-learning based

pipeline. Our design choices include pre-training practices, image alignment for

pre-processing, training set sizes, optimizers, and learning rates. Informed what we

found, we developed an architecture that outperforms state-of-the-art methods on

both the occurrence and the intensity sub-challenges of FERA 2017 [88]. Our archi-

tecture also achieved state-of-the art in cross-domain generalizability to the Denver

Intensity of Spontaneous Facial Action (DISFA) dataset [61]. We also report evalua-

tion of cross-pose generalizability and performance of cross-domain generalizability.

Our architecture performs well on the unseen views and domains. We visualize oc-

clusion sensitivity maps in order to understand and interpret at which facial regions

our architecture looks to detect specific AUs at specific poses. The occlusion sensi-

tivity maps demonstrate that our architecture attends to meaningful facial regions

for different poses and AUs.
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Table 4.1: Comparison of the design choices from existing methods using the FERA

2017 dataset. F1 scores are reported for occurrence detection, and Intraclass Corre-

lation coefficients (ICC) are reported for intensity detection. Best scores are denoted

in bold. N/A denotes not applicable; N/R denotes not reported.
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Valstar

et al. [88]

Facial

landmarks
Shallow n/a n/r n/a n/a 0.452 0.217

Li et al.

[54]

Facial

landmarks
Hybrid VGG-Face1 26,582 n/a n/a 0.498 n/a

Batista

et al. [12]

Face

position
Deep none2 1,321,472 Adam 10−3 0.506 0.399

He et al.

[36]
Resizing3 Hybrid none 146,847 n/r n/r 0.507 n/a

Tang

et al. [82]

Face

position4
Deep VGG-Face

440,541

+α5
SGD 10−3 0.574 n/a

Ertugrul

et al. [27]

Face

position
Deep none 1,321,623 Adam 10−3 0.525 n/a

Li et al.

[53]

Facial

landmarks
Deep

ImageNet-

VGG-VD19

260,000

+α6
SGD 10−4 n/a7 n/a

Amirian

et al. [5]

Facial

landmarks
Shallow n/a n/r n/a n/a n/a 0.295

Zhou

et al. [97]
Resizing Deep

ImageNet-

VGG-VD16
54,000 SGD 10−4 n/a 0.446

1 A VGG pre-trained model was used to extract features, but not used for classification.

2 A VGG pre-trained model was used to detect faces, but not used for classification.

3 Face detection was used for train and validation partition, but not for test partition.

4 Face position was not directly used, but facial images were cropped by using morphology operations

including binary segmentation, connected components labeling and region boundaries extraction.

5 After down sampling to 440,541 images, Tang et al. increased the number of samples to balance

positive and negative samples.

6 Li et al. increased the number of samples to balance positive and negative samples.

7 In their paper, Li et al. reported F1 scores only on validation partition.
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4.2 Related work

A great number of approaches have been proposed for action unit (AU) analysis [20,

24, 60]. While most of them assume that face orientation has been relatively frontal,

some methods tackle non-frontal pose [46, 80, 41, 71, 85]. However, the lack of a

common protocol has undermined comparisons. The FERA 2017 Challenge [88]

provided the first common protocol to compare approaches in terms of robustness

to pose variation. The FERA 2017 dataset contains synthesized face images with

9 head poses as shown in Fig. 4.1. The training set of the FERA 2017 dataset

consists of the BP4D database [93], which includes digital videos of 41 participants

Both the development and test sets consists of BP4D+ [94]. The development set

includes digital videos of 20 participants, and the test set includes digital videos

of 30 participants. By using the FERA 2017 dataset, we can evaluate two tasks:

occurrence detection and intensity estimation. For the occurrence detection, 10 AUs

were labelled; for the intensity estimation, 7 AUs were labelled.

A wide range of approaches have been evaluated using the FERA 2017 dataset.

Table 4.1 compares the performance and design choices of the methods proposed

in the FERA 2017 challenges and two more recent approaches from Ertugrul et

al.[27] and Li et al.[53]. For FERA 2017, F1 score was used to evaluate performance

for occurrence detection, and Intraclass Correlation (ICC) was used to evaluate

intensity estimation.

Several comparisons are noteworthy in Table 4.1. As for normalization, we can

observe the difference between shallow approaches and deep learning approaches.

Precise face alignment using facial landmarks was used for shallow approaches while

simple face alignment using face position or resized images are often used for deep

learning approaches. In addition, for architecture, deep learning approaches per-

formed better than shallow approaches, and deep learning approaches with pre-

trained models achieved better performance than ones without pre-trained model.

For both of the sub-challenges, deep learning approaches with a pre-trained model

were used by the methods achieving the best performance (Tang et al. [82] for oc-

currence detection, and Zhou et al. [97] for intensity estimation). As for training set

size, a different number of training images were used by each method. Either Adam

or SGD was used as optimizer, and learning rate varied between 10−3 and 10−4.

The comparison of the existing methods indicates the effectiveness of deep learning
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Figure 4.1: An overview of our experimental design. Blue color denotes design

choices and parameters for systematic evaluation.

approaches, especially the ones using pre-trained models, for this task. However, a

different fixed configuration was used by every approach, and the key parameters

are unknown.

To address the problem, we systematically investigate the key parameters for

both AU occurrence and intensity estimation, and show the optimal configuration.

4.3 Methods

In this study, we investigate the effect of the different components and parameters

by systematically evaluating design choices of deep-learning based facial expression

analysis, and provide best practices that researchers can use for training deep learn-

ing methods for this task.

An outline of our experimental design is shown in Fig. 4.1. On the basis of the

outline, we systematically changed parameters and design choices. Key elements

are represented in blue color in Fig. 4.1. In every experiment, we explored the

effect of optimizer choice and parametric variation of an additional key parameter.

Table 4.2 shows our baseline configuration. In this work, the PyTorch framework

was used perform the experiments.

4.4 Experiments

4.4.1 Normalization

Two image normalization methods are compared: Procrustes analysis and Resizing.

1. Procrustes analysis: To apply detailed face alignment, we used Procrustes

analysis [32] though many existing methods used a face alignment approach
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Table 4.2: Baseline configuration

Design choice Baseline configuration

Normalization Procrustes analysis

Pre-trained architecture VGG-ImageNet

Training set size 5,000 images per each pose each AU

Optimizer and learning rate
Adam with lr=5× 10−5

SGD with lr=5× 10−3

Fine-tune layer From the third convolutional layer

Dropout 0.5

based on eye locations. A limitation of a face alignment approach based on eye

locations is that alignment error increases for landmarks farther away from the

eye region. This limitation is especially problematic for our evaluation because

the FERA 2017 dataset includes a wide range of pose variations. To mitigate

the problem, we use Procrustes analysis. More specifically, we first extracted

68 facial landmarks from each image using the dlib face tracker [44], and then

applied a Procrustes transform between the extracted landmarks and a frontal

looking template. The size of the template covers a bounding box of 224x224

pixels that match the receptive field of the VGG network.

2. Resizing: In the second case, each image was resized to 224x224 pixels that

corresponds to the receptive field of the VGG network.

The F1 scores and ICC averages for all nine poses for each AU are shown in

Fig. 4.2. The results for two optimizers are shown separately (the left figures for

Adam optimizer, and the right figures for SGD optimizer). The results indicate

that the difference between Procrustes analysis and Resizing is small (1% or less)

though the performance with Procrustes analysis is slightly better than the one with

Resizing. One possible explanation for the small difference is that the VGG network

has enough capacity to learn all the nine different poses.

4.4.2 Pre-trained architecture

In this experiment, we evaluate pre-trained architecture. Pre-trained architecture is

a well-known technique to train deep learning models because training deep models
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Figure 4.2: Results on FERA 2017 Test partition with two normalization methods.

from scratch is time-consuming and the amount of training data at hand may impede

good performance. In addition, as we discussed in Chapter 4.2, approaches with

pre-trained models show better results than ones without pre-trained models for

the task. The technique has two steps: 1) select a model that was trained on large

scale benchmark datasets (source domain), and 2) fine-tune it on the data of our

interest (target domain).

Although it is known that this practice is effective, little is known about how the

type of data in the source domain influences the performance of fine-tuning in the

target domain. To investigate the question, two models that were trained on very

different domains were selected in our experiments: VGG-16 trained on ImageNet

[77] and VGG-Face [67]. The final layers of each network are replaced with a 2-length

one-hot representation for AU occurrence detection. Similarly, the final layers are
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Figure 4.3: Results on FERA 2017 Test partition with two pre-trained architecture.

replaced with a 6-length one-hot representation for the intensity estimation task. For

both tasks, separate models were trained for each AU, resulting 10 and 7 models

for AU occurrence detection and AU intensity estimation, respectively. Our models

were fine-tuned for 10 epochs. We validated performance on the validation partition,

then reported results on the subject-independent test partition.

Fig. 4.3 shows the results. These results indicate that models pre-trained on

ImageNet achieved better performance than the VGG-Face ones. While VGG-Face

was trained on face images for identification, ImageNet includes many non-face

images for image classification. We attribute this result as follows. VGG-Face

learned to actively ignore facial expression in order to recognize the face. As a

result, VGG-ImageNet (a generic image representation) is more suitable for the

task.



72

Figure 4.4: Results on FERA 2017 Test partition with different number of train set

size.

4.4.3 Training set size

Chu et al. [19] found that multi-label stratified sampling was advantageous over

naive sampling strategies for AU detection. We employ this strategy, and explore

the effect of different training set sizes on the performance. More specifically, we

down-sampled the majority class and up-sampled the minority class to build a strati-

fied training set. We applied this procedure for each pose and each AU. For example,

in the case of AU occurrence detection, a 5, 000 training set size means that 5, 000

images with AU present and 5, 000 images without AU present were randomly se-

lected for each pose and for each AU, resulting in 90, 000 images in total (=5, 000

images x 2 classes x 9 poses). We repeated the same stratifying procedure with the
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six classes of the intensity sub-challenge. In this case, a 5, 000 training set size in-

dicates that 5, 000 images were randomly selected from the six classes (not present,

and A to E levels) for each pose and for each AU, resulting in 270, 000 images in

total (=5, 000 images x 6 classes x 9 poses).

Fig. 4.4 indicates that the training set size has minor influence on the perfor-

mance. We use 5, 000 images in the rest of our experiments because scores peaked

at 5, 000 images.

4.4.4 Optimizer and learning rate

We investigated the impact of two different optimizers (SGD and Adam) and learn-

ing rates (LR) on the performance. All of the deep learning based methods shown

in Table 4.1 used SGD or Adam. We varied the learning rates, but we used the de-

fault values used in PyTorch for the other optimizer parameters: betas=(0.9, 0.999)

without weight decay for Adam, and no momentum, no dampening, no weight decay

and no Nesterov acceleration for SGD.

Fig. 4.5 indicates two of note. First, the optimal learning rate is largely different

depending on the choice of optimizer. For Adam, LR=5 × 10−5 showed the best

results, while LR=0.01 showed the best performance for SGD. Secondly, if the opti-

mal learning rates for each optimizer are used, the performance differences between

Adam and SGD are negligible.

When the learning rate was set to a large value, some models did not converge

and predicted the majority class for all samples. In this case, ICC converges to

zeros. However, this should not be interpreted as chance performance. As variation

in predicted intensity values reduces, the ICC metric loses predictive power. It

is also worth noting that Zhou et al. [97] used SGD with LR=10−4 for the AU

intensity estimation task. Our results indicate that their performance could be

improved by using Adam optimizer or SGD optimizer with larger learning rate.

Tang et al. [82] used SGD with LR=10−3, but they also applied momentum. Our

additional experiments revealed that when momentum is used for SGD, smaller

learning rate is preferable for optimal performance. More specifically, when we used

the same parameters as Tang et al. [82] reported for SGD (momentum=0.9, weight

decay=0.02) F1 score peaked at 0.596 using LR=10−4. The results indicate that

their learning rate is close to optimal. However, SGD without momentum further
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improves F1 score to 0.609 with LR=0.01.

Figure 4.5: Effect of learning rates and choice of optimizers on the FERA 2017 Test

partition.

4.4.5 Comparison with existing methods

The optimal parameters of our models are almost the same for the two tasks as shown

in Table. 4.3. For AU occurrence detection, SGD with LR=0.01 gave the best result

(F1 = 0.609), while for AU intensity estimation, Adam with LR=5× 10−5 reached

the best performance (ICC = 0.504). Table 4.4 shows F1 score and Accuracy for

occurrence detection, and Table 4.5 shows ICC for intensity estimation.

Table 4.6 and 4.7 show the comparison of our method and the state-of-the-art

on the AU occurrence detection and the AU intensity estimation, respectively. Our
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Table 4.3: Optimal parameters of design choices for occurrence detection and inten-

sity estimation

Design choice Occurrence detection Intensity estimation

Normalization Procrustes analysis Procrustes analysis

Pre-trained
VGG-ImageNet VGG-ImageNet

architecture

Training set size
5,000 images 5,000 images

(each pose each AU) (each pose each AU)

Optimizer and
SGD with lr=0.01 Adam with lr=5× 10−5

learning rate

method outperforms the state-of-the-art. We note a few key differences that con-

tributed to this achievement. The main difference with Tang et al. [82] is pre-trained

architecture. Tang et al. used VGG-Face pre-trained model while we used ImageNet

pre-trained model. The key difference with Zhou et al. [97] is learning rate. Zhou et

al. used SGD with small learning rate while the combination of our optimizer and

learning rate is optimal. Li et al. [53] also evaluated their method for AU occurrence

detection using the FERA 2017 dataset, but they reported performance only on the

Validation partition. Their best F1 score (0.522) is 9% lower than ours (0.611) on

the Validation partition.
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Table 4.4: F1 scores and Accuracy of our model for occurrence detection under 9

facial poses on FERA 2017 Test partition.

F1 score

Pose 1 2 3 4 5 6 7 8 9 Mean

AU01 0.358 0.292 0.272 0.353 0.346 0.366 0.312 0.314 0.345 0.329

AU04 0.247 0.208 0.129 0.254 0.226 0.217 0.131 0.135 0.133 0.187

AU06 0.808 0.803 0.788 0.828 0.830 0.811 0.829 0.821 0.811 0.814

AU07 0.887 0.886 0.864 0.877 0.883 0.885 0.871 0.875 0.878 0.878

AU10 0.859 0.867 0.864 0.868 0.872 0.868 0.872 0.870 0.841 0.865

AU12 0.821 0.830 0.850 0.830 0.843 0.850 0.833 0.847 0.828 0.837

AU14 0.756 0.737 0.742 0.758 0.776 0.771 0.787 0.759 0.735 0.758

AU15 0.422 0.419 0.369 0.408 0.379 0.357 0.357 0.340 0.336 0.376

AU17 0.453 0.485 0.493 0.461 0.492 0.486 0.482 0.430 0.416 0.466

AU23 0.568 0.588 0.577 0.611 0.597 0.588 0.557 0.568 0.545 0.578

Mean 0.618 0.612 0.595 0.625 0.624 0.620 0.603 0.596 0.587 0.609

Accuracy

Pose 1 2 3 4 5 6 7 8 9 Mean

AU01 0.855 0.835 0.862 0.834 0.850 0.871 0.811 0.831 0.844 0.844

AU04 0.961 0.949 0.900 0.944 0.926 0.919 0.944 0.937 0.907 0.932

AU06 0.828 0.828 0.807 0.847 0.847 0.838 0.838 0.819 0.805 0.829

AU07 0.850 0.848 0.813 0.837 0.841 0.844 0.828 0.832 0.836 0.837

AU10 0.830 0.836 0.834 0.834 0.838 0.835 0.833 0.829 0.798 0.830

AU12 0.793 0.807 0.834 0.808 0.821 0.832 0.817 0.831 0.802 0.816

AU14 0.708 0.690 0.686 0.709 0.722 0.718 0.733 0.694 0.676 0.704

AU15 0.814 0.802 0.785 0.795 0.780 0.792 0.782 0.753 0.711 0.779

AU17 0.744 0.790 0.787 0.764 0.789 0.794 0.778 0.754 0.739 0.771

AU23 0.769 0.782 0.764 0.803 0.782 0.775 0.786 0.790 0.757 0.779

Mean 0.815 0.817 0.807 0.818 0.820 0.822 0.815 0.807 0.788 0.812



77

Table 4.5: ICC of our model for intensity estimation under 9 facial poses on FERA

2017 Test partition.

Pose 1 2 3 4 5 6 7 8 9 Mean

AU01 0.441 0.449 0.400 0.403 0.436 0.433 0.353 0.354 0.333 0.400

AU04 0.305 0.278 0.250 0.294 0.333 0.281 0.317 0.244 0.216 0.280

AU06 0.779 0.786 0.787 0.787 0.788 0.786 0.762 0.776 0.754 0.778

AU10 0.763 0.750 0.738 0.759 0.763 0.768 0.734 0.722 0.720 0.746

AU12 0.799 0.812 0.815 0.809 0.813 0.812 0.795 0.797 0.777 0.803

AU14 0.144 0.161 0.162 0.137 0.143 0.153 0.124 0.141 0.126 0.143

AU17 0.393 0.396 0.403 0.394 0.388 0.382 0.383 0.359 0.319 0.380

Mean 0.518 0.519 0.508 0.512 0.523 0.516 0.495 0.485 0.464 0.504

Table 4.6: F1 scores for occurrence detection results on FERA 2017 Test partition.

Valstar Li et al. Batista He et al. Ertugrul Tang
Our

et al. [88] [54] et al. [12] [36] et al. [27] et al. [82]

AU01 0.147 0.215 0.219 0.198 0.196 0.263 0.329

AU04 0.044 0.044 0.056 0.043 0.067 0.118 0.187

AU06 0.630 0.755 0.785 0.747 0.766 0.776 0.814

AU07 0.755 0.805 0.816 0.784 0.791 0.808 0.878

AU10 0.758 0.810 0.838 0.816 0.840 0.865 0.865

AU12 0.687 0.753 0.780 0.809 0.819 0.843 0.837

AU14 0.668 0.750 0.747 0.691 0.764 0.757 0.758

AU15 0.220 0.208 0.145 0.208 0.247 0.362 0.376

AU17 0.274 0.286 0.388 0.398 0.349 0.424 0.467

AU23 0.342 0.356 0.286 0.374 0.413 0.519 0.578

Mean 0.452 0.498 0.506 0.507 0.525 0.574 0.609
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Table 4.7: ICC for intensity estimation on FERA 2017 Test partition.

Valstar Amirian Batista Zhou et al.
Our

et al. [88] et al. [5] et al. [12] [97]

AU01 0.035 0.169 0.228 0.307 0.400

AU04 -0.004 0.021 0.057 0.147 0.280

AU06 0.461 0.509 0.702 0.671 0.778

AU10 0.451 0.590 0.710 0.735 0.746

AU12 0.518 0.615 0.732 0.793 0.803

AU14 0.037 -0.027 0.104 0.147 0.143

AU17 0.020 0.190 0.260 0.319 0.380

Mean 0.217 0.295 0.399 0.446 0.504
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Figure 4.6: F1 scores for occurrence detection on DISFA and UNBC Pain with two

normalization methods.

Figure 4.7: F1 scores for occurrence detection on DISFA and UNBC Pain with two

pre-trained architecture.

4.4.6 Cross-domain evaluation

To evaluate the generalizability of our method to unseen conditions, we report per-

formance on the Denver Intensity of Spontaneous Facial Action (DISFA) [61] and

UNBC McMaster Pain [58] datasets. In the experiments, we investigate the im-

pact of differences in environments including illumination, cameras, orientation of
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Table 4.8: Comparison of cross-domain performance to DISFA dataset for occur-

rence detection.

Accuracy 2AFC F1 AUC

Our
Ghosh et al.

[31]
Our

Ghosh et al.

[31]
Our

Baltrušaitis

et al., [11]
Our

AU01 0.932 0.838 0.714 0.660 0.475 - 0.787

AU04 0.806 0.833 0.723 0.740 0.531 - 0.809

AU06 0.860 0.703 0.758 0.870 0.567 - 0.867

AU12 0.859 0.624 0.859 0.873 0.742 0.700 0.934

AU15 0.823 0.752 0.671 0.617 0.253 - 0.761

AU17 0.738 0.689 0.742 0.585 0.361 0.260 0.823

Mean 0.836 0.740 0.745 0.724 0.488 - 0.830

Table 4.9: Cross-domain performance to DISFA dataset for intensity estimation.

ICC

AU01 0.533

AU04 0.560

AU06 0.451

AU12 0.747

AU17 0.319

Mean 0.522

the face, quality and diversity of the training data. Note that we did not perform

fine-tuning on the target domain in these experiments.

We evaluated occurrence detection and intensity estimation performance of our

system, but both DISFA and UNBC Pain were annotated with AU intensity labels.

To create binary AU occurrence labels, we thresholded the 6-points intensity values

at A-level (the AU is present if A-level or higher). In these experiments, the baseline

configuration with Adam optimiser is used (See Table 4.2). To detect a face from

each image, we used the built-in face detector in dlib [44]. As for Resizing, to

include whole faces, we extended the boxes of detected face positions by 30%, and
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Table 4.10: Cross-domain performance to UNBC Pain dataset for occurrence detec-

tion and intensity estimation.

Occurrence Detection Intensity Estimation

F1 AUC ICC

AU04 0.195 0.863 AU04 0.152

AU06 0.249 0.720 AU06 0.262

AU07 0.188 0.784 AU07 -

AU10 0.028 0.743 AU10 0.018

AU12 0.405 0.785 AU12 0.388

Mean 0.213 0.779 Mean 0.205

then cropped and resized the boxes to 224x224 pixels.

Figs. 4.6 and 4.7 show the results. The F1 scores with two normalization

methods, Procrustes analysis and resizing, are shown in Fig. 4.6 and, the F1 scores

with two pre-trained architectures, VGG-ImageNet and VGG-Face, are shown in

Fig. 4.7. The results for DISFA show that Procrustes analysis and VGG-ImageNet

show better performance. However, the results show that the differences are small

for UNBC Pain.

Table 4.8 and Table 4.9 show the best results on DISFA for occurrence detection

and intensity estimation, respectively. Similarly, Table 4.10 shows the best results

on UNBC Pain for both tasks. In these experiments, the previously trained CNN

models reported in Chapter 4.4.5 were used. Table 4.8 compares our approach with

other cross-domain methods for occurrence detection on DISFA. Both Ghosh et al.

[31] and Baltrušaitis et al. [11] used BP4D to train their model, and thresholded

AU intensity values at A-level to create binary events. For a fair comparison, we

also report Accuracy and 2AFC scores, that Ghosh et al. [31] used. Our approach

outperforms their method in both metrics. Baltrušaitis et al. [11] report cross-

domain scores only for two AUs (AU 12 and AU17). Our models show better

performance for both AUs. These results show the robustness of our model for

cross-domain situation.

The performance on UNBC Pain is much lower than the one on DISFA. We

attribute this as follows. The image size of UNBC Pain (320x240 or 352x240) is
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smaller than the other two datasets (FERA2017: 1024x1024, and DISFA: 1024x768),

and the base rates on UNBC Pain is also small (DISFA: 13.3%, and UNBC Pain:

7.2%). Additionally, facial expressions on UNBC Pain are mainly associated with

pain, and the correlation among AUs differs from that of FERA2017 and DISFA.

Table 4.8 and 4.10 also show AUC for occurrence detection.

4.4.7 Cross-pose evaluation

To evaluate the generalization of our method to unseen poses, we also performed

cross-pose experiments. Our baseline configuration with Adam optimizer is used.

In the experiments, two types of experiments are reported:

1. The architecture was trained using eight of the nine poses of training set and

tested with the remaining pose of test set (Fig. 4.8)

2. The architecture was trained using one pose of training set and tested with

nine poses of test set (Fig. 4.9).

,

Fig. 4.8 shows the differences between models trained with eight poses and with

all nine poses as the results of the first experiment. In the figure, zero values

means that the performance between two models are the same and plus values

indicate that the performance with eight poses is better than the one obtained with

nine poses. The black lines indicate mean differences. Fig. 4.8 shows that the

difference of the performance between nine poses and eight poses is small though

the performance with nine poses is slightly better than that with eight poses. These

results demonstrate that our architectures can generalize well to unseen poses.

Fig. 4.9 shows the results of the second experiment. Each 3x3 matrix shows

the performance of each model. Each cell of a matrix shows the performance of

each pose, and the blue rectangle indicates a pose that was used to train a model.

A cell of each matrix corresponds to the pose in the same cell given in Fig. 4.1.

For example, with respect to a model trained with Pose1, the F1 score is 0.604

when we test it with Pose1 of test set, and the F1 score is 0.446 when we test it

with Pose9 of test set. The figure shows that we obtained maximum results within-

pose. When the models are tested with the poses in the neighboring cells, small

performance decreases are observed. However, the performance is largely decreased
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when a model is tested with largely different poses.

Figure 4.8: Performance difference between models trained with eight poses and with

nine poses. Horizontal axis shows each pose, and vertical axis indicates performance

difference between two models.

Figure 4.9: F1 scores and ICC for models using one pose of training set and test

them with nine poses of test set. We report only mean values.

4.4.8 Occlusion sensitivity maps

In order to understand and interpret our architecture, we generated Occlusion Sen-

sitivity Maps [92] for each pose and each AU. An occlusion patch having size 45x45

with Gaussian random noise were used. The patch was slid over the original image

of size 224x224 with a stride 15. For each AU each pose, 200 images were selected:

100 images that contained the specific AU, and 100 images that did not contain

it. The 200 images per each AU each pose were tested to obtain accuracy values.
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Fig. 4.10 shows the generated maps. In these maps, darker red colors represent

lower accuracy values. Significant regions are the ones colored with red because

their occlusion causes the largest decrease in the accuracy.

The results show that significant regions are correctly localized. We can also see

that significant regions in Fig. 4.10 are off to the left side even for frontal faces. This

seems to be reasonable because the pitch and yaw rotations of images in FERA2017

datasets is in one direction as shown in Fig. 4.1. We also created a mirrored image

for each image in training sets, and trained models using the combination of images

with nine original poses and nine mirrored poses. Fig. 4.11 shows the results. As

we can see, significant regions are in a center location.

4.4.9 Saliency maps

To compare the learned features, saliency maps using Vanilla Backpropagation [76]

were generated. Fig. 4.12 shows the results. For each AU each pose, we selected

200 images: 100 images that contained the specific AU, and 100 images that did not

contain it. We then obtained a mean image of saliency maps from the 200 images.

Brighter areas indicate the areas that are more important for the classifier to detect

the related AU. Fig. 4.12 indicates that important regions are better localized for

the VGG-ImageNet compared to VGG-Face.

4.4.10 ResNet

We performed the experiments using ResNet50 pre-trained on ImageNet to examine

the impact of different deep learning architectures. Our baseline configuration was

used except for the fine-tune layer. In this experiment, the network was fine-tuned

from the first layer. The results, as shown in Fig. 4.13, there is a small difference

between VGG16 and ResNet50. While ResNet50 (0.516) shows better performance

than VGG16 (0.504) for intensity estimation, VGG16 (0.609) shows better perfor-

mance than ResNet50 (0.591) for occurrence detection.

4.5 Summary

The aim of this study is to investigate the key parameters for both AU occurrence

and intensity estimation, and show the optimal configuration especially for across
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Figure 4.10: Occlusion sensitivity maps for each pose each AU. We trained models

with our baseline configuration.

pose situation. To achieve the goal, we evaluated the combinations of different

components and parameters.

Our findings range from the optimal pre-trained models (e.g., generic pre-training

outperformed face-specific models optimized for recognition) to best practices in tun-

ing optimizers. By utilizing all these insights, our architecture outperforms state-

of-the-art performance on both tasks. We also show that our architecture performs

well on unseen poses, and new domains.
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Figure 4.11: Occlusion sensitivity maps for each pose each AU. We trained models

using images with eighteen poses (nine original poses and nine mirrored poses).

Figure 4.12: Saliency maps extracted using Vanilla Backpropagation.
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Figure 4.13: Effect of learning rates and choice of optimizers for ResNet50 on the

FERA2017 Test partition.



Chapter 5

Conclusion

In this research, we investigate automated facial image analysis (AFA) across pose

for three representative applications for AFA: face recognition, continuous authenti-

cation, and facial expression recognition. We proposed a different approach for each

application according to the features of the applications.

First, we have addressed the problem of fully automatic face recognition across

multiple views. The proposed approach builds 3D face models from frontal target

face images, and uses them to generate synthetic target images to resemble the poses

in query face images. By aligning synthetic target and query images by applying

Procrustes Analysis, the proposed approach can leverage a wide range of well-studied

matchers. A MLBP based face matcher is used by our approach, but we also show

the good extensibility of our approach by replacing our MLBP based matcher with

MKD-SRC and FaceVACS.

We have next proposed a new framework for continuous authentication. Since

existing approaches for continuous authentication used hard biometric traits, they

suffered from the low availability of the biometric traits. To tackle the problem, our

framework primarily uses soft biometric traits (facial skin color and clothing color)

to continuously authenticate the user. The system is robust with respect to user’s

posture in front of the workstation and it also has the capability for enrollment

template update and relogin authentication. Our approach uses PCA-based face

recognition, but we can easily replace it with more sophisticated matchers to make

the system more robust. Experimental results demonstrate that the system is able

to successfully authenticate the user continuously with high tolerance to the user’s

88
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posture.

Finally, we have addressed the design choices of deep-learning based facial ex-

pression recognition. More specifically, we systematically evaluated design choices

in pre-training, feature alignment, model size selection, and optimizer details. By

utilizing all the insights, we developed an architecture that exceeds state-of-the-art

on FERA 2017. The architecture achieved a 3.5% increase in F1 score for occur-

rence detection and a 5.8% increase in ICC for intensity estimation. To evaluate

the generalizability of the architecture to unseen poses, we performed experiments

across pose in FERA 2017. To evaluate the generalizability of the architecture across

domains, we performed experiments in DISFA and the UNBC Pain Archive.

Our future work includes expanding the capabilities of the proposed frameworks

to handle other unconstrained environments, such as illumination change, occlu-

sion and aging. Another important issue is the limited dataset size for AFA. To

tackle the problem, it is not realistic to collect enough real images for all real-world

applications. Therefore, we believe that it is critical to leverage image generation

technologies to tackle the problem.
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