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Abstract

In our world, there are many kinds of subtle yet important physical/natural phenom-

ena. For example, human skin color subtly changes with blood circulation caused

by heart beating, drones fluctuate slightly for stabilizing themselves during flight,

and subtle vibrations of buildings reflect their structural stability. Therefore, such

subtle color changes or motions are essential for practical applications where you

need to understand scene contexts or anomalous behavior correctly. However, they

are often difficult to see with human eyes.

For revealing such subtle changes, Eulerian video magnification (EVM) meth-

ods have been proposed. The EVM methods try to amplify only subtle changes

in a video and then reveal them for users via the synthesis amplification video re-

sult. However, conventional EVM methods have the following three problems for

practical applications where only subtle changes caused by physical/natural phe-

nomena need to be revealed quickly and correctly. (Problem 1) A promising EVM

method, called the Eulerian video acceleration magnification (EVAM) method, can

ignore only slow large motions of objects when revealing subtle changes in a video.

However, the EVAM method cannot ignore quick large motions and thus produces

messy artifacts when objects in a video move quickly and largely. (Problem 2)

Subtle changes in a video contain meaningful ones caused by physical/natural phe-

nomena and non-meaningful ones caused by photographic subtle noise. Some con-

ventional EVM methods address to detect only the meaningful subtle changes but

are insufficient and have severe limitations. Thus, conventional EVM methods often

mistakenly amplify photographic subtle noise and produce noisy and/or misleading

results. (Problem 3) Conventional EVM methods construct over-complete image

pyramid representations when analyzing subtle changes in a video, and thus require

a long computational time in proportion to video resolution and time frame length.
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This dissertation is comprised of three EVM studies which focus on overcoming

the above three EVM problems (Problems 1, 2, and 3), in order to facilitate the

robust and fast analysis of subtle changes in a video and enhance the performance

of EVM for practical applications.

First, we committed an EVM study for ignoring large motions of objects and

revealing only subtle changes in a video. For this purpose, we used a differential

feature called jerk to make the EVAM method robust even to quick large motions as

well as slow ones. We showed that our method produces impressive EVM results

without messy artifacts, which could be caused by slow and/or quick large motions

of objects, in both real and synthetic videos.

Second, we committed an EVM study for ignoring photographic subtle noise

and revealing only the meaningful subtle changes in a video. For this purpose, we

proposed an EVM method using both a fractional anisotropy and edge-aware reg-

ularization. The use of them can effectively suppress the effect of photographic

subtle noise, and thus our method can ignore photographic subtle noise and pro-

duces impressive EVM results in both real and synthetic videos.

Third, we committed an EVM study for accelerating computational time of

EVM. For this purpose, on the basis of signal correlation between adjacent pyramid

levels, we constructed fewer image pyramid representations than the original ones

when analyzing subtle changes in a video. We showed that our method produces im-

pressive EVM results equivalent to conventional ones within a short computational

time in both real and synthetic videos.

With the above three EVM studies, subtle yet important physical/natural phe-

nomena can be quickly and correctly revealed even under the practical conditions,

where large motions of objects exist (Problem 1), photographic subtle noise in a

video exist (Problem 2), and short computational time is required (Problem 3). Fi-

nally, we conclude this dissertation by clarifying our contributions and future work
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to enhance the performance of EVM for practical applications.
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Chapter 1

Introduction

With the recent advances in camera technology, many kinds of physical/natural phe-

nomena can now be easily captured over different space and time scales. However,

we human often fail to visually perceive such phenomena if they are extremely

small. For example, human skin color subtly changes with blood circulation caused

by heart beating. These subtle color changes are too small to see with human eyes

but can be the clues to extract pulse rate [1, 2, 3]. Similarly, subtle motions, hard

for humans to see, are often used for evaluating or comparing some events, e.g.,

tiny vibrations of strings in instruments play wonderful sounds, high-quality drones

subtly sway to make themselves stabilize in quick flight. Therefore, such subtle

color changes or motions are essential for practical applications where you need to

understand scene contexts or anomalous behavior correctly. However, again, they

are difficult to see with human eyes.

For revealing such subtle changes, Eulerian video magnification (EVM) meth-

ods have been proposed to amplify subtle changes in a video [4, 5, 6, 7, 8, 9]. These

EVM methods are based on Eulerian description that measures subtle color changes

or motions of objects in a video as subtle signals (e.g., color signals or phase sig-

nals representing local motions [10]) over time frames at each pixel position. In
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these EVM methods, the color/phase signals at each pixel position are temporally

bandpass filtered with a target temporal frequency. The bandpass signals are then

amplified with an amplification factor to reveal subtle changes in a video. However,

conventional EVM methods have the following three problems for practical appli-

cations where only subtle changes caused by physical/natural phenomena need to

be revealed quickly and correctly.

(Problem 1) Large Motions in Video. A promising EVM method, called the Eule-

rian video acceleration magnification (EVAM) method [9], can ignore only slow

large motions of objects when revealing subtle changes in a video. However, the

EVAM method cannot ignore quick large motions and thus produces messy arti-

facts when objects in a video move quickly and largely.

(Problem 2) Photographic Subtle Noise in Video. Subtle changes in a video contain

meaningful ones caused by physical/natural phenomena and non-meaningful ones

caused by photographic subtle noise. Some conventional EVM methods address to

detect only the meaningful subtle changes but are insufficient and have severe lim-

itations. Thus, conventional EVM methods often mistakenly amplify photographic

subtle noise and produce noisy and/or misleading results.

(Problem 3) Long Computational Time. Conventional EVM methods construct

over-complete image pyramid representations when analyzing subtle changes in a

video, and thus require a long computational time in proportion to video resolution

and time frame length.

This dissertation is comprised of three EVM studies which focus on overcoming

the above three EVM problems (Problems 1, 2, and 3), in order to facilitate the
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robust and fast analysis of subtle changes in a video and enhance the performance

of EVM for practical applications. To overcome these problems, we kept in mind

to propose simple yet novel solutions. Specifically, we tackled problems 1 and 2

by simple spatio-temporal filtering techniques (without the necessary of complex

optimization procedure required in, e.g., deep learning techniques) utilizing the

knowledge of neuroscience to which I belonged until my bachelor’s and master’s

programs. We consider that this knowledge utilization is the most interesting point

in this dissertation because it solves computer science problem from a completely

different research perspective. Here, brief overviews of the three EVM studies are

described as follows.

(Solution 1) Ignoring Large Motions in Video. In Chapter 4, we committed an

EVM study for ignoring large motions of objects and revealing only subtle changes

in a video. For this purpose, we proposed an EVM method that combines the

Eulerian video acceleration magnification (EVAM) method [9], which ignores only

slow large motions, with a differential feature called jerk. This method is consisted

of making the EVAM method robust even to quick large motions as well as slow

ones by utilizing jerk. Jerk has been used to evaluate smoothness of time series

data in neuroscience [11, 12, 13] and can be used to identify steep changes in the

color/phase signals caused by quick large motions of objects. We showed that our

method produces impressive EVM results without messy artifacts, which could be

caused by slow and/or quick large motions of objects, in both real and synthetic

videos.

(Solution 2) Ignoring Photographic Subtle Noise in Video. In Chapter 5, we

committed an EVM study for ignoring photographic subtle noise and revealing only

the meaningful subtle changes in a video. For this purpose, we propose an EVM
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method using both a fractional anisotropy (FA) and edge-aware regularization. FA

has been used in neuroscience to evaluate anisotropic diffusion of water molecules

in the body for revealing the shape of tiny nerve cells [14, 15], and we thus consider

that FA can identify anisotropic temporal diffusion of the meaningful subtle

changes caused by physical/natural phenomena. Additionally, the edge-aware

regularization can refine uncertain subtle motions at flat (texture-less) regions in a

video. We showed that our method effectively ignores photographic subtle noise

compared with conventional EVM methods and produces impressive EVM results

in both real and synthetic videos.

(Solution 3) Accelerating Computational Time. In Chapter 6, we committed

an EVM study for accelerating computational time of EVM. For this purpose, we

propose an EVM method that combines local image processing with a conventional

fast EVM method with the Riesz pyramid [6]. On the basis of signal correlation

between adjacent pyramid levels as reported in [16, 17], our method constructs

fewer image pyramid representations than those constructed in the Riesz method

when analyzing subtle changes in a video. We showed that our method produces

impressive EVM results equivalent to conventional ones within a short computa-

tional time in both real and synthetic videos.

This dissertation consists of seven chapters. In Chapter 2, we explain the major

related work of EVM and video color/motion analysis for practical applications.

In Chapter 3, we introduce preliminary formulation of EVM to clearly explain

the following chapters. In Chapters 4, 5, and 6, we explain the details of each

study (Solutions 1, 2, and 3). Finally, Chapter 7 summarizes the conclusions and

contributions of this dissertation and provides future work directions.
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Chapter 2

Related Work

In this chapter, we explain the major related work of EVM. We also explain the

related interesting work in a video color/motion manipulation/analysis that handle

temporal deviations in a video as the EVM research does.

2.1 Lagrangian Video Motion Magnification

The first video motion magnification method is proposed by Liu et al. [18] with La-

grangian description that measures motions in a video by matching feature points

between frames and estimating optical flow. Liu et al. [18] measure motions of ob-

jects by using optical flow analysis [19] to segment background motions and subtle

motions of interest for magnification in a video by using energy minimization esti-

mation that involves with motion likelihood, color likelihood, and spatial connec-

tivity [20]. After the segmentation, they magnify only the subtle motions of interest.

Moreover, since the motion magnification will reveal occluded regions, texture in-

painting [21] needs to be applied to those regions as a post-processing. The motion

magnification results amazed the world because they first show that imperceptible

motions in a video can be revealed with the computer vision/graphics technology.
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However, this Lagrangian-based method is computationally expensive because it is

consisted of a complex combination of three algorithms, namely, optical flow anal-

ysis [19], segmentation [20], and texture in-painting [21]. Additionally, the each

algorithm has been still researched as an unsolved problem [22, 23, 24, 25, 26].

2.2 Learning-based Video Motion Magnification

Recently, learning-based video motion magnification (LebVMM) methods with a

convolutional neural network (CNN) have been proposed [27, 28]. Oh et al. [27]

newly design an encoder-decoder CNN motion magnification model that is trained

by supervised learning with synthetic training dataset created by the authors. The

trained encoder CNN model takes a pair of two successive (or query and reference)

image frames as input, and then the trained decoder CNN model outputs a warped

frame where subtle motions are amplified with an amplification factor. The learned

motion representations in the trained encoder-decoder CNN model achieve a bet-

ter noise-free result than with previous hand-crafted methods. On the other hand,

Dorkenwald et al. [28] train the encoder-decoder CNN motion magnification model

by unsupervised learning with non-annotated real data for amplifying posture devi-

ations across subjects. This research is variant rather than new because they aim to

reveal subtle motion differences between two videos rather than subtle motions in a

video. While these learning methods have much attention with the recent develop-

ment of deep learning, they often produce corrupted and/or undesirable results due

to strong dependency on their training dataset and also take time to output results;

its practical application range is thus still limited.
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2.3 Eulerian Video Magnification

2.3.1 Eulerian Video Motion Magnification

Unlike the above Lagrange and learning-based methods, Wu et al. [4] first proposed

a video motion magnification method with Eulerian description that measures mo-

tions of objects in a video as change in luminance signals over time at a fixed pixel

position without object tracking, which is called luminance-based Eulerian video

motion magnification (LubEVMM). They show the change in luminance signals

represents local motions at the each pixel on the basis of the first-order Taylor se-

ries expansions along spatial dimension, which is common in optical flow anal-

ysis [19, 29]. This method constructs Laplacian pyramids from image frames to

obtain luminance signals at each spatial frequency subband, or each pyramid level.

Then, the luminance signals are temporal bandpass filtered with a target temporal

frequency and are amplified with an amplification factor to reveal subtle motions

at the target temporal frequency in a video. However, this method supports only a

small amplification factor at a high spatial frequency subband and often produces

noisy results due to directly handling luminance signals in a video.

To overcome these issues, Liu et al. [30] proposed a post-processing method

with image warping meshes for refining the LubEVMM results. They first per-

form LubEVMM and then estimate image-magnifying warping meshes at each

time frame by comparing an input video and the magnification video output from

LubEVMM. Afterwards, applying the image-magnifying warping meshes to the

input video instead of LubEVMM can produce a noise-free motion magnification

result because this warping-based post-processing enables us to amplify only sub-

tle motions in a video without touching luminance signals directly. However, this

post-processing still produces strange results because it is originally based on the

LubEVMM results that contain magnification error.
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In contrast with LubEVMM, Wadhwa et al. [5] proposed a current mainstream

phase-based Eulerian video motion magnification (PbEVMM) method that mea-

sures motions of object in a video as phase signals, which correspond to local

motions via the space-shift theorem in the Fourier domain [10], over time frames

at a fixed pixel position. This method firstly constructs complex steerable pyra-

mids [31, 32, 33] from image frames to obtain phase signals at each spatial fre-

quency subband and each orientation. Then, the phase signals are temporal band-

pass filtered with a target temporal frequency and are amplified with an amplifi-

cation factor to reveal subtle motions at the target temporal frequency in a video.

This PbEVMM method can support a large amplification factor at a high spatial

frequency subband and also reduce noise effects in a video compared with the

LubEVMM method [4] because the PbEVMM method handles local motions di-

rectly but not luminance signals in a video.

The PbEVMM method can produce better magnification results for revealing,

e.g., the sway of a bridge, the breathing of an infant, and facial color changes due to

blood circulation, than the LubEVMM method. However, the PbEVMM method (or

the LubEVMM method) cannot clearly distinguish between subtle phase (or lumi-

nance) signals and large ones because their temporal bandpass filtering only focuses

on getting the target temporal frequency’s components in the phase (or luminance)

signals without concerning the existence of large motions in a video. Therefore,

the PbEVMM method (and the LubEVMM method) produces messy artifacts when

objects in a video move largely.

2.3.2 Eulerian Video Color Magnification

For revealing subtle color changes in a video, Wu et al. [4] first proposed Eulerian

video color magnification method (EVCM). This method constructs Gaussian pyra-

mids from image frames to obtain color signals in R, G, B, or Y (this is luminance)
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color channel at each pyramid level. Then, the color signals at a specific pyra-

mid level (a third pyramid level generally used) are temporal bandpass filtered with

a target temporal frequency and are amplified with an amplification factor to re-

veal subtle color changes at the target temporal frequency in a video. This method

produces amazing color magnification results but, as the same of the PbEVMM

method [5], also produces messy artifacts when objects in a video move largely due

to no concerning large amplitude change in the color signals that often occur at the

moment when the background and foreground switch.

2.4 Video Motion Manipulation

As explained in the above sections, the EVMM methods amplify subtle motions in a

video to reveal attractive physical/natural phenomena in the small world. However,

such manipulating motions to reveal or exaggerate some aspects of a video is not

an inherent concept; it has been widely utilized for the computer vision/graphics

community.

One of the related interesting work is (de-) animating video. For animating

an input video in a simple way, Wand et al. [34] proposed the cartoon animation

filter that takes arbitrary motions (such as trajectories with optical flow, motion

capture signals, or simple path-based motions created with, e.g., PowerPoint) and

modulates them in such a way that the output motions is more alive or animated.

The filter is based on a Laplacian of Gaussian filter that enables us to amplify the

dominant motions, which has the maximum power spectrum in a video, and/or to

generate time-shift motions for producing the important animation effects such as

anticipation, follow-through, exaggeration, and squash-and-stretch. In contrast, Bai

et al. [35] proposed selectively de-animating video to remove large motions of ob-

jects so that other motions are easier to see. While the video motion magnification
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methods [18, 30, 4, 5] reveal subtle motions by amplifying them, the goal of this

method is the opposite because it focuses on revealing the subtle motions by re-

moving larger ones. This method is based on the combination of both the optical

flow analysis like the method of [18] to estimate large motions in a video and the

graph-cuts [36, 37] to naturally composite video regions, where the original input

motions are left or removed, spatially and temporally. This method produces good

de-animating video results and facilitates the creation of cinemagraphs.

Another one is to modify time-dependent effects of a video captured by high-

speed camera. Fuchs et al. [38] use temporal filters to reduce temporal aliasing of

motions in a video when the input high-speed video is converted into the low-speed

one, and/or to superimpose high-frequency afterimages (caused by fast motions)

to the input video so that enables us to understand the motion behaviors without

analyzing or tracking. This work can enhance motion display for users to visualize

hidden motions captured by high-speed camera.

2.5 Video Motion/Color Analysis

Similar to EVM, analysis of subtle color changes or motions in a video has been

researched for various practical applications [39, 40, 41, 42, 1, 2, 3].

In the computer vision community, several works have been proposed for unique

practical applications. For example, Davis et al. [39] proposed to recover sounds

from subtle vibration of objects, which is caused by the sounds, in high-speed

footage. In this work, they explored how the sound-related vibrations vary over

an object’s surface to confirm what types of the vibration modes of an object can

easily recover sounds. Moreover, they proposed to infer material property of ob-

jects in a video from the differences of subtle vibration of the objects [40]. This

work connects fundamentals of vibration mechanics with the phase-based motion
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analysis as our explained in Section 2.3.1. Another works [41, 42] analyze motions

of objects for estimating geometrical construction. Wadhwa et al. [41] combine the

phase-based motion analysis with linear optimization problem for estimating the

geometrical distortions of constructions, such as lift bridges and mammalian tecto-

rial membranes. On the other hand, Xue et al. [42] proposed a unique work that

reconstructs tree structure from a video. They use physics-based link model with

spectrum analysis of twig’s vibration because vibration of disconnected branches,

though visually similar, often have distinctive natural frequencies. With this model,

they can reconstruct tree structure with high accuracy from both tree’s spectral vi-

bration and appearance.

Among various practical applications, remote heart rate (HR) detection based

on video analysis has been especially researched for medical treatment usage.

Verkruysse et al. [1] first proposed a remote method for detecting HR from frontal

face videos captured by normal digital camera. This method obtains color signals

in a green channel, which strongly represents the absorption of hemoglobin, at each

pixel and then averages them over pixels within region of interest for reducing noise

effects. After that, HR of a subject is estimated by using the average color signals.

This analysis enables us to understand not only HR and also the differences of fa-

cial blood flow that can be a symptom of arterial problems. Inspired by [1], Poh

et al. [2] extended this method by using blind source separation (BSS) technique,

namely independent component analysis, for more robust HR estimation. This ap-

proach, which uses the color signals of face for estimating HR, was eagerly im-

proved as described in the survey paper [3] by sophisticating the BSS technique.

However, low-rank matrix completion approach [43] has recently adopted to this

task that can contribute high accuracy. On the other hand, Balakrishnan et al. [44]

proposed another approach for estimating HR based on subtle head motions. They

use the subtle head motions, which accompany the cardiac cycle, to extract HR in-
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formation from a video. This motion analysis approach has a strong advantage that

a video view of the head is not restricted and can estimate HR even when skin is not

visible. However, since this method has an issue that strongly relies on subtle head

motions easily overwhelmed by large ones unrelated to HR estimation, the authors

suggest a combination of the subtle motions and color changes will likely prove

more useful and robust than using either one independently.
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Chapter 3

Preliminary Formulation of Eulerian

Video Magnification

In this chapter, we formulate the early EVM methods, the EVCM method [4] as ex-

plained in Section 2.3.2 and the PbEVMM method [5] as explained in Section 2.3.1,

to clearly explain the following chapters. Note that this formulation is novel in that

it is a reinterpretation of the EVM methods by our consideration based on a local

Taylor expansion along temporal dimension.

Given a normalized image signal I(x, y, t) ∈ [0, 1] in one of RGB or YIQ

color channels (Y color channel is usually used) at a 2D pixel position (x, y) and a

time frame t, they first construct a one-octave Gaussian pyramid {In(x, y, t) | n =

0, . . . , N − 1}, which is a set of a color signal In(x, y, t) at a pyramid level n for

color magnification, or a one/half/quarter-octave (half-octave is usually used) com-

plex steerable pyramid {Aωn,θ(x, y, t)eiφωn,θ(x,y,t) | n = 0, . . . , N − 1, θ ∈ Θ, 0 ≤

θ < π}, which is a set of a subband analytic signal Aωn,θ(x, y, t)eiφωn,θ(x,y,t) for mo-

tion magnification, where Aωn,θ(x, y, t) is a subband amplitude and φωn,θ(x, y, t)

is a subband phase signal at a spatial subband angular frequency ωn with n and

steerable orientation θ in a set of angles Θ.
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Here, we define a generalized signal notation Sωn,θ(x, y, t) that represents any

signal in an image pyramid with some indexes: a color signal In(x, y, t) where

S = I , ωn := n, and θ = ∅ for color magnification or a subband phase signal

φωn,θ(x, y, t) where S = φ for motion magnification.

Considering a local Taylor expansion along temporal dimension, the early EVM

methods [4, 5] assume that Sωn,θ(x, y, t) can be approximated with a first-order local

Taylor expansion within a neighborhood of a time t = h as

Sωn,θ(x, y, t) ≈ Sωn,θ(x, y, h) + Ṡωn,θ(x, y, h)(t− h), (3.1)

where Ṡωn,θ(x, y, h) = ∂
∂t
Sωn,θ(x, y, h). With this approximation, the early EVM

methods assume that the linear signal Ṡωn,θ(x, y, h)(t − h) represents a sub-

tle color/phase signal, which deviates from the constant signal Sωn,θ(x, y, h), in

Sωn,θ(x, y, t). Note that this is why the early EVM methods are often called the

Eulerian video linear magnification (EVLM) methods.

Then, to pass a subtle bandpass color/phase signal Cωn,θ,ft(x, y, t) over time

frames at a target temporal frequency ft, any simple temporal bandpass filter

h(t; ft), such as ideal bandpass filter (IBF) [4, 5] or finite impulse response (FIR)

windowed IBF (FIRwinIBF) [5], is convolved with Sωn,θ(x, y, t). Considering

Eq. (3.1), let Cωn,θ,ft(x, y, t) is within a neighborhood of a time t = h and h is

the center time of this convolution process, we get

Cωn,θ,ft(x, y, t) = h(t; ft) ∗ Sωn,θ(x, y, t) ≈ Ṡωn,θ(x, y, h)(t− h), (3.2)

where ∗ is a convolutional operator, because h(t; ft) ignores the constant signal

Sωn,θ(x, y, h) that indicates the DC component of Sωn,θ(x, y, t) within a neighbor-

hood of a time t = h.

After that, Cωn,θ,ft(x, y, t) multiplied by an amplification factor α is added to

Sωn,θ(x, y, t) for obtaining an amplified color/phase signal Ŝωn,θ,ft(x, y, t) as

Ŝωn,θ,ft(x, y, t) = Sωn,θ(x, y, t) + αCωn,θ,ft(x, y, t). (3.3)

17



Finally, we collapse the amplified Gaussian pyramid or the amplified complex

steerable pyramid, which is a set of Ŝωn,θ,ft(x, y, t), to output a magnified image

signal Î(x, y, t) where only subtle color changes or motions at ft are revealed.

This formulation based on the EVLM methods [4, 5] simply assumes the ex-

istence of only subtle color changes or motions in a video as the linear signal

Ṡωn,θ(x, y, h)(t − h) in Eq. (3.1). Therefore, the EVLM methods are limited for

practical applications as our explained in Chapter 1.
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Chapter 4

Ignoring Large Motions in a video

4.1 Introduction

As explained in Section 2.3 and Chapter 3, the early EVM methods, called the

EVLM methods [4, 5], use a simple temporal bandpass filter, such as IBF [4, 5] or

FIRwinIBF [5], that focuses on only getting the target temporal frequency’s com-

ponents in the phase/color signals. However, as subtle color changes or motions

are often obscured by large motions of objects in a real video, the EVLM methods

produce messy artifacts when objects in a video move largely because they cannot

clearly distinguish between subtle phase/color signals and large ones.

To ignore large motions of objects in a video, layer-based EVLM methods have

been proposed [7, 8]. Elgharib et al. [7] require a user to select a region of interest

(ROI) where large motions of objects are stabilized by using optical flow that is es-

timated with translation or affine transformation motion model. Subtle signals left

by the stabilization to the ROI are then amplified by the EVLM methods [4, 5]. On

the other hand, Kooij et al. [8] automatically select the ROI to be amplified by us-

ing a depth-aware bilateral complex steerable pyramid that detects phase signals at

each pixel with the same depth value. This depth-aware phase signals can suppress
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unwanted artifacts caused by large motions between foreground and background.

However, these methods require human manipulation [7] or an environment suit-

able for a depth camera [8]; consequently, these layer-based EVLM methods are

time consuming and error prone.

In contrast, Zhang et al. [9] have proposed the EVAM method that attempts to

detect subtle color changes or motions in the presence of large motions without the

above additional requirements. By assuming that (i) large motions can be approx-

imated linearly in the temporal signal domain and (ii) subtle signals deviate from

the linearity, they design temporal acceleration filter (TAF) based on second-order

derivative of 1D Gaussian filter. TAF focuses on getting the target temporal fre-

quency’s components in the input signals and cuts off linear change in the input

signals. This filter can pass only subtle bandpass signals at the target temporal fre-

quency even under the presence of large motions of objects if such motions are slow

enough to be linear change in the temporal signal domain. However, this method

fails to ignore quick large motions because such motions cause non-linear steep

change in the input signals like outlier. Consequently, the EVAM method exces-

sively amplifies quick large motions and produces noisy magnification results in

this situation.

In this chapter, we propose a jerk-aware EVAM (JAEVAM) method where our

jerk-aware filter (JAF) is applied to the EVAM method [9] for revealing only subtle

color changes or motions in the presence of slow and/or quick large motions without

the above-mentioned requirements [7, 8]. Our method uses jerk, which has been

used to evaluate smoothness of time series data in the neuroscience [11, 12, 13]

and mechanical engineering fields [45], to make the EVAM method robust even to

quick large motions as well as slow large motions. On the basis of our observation

that subtle changes are smoother than quick large motions in the temporal signal

domain, we considered that understanding the difference in smoothness enables
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us to isolate subtle changes from quick large motions. In developing our method,

we used jerk-based smoothness to design JAF that only passes subtle changes in

the presence of quick large motions. By applying our JAF to the EVAM method,

we obtain impressive magnification results without messy artifacts, which could be

caused by slow and/or quick large motions of objects, in both real and synthetic

videos.

4.2 Conventional Method: Eulerian Video Accelera-

tion Magnification [9]

Unlike the EVLM methods described in Chapter 3, the Eulerian video acceleration

magnification (EVAM) method [9] assumes that Sωn,θ(x, y, t) can be approximated

with a second-order local Taylor expansion within a neighborhood of a time t = h

as
Sωn,θ(x, y, t) ≈ Sωn,θ(x, y, h) + Ṡωn,θ(x, y, h)(t− h)

+
1

2
S̈ωn,θ(x, y, h)(t− h)2,

(4.1)

where S̈ωn,θ(x, y, h) = ∂2

∂t2
Sωn,θ(x, y, h). With this approximation, the EVAM

method assumes that the linear signal Ṡωn,θ(x, y, h)(t−h) represents large motions

of objects in spatial domain and the non-linear quadratic signal 1
2
S̈ωn,θ(x, y, h)(t−

h)2 represents a subtle color/phase signal in Sωn,θ(x, y, t).

Considering Eq. (4.1), the EVAM method proposed a temporal acceleration fil-

ter (TAF) as a temporal bandpass filter. TAF is a combination of the second-order

derivative operator ∂2

∂t2
and the Gaussian function Gσ(t) with its standard deviation

σ, defined as

TAF(t; ft) =
∂2Gσ(t)

∂t2
. (4.2)

The σ determines ft based on scale-space theory [46, 47] and is set as σ = fs
4ft
√
2
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with the video sampling frame rate fs. This filter can get the target temporal fre-

quency’s components in the input signals by controlling σ and completely cuts off

the constant signal Sωn,θ(x, y, h) and the linear signal Ṡωn,θ(x, y, h)(t− h) because

of ∂2

∂t2
operator.

Consequently, to pass a subtle bandpass color/phase signal Cω,θ,ft(x, y, t) over

time frames at a target temporal frequency ft, the EVAM method convolves

TAF(t; ft) to Sωn,θ(x, y, t). Here, considering Eq. (4.1), let Cωn,θ,ft(x, y, t) is within

a neighborhood of a time t = h and h is the center time of this convolution process,

we get

Cωn,θ,ft(x, y, t) = TAF(t; ft) ∗ Sωn,θ(x, y, t) ≈
1

2
S̈ωn,θ(x, y, h)(t− h)2. (4.3)

After that, the EVAM method follows the same process of the EVLM methods [4, 5]

as described in Eq. (3.3) and its below.

This EVAM method produces good magnification results even under the pres-

ence of large motions of objects if such motions are slow enough to be linear change

in the input signal, described as Ṡωn,θ(x, y, h)(t− h), because this linear signal can

be completely cut off by ∂2

∂t2
operator in TAF. However, this method cannot ignore

quick large motions because such motions cause non-linear steep change in the in-

put signal like outlier, which is unfortunately included in the non-linear quadratic

signal 1
2
S̈ωn,θ(x, y, h)(t − h)2 that is assumed to be a subtle color/phase signal in

Sωn,θ(x, y, t). Therefore, this method excessively amplifies quick large motions and

produces noisy magnification results in this practical situation.
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4.3 Proposed Method: Jerk-Aware Eulerian Video

Acceleration Magnification [48]

To reveal only subtle color changes or motions in the presence of slow and/or quick

large motions, we propose a jerk-aware EVAM (JAEVAM) method that applies our

jerk-aware filter (JAF) to EVAM method [9] to make it robust even to quick large

motions as well as slow large motions. First, we argue that jerk is a useful index

to handle quick large motions in EVM. Second, we describe how we designed JAF

that passes subtle color changes or motions only under quick large motions by using

jerk-based smoothness. Finally, we show how we applied this filter to the EVAM

method.

4.3.1 Jerk

As our mentioned before, the EVAM method [9] assumes that slow large motions

are approximately linear in the temporal signal domain, whereas our key idea is

based on our observation that subtle color changes or motions depict smoother tra-

jectories than quick large motions in the temporal signal domain (Fig. 4.1). We

argue that understanding the difference in the signal smoothness better enables us

to isolate subtle color changes or motions from quick large motions. Therefore, we

focus on a differential feature called jerk.

Jerk is a third temporal derivative of displacement, and represents the rate of

change in acceleration per unit of time. It is an effective index to assess steepness

or smoothness of time series data; its value becomes high during steep changes but

low during smooth changes. It has been used in many research fields for assessing

movements and trajectories [11, 12, 13, 45, 49]. In neuroscience, it has been used

to model the trajectory of voluntary arm movements [11] or to assess the recovery

of motor performance in stroke patients [12, 13]. In mechanical fields, the trajec-
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Figure 4.1: Our observation. The EVM methods measure color changes or motions

in a video as color/phase signals at a fixed position (purple squares in (a), (b), and

(c)). We observed that subtle phase signals caused by subtle fluctuations of the

drone (a) are smoother than non-linear steep changes in the phase signals caused by

quick and large rise motions of the drone (b) because its magnitude is very small.

tories of robot models with jerk restrictions make it possible to obtain smooth con-

trol [45]. Through these findings, we assume that subtle color changes or motions in

the temporal signal domain have a lower jerk value than quick large motions due to

difference of the smoothness. To verify our hypothesis, we simply checked the third

temporal derivative of the luminance signals in a gun-shooting video (Fig. 4.2). As

a result, static objects (e.g. body and arm) having imperceptible smooth subtle de-

formations or slow smooth camera panning (background) show lower jerk values

than those in quick motions of objects (e.g. gun and cartridge).
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Figure 4.2: Gun-shooting video in luminance space (a) and jerk calculated by lumi-

nance signals (b). Jerk only responds to quick large motions, such as gun blowback

and gun cartridge release. On the other hand, it does not respond to static objects

(e.g. body, arm, and background) that seem to have imperceptible smooth subtle

deformations (body and arm) or slow smooth camera panning (background).

4.3.2 Jerk-Aware Filter (JAF)

To pass only subtle color/phase signals in the presence of quick large motions, we

attempted to design JAF from our knowledge of jerk. This filter was designed to

have jerk-based smoothness so that it will pass subtle color changes or motions only

and cut off quick large motions.

Given an input color/phase signal Sωn,θ(x, y, t), we first calculate a bandpass

jerk signal Jωn,θ,ft(x, y, t) with ft by convolving a third-order derivative of the

Gaussian function as

Jωn,θ,ft(x, y, t) =
∂3Gσ(t)

∂t3
∗ Sωn,θ(x, y, t), (4.4)

where σ is set as that it in Eq. (4.2) of the EVAM method [9].

Second, we transform Jωn,θ,ft(x, y, t) into a bandpass jerk-based smoothness

Ĵωn,θ,ft(x, y, t) that has a high value (close to 1) when a smooth signal appears and
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a low value (close to 0) when no such a signal appears as

Ĵωn,θ,ft(x, y, t) = 1− Γ (Jωn,θ,ft(x, y, t)) ,

Γ (Jωn,θ,ft(x, y, t)) =
|Jωn,θ,ft(x, y, t)| −min

x,y,t
(|Jωn,θ,ft(x, y, t)|)

max
x,y,t

(|Jωn,θ,ft(x, y, t)|)−min
x,y,t

(|Jωn,θ,ft(x, y, t)|)
,

(4.5)

where Γ (·) is the min-max normalization function with respect to x, y, and t.

Finally, to provide a filter capable of easily adjusting the effect of the jerk-based

smoothness, we add an exponent parameter β > 0 to Eq. (4.5) and then design our

JAF as JAFωn,θ(x, y, t;σ, β), which can selectively pass subtle color/phase signals

in the presence of quick large motions:

JAFωn,θ(x, y, t; ft, β) := Ĵωn,θ,ft(x, y, t)
β. (4.6)

4.3.3 Pyramid-based Correction

The EVM methods construct the complex steerable (or Gaussian) pyramid to per-

form their algorithm at each pyramid level n [4, 5, 7, 8, 9]. Under the pyramid

construction process, we should re-consider the meaning of JAFωn,θ(x, y, t; ft, β)

in terms of a pyramid level n. As mentioned in previous studies [17, 50], image

sequences at higher n can handle large displacements, but their values decrease in

proportion to the image resolution at n. This means that though JAF at higher n

capture much quicker large motions, it is underestimated due to the low resolution

at higher n. Therefore, we define a filter correction based on the pyramid scaling

factor λn, where λn represents a scaling down ratio of the image resolution at each

n against the original image resolution, as

JAFωn,θ(x, y, t; ft, β, λn) := JAFωn,θ(x, y, t; ft, β)1/λn . (4.7)

Furthermore, we consider that JAF will need to be modified by using a simi-

lar coarse-to-fine approach [17, 50]. As image sequences at higher n detect image
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changes in a wider space, they can accurately capture quick large motions and cal-

culate correct jerk. However, quick large motions do not fit in the detection space at

lower n. This means that jerk at lower n cannot reflect this essence correctly even if

quick large motions occur. Therefore, it is necessary to propagate the information

of JAF at higher n to that at lower one. We define this propagation correction as

JAFωn,θ(x, y, t; ft, β, λn, V ) :=
n+V∏
i=n

R (JAFωi,θ(x, y, t; ft, β, λi), n) , (4.8)

where V is the number of the pyramid level for this correction, and the function

of R(·, n) resizes the size of JAF to that at n with bicubic interpolation. Through

this correction, our JAF can effectively pass only subtle color/phase signals in the

presence of quick large motions.

4.3.4 Applying JAF to the EVAM method

We additionally apply JAFωn,θ(x, y, t; ft, β, λn) of Eq. (4.7) to Eq. (4.3) for color

magnification, and JAFωn,θ(x, y, t; ft, β, λn, V ) of Eq. (4.8) to Eq. (4.3) for motion

magnification. Through applying JAF to the EVAM method, we obtain a result

where only subtle color changes or motions are revealed under the presence of slow

and quick large motions.

4.4 Theoretical View for Proposed Method

Unlike the EVLM [4, 5] methods and the EVAM [9] method, we argue that

Sωn,θ(x, y, t) can be strictly decomposed by a second-order local Taylor expansion

within a neighborhood of a time t = h with an approximation error as

Sωn,θ(x, y, t) = Sωn,θ(x, y, h) + Ṡωn,θ(x, y, h)(t− h)

+
1

2
S̈ωn,θ(x, y, h)(t− h)2 +R2,ωn,θ(x, y, t),

(4.9)
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where R2,ωn,θ(x, y, t) indicates the approximation error of the second-order local

Taylor expansion of Eq. (4.1) and can be strict defined via the well-known Lagrange

form as

Theorem 1. If S(t) is continuous on a closed interval between t and h, there exists

a number c between t and h such that

Rk(t) =
1

(k + 1)!

∂(k+1)S(c)

∂t(k+1)
(t− h)k+1. (4.10)

Therefore,

R2,ωn,θ(x, y, t) =
1

6

...
Sωn,θ(x, y, c)(t− h)3, (4.11)

where
...
Sωn,θ(x, y, c) = ∂3

∂t3
Sωn,θ(x, y, c). By comparing Eq. (4.1) and Eq. (4.9),

Eq. (4.1) assumes all large motions are slow enough to be approximately the linear

signal Ṡωn,θ(x, y, h)(t − h), but Eq. (4.9) assumes there are large motions that can

be a non-linear steep signal R2,ωn,θ(x, y, t). Therefore, we can assume that the

non-linear steep signal R2,ωn,θ(x, y, t), rather than the non-linear quadratic signal
1
2
S̈ωn,θ(x, y, h)(t−h)2, represents quick large motions of objects in spatial domain.

Considering this strict decomposition of Eq. (4.9) and Eq. (4.11), let the band-

pass jerk signal Jωn,θ,ft(x, y, t) of Eq. (4.4) is within a neighborhood of a time t = h

and h is the center time of the convolution process of Eq. (4.4), we get

Jωn,θ,ft(x, y, t) =
∂3Gσ(t)

∂t3
∗ Sωn,θ(x, y, t)

= Gσ(t) ∗
...
Sωn,θ(x, y, t)

≈ 1

6

...
Sωn,θ(x, y, c)(t− h)3

= R2,ωn,θ(x, y, t).

(4.12)

Therefore, our JAF of Eq. (4.6) can be approximated with R2,ωn,θ(x, y, t) as

JAFωn,θ(x, y, t; ft, β) ≈
(
1− Γ (R2,ωn,θ(x, y, t))

)β
. (4.13)

28



This approximation indicates that JAFωn,θ(x, y, t; ft, β) can be interpreted as the

inverse criteria of the approximation error R2,ωn,θ(x, y, t) that the EVAM method

unfortunately has.

From Eq. (4.13), through applying JAFωn,θ(x, y, t; ft, β) to the convolution pro-

cess of Eq. (4.3), we have

JAFωn,θ(x, y, t; ft, β) ·
(
TAF(t; ft) ∗ Sωn,θ(x, y, t)

)
≈

Cωn,θ,ft(x, y, t), Γ (R2,ωn,θ(x, y, t)) ≈ 1,

0, Γ (R2,ωn,θ(x, y, t)) ≈ 0.

(4.14)

This equation indicates that JAF with TAF never passes all signals when

Γ (R2,ωn,θ(x, y, t)) is close to 1, which means non-linear steep signals caused by

quick large motions are dominant in the input signal Sωn,θ(x, y, t), or passes only

subtle color/phase signals Cωn,θ,ft(x, y, t) when Γ (R2,ωn,θ(x, y, t)) is close to 0,

which means there is no quick large motions in Sωn,θ(x, y, t).

4.5 Experiments and Results

4.5.1 Experimental Setup

To evaluate the effectiveness of our proposed method, we conducted experiments

on real videos as well as on synthetic ones with ground truth magnification. We

assessed the effectiveness qualitatively with the real videos and it quantitatively

with synthetic videos against the ground truth. We set the amplification factor α,

the target temporal frequency ft to be amplified, and hyper parameter β of Eq. (4.6)

as given in Table 4.1. We applied our proposed method and comparison methods to

a video in the YIQ color space.
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Table 4.1: Experimental parameters for all videos. We selected the all parameters

to be the best ones for each experiment.

Video ft fs β α (ours,[4],[5],[9],[27])

Light bulb 1 [9] 10 600 0.0001 (25, 25, –, 25, –)

Light bulb 2 [48] 2 160 20 (40, 40, –, 40, –)

Golf [48, 51] 2 60 0.8 (20, –, 12, 12, 12)

Gun [9] 20 480 0.3 (10, –, 8, 8, 6)

Drone [48, 51] 2 30 1 (25, –, 18, 18, 6)

Ukulele [48, 51] 40 240 1 (25, –, 18, 18, 12)

Synthetic ball 10 60 0.0001-5 (35, –, 20, 20, 4)

Color Magnification. We constructed a Gaussian pyramid to decompose each

image frame and amplified Y color signals only on the third level of the pyramid.

This approach is similar to that used in [4, 9].

Motion Magnification. To decompose each image frame into each subband ana-

lytic signal, we constructed a complex steerable pyramid [5] with half-octave band-

width filters and eight orientations in Y color space. We empirically set the number

of propagation V as 5 in propagation correction of Eq. (4.8), and this correction was

done independently for each orientation.

4.5.2 Color Magnification in Real Videos

Figure 4.3 shows a light bulb slowly moving upward. The color changes in the

light bulb caused by the electrical current changing are hardly visible without mag-

nification (see the original in Fig. 4.3). The EVLM method [4] produces clipping

artifacts due to the slow large motions. In contrast, the EVAM method [9] and our

method clearly magnify subtle color changes in the light bulb under the slow large
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Figure 4.3: Color magnification in the presence of slow large motions; light bulb

slowly moves upward. (a) Original video. (b) The EVLM method [4]. (c) The

EVAM method [9]. (d) Our method. The EVAM method [9] and our method effec-

tively magnify subtle color changes in the light bulb under the slow large motions.

motions. These results suggest that our method did not have any negative effects on

the video that the EVAM method [9] produced good color magnification results in

the presence of slow large motions.

Figure 4.4 shows light bulbs shattered by a bullet shot from a gun. Processing

this video with the EVLM method [4] reveals color changes but creates clipping

artifacts. While the EVAM method [9] succeeds in clearly magnifying subtle color

changes, it detects steep color changes due to quick-flying transparent fragments

of the broken light bulbs and produces messy artifacts. In contrast, our method can

magnify only subtle color changes before and after the light bulbs shattering despite

the quick-flying transparent fragments.
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Figure 4.4: Color magnification in the presence of quick large motions; light bulbs

shattered by a gun bullet which is depicted by the yellow arrow. Our method only

magnifies subtle color changes in the light bulbs during the quick-flying transparent

fragments of the broken light bulbs (see the purple arrow time intervals).

4.5.3 Motion Magnification in Real Videos

Figure 4.5 shows the motion magnification results for a golf swing video to magnify

the subtle deformation of the iron shaft that occurs when the ball is hit. The EVLM

method [5] induces large artifacts due to the quick large swing motion. The EVAM

method [9] can magnify the subtle deformation of the iron shaft that occurs when

the ball is hit, but it induces collapsing of the shape of the iron shaft due to the quick

large swing motion. The LebVMM method [27] can magnify the subtle deformation

of the iron shaft but constantly induces strange magnified deformation. Our method

can reveal this deformation by magnifying the subtle deformation of the iron shaft

and ignoring the effects of the quick large swing motion.

Figure 4.6 shows a gun-shooting video with slow camera panning and quick gun

32



(a) Original (b) EVLM (c) EVAM (d) LebVMM (e) Ours

(x,y)

ti
m

e

Swing
Impact

Figure 4.5: Visualization of impact spread in the iron shaft of golf club. In the left

top, the yellow arrow depicts the golf swing along a trajectory. The top row shows

2 frames overlaid to indicate the swing phase and the impact phase of the ball. The

bottom row shows the spatiotemporal slices along a single diagonal red line on the

top of row of (a); the green circles indicate the swing phase, and the cyan circles

indicate the impact phase. (a) Original video. (b) The EVLM method [5]. (c) The

EVAM method [9]. (d) The LebVMM method [27]. (e) Our method. Our method

only magnifies subtle deformation of the iron shaft without artifacts caused by quick

swinging motions as with other methods. See the supplementary material for the

video results.

recoil motion. We magnify the subtle deformation of the muscles and the skin due

to the strong gun recoil. The EVLM method [5] induces large noise due to the slow

camera panning and quick gun recoil motion. The EVAM method [9] can magnify

subtle skin deformation of the arm in the presence of slow camera panning but

induces collapse of the gun shape due to misdetected quick gun recoil motion. The

LebVMM method [27] can magnify subtle skin deformation of the arm but induces

disappearance of the gun tip due to quick gun recoil motions. Our method magnifies

only the skin deformation of the arm in the presence of slow camera panning and

quick gun recoil motion.

Figure 4.7 shows an example of applying our proposed magnification to reveal
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Figure 4.6: Visualization of impact spread throughout an athlete’s body. Spatiotem-

poral slices are shown along a single red and green lines (top-left). Our method

magnifies subtle deformations in the arm without the effect of camera panning or

gun recoil motion (see the purple circles).

autonomous fluctuations of the drone during flight. In this case, a drone subtly

fluctuates with various large motions: slow parallel transition, quick rising, and 3D

rotation of the body shift. The EVLM method [5] produces large artifacts due to the

magnification of all the drone’s motions. The EVAM method [9] can magnify the

subtle fluctuations of the drone under the slow parallel transition but induces shape

collapses of the drone due to the quick rising and strong quick light flickering,

which is misdetected as quick large motions in the texture. Similar to the EVAM

method [9], the LebVMM method [27] can magnify the subtle fluctuations of the

drone but induces shape collapses of the drone due to the quick rising. Our method

magnifies only the subtle fluctuations of the drone without the effects of the various

large motions.

Figure 4.8 shows the case for a ukulele strumming video in which quick hand

motions occur several times. The EVLM method [5], the EVAM [9], and the Leb-

VMM method [27] produce artifacts around the quick strumming hand motions,

but our method automatically ignores all the quick strumming hand motions and

can magnify the subtle vibrations of the ukulele strings without user annotations or

additional information.
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Figure 4.7: Visualization of autonomous fluctuations of the drone during flight.

Spatiotemporal slices are shown along a single vertical red lines (left). Our method

magnifies and reveals the subtle fluctuations of the drone without artifacts caused

by various large motions.

4.5.4 Controlled Experiments

In Figure 4.9 (left), we show a 4-second synthetic ball video. We set the ra-

dius of the ball as 20 pixels. The ball has vertically subtle motions defined as

dsubtle = Asubtle sin
(

2π ft
fs
j
)

where Asubtle = 0.5 pixels, ft = 10 cycles/frame,

fs = 60 frames/second, and j is the frame number. The ball also has vertically

slow large motions on the screen from the top to the bottom, with dslow = 0.5 pix-

els/frame. When the frame number j reaches 80 frames, the ball moves quickly

and horizontally with dquick = Aquick sin
(

2π
fquick

fs
j
)

where Aquick = [0, 100] pixels,

fquick = 2 cycles/frame, but after 20 frames, returns to how it was before. To obtain
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the ground truth of the subtle motion magnification, we created a true magnification

video while changing dsubtle to dsubtleMag = 5 · dsubtle.

Firstly, we assessed the effectiveness of each motion magnification method for

magnifying the subtle motions and ignoring the quick horizontal large motions of

the synthetic ball while changing Aquick relative to the ground truth video. We ap-

plied the different EVM methods to this video. We fixed β = 1 for all methods that

required it, and each α as listed in Table 4.1.

Note that to investigate the effectiveness of our proposed method using

JAFωn,θ(x, y, t; ft, β, λn, V ) of Eq. (4.8) in terms of pyramid-based correction

as explained in Subsection 4.3.3, we prepared two methods: a jerk method

that uses JAFωn,θ(x, y, t; ft, β) of Eq. (4.6) and a jerk-down method that uses

JAFωn,θ(x, y, t; ft, β, λn) of Eq. (4.7).

Figure 4.9 (right) shows the mean square error (MSE) we obtained between

each magnification result and the ground truth motion magnification asAquick = 100

measured in each frame. For the EVLM method [5], we magnified the vibration in

the frequency range of 9 to 11 Hz. This method incurs major errors in all the frames

due to slow and quick large motions. The EVAM method [9] and the LebVMM

method [27] magnify subtle motions when slow large motions appear but produces

extremely major errors when quick large motions appear. The jerk and jerk-down

methods can cope with quick horizontal large motions fairly well, but our proposed

method, despite its bigger amplification factor, best handles quick horizontal large

motions while magnifying subtle motions that resemble the ground truth in all the

frames.

Figure 4.10 shows how a synthetic ball video behaves with different quick hori-

zontal large motions Aquick. At each Aquick, we calculated the mean MSE when sub-

tle motions appear with slow large motions (mMSEsubtle) and the mean MSE when

quick horizontal large motions appear (mMSEquick) relative to the ground truth. The
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EVLM method [5] has large mMSEsubtle and mMSEquick for every Aquick due to the

effects of slow and quick large motions. The EVAM method [9] keeps mMSEsubtle

low, but mMSEquick increases in proportion toAquick. The LebVMM method [27] be-

haves the same as method [9] but shows slightly higher mMSEsubtle and mMSEquick

due to the strong dependence of the training dataset. The jerk method performs

better than the above state-of-the-art methods but mMSEquick still increases in pro-

portion toAquick. The jerk-down method keeps mMSEquick lower than the above four

methods, but our proposed method is the best at keeping mMSEsubtle and mMSEquick

low even when Aquick is increasing.

Secondly, to evaluate the effectiveness of our proposed method in terms of

pyramid-based correction, we applied the jerk method, the jerk-down method, and

our proposed method to the synthetic ball video with Aquick = 100 while changing

β to 0.0001 and 5

Figure 4.11 shows mMSEsubtle and mMSEquick for every β relative to the ground

truth video. Although β increased in this case, the jerk method was not able to

handle the quick large motions well (Fig. 4.11 left). As we added down sampling

correction to our JAF, the jerk-down method correctly obtained the value of quick

large motions in proportion to l. Thus, this method can obtain lower mMSEsubtle

and mMSEquick. However, it cannot completely ignore quick large motions; as the

center of Figure 4.11 shows, mMSEquick does not reach 0. Our proposed method

uses our JAF with all pyramid corrections: down sampling correction and propa-

gation correction. By integrating spatial information across the pyramid hierarchy

through propagation correction, our method puts mMSEquick at almost 0 and keeps

mMSEsubtle low; this implies our proposed method best handles quick large motions

and magnifies subtle motions in the presence of slow large motions without user

annotations or additional information (Fig. 4.11 right).

Finally, we evaluated the validity of our JAF in handling quick large mo-
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tions. As our mentioned before in Section 4.4, our JAF can represent the ap-

proximation error R2,ωn,θ(x, y, t) of the EVAM method [9]. However, we con-

sidered that Cωn,θ,ft(x, y, t) obtained from Eq. (4.3) can be also used to repre-

sent R2,ωn,θ(x, y, t) although it includes both the target non-linear quadratic signal
1
2
S̈ωn,θ(x, y, h)(t−h)2 andR2,ωn,θ(x, y, t). We were convinced that our JAF is better

than a filter designed by Cωn,θ,ft(x, y, t) because ours is designed with considering

only R2,ωn,θ(x, y, t). However, to precisely evaluate the effectiveness of our JAF,

we designed an acceleration-aware filter by converting Jωn,θ,ft(x, y, t) in Eq. (4.5)

to Cωn,θ,ft(x, y, t) obtained from Eq. (4.3), which has a low value (close to 0) when

Cωn,θ,ft(x, y, t) is high and a high value (close to 1) when Cωn,θ,ft(x, y, t) is close to

0.

To compare our JAF and the acceleration-aware filter, we prepared 1D signals

sin
(
2π 1

1000
j
)

+ 0.1 sin
(
2π 20

1000
j
)

in which the first term indicated linear signals

caused by slow large motions and the second term indicated subtle signals. When

the frame number j reached the 700 frame, we added steep signals caused by quick

large motions. We defined ”subtle time” as when subtle signals appeared and ”steep

time” as when steep signals appeared. To obtain the ground-truth magnification for

the 1D signals, we created another 1D signals as sin
(
2π 1

1000
j
)

+ 0.5 sin
(
2π 20

1000
j
)
,

where the second term were amplified 5 times.

The top-left panel in Figure 4.12 shows the original signals (black) and the

ground-truth magnification signals (red). The other panels show the original sig-

nals (black) and the magnification result (green, blue or purple) produced by each

magnification method. Note that the each filter weight was set to β = 60. The

EVAM method [9] can magnify the subtle signals but excessively magnify the steep

signals at the 700 frame (Fig. 4.12, top-right). Applying the acceleration-aware fil-

ter to EVAM method can suppress the steep signals but also accidentally suppress

the subtle signals (Fig. 4.12, bottom-left). On the other hand, our proposed method,
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in which our JAF is combined with method, can suppress only the steep signals and

amplify the subtle signals (Fig. 4.12, bottom-right).

In Figure 4.13, we calculated the mean MSE during the subtle time (mMSEsubtle)

and during the steep time (mMSEsteep) at each α = [0, 200] and β = [0, 100], rel-

ative to the ground truth. The EVAM method [9] with the acceleration-aware filter

needs to search for α and β simultaneously to obtain the lowest mMSEs in both the

subtle and the steep times because the acceleration-aware filter includes the target

subtle signals (Fig. 4.13, top). On the other hand, our method of using the EVAM

method [9] with JAF only searches for α and β independently to obtain the lowest

mMSEs in both the subtle and the steep times; the two parameters are almost inde-

pendent in the parameter space where mMSEs are low (Fig. 4.13, bottom). These

results indicate the acceleration-aware filter negatively affects the amplified subtle

signals in method while JAF does not; JAF focuses on suppressing only the steep

signals caused by quick large motions. Therefore, our proposed method purely ex-

tends method [9] to deal with the quick large motions of objects.

4.6 Discussions and Limitations

While our proposed method expands the applicable range of video magnification by

overcoming the disturbance of quick large motions, it has limitations.

Our JAF can cut off quick large motions while permeating subtle color changes

or motions. However, if subtle color changes or motions with quick large motions

appear, our method weakly magnify or ignore the subtle changes. For example,

Figure 4.5 shows that our method can magnify subtle deformations of the iron shaft

that occur when the ball is hit, but cannot magnify them while the club is being

swung. This is due to the fact that the subtle deformations mixed with quick large

swing motions are subject to removal by JAF. However, such motions are out of
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the range of our magnified targets. Even if we can magnify such subtle motions,

quick large motions overwhelm these magnification results and we cannot follow

them with the naked eye. Developing a method for detecting and magnifying subtle

color changes or motions mixed with quick large motions can be a subject for future

work.

Another limitation of our method is that it makes subtle color changes or mo-

tions slightly sharp. Figure 4.4 shows that our method slightly sharpens the subtle

color changes and shortens the time intervals of the light changes compared with

the EVAM method [9]. In Figure 4.12, our method amplifies only the subtle signals

but slightly distorts the shape of the smooth signals as a sawtooth shape. This ef-

fect appears as an increase in the MSE in Figures 4.9 to 4.11; our method slightly

increases MSE when subtle changes appear. However, this is not a serious problem

for video magnification because the most important point is to detect and magnify

the amplitude of subtle signals to reveal subtle color changes or motions in a video.

As shown in Figures 4.12 and 4.13, our method is superior in that it can filter out

only the steep signals caused by quick large motions without affecting the amplitude

of the subtle signals. However, an unresolved problem, which is for future work, is

that our proposed method slightly distorts magnified subtle changes.
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(a) OriginalInput video

(b) EVLM (c) EVAM

(d) LebVMM (e) Ours

time

x
or

 y

Figure 4.8: Music playing video: ukulele being strummed with repetitive and quick

hand motions. Spatiotemporal slices are shown along a single red and green lines

(left). Our method automatically ignores all the strumming hand motions and can

magnify the subtle vibration of ukulele strings without hand manipulation or addi-

tional information.
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Figure 4.9: Left: synthetic ball video. Four frames are overlaid to indicate ball

trajectory depicted with the yellow arrow. The ball exhibits quick large horizontal

motion between 80–100 frames. Right: MSE with the ground truth for each frame

of this video. Smaller MSE is better. Our method outperforms all other methods.
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Figure 4.10: Mean-MSE during the appearance of subtle motions in the presence

of slow large motions (mMSEsubtle) and mean-MSE during the appearance of quick

large motions (mMSEquick) with ground truth over different quick large transitions

Aquick. Our method handles quick large displacement with lower artifacts better than

all other methods.
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Figure 4.11: mMSEsubtle and mMSEquick with ground truth over different β. Our pro-

posed method best handles quick large motions while magnifying subtle motions;

mMSEquick is almost 0, and mMSEsubtle is kept low.
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Figure 4.12: Comparisons between our JAF and the acceleration-aware filter in 1D

signals. The EVAM method [9] can amplify subtle signals but also accidentally

amplifies steep signals (top-right). Applying the acceleration-aware filter makes

the EVAM method robust to steep signals but unfortunately suppress subtle signals

(bottom-left). On the other hand, our proposed method can suppress only the steep

signals and amplify the subtle signals (bottom-right).

45



10 20 30 40 50 60 70 80 90 100

40

80

120

160

200

10 20 30 40 50 60 70 80 90 100

10 20 30 40 50 60 70 80 90 100 10 20 30 40 50 60 70 80 90 100

0
0 0

0 0

0

0.1

0.2

40

80

120

160

200

0

M
ean S

quare Error (M
S
E)

mMSEsubtle w/ Acceleration-aware filter mMSEsteep w/ Acceleration-aware filter

mMSEsubtle w/ Jerk-aware filter mMSEsteep w/ Jerk-aware filter

M
ag

ni
fic

at
io

n 
fa

ct
or

 (
α)

M
ag

ni
fic

at
io

n 
fa

ct
or

 (
α)

Exponent parameter (β) Exponent parameter (β)

Figure 4.13: Mean-MSEs during the subtle and the steep times at different α and β

relative to the ground truth. In the EVAM method [9] with the acceleration-aware

filter, α and β strongly correlate in parameter space where mMSEs are low (top row,

white arrows). On the other hand, in our proposed method, α and β are independent

in parameter space (bottom row, white arrows), so it searches for α during the subtle

time and β during the steep time independently to obtain low mMSE.
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Chapter 5

Ignoring Photographic Subtle Noise

in a video

5.1 Introduction

The conventional EVM methods [4, 5, 9], including our JAEVAM method [48] as

explained in Section 4, focus on revealing subtle color changes or motions in the

presence of slow and/or quick large motions. However, such subtle changes con-

tain meaningful ones caused by physical/natural phenomena and non-meaningful

ones caused by photographic subtle noise. Thus, the conventional EVM methods

and our JAEVAM method often produce noisy and misleading results because they

mistakenly amplify photographic subtle noise.

For revealing only the meaningful subtle changes in the presence of photo-

graphic subtle noise, several methods have been proposed [5, 52, 53]. By focusing

on that meaningful motions appear around edges [22], Wadhwa et al. [5] spatially

applied an edge-weighted Gaussian filter (EWG) to phase signals at each com-

plex steerable pyramid level, and Verma et al. [52] used a local Laplacian filter

(LLP) [54] to improve pyramid decomposition in the LubEVMM method (Sub-

47



section 2.3.1) in terms of edges and details. These methods help to remove non-

meaningful subtle motions in flat textured regions but have limitations in that they

cannot be applied to color magnification or to the removal of non-meaningful subtle

motions around edges. Alternatively, Wu et al. [53] adopted PCA to EVM as a pre-

processing approach. This method can magnify only meaningful subtle changes in

a video, but for enabling PCA to work well, it has a limitation that meaningful sub-

tle changes need to be larger than non-meaningful ones as the principal component

in the input video scene.

In this chapter, we propose an EVM method for revealing only meaningful sub-

tle color changes or motions under the presence of photographic subtle noise, with-

out additional interventions, resources, or input video scene limitations. On the ba-

sis of our observation that temporal distribution of meaningful subtle changes more

clearly indicates anisotropic diffusion than that of non-meaningful ones caused by

photographic subtle noise, we considered that the anisotropic diffusion in the tem-

poral distribution enables us to detect only meaningful subtle changes. Therefore,

we focused on fractional anisotropy (FA), which is used in neuroscience to eval-

uate anisotropic diffusion of water molecules in the body for revealing the shape

of tiny nerve cells [14, 15]. In developing our method, we used FA to design a

fractional anisotropic filter (FAF) that passes only meaningful subtle changes and

ignores non-meaningful ones. Additionally, similar to [5, 52], we propose a hier-

archical edge-aware regularization (HEAR) for refining uncertain subtle motions at

flat (texture-less) regions in a video. Our method, in which FAF and HEAR are

applied to the JAEVAM method [48], produces impressive color or motion magni-

fication results in various input video scenes.
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5.2 Proposed Method

5.2.1 Problem Definition

Following the preliminary formulation in Chapter 3 and the JAEVAM method [48]

described in Chapter 4, given a color/phase signal Sωn,θ(x, y, t), the conven-

tional EVM methods [4, 5, 9, 48] attempt to detect a subtle color/phase signal

Cωn,θ,ft(x, y, t). However, such a subtle signal is often contaminated by photo-

graphic subtle noise as

Cωn,θ,ft(x, y, t) = Ĉωn,θ,ft(x, y, t) + C̃ωn,θ,ft(x, y, t), (5.1)

where Ĉωn,θ,ft(x, y, t) is a meaningful subtle signal and C̃ωn,θ,ft(x, y, t) is a non-

meaningful one caused by photographic subtle noise. Therefore, the conventional

EVM methods often produce noisy and misleading magnification outputs due to

C̃ωn,θ,ft(x, y, t).

5.2.2 Fractional Anisotropy (FA)

Our key idea is based on our observation that temporal distribution of meaning-

ful subtle changes more clearly indicates anisotropic diffusion than that of non-

meaningful ones because they are subject to the regularity of nature (Fig. 5.1). We

considered that the anisotropic diffusion in the temporal distribution enables us to

detect only meaningful subtle changes and focused on an index called fractional

anisotropy (FA).

FA has been used in neuroscience to evaluate anisotropic diffusion of water

molecules in the body [14, 15], and its definition is based on the Gaussian diffusion

equation as

f(g) =
1

(2π)d/2|D|1/2
exp

(
−1

2
g>D−1g

)
= N(0,D), (5.2)
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Figure 5.1: The temporal distributions of subtle luminance color (top) or phase

signals that represent motions (bottom). When the meaningful subtle luminance

color signals appear, they are correlated between neighboring pixels (top green),

but do not when photographic subtle noise only appears (top red). The meaningful

subtle phase signals occur in a vertical direction (bottom green) but in no direction

if they are not meaningful (bottom red). We noticed that temporal distribution of

meaningful subtle changes more clearly indicates anisotropic diffusion than that of

non-meaningful ones caused by photographic subtle noise (blue arrow representing

the trend).

where f(g) is a probability distribution of water molecules along directions g ∈ Rd,

and D is a positive semi-definite matrix that represents diffusion strength of the

distribution f(g) along or between directions g. To the best of our knowledge, FA

is defined in 3D case (d = 3) on the basis of f(g), but we generalize it for multi-

dimensional case as

FA :=

√
d

d− 1
·

√∑d
i=1(λi − λ̄)2√∑d

i=1 λ
2
i

, (5.3)

where (λ1, ..., λd) are eigenvalues of D and λ̄ = 1
d

∑d
i=1 λi. The eigenvalues of D
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indicate diffusion strength to the direction of eigenvectors in the original directions

g. The coefficient
√

d
d−1 normalizes the FA value between 0 and 1. Moreover, we

found intuitive interpretation of FA as follows.

Lemma 1.

d∑
i=1

(
λi − λ̄

)2
=

d∑
i=1

λ2i − d · λ̄2, (5.4)

where λ̄ = 1
d

∑d
i=1 λi.

Proof.

d∑
i=1

(
λi − λ̄

)2
=

d∑
i=1

λ2i − 2 ·

(
d∑
i=1

λi

)
· λ̄+ d · λ̄2

=
d∑
i=1

λ2i − 2 · d · λ̄2 + d · λ̄2

=
d∑
i=1

λ2i − d · λ̄2

Lemma 2. Let θ be the angle between two vectors, (λ1, . . . , λd), (1, 1, . . . , 1) ∈ Rd.

Then,

sin θ =

√√√√∑d
i=1

(
λi − λ̄

)2∑d
i=1 λ

2
i

. (5.5)

Proof. From the relationship between inner product and norms of two vectors, we

get

cos θ =

∑d
i=1 λi√∑d

i=1 λ
2
i ·
√∑d

i=1 1
=

∑d
i=1 λi√∑d

i=1 λ
2
i ·
√
d
.
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Because D is positive semi-definite and so the vector (λ1, . . . , λd) is in the first

quadrant, sin θ > 0 holds. As a result, we can rewrite sin θ as follows:

sin θ =
√

1− cos2 θ

=

√√√√√√1−

(∑d
i=1 λi

)2(∑d
i=1 λ

2
i

)
· d

=

√√√√1− λ̄2 · d2(∑d
i=1 λ

2
i

)
· d

=

√∑d
i=1 λ

2
i − λ̄2 · d∑d
i=1 λ

2
i

=

√√√√∑d
i=1

(
λi − λ̄

)2∑d
i=1 λ

2
i

(∵ (5.4)).

Proposition 1.

FA =

√
d

d− 1
· sin θ,

where θ is defined in Lemma 2.

Proof. Trivial from Eqs. (5.3) and (5.5).

This proposition implies that FA purely evaluates the degree of match between

the eigenvalues without depending on the magnitude of them. Since the positive

semi-definite matrix of D makes all the eigenvalues positive, if only one eigenvalue

is high, which means anisotropic diffusion, θ is maximum and FA value is 1, but if

all the eigenvalues are equal, which means isotropic diffusion, θ is 0 and FA value

is 0 (Fig. 5.2).

In neuroscience fields, it is known that nerve axons have high FA values due

to anisotropic diffusion of water molecules along their long stick structures, but if

their axonal structures injury occurs due to such as a traffic accident or a neural

disease, the probability distribution of water molecules in the injured area indicates

isotropic diffusion and the FA value becomes lower [14, 15]. Thus, a changing of
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Figure 5.2: Intuitive interpretation of FA in 3D case. FA is proportional to sinθ,

where θ is the angle between two vectors, (λ1, λ2, λ3) which are eigenvalues of D,

(1, 1, 1). If all the eigenvalues are equal such as (3, 3, 3), which means isotropic

diffusion, θ is 0 and the FA value is 0. If only one eigenvalue is high such as

(5, 0, 0), which means anisotropic diffusion, θ is maximum and the FA value is 1.

FA value sensitively assesses the loss or recovery process of the shape of nerve cells

in humans or animals.

From these findings, we considered that FA values strongly respond to mean-

ingful subtle changes compared with non-meaningful ones, due to the anisotropic

diffusion in the temporal distribution of meaningful ones. To visualize our hypoth-

esis, we show FA values estimated by temporal distribution of subtle phase signals

in ukulele-playing video (Fig. 5.3). Figure 5.3 indicates that the FA value is higher

when the meaningful subtle phase signals appear, such as hand swaying and vibra-

tions of ukulele strings.

5.2.3 Fractional Anisotropic Filter

On the basis of our knowledge of FA, we designed a fractional anisotropic filter

(FAF). This filter is designed with FA estimated from diffusion in temporal distri-

bution of subtle color/phase signals so that it will pass only meaningful subtle color

changes or motions, which have high FA values. First, we get FA value as follows.
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Figure 5.3: Visualizing fractional anisotropy (FA) values. FA values are estimated

by temporal distribution of subtle phase changes and are high when the meaningful

subtle phase changes appear such as hand swaying and vibrations of ukulele strings.

For Color Magnification

The subtle color signal Cωn,θ,ft(x, y, t) can be written as Cn,ft(x, y, t) follow-

ing θ = ∅ as explained in Chapter 3. Given a (h × w)-dimensional vector

gn,ft(x, y, t) = [Cn,ft(x1, y1, t), . . . , Cn,ft(xh×w, yh×w, t)]
> that represents subtle

color signals within (xi, yi) ∈ N (x, y), where N (x, y) indicates the neighborhood

image positions of (x, y), we assume a set of vectors {gn,ft(x, y, tk) | tk ∈ N (t)},

whereN (t) indicates the neighborhood time frames of t, is created by i.i.d sampling

from a temporal distribution f(gn,ft(x, y, t)) defined as

f(gn,ft(x, y, t)) = N (0,Dn,ft(x, y, t)) . (5.6)

Using maximum likelihood estimation method, we estimate Dn,ft(x, y, t) represent-

ing diffusion strength of the temporal distribution f(gn,ft(x, y, t)) along or between

the image positions in N (x, y) as

Dn,ft(x, y, t) =
1

|N (t)|
∑

tk∈N (t)

(gn,ft(x, y, tk)− ḡ)(gn,ft(x, y, tk)− ḡ)>, (5.7)

where ḡ = 1
|N (t)|

∑
tk∈N (t) gn,ft(x, y, tk). Then, we get FAn,ft(x, y, t) by using

Eq. (5.3) in the case of Eq. (5.7).
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After calculating FAn,ft(x, y, t), we design the fractional anisotropic filter

FAFn,ft(x, y, t;σs, γ) via min-max normalization function Γ(·) with a 2D Gaussian

smoothing with a variance σ2
s and a weight γ for adjusting the filter response as

FAFn,ft(x, y, t;σs, γ) = Γ (Gσs(x, y) ∗ FAn,ft(x, y, t))
γ , (5.8)

where Gσs(x, y) is a 2D Gaussian filter with σ2
s to smooth the filter responses. This

filter has a high value only when anisotropic diffusion in temporal distribution of

subtle color signals appears, which means it can pass only meaningful subtle color

changes and ignores non-meaningful ones.

For Motion Magnification

Given a M -dimensional vector gωn,ft(x, y, t) =

[Cωn,θ1,ft(x, y, t), . . . , Cωn,θM ,ft(x, y, t)]
> that represents subtle phase sig-

nals at orientations {θ1, . . . , θM} ∈ Θ, we assume a set of vectors

{gωn,ft(xi, yj, tk) | (xi, yj) ∈ N (x, y), tk ∈ N (t)} is created by i.i.d sam-

pling from a temporal distribution f(gωn,ft(x, y, t)) defined as

f(gωn,ft(x, y, t)) = N (0,Dωn,ft(x, y, t)) . (5.9)

Using maximum likelihood estimation method, we estimate Dωn,ft(x, y, t) repre-

senting diffusion strength of the temporal distribution f(gωn,ft(x, y, t)) along or

between the orientations θ1, . . . , θM as

Dωn,ft(x, y, t)

=
1

|N (x, y)||N (t)|
∑

(xi,yj)∈N (x,y)
tk∈N (t)

(gωn,ft(xi, yj, tk)− ḡ)(gωn,ft(xi, yj, tk)− ḡ)>,

(5.10)

where ḡ = 1
|N (x,y)||N (t)|

∑
(xi,yj)∈N (x,y),tk∈N (t) gωn,ft(xi, yj, tk). Then, we get

FAωn,ft(x, y, t) by using Eq. (5.3) in the case of Eq. (5.10).
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After calculating FAωn,ft(x, y, t), we design the fractional anisotropic filter

FAFωn,ft(x, y, t;σs, γ) via min-max normalization function Γ(·) with a 2D Gaus-

sian smoothing with a variance σ2
s and a weight γ for adjusting the filter response

as

FAFωn,ft(x, y, t;σs, γ) = Γ (Gσs(x, y) ∗ FAωn,ft(x, y, t))
γ , (5.11)

where Gσs(x, y) is the same of Eq. (5.8). This filter has a high value only when

anisotropic diffusion in temporal distribution of subtle phase signals appears, which

means it can pass only meaningful subtle motions and ignores non-meaningful ones.

5.2.4 Hierarchical Edge-Aware Regularization (HEAR)

For refining subtle phase signals (not color signals), we focus on a subband am-

plitude signal Aωn,θ(x, y, t) in the same way as EWG of the previous method [5].

However, while the previous method directly uses a subband amplitude signal at

each pyramid level n, we develop hierarchical amplitude correction via z-transform

as

Âωn,θ(x, y, t) = max
i∈N (n)

(Z (Aωn,θ(x, y, t)) ,R (Z (Aωi,θ(x, y, t)) , n)) , (5.12)

where N (n) indicates the neighborhood pyramid levels of n, R(·, n) is the same

of Eq. (4.8), and Z(·) converts the input into z-score that are comparable between

each n.

Furthermore, as the previous method [5] adopts amplitude-based smoothing but

is weak in regularizing flat textured areas due to its use of smoothing alone, we

propose a hierarchical edge-aware regularization HEARωn,θ(x, y, t) via min-max

normalization function Γ(·) with a 2D Gaussian smoothing with a variance σ2
s as

HEARωn,θ(x, y, t;σs) = Γ
(
Gσs(x, y) ∗ Âωn,θ(x, y, t)

)
. (5.13)

This form is similar to the design of FAF in Eqs. (5.8) and (5.11).
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5.2.5 Applying FAF and HEAR to the JAEVAM method

We apply FAF of Eq. (5.8) and JAF of Eq. (4.7) to Eq. (4.3) for color magnifica-

tion. On the other hand, we apply FAF of Eq. (5.11), HEAR of Eq. (5.13), and

the propagated JAF of Eq. (4.8) to Eq. (4.3) for motion magnification. Through

these applications, we obtain a result where only meaningful subtle color changes

or motions are magnified under the presence of slow and quick large motions.

Figure 5.4 shows the effect of our method on detecting phase signals in an

ukulele-playing video. (a,b) The EVAM method [9] and the JAEVAM method [48]

cannot ignore the non-meaningful subtle phase signals. By applying FAF to the

JAEVAM method [48], we can suppress the non-meaningful subtle phase signals

but slightly misdetects them in flat textured areas (c, purple quadrangles). By fur-

ther applying HEAR to (c), we eventually can detect only meaningful subtle phase

signals of the ukulele strings.

5.3 Results

5.3.1 Experimental Setup

To evaluate the effectiveness of our method, we conducted experiments on real

videos and synthetic ones with ground-truth magnification. We assessed the ef-

fectiveness qualitatively for real videos and quantitatively against ground-truth for

synthetic ones. We set the parameters for each experiment as listed in Table 5.1,

and σs in Eqs. (5.8), (5.11), and (5.13) is equal to the spatial filter widths used to

construct the Gaussian or the complex steerable pyramid at each pyramid level n.
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Figure 5.4: Our motion magnification method. (a) The EVAM method [9] mis-

detects quick hand strumming. (b) The JAEVAM method [48] ignores the quick

motion but misdetects non-meaningful subtle phase signals caused by photographic

noise. (c) By applying FAF to the JAEVAM method [48], we can suppress the non-

meaningful subtle phase signals but slightly misdetects them in flat textured areas

(purple quadrangles). (d) Our method further applies HEAR to refine them and we

eventually can detect only meaningful subtle phase signals of the ukulele strings.

(*) Using only HEAR is insufficient for complex areas (purple quadrangles). These

results indicate both of FAF and HEAR are needed.

Color Magnification

We constructed a Gaussian pyramid to decompose each image frame into multi-

scales and magnified the G color signals on the fifth pyramid level.

Motion Magnification

We performed each method in Y color channel. To obtain subband amplitude and

subband phase signals from input video, we constructed a complex steerable pyra-

mid with half-octave bandwidth filters and 8 orientations. We set parameter V = 5

in the JAEVAM method [48] and |N (n)| = 5 in Eq. (5.12). For designing FAF

(Eq. (5.8) or Eq. (5.11)), we set |N (x, y)| = (5 × 5), and |N (t)| as the same time

length used to detect subtle signals at ft in TAF [9].
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Table 5.1: Parameters for all videos: amplification factor α in our method (this

parameter in other methods was adjusted to magnify meaningful subtle changes as

much as ours), target temporal frequency ft, sampling frequency fs, large motions

suppression parameter β in the JAEVAM method [48], and hyper parameter γ in

Eq. (5.8) or Eq. (5.11).

Video α ft fs β γ source

Slam dunk 200 2 120 1 2 [55]

Ukulele 260 40 240 1 5 [48]

Face 180 0.5 60 0.001 3 [4]

Wood 230 2 120 3 2 [55]

Gun 100 20 480 0.5 1 [48]

Tennis 180 10 600 1 1 [55]

5.3.2 Real Videos

We compared our proposed method with two state-of-the-art methods, The EVAM

method [9] and the JAEVAM method [48], both of which can perform color or

motion magnification without user annotations or additional information in the same

way as our method.

Comparison with Color Magnification

Figure 5.5 illustrates subtle face color changes due to blood flow through the face of

a stationary man. Processing this video with the EVAM method [9] or the JAEVAM

method [48] succeeds in magnifying meaningful subtle face color changes on the

face, but it also misdetects and magnifies non-meaningful background color fluctu-

ations caused by photographic noise. In contrast, our proposed method magnifies

only meaningful subtle face color changes.
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Figure 5.5: Color magnification at blood flow through the face of a stationary man.

Our proposed method magnifies only meaningful subtle face color changes (bot-

tom), while the EVAM method [9] and the JAEVAM method [48] misdetect and

magnify non-meaningful background color fluctuations caused by photographic

noise (top).

Comparison with Motion Magnification

Figure 5.6 shows the motion magnification results from a basketball video, to mag-

nify and reveal the subtle deformations of the backboard when trying to absorb

the impact of a slam dunk for preventing breakage. The EVAM method [9] does

not work well due to the misdetection of the quick ball motion. The JAEVAM

method [48] magnifies meaningful subtle deformation of the backboard but also

misdetects non-meaningful subtle shape collapses of background window caused

by photographic noise. In contrast, our proposed method magnifies only meaning-

ful subtle deformations of the backboard without the effects of noise.

Figure 5.7 shows a video sequence on the ability of a wood-splitting stand to

absorb the shock from a hand axe for preventing injury. The EVAM method [9]

produces messy result due to the quick downswing of the hand axe. The JAEVAM

method [48] can magnify subtle deformations of the wood-splitting stand but pro-

duces pixel intensity disturbances due to non-meaningful background fluctuations

caused by photographic noise. Our method magnifies only meaningful subtle de-

formations of the wood-splitting stand under the presence of photographic noise.
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(b) EVAM (c) JAEVAM (d) Ours(a) Original

(a)
(b)

(c) (d)

Figure 5.6: Top left: slam dunk video visualizing backboard deformations with ball

trajectory by yellow arrow. Bottom left (a)-(d) show spatio-temporal slices along the

single red line at top left. Right (a)-(d) show backgrounds in the green square at top

left. (b) The EVAM method [9] produces messy artifacts due to quick ball motion.

(c) The JAEVAM method [48] magnifies meaningful subtle backboard deformations

but misdetects non-meaningful subtle distortions of background window caused by

photographic noise (purple circle). (d) On the contrary, our proposed method mag-

nifies only meaningful subtle backboard deformations. See supplementary material

for video results.

Figure 5.8 shows a gun-shooting video. In this video, we also tested the Leb-

VMM method [27] with a 5× dynamic mode. The JAEVAM method [48] mis-

detects distortions of background caused by photographic noise. The LebVMM

method [27] also misdetects them slightly and induces disappearance of the tip of

the gun due to quick gun recoil motions. Our method magnifies only meaningful

subtle deformations of muscles and skin due to the gun-shooting impact spreading

throughout the body.

Figure 5.9 shows a ball-hitting video with magnification of impact spreading

throughout a tennis racket. The EVAM method [9] produces racket shape collapse

due to the quick swing motion. The JAEVAM method [48] magnifies subtle racket

deformations when the ball is hit but induces pixel intensity disturbances due to non-
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Figure 5.7: Wood-splitting video: visualizing deformations of a wood-splitting

stand. The graph shows pixel intensity changes at yellow dot in top left. Our pro-

posed method magnifies only meaningful subtle deformations of the wood-splitting

stand, while the EVAM method [9] misdetects the quick downswing of hand axe

(cyan circle) and the JAEVAM method [48] produces pixel intensity disturbance

due to non-meaningful background fluctuations (graph).

meaningful background fluctuations caused by photographic noise. In contrast, our

method magnifies only meaningful deformations related to sport activities under the

presence of photographic noise.

5.3.3 Controlled Experiments

In this section, we quantitatively assess the effectiveness of our method using peak

signal-to-noise ratio (PSNR) between magnified synthetic video by each magnifica-

tion method and the ground-truth. Figure 5.10 (top left) shows a 4-second synthetic

ball video with background texture from the Describable Textures Dataset [56].

The ball has vertical meaningful subtle motions defined as d = 0.5 · sin(2π ft
fs
j),

where j is the frame number. When j reaches 80 frames, the ball moves quickly
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Figure 5.8: Gun-shooting video: visualizing gun-shooting impact spreading

throughout body. Our method magnifies only meaningful subtle arm deforma-

tions (left bottom) but the JAEVAM method [48] misdetects background distortions

caused by photographic noise (right top) and the LebVMM method [27] induces

disappearance of the tip of the gun due to quick gun recoil motions (right bottom).

and horizontally as dq = 100 · sin(2π 2
fs
j), but after 20 frames the ball movement

returns to what it was before. Moreover, Gaussian noise with an average of 0 and

standard deviation σn of 0–0.1 was added to only the background in a videos as

the photographic noise that causes non-meaningful subtle motions. To obtain the

ground-truth of meaningful subtle motion magnification, we created magnification

videos while changing d to 5 · d.

Note that to investigate the effectiveness of our proposed method precisely,

we prepared five additional methods: a JAEVAM method with EWG proposed

by [5], a JAEVAM method with PCA, a JAEVAM method with FAF, a JAEVAM

method with No-hierarchical edge-aware regularization as EARωn,θ(x, y, t;σs) =

Γ (Gσs(x, y) ∗ Aωn,θ(x, y, t)), and a JAEVAM method with HEAR.

Figure 5.10 right shows PSNR in each area and each background, at the real

noise level σn = 0.005 estimated by [57]. In the ball area, the LubEVMM meth-

ods [52, 53], the EVAM method [9] and the LebVMM method [27] suffer from han-

dling quick motion and produce low PSNR, but all JAEVAM based methods, which
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Figure 5.9: Tennis video: visualizing impact spreading throughout a tennis racket.

Our method magnifies only meaningful subtle tennis racket deformations, but the

EVAM method [9] and the JAEVAM method [48] produce pixel intensity distur-

bance due to non-meaningful background fluctuations caused by photographic noise

(graph).

contain our method, magnify only meaningful subtle motions and have high PSNR

except for the JAEVAM method with PCA, which cannot magnify meaningful ones

due to large non-meaningful ones regarded as a principal component. On the other

hand, in the noise area, the JAEVAM method [48] produces very low PSNR due

to non-meaningful subtle motions magnified by the large amplification factor com-

pared with the EVAM method [9]. The JAEVAM method with EWG [5], PCA, our

proposed FAF, and HEAR ignore non-meaningful ones and increase PSNR com-

pared with the JAEVAM method [48] but all of these are insufficient. Our proposed

method, which considers anisotropic diffusion in temporal distribution by FAF and

hierarchical amplitude information by HEAR, ignores non-meaningful ones very

well and has high PSNR in the noise area. After all, our proposed method mag-

nifies only meaningful subtle ball motions under the presence of noise and has the
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Figure 5.10: Left: synthetic ball video with background. The ball has meaningful

subtle motions (red arrow) and quick motions (yellow arrow). Noise is added only

to background and causes non-meaningful subtle motions. Right: PSNR at σn =

0.005. Our proposed method magnifies only meaningful subtle ball motions under

the presence of noise and has the highest PSNR in the total area despite the complex

background textures.

highest PSNR in the total area despite the complex background textures.

Figure 5.11 shows the effect of noise variance σn on the average of PSNR for

all the background videos. In the ball area, each magnification method maintains

almost the same PSNR. However, the JAEVAM method with PCA cannot do so

because the principal component in a video is switched from meaningful subtle

motions to non-meaningful ones when σn = 0.005. In the noise area, PSNR in

all methods gets lower in proportion to the noise increase. However, if we com-

pare each magnification method for the total area, our proposed method resists
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Figure 5.11: The effect of noise variance σn on PSNR for all the background videos

on average. In the total area, our proposed method resists noise increase and has the

highest PSNR in the real noise situations [57].

the effect of noise increase and has the highest PSNR in the real noise situations

(σn = 0.005, 0.01). Thus, our method produces the best meaningful and non-

misleading magnification results.

5.4 Discussions and Limitations

Our method expands the applicable range of EVM by revealing only meaningful

subtle color changes or motions under the presence of photographic subtle noise

but has some limitations below.

Our proposed FAF can detect only meaningful subtle changes, but it relies on

the assumption that the temporal distribution of non-meaningful ones caused by
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photographic subtle noise indicates isotropic diffusion. In real videos, such a char-

acteristic like Gaussian distribution often occurs but other ones also need to be con-

sidered: gamma, exponential, uniform, impulse, and so on [58]. Thus, we should

handle such characteristics to expand the applicable range of video magnification in

future work.

If an input video size is large, our method has slow running time due to the

eigen-decomposition at each position, time, and pyramid level after. If one wants

to precisely reveal meaningful subtle changes and show the results, our method

should be used to prevent magnified non-meaningful changes that may be mislead-

ing. However, a faster algorithm for our method needs to be developed.

Moreover, empirical estimation of covariance in FA of our method (Eq. (5.7)

and Eq. (5.10)) is not robust to outliers under the Gaussian assumption in Eq. (5.3).

To increase the robustness, we consider that a minimum covariance determinant

approach [59] can be useful. Even so, we should develop a simple and principled

approach as a substitute for using FA in future work.
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Chapter 6

Accelerating Computational Time

6.1 Introduction

As explained in Section 2.3 and Chapter 3, conventional EVM methods construct

over-complete image pyramid representations when analyzing subtle color/phase

signals in a video. In EVCM, as subtle color signals are analyzed at only a cer-

tain Gaussian pyramid level, its computational time is not big of a deal. However

in PbEVMM, subtle phase signals representing local motions are analyzed at all

complex steerable pyramid levels and steerable orientations. Therefore, PbEVMM

methods require a long computational time in proportion to video resolution and

time frame length, compared with EVCM.

For accelerating the computational time of PbEVMM, Wadhwa et al. [6] have

proposed a Riesz pyramid as an improvement to the complex steerable pyramid

used in previous methods [5, 7, 8, 9, 48, 51]. In the complex steerable pyramid,

Hilbert transform is performed along each steerable orientation to detect phase sig-

nals at each steerable orientation. On the other hand, in the Riesz pyramid, Riesz

transform, which generalizes Hilbert transform in a multi-dimensional manner, is

performed to only detect phase signals at the dominant orientation; the Riesz pyra-
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mid thus succeeds in removing arbitrariness of orientations in the complex steerable

pyramid. Therefore, the Riesz pyramid lowers the over-completeness of the com-

plex steerable pyramid and enables us to analyze subtle phase signals faster and to

amplify them quickly. However, since the entire image frames must be processed,

the construction using the Riesz pyramid still requires a long computational time in

proportion to the video resolution and time frame length.

In this chapter, we propose a faster PbEVMM method using a sophisticated im-

age pyramid called a local Riesz pyramid. The local Riesz pyramid newly adopts

local image processing when analyzing subtle phase signals in the Riesz pyramid.

We considered that we only have to process the minimum number of sufficient local

image areas at a pyramid level n related to the strongly magnified image areas at

the above n+ 1 because phase signals have a correlation between adjacent pyramid

levels as reported in [16, 17]. From this consideration, our proposed method with

the local Riesz pyramid analyzes phase signals at n + 1 as those with the Riesz

pyramid [6] and then detect strongly amplified image areas by using Otsu’s thresh-

olding method [60]. After this detection, the strongly amplified local image areas

at n+ 1 are propagated to the below n, and then we amplify subtle phase signals in

only those areas at n. Our PbEVMM method with the local Riesz pyramid produces

impressive motion magnification results equivalent to conventional methods within

a short computational time in both real and synthetic videos.
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6.2 Conventional Method: Riesz Pyramid for Fast

Phase-based Eulerian Video Motion Magnifica-

tion

Here, we explain a conventional fast PbEVMM method using Riesz pyramid pro-

posed by Wadhwa et al. [6].

Given a normalized image signal I(x, y, t) ∈ [0, 1] at Y color channel,

they first construct a non-oriented subbands pyramid, e.g. a Laplacian pyramid,

{Lωn(x, y, t) | n = 0, . . . , N − 1}, where Lωn(x, y, t) ∈ RHn×Wn is a subband

image signal with an image height Hn and an image width Wn. Next, the Riesz

transform, which generalizes a one-dimensional Hilbert transform into a multi-

dimensional one [61], is applied to Lωn(x, y, t) as follows.

Lωn(x, y, t)
FF−→ Lωn(ωx, ωy, t),

R1
ωn(x, y, t)

FF−1

←−−− R1
ωn(ωx, ωy, t) = Lωn(ωx, ωy, t) · −i

ωx√
ω2
x + ω2

y

,

R2
ωn(x, y, t)

FF−1

←−−− R2
ωn(ωx, ωy, t) = Lωn(ωx, ωy, t) · −i

ωy√
ω2
x + ω2

y

,

(6.1)

where R1
ωn(x, y, t) and R2

ωn(x, y, t) are Riesz-transformed subband image signals

along x- and y-axis respectively, FF : RHn×Wn −→ CHn×Wn is the 2D Fourier

transform, FF−1 : CHn×Wn −→ RHn×Wn is the inverse 2D Fourier transform, and

ωx, ωy ∈ [−π, π] represents the x- and y-axis spatial angular frequency at the pyra-

mid level n. Through this Riesz transform, we can construct a Riesz pyramid con-

sisting of a set of three subband image signals: a subband image signal Lωn(x, y, t)

and two Riesz-transformed subband image signals R1
ωn(x, y, t) and R2

ωn(x, y, t) as

shown in Fig. 6.1.

Additionally, Wadhawa et al. [6] pointed out a long computational time of the

2D Fourier transform FF and the inverse 2D Fourier transform FF−1 in Eq. (6.1)
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Figure 6.1: Riesz pyramid proposed in [6]. It is built on a set of three images: a sub-

band image signal Lωn(x, y, t) and two Riesz-transformed subband image signals

R1
ωn(x, y, t) and R2

ωn(x, y, t)

for constructing the Riesz pyramid. Considering Lωn(ωx, ωy, t) has most of its sub-

band’s energy at the center of spatial angular frequency as
√
ω2
x + ω2

y = π
2
, Wad-

hawa et al. approximated the Riesz transform by spatial convolution (actually, it is

spatial cross-correlation because of non-causality in image signals unlike temporal

signals) with three tap finite difference filters [0.5, 0,−0.5] and [0.5, 0,−0.5]> as

h(k) =


0.5, k = −1,

0, k = 0,

−0.5, k = 1,

R1
ωn(x, y, t) ≈

1∑
k=−1

h(k) · Lωn(x+ k, y, t),

R2
ωn(x, y, t) ≈

1∑
k=−1

h(k) · Lωn(x, y + k, t),

(6.2)
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because these filters [0.5, 0,−0.5] and [0.5, 0,−0.5]> have frequency response re-

spectively as

−i sin(ωx) ≈ −i
ωx√
ω2
x + 02

= −i ωx
|ωx|

,

−i sin(ωy) ≈ −i
ωy√

02 + ω2
y

= −i ωy
|ωy|

,
(6.3)

when ωx, ωx ≈ π
2
. Note that this approximation does not have the original 2D filter

response of Riesz transform due to the approximation of
√
ω2
x + ω2

y ≈ |ωx| or |ωy|.

In this Riesz pyramid, we have relations at each (x, y) and t as follows.

Lωn(x, y, t) = Aωn(x, y, t) · cos (φωn(x, y, t)) ,

R1
ωn(x, y, t) = Aωn(x, y, t) · sin (φωn(x, y, t)) · cos (θωn(x, y, t)) ,

R2
ωn(x, y, t) = Aωn(x, y, t) · sin (φωn(x, y, t)) · sin (θωn(x, y, t)) ,

Aωn(x, y, t) =

√
(Lωn(x, y, t))2 +

(
R1
ωn(x, y, t)

)2
+
(
R2
ωn(x, y, t)

)2
,

(6.4)

where Aωn(x, y, t) is a subband amplitude signal, φωn(x, y, t) is a subband phase

signal, and θωn(x, y, t) is the dominant steerable orientation in which the phase

signal occurs. From Eq. (6.4), the phase signal φωn(x, y, t) can be obtained as

φωn(x, y, t) = tan−1


√(

R1
ωn(x, y, t)

)2
+
(
R2
ωn(x, y, t)

)2
Lωn(x, y, t)

 . (6.5)

In the complex steerable pyramid used by conventional EVM methods [5, 7,

8, 9, 48, 51], θ has to be fixed by a user in advance, e.g. eight orientations θ ={
0, 1

8
π, ..., 7

8
π
}

, and φωn(x, y, t) is parameterized as φωn,θ(x, y, t) with θ. Thus,

the complex steerable pyramid is over-complete with respect to θ. In contrast, the

Riesz pyramid removes the arbitrariness of the orientations and only detects phase

signals φωn(x, y, t) with respect to the dominant orientation θωn(x, y, t) at every

pixel, time frame, and pyramid level. Therefore, the Riesz pyramid lowers the over-

completeness and achieves a faster pyramid construction.
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This phase signal can be regarded as Sωn,θ(x, y, t) where θ = ∅, so we ob-

tain a amplified phase signal φ̂ωn(x, y, t) by using the conventional EVM meth-

ods [9, 48, 51] that we explained before this chapter. Finally, we obtain the ampli-

fied subband image signal L̂ωn(x, y, t) with φ̂ωn(x, y, t) of Eq. (6.5) and Eq. (6.4),

and then collapse the amplified subbands pyramid {L̂ωn(x, y, t) | n = 0, . . . , N−1}

to reconstruct a magnified image signal Î(x, y, t) by following the reverse procedure

of constructing the non-oriented subbands pyramid. This PbEVMM method with

the Riesz pyramid can achieve the faster motion magnification than with the com-

plex steerable pyramid used in conventional EVM methods [5, 9, 48, 51]. However,

since the entire image pixel positions must be processed, the Riesz pyramid requires

a long computational time in proportion to the video resolution and the number of

image time frames.

6.3 Proposed Method

For further accelerating the computational time of the Riesz pyramid [6], we pro-

pose a faster PbEVMM method that combines local image processing with the con-

ventional fast PbEVMM method with Riesz pyramid [6] when analyzing subtle

phase signals in a video. On the basis of a correlation of phase signals between

adjacent pyramid levels as reported in [16, 17], our method constructs fewer image

pyramid representations than those constructed in the Riesz pyramid. Therefore, we

first consider the correlation of phase signals as shown in Fig. 6.2.

Figure 6.2 shows the local phase signals in the same image areas between ad-

jacent pyramid levels behave similarly as φωn(x, y, t) ≈ λ · φωn+1(x, y, t) with the

pyramid scaling factor λ. Note that large error will occur in this correlation if the

pyramid level is too far away. From this consideration, we noticed that we only have

to process minimum number of sufficient local image areas at a pyramid level n re-
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Figure 6.2: Correlation of local phase signals between adjacent pyramid levels. If

we observe local phase signals in the same image areas between pyramid levels,

phase signals at the upper pyramid level are smaller than those at the lower level

with pyramid scaling factor λ as φωn(x, y, t) ≈ λ · φωn+1(x, y, t). Note that large

error will occur in this correlation if the pyramid level is too far away. (the figure is

a modified version of [16] in presentation)

lated to strongly magnified image areas at the above n + 1. Therefore, we propose

local Riesz pyramid, which automatically processes the minimum number of suffi-

cient local image areas to quickly produce the motion magnification results (black

and red line flow in Fig. 6.3).

Given {Lωn(x, y, t) | n = 0, . . . , N − 1} as the same way of the Riesz

method [6], we consider a set of adjacent pyramid levels where the correlation of

local phase signals strongly exists: odd- (n = 2k+ 1) and even-numbered (n = 2k)

with k = 0, . . . , N
2
− 1. Note that we assume that N is an even-number. In our local

Riesz pyramid, we first perform the PbEVMM algorithm with the Riesz pyramid to

produce L̂ωn(x, y, t) at only odd-numbered n = 2k + 1, and then calculate a binary
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image Bω2k+1
(x, y) ∈ {0, 1}H2k+1×W2k+1 as follows.

δ2k+1(x, y) =
T∑
t=1

(
L̂ω2k+1

(x, y, t)− Lω2k+1
(x, y, t)

)2
, (6.6)

B2k+1(x, y) =

1, δ2k+1(x, y) > ε,

0, otherwise,
(6.7)

where ε is a threshold automatically calculated by using Otsu’s thresholding

method [60] in an implementation of OpenCV [62] to divide image areas at 2k + 1

into the strongly magnified ones B2k+1(x, y) = 1 and not B2k+1(x, y) = 0. Note

that considering all time frames t = 1, ..., T in Eq. (6.7) is for focusing on cyclic

subtle motions from the beginning to the end of an input video rather than those in

a short period of time.

After that, we define a set of pixel positions Pn and divide the positions into

U × V subsets like a grid as

Pn = {(x, y) | 1 ≤ y ≤ Hn, 1 ≤ x ≤ Wn} = {P n
11, ..., P

n
UV } , (6.8)

where P n
uv is defined as

P n
uv =

{
(x, y)

∣∣∣ 1 +
v − 1

V
Wn ≤ x ≤ v

V
Wn, 1 +

u− 1

U
Hn ≤ y ≤ u

U
Hn,

}
.

(6.9)

Note that P n
uv should have 3 × 3 or more pixel positions to ensure a minimum grid

size. We then collect subsets at 2k that correspond to the strongly magnified image

areas at 2k + 1 detected by Eq. (6.7) as

P2k
2k+1 =

{
P 2k
uv

∣∣ ∃(x, y) ∈ P 2k+1
uv , B2k+1(x, y) = 1, u = 1, . . . , U, v = 1, . . . , V

}
,

(6.10)

which means that P 2k
uv is collected if at least one pixel position ∃(x, y) ∈ P 2k+1

uv

meets with B2k+1(x, y) = 1 at the above pyramid level 2k + 1.
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From Eq. (6.10), we perform the PbEVMM algorithm with the Riesz pyramid in

only (x, y) ∈ P2k
2k+1 at n = 2k and then obtain a partially amplified subband image

signal L̂pωn(x, y, t) at n = 2k. Finally, we collapse the amplified subbands pyramid

{L̂ωn(x, y, t) | n = 2k + 1, k = 0, . . . , N
2
− 1} ∪ {L̂pωn(x, y, t) | n = 2k, k =

0, . . . , N
2
− 1} to reconstruct a magnified image signal Î(x, y, t) by following the

reverse procedure of constructing the non-oriented subbands pyramid (here, it is

Laplacian pyramid).

6.3.1 Generalized Local Riesz Pyramid

Here, we generalize our local Riesz pyramid in terms of how many pyramid lev-

els are the target of our local image processing in Eqs. (6.7) to (6.10). For the

generalization, we allow large error of the similarity of local phase signals across

pyramid levels as φωn(x, y, t) ≈ λ · φωn+1(x, y, t) ≈ λ2 · φωn+2(x, y, t) · · · ≈

λN−1 ·φωn+N−1
(x, y, t) as shown in Fig. 6.2. Then, given a set of M ∈ {M | dM =

N, d ∈ N} pyramid levels with n = Mk, . . . ,Mk +M − 1 and k = 0, . . . , N
M
− 1,

we can generalize Eqs. (6.6), (6.7), and (6.10) as

δMk+M−1(x, y) =
T∑
t=1

(
L̂ω2k+1

(x, y, t)− Lω2k+1
(x, y, t)

)2
, (6.11)

BMk+M−1(x, y) =

1, δMk+M−1(x, y) > ε,

0, otherwise,
(6.12)

PMk+m
Mk+M−1 =

{
PMk+m
uv

∣∣ ∃(y, x) ∈ PMk+M−1
uv ,

BMk+M−1(x, y) = 1,

u = 1, . . . , U, v = 1, . . . , V
}
,

(6.13)

where

m =

M − 2, . . . , 0, M ≥ 2,

0, M = 1.

(6.14)
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Note that the generalized local Riesz pyramid is the case of M ≥ 2, and the Riesz

pyramid [6] is the case of M = 1 by defining (x, y) ∈ Pkk = Pk.

From Eq. (6.13), we perform the PbEVMM algorithm with the Riesz pyramid in

only (x, y) ∈ PMk+m
Mk+M−1 at Mk+m (m = M −2, . . . , 0) and then obtain a partially

magnified subband image signal L̂pωMk+m
(x, y, t) at Mk +m (m = M − 2, . . . , 0).

Finally, we collapse the amplified subbands pyramid {L̂ωn(x, y, t) | n = Mk +

M − 1, k = 0, . . . , N
2
− 1} ∪ {L̂pωn(x, y, t) | n = Mk +m, k = 0, . . . , N

2
− 1,m =

M − 2, . . . , 0} to reconstruct a magnified image signal Î(x, y, t) by following the

reverse procedure of constructing the non-oriented subbands pyramid (here, it is

Laplacian pyramid).

We expect a computational time to be shorter when we select a bigger M be-

cause it constructs very fewer image pyramid representations by the detection pro-

cedures of Eqs. (6.11)-(6.14). However, we should keep in mind that the computa-

tional cost would be high when M is big if the large local image areas are selected

in the first pyramid level Mk +M − 1 in the set of pyramid levels M .

6.4 Results

6.4.1 Algorithmic Time Complexity

In this subsection, we analyzed algorithmic time complexity, i.e., how much our

proposed local Riesz pyramid reduces the computational time in comparison with

the Riesz pyramid [6]. Our local Riesz pyramid and the Riesz pyramid are com-

pletely different in terms of analyzing phase signals in whole or local image areas

described as Eqs. (6.7)-(6.10). Therefore, we explore the algorithmic time com-

plexity in that process.

Table 6.1 shows algorithmic time complexity for each process: local image pro-

cessing of Eqs. (6.6)-(6.10), the Riesz transform of Eq. (6.1), or the PbEVMM algo-
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Table 6.1: Algorithmic time complexity for each process: local image processing of

Eqs. (6.6)-(6.10), the Riesz transform of Eq. (6.1), or the PbEVMM algorithm that

contains temporal bandpass filtering of Eq. (3.2) and addition processes of Eq. (3.3).

Note that
∣∣P2k

2k+1

∣∣ is the size of local image areas detected by the local image pro-

cessing of Eqs. (6.6)-(6.10).

Method Pyr. level
Local image processing Riesz transform PbEVMM algorithm

Eqs. (6.6)-(6.10) Eq. (6.1) Eqs. (3.2)-(3.3)

Riesz [6] n – O(HnW nT ) O(HnW nT log T )

Ours
2k + 1 O(H2k+1W 2k+1T ) O(H2k+1W 2k+1T ) O(H2k+1W 2k+1T log T )

2k – O
(∣∣P2k

2k+1

∣∣ T) O
(∣∣P2k

2k+1

∣∣ T log T
)

rithm that contains temporal bandpass filtering of Eq. (3.2) and addition processes

of Eq. (3.3). PbEVMM methods using the Riesz pyramid [6] or our local Riesz

pyramid has the longest computational time during the PbEVMM algorithm con-

taining temporal filtering process of Eq. (3.2). By assuming that T is long enough,

the algorithmic time complexity strongly depends on the number of image areas

HnW n and time frame T in the temporal filtering process of Eq. (3.2). For further

analysis, we focused on the number of image areas at each time frame t in the tem-

poral filtering process of Eq. (3.2) because it is the critical point for computational

time of this algorithm.

The Riesz pyramid [6] processes the entire Laplacian pyramid {Lωn(x, y, t) |

n = 0, . . . , N − 1} at t in Eq. (3.2). Thus, its algorithmic time complexity can be

defined with respect to the number of image areas of {Lωn(x, y, t) | n = 0, . . . , N−
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1} as follows.

g1 =
n=N−1∑
n=0

HnW nT log T

=
n=N−1∑
n=0

(
1

λ2

)n
H0W 0T log T

=
λ2

λ2 − 1

{
1−

(
1

λ2

)N}
H0W 0T log T,

(6.15)

where gM indicates the algorithmic time complexity with respect to the number of

image areas in Eq. (3.2). This equation indicates the case of the Riesz pyramid

(M = 1) [6].

In contrast, our generalized local Riesz pyramid processes the partial Laplacian

pyramid {L̂pωn(x, y, t) | n = Mk + m, k = 0, . . . , N
2
− 1,m = M − 2, . . . , 0}

at t in Eq. (3.2). By assuming that |PMk+m
Mk+M−1| = 1

q

∣∣PMk+m
∣∣ where q ∈ R+, the

algorithmic time complexity is described as follows.

gM =

k=N/M−1∑
k=0

m=M−2∑
m=0

1

q
HMk+mWMk+mT log T

+HMk+M−1WMk+M−1T log T

=

k=N/M−1∑
k=0

m=M−2∑
m=0

1

q

(
1

λ2

)Mk+m

H0W 0T log T

+

(
1

λ2

)Mk+M−1

H0W 0T log T

=

[
λ2

q (λ2 − 1)

{
1−

(
1

λ2

)M−1}
+

(
1

λ2

)M−1]

· λ2M

λ2M − 1

{
1−

(
1

λ2

)N}
H0W 0T log T

(6.16)

Note that this equation holds for M ≥ 2. Finally, from Eqs. (6.15) and (6.16), we

get the ratio of algorithmic time complexity of the generalized Local Riesz pyramid
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to the Riesz pyramid [6] as

gM
g1

=

[
λ2

q (λ2 − 1)

{
1−

(
1

λ2

)M−1}
+

(
1

λ2

)M−1]
λ2M (λ2 − 1)

(λ2M − 1)λ2
. (6.17)

Fig. 6.4 shows gM
g1

of Eq. (6.17) with different parameters 1
q

= 0, 0.01, . . . , 1,

M = 1, 2, 3, 6, and λ = 2, 4
3
. This figure shows that gM

g1
simply increases linearly in

proportion to 1
q

because local image areas are linearly increasing. In Fig. (6.4) (b),

the use of half-octave Gaussian pyramid λ = 4
3

has more computational time than

the use of an octave Gaussian pyramid λ = 2 (Fig. 6.4(a)) because the half-octave

Gaussian pyramid requires larger image areas. In the case of 1
q

= 0.5, where the

local image areas are half of the original ones, gM
g1

is near 0.6 at every M = 2, 3, N .

Therefore, under this condition, the proposed local Riesz pyramid is expected to

be about 2x faster than the Riesz pyramid [6]. Moreover, the algorithmic time

complexity decreases in proportion to M but converges each value that equals the

limit of gM
g1

as 1
q

approaches zero. This convergence can be described as

lim
1
q
→0

gM
g1

=
λ2 − 1

λ2M − 1
. (6.18)

This equation indicates the best case in our algorithm where no local image areas

are magnified except for the pyramid level Mk +M − 1.

The above analysis of algorithmic time complexity indicates that the worst

case of our method is the same computational complexity as the Riesz method [6]

(Fig. 6.4, 1
q

= 1) and the best case is converged with Eq. (6.18). Thus, our method

does not completely guarantee that the computational time will be reduced. How-

ever, our method usually reduces the computational time because the local image

areas to be magnified will be detected by Otsu’s method [60] thanks to its simplicity

and robustness. Therefore, our EVM method with local Riesz pyramid can achieve

faster motion magnification then with the Riesz pyramid [6].
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Table 6.2: Parameters for all videos: amplification factor α, target frequency bands

between f1 - f2, sampling rate fs.

Video α ft = [f1, f2] fs

baby 25 [0.5, 1.5] 30

throat 50 [100, 120] 2000

car engine 25 [0.5, 1.5] 25

balance 20 [1.5, 3.0] 30

drum 20 [15, 35] 200

simulation 1∼10 [9, 11] 60

6.4.2 Real Videos

To evaluate the effectiveness of our proposed method, which magnifies subtle mo-

tions within a short computational time, we conducted experiments on real videos

for qualitative evaluation and synthetic ones with ground-truth magnification re-

sults for quantitative evaluation. We compared our PbEVMM method using the

local Riesz pyramid (M = 2) with an PbEVMM method using the Riesz pyramid

proposed by Wadhwa et al. [6]. We set the parameters for each experiment as listed

in Table 6.2. We performed each method in YIQ color space and divided a set of

image areas Pn into U × V = 20 × 20 subsets. In all experiments, we specified

the ideal bandpass filter as the temporal filter in Eq. (3.2), and pyramid level N as

6. All experiments were implemented by using C++ with OpenCV [62] and ran on

a PC with an Intel Core i7-8559U CPU at 2.7 GHz, and 16 GB of RAM.

In Fig. 6.5, our objective was to reveal subtle chest motions caused by the baby’s

breathing. Comparing our method and the method of [6], both can reveal the subtle

chest motions, and thus almost the same video magnification results can be obtained

(see right panels in Fig. 6.5). The trend of this qualitative result was also observed
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in all other experiments (Figs. 6.6, 6.7, 6.8, and 6.9), so our method with the local

Riesz pyramid can achieve magnification results that are as good as the method with

the Riesz pyramid [6] despite only the local areas being processed.

In Fig. 6.10 and 6.11, we calculated the mean square error (MSE) to check the

approximation error of our proposed local Riesz pyramid (M = 2) or the general-

ized one (M = 3, N ) against the Riesz pyramid [6] as a ground-truth over all image

pixel positions, time frames, and color channels with a different value of M . Our

proposed method (b) showed low MSE around image areas of baby’s chest and the

those of the center of drum’s membrane, respectively; thus, it can detect the mini-

mum number of sufficient local image areas for revealing principal subtle motions

in the input videos. On the other hand, the MSE increased in proportion to M (c,d),

which is the case of the generalized local Riesz pyramid (in particular, M = N is

the case for which we chose all pyramid levels except for the top N − 1 pyramid

level). These results indicate that the large error of the phase signals’ similarity

(Fig. 6.2) in proportion to M directly affected the approximation error between the

our proposed and the conventional methods.

Table 6.3 shows the computational time and MSE against the Riesz pyramid [6].

We produced each magnification video result by using our proposed method (M =

2), the generalized one (M = 3, N ), or the method with the Riesz pyramid [6]. This

table confirms that our proposed PbEVMM method with the local Riesz pyramid

(M = 2) requires a shorter computational time in processing an input video than

with the Riesz pyramid [6], and has the lowest MSE between M = 2, 3, N . Note

that, for the baby and the simulation videos inM = N , large local image areas were

chosen at the first Nk + N − 1 pyramid level, thus requiring a long computational

time compared with M = 2 or 3. Remarkably, our method often achieved almost

half the computational time needed to process a video compared with [6]. In our

experiments, it is considered that the local image areas are detected as being about
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Table 6.3: Comparison of a computational time and MSE against the conventional

Riesz pyramid [6]. In all real videos, our proposed method (M = 2) required a

shorter computational time than the method with the Riesz pyramid [6] and also

had MSE lower than M = 3, N .

Video Riesz pyr. [6] Ours, M = 2 M = 3 M = N

(H0,W 0, T ) comp. time (s) time (s) MSE time (s) MSE time (s) MSE

baby

(544, 960, 301)
31.62 12.79 4.94 6.33 9.69 8.95 13.43

throat

(1144, 720, 300)
40.56 16.89 3.62 12.98 4.27 12.23 6.31

car engine

(452, 888, 300)
20.99 13.68 5.73 10.63 11.83 8.42 54.48

balance

(384, 272, 300)
5.37 3.24 12.94 1.89 28.31 1.17 54.22

drum

(360, 640, 450)
15.15 9.81 6.70 7.26 13.97 5.82 82.58

simulation

(512, 512, 240)
9.04 3.37 0.77 2.47 2.16 3.31 8.30

half the size of the original one based on Eq. (6.17).

6.4.3 Controlled Experiments

To evaluate the effectiveness of our proposed method qualitatively, we conducted

controlled experiments to assess MSE over all image pixel positions and time

frames between a magnified synthetic video by each magnification method (the

Riesz pyramid [6], ours M = 2, and M = 3, N ) and the ground-truth (Fig. 6.12).

In this experiment, we set the pyramid level N to 6. Fig. 6.12 (top left) shows a
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4-second synthetic ball video. The ball had horizontal subtle motions defined as

d = 0.5 ·sin(2π f
fs
t). To obtain a ground-truth magnification video for the synthetic

one, we created it while changing d to 5 · d.

Fig. 6.12 (top center) shows the MSE with a different amplification factor

α = 1, ..., 10, and the top right plot is an expanded version of the blue rectangle area

in the top center plot. In the top right of this figure, there is almost no difference

in MSE between our method (M = 2) and the method with the Riesz pyramid [6],

so this indicates that our proposed method with the local Riesz pyramid can auto-

matically process the minimum number of sufficient local image areas to perform

PbEVMM. In contrast, as M increases, the difference in MSE against Riesz pyra-

mid [6] spreads due to mis-detecting local image areas with the large error of the

phase change’s similarity (Fig. 6.2). Additionally, the effects of the MSE appears

in the spatiotemporal slices along the red line (the middle panels) and a green line

(the bottom panels) in the input video (the top left plot). All methods can detect

subtle ball motions at the left edge of the ball (the bottom panels), but they were

ambiguously detected in the cases of M = 3 and N at the top edge of the ball (the

middle panels). Note that all methods minimize the MSE at the amplification factor

α = 5, which is consistent with the relationship between the synthetic video and the

ground-truth (changing d to 5 · d). On the other hand, our method outperforms the

method with the Riesz pyramid [6] at a high amplification factor α ≥ 6 because it

processes only local image areas and prevents unnecessary magnification outputs.

In Fig. 6.13, we evaluated the effect of an input video that has long time frames

on a PbVMM method with the Riesz pyramid [6], our proposed method with the

local Riesz pyramid (M = 2), and the generalized one (M = N ). We consider the

effect of the time summation process of Eq. (6.6), which is affected by increasing

the number of time frames, on a computational time is trivial because the temporal

bandpass filtering of Eq. (3.2) is dominant for the computational time in a big O
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notation manner, see Table 6.1. However, in this experiment, we checked the effect

of an input video that has long time frames on our method from an experimental

point of view. In this experiment, we evaluated a computational time and MSE

against ground-truth with setting the same experimental conditions as the above

control experimental condition except for the resolution (256, 256, T ) where T =

240, . . . , 24000, N = 5, and α = 5. Fig. 6.13 left shows that the all PbEVMM

methods have linear increase of the computational time in proportion to the number

of input time frames. Note that our proposed method’s MSE is stable for all input

time frames (Fig. 6.13 right). This result indicates that the effect of the number of

time frames in an input video on our method is trivial; we can sufficiently ignore

the time delay due to the time summation process of Eq. (6.6). Therefore, both the

conventional method with the Riesz pyramid [6] and our proposed method with the

local Riesz pyramid simply react to the increase or the decrease in the number of

input time frames (Fig. 6.13) and pixel positions (Fig. 6.4).

6.5 Discussions and Limitations

We focused on the correlation of phase signals between adjacent pyramid levels and

proposed a novel pyramid called local Riesz pyramid that automatically processes

the minimum number of sufficient local image areas for PbEVMM. Our method

enables to output good video motion magnification results with a shorter compu-

tational time than the conventional fast method [6]. It is expected that our method

will spark the application of EVM for practical applications where high-speed pro-

cessing is needed, but there are a number of limitations as follows.

Our proposed method achieves good video motion magnification results equiv-

alent to the conventional method with the Riesz pyramid [6] despite the fact that

our method processes only local image areas at several pyramid levels. We consider
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this is because our method can identify no-motion local image areas and the local

image areas where subtle motions exist via Eq. (6.10). However, the boundaries of

the local image areas are considered to produce the negative effect of producing dis-

continuous results. Fortunately, the boundary effect is hardly seen because our local

processing is applied only to even-numbered pyramid levels (Figs. 6.10, 6.11 (b)).

In contrast, as M increases, the boundary effect clearly appears and leads to high

MSE against the Riesz pyramid [6] (Figs. 6.10,6.11 (c, d)). One possible approach

to further reducing this boundary effect is weighting the amplification factor α near

the boundaries using a Gaussian distribution, but we need to propose a radical way

of overcoming this problem in the future.

In our proposed method, local image areas to be processed are estimated by

using all image frames as that in Eq. (6.6) because we focused on cyclic subtle

motions from the beginning to the end of an input video, rather than those in a

short period of time. This suggests that we implicitly assume that subtle motions

to be revealed will stay in the same local image areas over all time frames, in other

words, objects do not move largely. Therefore, to reveal subtle motions under the

presence of large motions within a short computational time, we need to develop a

method where the local image areas to be processed are adaptively determined in

each image frame without mis-detection of subtle motions.
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Figure 6.3: Flow chart of PbEVMM method with the Riesz pyramid [6] (black line

flow) and with our proposed local Riesz pyramid (black and red line flow). Method

with the Riesz pyramid [6] cnostructs a subband image signal Lωn(x, y, t) and ap-

plies the Riesz transform to all the subband image signal as in Eq. (6.1) and the

subsequent processes are performed (black line flow). In contrast, our proposed

method first performs all processes only at odd-numbered pyramid levels. Then,

strongly magnified local image areas are detected by using ROI detection proce-

dure defined as Eqs. (6.6)-(6.7) and gird-like collection defined as Eq. (6.10) (for

details, see Section 6.3). With correlation of local phase signals between adjacent

pyramid levels (Fig. 6.2), it is considered that local image areas at the below pyra-

mid (red dot areas) that correspond to the strongly magnified local image areas at the

upper pyramid level are also strongly magnified. In contrast, no-motion local image

areas are not magnified clearly (cyan dot areas), so it is reasonable to exclude no-

motion local image areas in terms of process (transparent areas). Thus, our method

processes only local image areas at the below pyramid level and achieves a short

computational time for obtaining magnification results.
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Figure 6.4: The ratio of algorithmic time complexity gM
g1

of our generalized local

Riesz pyramid gM to the conventional Riesz pyramid g1 [6] with respect to 1
q

that

determines size of local image areas.

Input video

Riesz pyramid

Ours

time

y

Figure 6.5: The breathing of a baby: visualizing subtle chest motions. We show the

spatiotemporal slices (right panels) along a single red line in the left panel. Both a

method with the Riesz pyramid [6] and our proposed method with the local Riesz

pyramid can reveal the subtle chest motions in the baby (see the right panels).
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Figure 6.6: Video magnification for revealing subtle skin vibrations of a stationary

man who is speaking. We show the spatiotemporal slices (right panels) along a

single red line in the left panel. Both a method with the Riesz pyramid [6] and our

proposed method with the local Riesz pyramid can reveal the subtle skin vibrations

(see the right panels).
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Figure 6.7: A car engine: revealing subtle cyclic vibrations. We show the spatiotem-

poral slices (right panels) along a single red line in the left panel. Both the method

with the Riesz pyramid [6] and our proposed method with the local Riesz pyramid

can reveal the subtle cyclic vibrations in the car engine (see the right panels).
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Figure 6.8: A stationary man with a luggage: revealing subtle tremors of a man in

balance. We show the spatiotemporal slices (right panels) along a single red line

in the left panel. Both the method with the Riesz pyramid [6] and our proposed

method with the local Riesz pyramid can reveal the subtle tremors of the man in

balance (see the right panels).
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Figure 6.9: Video magnification for revealing subtle membrane vibrations of a

drum. We show the spatiotemporal slices (right panels) along a single red line in the

left panel. Both the method with the Riesz pyramid [6] and our proposed method

with the local Riesz pyramid can reveal the subtle membrane vibrations (see the

right panels).

90



0

5

10

15

20

25

Figure 6.10: Mean square error (MSE) between the proposed local Riesz pyramid

and the conventional Riesz pyramid [6] as ground-truth. Our proposed method (b)

shows lower MSE around image areas of baby’s chest compared with higher M ;

thus, it can detect the minimum number of sufficient local image areas for revealing

principal subtle chest motions.
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Figure 6.11: Mean square error (MSE) between the proposed local Riesz pyramid

and the conventional Riesz pyramid [6] as ground-truth. Our proposed method (b)

shows lower MSE around image areas of center of drum’s membrane compared

with higher M ; thus, it can detect the minimum number of sufficient local image

areas for revealing principal subtle skin vibrations.
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Figure 6.12: Left top: a synthetic ball video. The yellow arrow indicates horizontal

subtle motions of the ball defined as d = 0.5 · sin(2π f
fs
t). Top center and top

right plots: MSE with the ground truth for the magnified ball video (smaller MSE

is better). Middle and bottom panels: spatiotemporal slices along a single red green

line in the top left panel. Our proposed method M = 2 has almost same MSE result

as the method of [6] at each magnification factor. Note that all methods show the

lowest MSE at the magnification factor 5, which is consistent with the controlled

experimental condition.
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Figure 6.13: Effect of input video that has long time frames on an method with the

the Riesz pyramid [6], our proposed method with the local Riesz pyramid (M = 2),

and the generalized one (M = N ). A computational time increases linearly in

proportion to the number of input time frames (left) with relatively stable MSE

(right). Thus, all methods do not have special response to the number of input time

frames.
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Chapter 7

Conclusion

In this dissertation, we focused on the goal of enhancing the performance of Eule-

rian video magnification (EVM) for practical applications where only subtle color

changes or motions caused by physical/natural phenomena need to be revealed

quickly and correctly. To this goal, we facilitated the robust and fast analysis of

subtle changes in a video with overcoming the three EVM problems (Problems 1,

2, and 3) as introduced in Section 1. Our methods proposed in this dissertation

succeeded in clearly revealing subtle yet important physical/natural phenomena im-

perceptible to the naked eye even under the practical conditions where large motions

of objects exist (Chapter 4), photographic subtle noise in a video exist (Chapter 5),

and short computational time is required (Chapter 6). Thus, our methods enable

users to easily obtain correct insights and conclusions for practical applications.

We verified effectiveness of our methods in the extensive experiments including the

various real and simulation videos. Overall, this dissertation makes several impor-

tant contributions and left future work as described in this chapter.
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7.1 Contributions

We state contributions for each chapter as follows.

• Ignoring Large Motions in Video. We have proposed an EVM method that

ignores large motions of objects and reveals only subtle color changes or mo-

tions in a video. While the EVAM method [9] ignores only slow large motions

of objects, our method uses jerk, which has been used to evaluate smoothness

of time series data in neuroscience and mechanical engineering fields, to make

the EVAM method robust even to quick large motions as well as slow large

motions. This jerk-aware EVAM (JAEVAM) method enables users to easily

reveal subtle color changes or motions in a video even in the presence of large

motions of objects because it does not require burdensome limitations such as

human manipulations and/or an special camera settings. Moreover, we give a

theoretical view of our method, which explains a new theoretical connection

between the conventional EVM methods and ours via local Taylor expansions

in the temporal domain. This theoretical view enables uses to easily under-

stand how our JAEVAM method is more effective than the conventional EVM

methods.

• Ignoring Photographic Subtle Noise in Video. We have proposed an EVM

method that ignores photographic subtle noise and reveals only meaningful

subtle color changes or motions in a video. In developing our method, we

designed fractional anisotropy filter (FAF), which evaluates anisotropic dif-

fusion in temporal distribution of subtle color/phase signals, to detect only

meaningful subtle color changes or motions. Moreover, we designed a hier-

archical edge-aware regularization (HEAR) for refining uncertain subtle mo-

tions at flat (texture-less) regions in a video. Our method, in which FAF and

HEAR are applied to the JAEVAM method [48], prevents users from obtain-
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ing misleading results in which non-meaningful subtle changes caused by

photographic subtle noise exist.

• Accelerating Computational Time. We proposed an image pyramid, called

local Riesz pyramid, that accelerates a computational time of phase-based

Eulerian video motion magnification (PbEVMM). Considering the correla-

tion of phase signals between adjacent pyramid levels, the local Riesz pyra-

mid automatically processes the minimum number of sufficient local image

areas at several pyramid levels in order to perform PbEVMM within a short

computational time. Thus, the PbEVMM method with our local Riesz pyra-

mid enables users to reveal subtle color changes or motions in a video even

under practical applications where high-speed processing is required, such as

anomaly detection or medical usage.

7.2 Future Work

We state our future works and our long-term view as follows.

• Ignoring Large Motions in Video. In Chapter 4, our research is the first at-

tempt of performing EVM without burdensome interventions under the pres-

ence of large motions of objects via multiple sptiotemporal filtering approach.

However, as described in Chapter 4, our method slightly disturbs to detect

subtle color changes or motions in a video and requires multiple steps. There-

fore, developing a more simple and robust method based on sptiotemporal

filtering approach can be a subject for future work.

• Ignoring Photographic Subtle Noise in Video. As we aforementioned

in Chapter 5, our proposed FAF assumes non-meaningful subtle changes

caused by photographic subtle noise are sampling from Gaussian distribution.
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This limits to handle other noise types (e.g., gamma, exponential, uniform,

etc. [58]). Moreover, FAF requires the empirical estimation of covariance

and the eigen-decomposition for it. Since the empirical estimation is not ro-

bust to outliers under the Gaussian assumption, we should consider to use

a robust estimation, e.g., a minimum covariance determinant approach [59],

instead of the empirical estimation that we used. On the other hand, the eigen-

decomposition has slow computational time with respect to the data size of

input videos. Thus, a faster algorithm for our method needs to be developed

in future work.

• Accelerating Computational Time. The local Riesz pyramid that we pro-

posed in Chapter 6 accelerates the computational time of the PbEVMM

method. On the other hand, the local Riesz pyramid locally processes an

input video with square grid subsets as Eq. (6.8), and thus it causes discon-

tinuous boundaries of PbEVMM. As one possible approach to this issue, we

can mitigate the discontinuous boundaries by using 2D Gaussian smoothing.

However, we need to propose a radical way of overcoming this issue in the

future. Moreover, this method implicitly assumes that subtle motions to be

revealed will stay in the same local image areas over all time frames, in other

words, objects do not move largely. Thus, this method cannot be easily used

in combination with the EVAM [9] method and our JAEVAM method, which

are superior to ignore large motions of objects in a video. Therefore, we need

to develop a method where the local image areas to be processed are adap-

tively determined by each time frame.

• Multimodal Magnification. Similar to EVM, there are also many research

of revealing essential property hidden in some data, such as audio signal and

text. Therefore, we are expecting that the combination of those research can
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improve each other’s accuracy and reveal essential property hidden in the in-

put data more clearly. For example, sound-source enhancement is one of the

popular research tasks in audio signal processing. This research aims to en-

hance and reveal a target audio signal from input audio signals by using, e.g.,

beamforming [63], independent component/vector/low-rank matrix analysis

[64, 65, 66, 67, 68], time-frequency masking [69], and deep-learning [70, 71].

Therefore, we consider that EVM can be combined with this research through

signal processing or deep learning manner to improve each other’s accuracy

and enhance/reveal target image or audio signals hidden in the input signal

data. Additionally, textual enhancement is a common tool used to facilitate

users’ attention and/or awareness for the specific purpose of the text, e.g.,

technical documentation and second language development [72]. This re-

search enhances the appearance of specific words (or sometimes sentences)

in a document by, e.g., bold-facing, underlining, capitalizing, italicizing, col-

oring, using different fonts, and different sizes. Therefore, we consider that

the enhanced textural information can be the clue to detect target signals in the

EVM algorithm, or, the EVM result can be the clue to identify target words of

textual enhancement. On the basis of the above research combination, we, in

closing, propose a new research concept called “multimodal magnification”.

We expect this concept to reveal essential property hidden in the input mul-

timedia data among, e.g., image signal, audio signal, and text information,

more clearly by utilizing those data similarity, mutual information, and so on

through signal processing or deep learning techniques.

The methods we proposed in this dissertation can be used for various practical

applications. For example, it has been said that the EVM methods can potentially

be used to analyze structural integrity of buildings, bridges, and car-engines via re-

vealing their subtle vibrations. However, it becomes more practical by our methods
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in terms of robustness to contamination of large motions of objects (Chapter 4) and

that of photographic subtle noise (Chapter 5), or fast computational time (Chap-

ter 6). Moreover, we believe that our methods’ robustness to the disturbances in a

video has opened a new practical applications of contactless vital-sign monitoring

via camera in the wild, e.g., medical field, law enforcement, and disaster relief.
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