
Optimization of Circuit Transformation and Scheduling

in Quantum Compilers

（量子コンパイラーにおける回路変換とスケジューリングの最適化）

March 2021

Toshinari Itoko

Optimization of Circuit Transformation and Scheduling

in Quantum Compilers

Toshinari Itoko

Degree Programs in Systems and Information Engineering

University of Tsukuba

March 2021

Abstract

Rapid progress in quantum technology in this decade has dramatically increased the

coherence time of qubits (quantum bits) and the fidelity of operations on qubits. Although

currently available quantum computers are noisy and intermediate in scale, it is believed

that they will be used in some specific applications such as quantum chemistry, machine

learning, optimization, and sampling in the near future.

Along with progress in quantum computing hardware, development of the software

stack has also become more active. A quantum compiler, which translates a quantum

program into a sequence of control instructions, is one of the most essential software

components to provide a human-friendly programming interface for quantum algorithms.

In quantum compilers, optimizing the output instructions is very important: For noisy

quantum computers, it increases the probability of completing all the operations before any

qubit decoheres, yielding computational results with higher fidelity. Even for fault-tolerant

quantum computers, optimization increases the throughput.

In this thesis, we address two important optimization tasks in quantum compilers:

quantum circuit mapping and quantum circuit scheduling. We provide their formulations as

classical optimization problems considering commutation between quantum gates, which are

not fully considered in previous studies. We also provide exact and heuristic algorithms for

solving them. We examine how considering gate commutation in our algorithms improves

the quality of solutions by computational experiments in practical settings.

The thesis is organized as follows. After reviewing studies on quantum compilers, we

consider the problem of mapping quantum circuits to quantum computers, whose operations

are limited by their coupling architecture, with as few additional gates as possible. We

propose exact and heuristic algorithms for quantum circuit mapping, which use gate

commutation rules and a gate transformation rule of Bridge gate. We compare these

algorithms with the state-of-the-art algorithms by computational experiments with circuits

of a commonly used benchmark dataset. Next, we consider the problem of scheduling

operations in a given circuit with the shortest total execution time. We demonstrate

that quantum circuit scheduling can be seen as an optimization problem only when we

consider gate commutation and can be interpreted as a special type of job-shop problem.

We provide Constraint Programming and Mixed Integer Programming formulations and

show how solving circuit scheduling independently improved the schedule length through

experiments with real circuits and a compiler.

We believe that our algorithms are useful in practical quantum compilers and the

developed techniques provide new insight into optimization in quantum compilers. We

hope that they will be helpful to advance software stack development and improve the

utility of quantum computers.

i

謝辞(Acknowledgements)

数多くの方々の支えと励ましのお蔭で私はこの博士論文を完成させることができました。
ここに謝意を表したいと思います。
まず初めに、指導教員の久野誉人教授に心より御礼申し上げます。量子回路の最適化と

いう専門外の応用を含む研究課題に取り組む私を快く研究室に受け入れて指導くださった
ことに深く感謝いたします。副査をお引き受けくださった亀山幸義教授、繁野麻衣子教授、
中井央准教授、佐野良夫准教授にも御礼申し上げます。
共同研究者でありまた同僚でもある今道貴司氏、ルディー・レイモンド氏の両名には、

ほぼ全ての論文執筆に際して、まるで研究室の先輩のように的確なアドバイスをいただき、
いくら感謝しても感謝しきれないほどです。本当にありがとうございました。

I would like to express my gratitude to Dr. Dmitri Maslov and Dr. Ali Javadi-Abhari

for number of helpful comments and suggestions. I am also thankful to Lauren Capel-

luto, Thomas Alexander, Naoki Kanazawa, Andrew W Cross, Atsushi Matsuo, and all

members in IBM Quantum team, who gave me useful feedback on the research projects,

which this dissertation based on.

久野・佐野研究室の方々にも感謝いたします。コロナ禍で直接お会いできませんでした
が、オンラインで若い才気に触れることができて刺激になりました。IBM東京基礎研究所
の方々にも感謝いたします。特に私のもう一つの研究室とも言える量子チームのメンバー
からはいつも温かい励ましをいただきありがとうございました。また就職しながらの博士
課程修学にあたって全面的に支援くださった研究所の所長・副所長に御礼申し上げます。
さらに研究に行き詰まった際の憩いの場を提供してくださった研究所の豆部・カメラ部の
方々にも感謝いたします。
最後に、私の家族、特に妻の絵美と三人の子どもたちに感謝します。お陰さまでこの研

究に専念しまた挫けず完遂することができました。ありがとう。

This page is mainly written in Japanese.

ii

Contents

1 Introduction 1

1.1 Quantum Computer . 1

1.2 Quantum Compiler . 2

1.2.1 Quantum Circuit Model . 2

1.2.2 Optimization of Quantum Circuits 3

1.3 Overview of this Thesis . 4

2 Optimization Tasks in Quantum Compilers 5

2.1 Quantum Circuit Synthesis . 5

2.2 Quantum Circuit Mapping . 7

2.3 Quantum Circuit Scheduling . 8

3 Quantum Circuit Mapping 9

3.1 Overview . 9

3.2 Motivation . 11

3.3 Problem Formulation . 12

3.4 Algorithms . 13

3.4.1 Exact Algorithm . 14

3.4.2 Heuristic Algorithm . 16

3.5 Experiment . 17

3.5.1 Comparison to other Formulations 17

3.5.2 Comparison with other Heuristic Algorithms for Larger Circuits . . 18

3.6 Related Work . 20

3.7 Summary . 21

4 Quantum Circuit Scheduling 22

4.1 Overview . 22

4.2 Problem . 23

4.2.1 Quantum Circuit Scheduling . 23

4.2.2 Job-shop Problem and its Disjunctive Graph Representation 24

4.2.3 Disjunctive Graph Representation of Quantum Circuit Scheduling . 26

4.3 Formulation . 27

iii

4.3.1 Constraint Programming Formulation 28

4.3.2 Mixed Integer Programming Formulation 28

4.4 Experiment . 29

4.4.1 Common Experimental Settings . 29

4.4.2 Improvement by Considering Gate Commutation 29

4.4.3 Performance Variation by Optimization Level of Previous Task . . . 30

4.5 Related Work . 32

4.6 Discussion . 33

4.7 Summary . 34

5 Conclusion 35

A Appendix 38

Appendix 38

A.1 Construction of dependency graph . 38

A.2 Experimental comparison of formulations with standard circuits 38

A.3 HEFT algorithm for quantum circuit scheduling 39

iv

List of Figures

1.1 Diagram representation of a quantum circuit 3

2.1 Coupling graphs for different five-qubit systems 7

3.1 Example of input circuit and coupling graph of circuit mapping 9

3.2 Supplementary gates to be used in circuit mapping 10

3.3 Quantum circuit with three layers (left) and its dependency graphs (right) . 11

3.4 Mapped circuits with two SWAP gates (left) and one SWAP gates (right) . 11

3.5 Standard commutation rules of quantum gates 12

3.6 Overview of our algorithms for Minimum CNOT Gate Mapping (MCGM) . 13

3.7 Blocking gates in dependency graph . 14

4.1 Diagram representation of a quantum circuit 23

4.2 How gate commutation affects to quantum circuit scheduling 24

4.3 Disjunctive graph representation of a job-shop problem 25

4.4 Two solutions to the job-shop problem in Fig. 4.3 25

4.5 Disjunctive graph representation of a quantum circuit scheduling problem . 27

v

List of Tables

3.1 Comparison of averages of optimal numbers of additional SWAP and Bridge

gates of our formulation and those of fixed-layer and standard-DAG formu-

lation for two sets of 10 random circuits with five or six qubits. 18

3.2 Comparison of numbers of additional SWAP and Bridge gates in mappings

with our proposed heuristic algorithm, its original one without Bridge gates,

as well as QRAND and ZPW for circuits with 10 to 16 qubits from RevLib

benchmark. 19

4.1 Comparison of makespans obtained by the formulation based on standard

DAG and those based on extended DAG for 16 circuits from the RevLib

benchmark. 30

4.2 Difference in improvement rates of makespans from scheduling with standard

DAG compared to those with extended DAG using CP solver after applying

a naive gate decomposition or optimized gate decomposition. 31

A.1 Comparison of optimal numbers of additional SWAP and Bridge gates of

our formulation and those of fixed-layer and standard-DAG formulation

for ten RebLib benchmark circuits with five qubits under ibmqx4 coupling

architecture. 39

A.2 Makespans and their improvement rates from scheduling with standard DAG

compared to those with extended DAG using HEFT algorithm or CP solver

after applying a naive gate decomposition or optimized gate decomposition. 41

vi

Chapter 1

Introduction

1.1 Quantum Computer

A quantum computer is a device that processes quantum information, using quantum-

mechanical phenomena such as superposition and entanglement. It usually stores informa-

tion within qubits (quantum bits), carries out computation by applying unitary operations

on qubits, and obtains computational results by observing the state of qubits. Since the

concept of quantum computing was suggested by Richard Feynman [1] and the solution to

a toy problem with a quantum algorithm was found by David Deutsch [2] in the early 1980s,

various quantum algorithms have been proposed: prime factorization [3], search-based

algorithms [4], and linear systems of equations [5] (refer to [6] for more information). These

quantum algorithms potentially offer significant advantages over their classical counterparts,

but most of them are meant to be run on fault-tolerant quantum computers that include

error correction mechanisms. Unfortunately, no fault-tolerant quantum computer has

yet been realized. However, recent progress in quantum technology in this decade has

dramatically increased the coherence time of qubits and the fidelity of operations on qubits.

For example, in 2016, IBM made a 5-qubit quantum computer publicly available via a cloud

platform [7] and offered a 65-qubit quantum computer to private users in 2020. Although

currently available quantum computers are noisy and have only dozens of qubits, it is

expected that they can be used in some specific applications, such as quantum chemistry,

machine learning, optimization, and sampling, in the near future [8].

There are many candidate technologies for physically implementing a quantum com-

puter, including nuclear magnetic resonance (NMR), trapped-ion, and superconduction [9].

The first successful experiment implementing a quantum computer was based on NMR

technology, which is used to control ensembles of nuclear spins in a single molecule as a

qubit [10]. Although NMR quantum computers with up to 7 qubits were built, the technical

difficulty of further scale-up was revealed [11]. In contrast, two other types of quantum

computers are rapidly progressing. A trapped-ion quantum computer uses the electron or

nuclear energy states of ions trapped using electromagnetic fields as qubits and manipulate

them via optical excitation using lasers. As of 2020, trapped-ion quantum computers with

1

at least 10 qubits have been developed by Honeywell and IonQ and made available via

cloud platforms such as Azure Quantum [12] and Amazon Bracket [13]. A superconducting

quantum computer uses the discrete Cooper-pair charge states on a superconducting tunnel

junction, called a Josephson junction, as a qubit and manipulates it by microwave pulses.

As of 2020, superconducting quantum computers with no less than 28 qubits has been

developed by Google, IBM, and Rigetti, and made available via APIs of quantum SDKs

such as Cirq [14], Qiskit [15] and Forrest [16]. In this thesis, we focus on superconducting

quantum computers as target devices for compilation.

1.2 Quantum Compiler

Along with the progress in quantum computing hardware, software stack development has

also become more active. Various software architectures for quantum computing have been

proposed [17, 18, 19, 20, 21, 22] and many development tool kits for quantum programming

have been provided [14, 15, 16, 23, 24, 25, 26, 27].

A quantum compiler (i.e., a compiler for quantum computers) is one of the most

important software components. It translates a quantum program into a sequence of

control instructions supported by the target quantum computer. It is essential for quantum

computer users to run their algorithms without handwriting control instructions of the

computing device. Other important components include simulators and verifiers [28]. In

this thesis, we consider compilers for noisy quantum computers and do not consider software

modules specialized for error correction, which can be seen as an independent module to

be attached later.

1.2.1 Quantum Circuit Model

Throughout this thesis, we assume a quantum program is provided in the form of a quantum

circuit, which is a mathematical abstraction. The quantum circuit model is one of the most

commonly used for quantum computation and was originally developed in the analysis of

computability [29] and complexity [30] of quantum computation. A quantum circuit is a

sequence of operations applying to a subset of qubits. Many of them are unitary operations

called gates. A common non-unitary operation is measurement, which observes a qubit and

collapses its state into binary state, |0〉 or |1〉. We refer to a gate or a measurement as an

operation in this thesis. A quantum circuit can be represented by a list of operations with

its acting qubits: for example, [H(1),CX (1, 2), X(2)]. Here, H(1) denotes a Hadamard

gate acting on qubit 1, CX (1, 2) denotes a Controlled-NOT (or CNOT) gate acting on

control qubit 1 and target qubit 2, and X(2) denotes a NOT (or Pauli X) gate acting on

qubit 2. A quantum circuit is often depicted in a circuit diagram, as shown in Fig. 1.1.

Single-qubit gates, such as a Hadamard gate (denoted as H) or a Pauli X gate (denoted as

X), are depicted as boxes labeled with their names. A CNOT gate is depicted with vertical

lines whose ends are • and ⊕ denoting the control and target qubits, respectively. These

2

q1 H •
q2 X

Figure 1.1: Diagram representation of a quantum circuit

gates act on qubits each represented by a horizontal line in the figure, and are applied

from left to right.

In this thesis, we focus on the combinatorial structure of quantum circuits and largely

disregard what the circuits compute (refer to [11], for example, for details of quantum

computing). In addition, considering quantum circuits as inputs, we focus on the parts of

compilers that do not depend on programming language, although that is an interesting

research topic itself and, in fact, many languages for quantum programming are proposed

(e.g., [31, 32, 33, 34, 35, 36, 37]; refer to [38, 39] for more information).

1.2.2 Optimization of Quantum Circuits

There are three major tasks in quantum compilation (discussed in details in Chapter 2):

• Synthesis: Generating a quantum circuit from a given specification provided as a

reversible Boolean function, a unitary matrix, etc.

• Mapping: Transforming a quantum circuit into an equivalent one satisfying con-

straints on the qubit topology of a target quantum computing device.

• Scheduling: Scheduling operations in a quantum circuit while mapping each opera-

tion into control instructions of a target hardware in order to determine its processing

time.

These are naturally optimization tasks, since there exist many possible synthesized, mapped,

or scheduled circuits for a given input, and the best among them should be chosen.

Optimizing the output circuit is very important. For noisy quantum computers, it increases

the probability of completing all the operations before any qubit decoheres, yielding

computational results with higher fidelity. Even for fault-tolerant quantum computers, it

increases the throughput by decreasing the execution time of each operation on the error

correction code.

Comparing with the synthesis task, the mapping and scheduling tasks are not thoroughly

studied yet, especially those in compilation for superconducting quantum computers, whose

technologies have progressed most recently. This thesis work aims to provide better methods

(formulations and algorithms) for optimizing those mapping and scheduling tasks, assuming

superconducting quantum computers as compilation targets.

3

1.3 Overview of this Thesis

In this thesis, we address two optimization problems that arise in quantum compilation:

quantum circuit mapping and quantum circuit scheduling. We provide their formulations

as classical optimization problems taking into account gate commutation, which has not

been fully considered in previous studies. We also provide exact and heuristic algorithms

for solving them. We examine how the consideration of gate commutation in our algorithms

improves the optimality of solutions by computational experiments in practical settings.

The thesis is organized as follows. In Chapter 2, we briefly review the three major

tasks in quantum compilation: synthesis, mapping and scheduling of quantum circuits.

In Chapter 3, we consider quantum circuit mapping, which is a problem of mapping

quantum circuits to noisy quantum computers, whose operations are limited by their

coupling architecture, with as few additional gates as possible. We propose exact and

heuristic algorithms for the circuit mapping, which use gate commutation rules and a gate

transformation rule of Bridge gate. We compare them with the state-of-the-art circuit

mapping algorithms by computational experiments with circuits of a commonly used

benchmark dataset.

In Chapter 4, we consider quantum circuit scheduling, which is a problem of scheduling

operations in a given circuit with the shortest total execution time. We demonstrate that

the problem can be seen as an optimization problem only when we consider the gate

commutation, and it can be interpreted as a special type of job-shop problem. We provide

Constraint Programming and Mixed Integer Programming formulations and show how

solving quantum circuit scheduling independently improves the schedule length through

experiments with real circuits and a compiler.

4

Chapter 2

Optimization Tasks in Quantum

Compilers

In this chapter, we briefly review the three major tasks in quantum compilation: synthesis,

mapping and scheduling of quantum circuits (listed again as below).

• Synthesis: Generating a quantum circuit from a given specification provided as a

reversible Boolean function, a unitary matrix, etc.

• Mapping: Transforming a quantum circuit into an equivalent one satisfying con-

straints on the qubit topology of a target quantum computing device.

• Scheduling: Scheduling operations in a quantum circuit while mapping each opera-

tion into control instructions of a target hardware in order to determine its processing

time.

These are naturally optimization tasks, since there exist many possible synthesized, mapped,

or scheduled circuits for a given input, and the best among them should be chosen. Although

this thesis mainly focuses on the mapping and scheduling tasks, a review on the synthesis

task is included in this chapter for the sake of completeness.

2.1 Quantum Circuit Synthesis

Quantum circuit synthesis is the task of generating a quantum circuit composed of ele-

mentary gates (or basis gates) from a given specification or decomposing complex gates in

a given circuit into basis gates. The basis gates are carefully chosen depending on what

kind of quantum computer we consider as a target. If we think about a noisy quantum

computer, which can be seen as an analog computer, we often use an infinite number of

basis gates (i.e., we include gates with real parameters in basis gates). In contrast, if we

think about a fault-tolerant quantum computer, which is essentially a digital computer,

we use a finite set of gates as basis gates. If there are any gates with real parameters in a

5

given circuit, they must be approximately decomposed using the finite basis gates with

arbitrary precision; such decomposition methods are well studied (e.g., [11, 40, 41, 42]).

Problems in quantum circuit synthesis can be classified according to the kind of

specification given as input.

When an arbitrary unitary matrix is given, the problem is called quantum-logic synthesis

or unitary synthesis, which is a theoretically important problem. In general, any unitary

operation over n qubits can be represented by a 2n × 2n unitary matrix. There is a large

variety of research on unitary synthesis, such as combination with mapping tasks [43, 44] and

optimization of T-gates preparing compilers for fault-tolerant quantum computers [45, 46].

Synthesis of an arbitrary unitary matrix from one-qubit gates and CNOT gates is especially

well studied, and the upper bound on the number of CNOT gates has been improved [47, 48].

However, the size of the input matrix and the number of required gates grow exponentially

with n, and thus it is not practical to assume unitary matrices as the input for large n.

Consequently, thinking about restricted class of input makes sense in practice as follows.

When considering a reversible logic function as input, the problem is called reversible

logic synthesis. The logic reversibility of computation was proved first in terms of a Turing

machine [49] and then in terms of circuits [50]. As reversible logic synthesis has applications

other than quantum circuit synthesis, there is a large amount of research on it from various

points of view, such as how to represent and store the input logic function, what objective

to be optimized, and what algorithm to be used. Much of the research up to 2013 was

surveyed by Saeedi et al. [51], and there has been more recent progress in asymptotically

optimal synthesis [52, 53] and in ancilla-free synthesis of Hidden Weighted Bit function [54].

For the synthesis of an arbitrary reversible logic function, an exponential number of

basis gates are still required in the worst case. Therefore, synthesis of arithmetic operations,

such as multiplication or Galois Field arithmetic, as well as that of uniquely quantum

operations, such as Quantum Fourier Transformation (QFT), has a rich history of research.

In fact, there are many studies even on addition, one of the most fundamental arithmetic

operations [55, 56, 57, 58, 59]. Synthesis of specific operations is more restricted but

frequently used in various applications such as quantum factoring (e.g., [60, 61, 62, 63]).

Decomposition of multiple-control Toffoli (MCT) gates is one of the most well-studied

topics (e.g., [64, 65, 66, 67]).

Another important problem in quantum circuit synthesis is state preparation, which

generates a quantum circuit to create a target quantum state from a specific quantum

state [68]. Recently, state preparation and unitary synthesis have been considered as special

cases of a generalized problem called isometry synthesis [69].

Simplification of quantum circuits is a sub-task that can be considered as post-processing

of the synthesis task. Several methods specialized for it are proposed (e.g., [70, 71]).

6

2.2 Quantum Circuit Mapping

Quantum circuit mapping is the task of transforming a given quantum circuit into an

equivalent quantum circuit so that it satisfies the physical constraint of a target quantum

computer, called connectivity constraint or coupling constraint, which restricts application

of two-qubit gates to specific pairs of qubits. This restriction is common in some type of

quantum computers, such as superconducting quantum computers. A coupling constraint

can be represented by an undirected graph, called a connectivity graph or coupling graph,

whose nodes represent qubits and edges represent qubit pairs such that two-qubit gates

are physically operable. Two examples of coupling graphs with five qubits are shown in

Fig. 2.1. In both examples, a CNOT gate between qubits 1 and 2—i.e., CX (1, 2)—is

q1 q2 q3

q4

q5

q1 q3 q4

q5

q2

Figure 2.1: Coupling graphs for different five-qubit systems

operable but CX (1, 5) is not operable. The sparser the coupling graph becomes, the more

additional gates are required to satisfy the constraint, which lessens the fidelity of the

computational outcome. Therefore, quantum circuit mapping is a critical task that affects

the actual performance of quantum computers with coupling constraint [72, 73].

Quantum circuit mapping has various names in the literature [74]: quantum circuit

mapping/transformation, mapping/compiling quantum circuits to nearest neighbor archi-

tecture, or qubit routing/allocation. In this thesis, we call the whole problem quantum

circuit mapping. We call the sub-problem of finding the best initial layout of qubits qubit

assignment and call the sub-problem of finding the best way to resolve the violation of a

coupling constraint under a given initial qubit layout qubit routing.

The content of quantum circuit mapping changes depending on which type of quantum

computer we consider as a target. For trapped-ion quantum computers, we do not need

to consider any mapping task because all qubits are usually coupled, i.e., the coupling

graph is perfect. However, in order to apply two-qubit operations, qubits must be moved

next to each other. That makes the succeeding task, scheduling, very complex [75, 76, 77].

NMR quantum computers are able to operate any pair of two qubits as well, but the cost

(operation time) for each qubit pair differs. Therefore, it makes sense to look for the best

qubit layout. That means quantum circuit mapping coincides with qubit assignment for

NMR quantum computers [78].

There are many variations in the formulation of quantum circuit mapping, and a few

of them as decision problems are shown to be NP-complete [78, 79, 80]. We refer to more

related work on quantum circuit mapping in Section 3.6.

7

2.3 Quantum Circuit Scheduling

Quantum circuit scheduling is the task of determining the execution start time for each

operation in a given quantum circuit while mapping each operation into a corresponding

sequence of control instructions such as microwave pulses. The literature includes various

ways of handling the scheduling task. Some consider it as the next task (or a post-processing

task) of the mapping task, as in this thesis [81, 82], while others do not distinguish the

mapping task but rather consider it as integrated task with the mapping task [83, 84]. In

the case of trapped-ion quantum computers, qubits must be “carried” to a place where they

are operated on demand, so the scheduling task becomes more complex and is different from

those considered in this thesis (e.g., [75, 76, 77]). Although quantum circuit scheduling is

well-defined without depending on the choice of basis gates, it is becoming common to use

basis gates implemented as single control instructions rather than composite ones [82, 85].

As post-processing of the scheduling task, a method for filling the idle time with special

pulse sequences is proposed to reduce noise and improve the fidelity of computation

results [86]. We refer to more related work on quantum circuit scheduling in Section 4.5.

In this thesis, we assume the mapping from an operation to a sequence of control

instructions is given. Although the optimization of control instructions is beyond the scope

of quantum compilers, it is an important topic in quantum system control and there is

a large amount of research, which cannot all be listed here, ranging from pulse shape

optimization [87, 88, 89] to system model learning [90].

8

Chapter 3

Quantum Circuit Mapping

3.1 Overview

To run a quantum algorithm on a quantum computing device, the quantum algorithm must

be translated into a series of operations on qubits, i.e. a quantum circuit. A set of quantum

gates that consists of arbitrary one-qubit rotation gates and two-qubit controlled-NOT (or

CNOT) gates is universal: any unitary operation can be realized by a combination of such

basic gates. However, CNOT gates cannot be applied on all pairs of qubits of a target

device if the device has limited qubits connectivity or coupling constraint. In this case, an

input circuit must be transformed into an output circuit that obeys the limitation of the

device. The transformation can further limit the usability of the device, and therefore, it is

one of the most essential tasks in quantum compilation. We call this task quantum circuit

mapping and address it in this chapter1. The task deals with mapping qubits in the given

virtual circuit to the actual qubits of a target computing device and inserting necessary

additional gates in order to satisfy the coupling constraint.

b1 •
b2 • Rz •
b3 •
b4

(a) Quantum circuit

q1 q2 q3

q4

(b) Coupling graph

Figure 3.1: Quantum circuit (left), and coupling graph of a quantum processor that
limits two-qubit operations (right). The problem is finding a mapping of {bi} to {qj} and
additional gates so that the circuit can be run in the processor with minimum cost.

Figure 3.1(a) is an example of an input circuit that uses a single-qubit gate, called the

phase-shift gate (denoted as Rz), and CNOT gates (depicted with vertical lines whose

1Most of the contents in this chapter was published in [91] (its preliminary version was presented in [92])

9

b1 × b2 • •
=

b2 × b1 •

(a) SWAP gate

• • •
= • •

(b) Bridge gate

Figure 3.2: Supplementary gates to be used in circuit mapping

ends are • and ⊕ denoting the control and target qubits, respectively). Figure 3.1(b) is an

example of a coupling graph, which is a graph representing on which pairs of qubits CNOT

gates can be physically operated. Currently available noisy quantum computers, such as

IBM Quantum Systems [7], are limited by their coupling architecture in the sense that

not all pairs of qubits can be directly manipulated due to hardware issues. If we map the

qubit bi (as numbered in the circuit) in Fig. 3.1(a) to qi (as numbered in the hardware) for

i = 1, . . . , 4, the CNOT gate from b3 to b4 is not directly possible. This can be resolved

by swapping control and/or target qubits with their neighboring qubits until they are

adjacent in the coupling graph. Such swapping can be carried out by so-called SWAP gates

(Fig. 3.2(a)). Another way to run a CNOT gate between non-adjacent qubits is replacing

it with a sequence of CNOT gates. This composite gate is called a Bridge gate and is

composed of four CNOT gates as shown in Fig. 3.2(b). In either case, we need to add

supplementary gates to the original circuit, resulting in more noise and extra computational

time since CNOT gates are noisy and take significantly longer computational time than

single-qubit gates. Thus, minimizing additional gates in the circuit mapping is important

as it translates into minimizing the increase of time and noise cost to run the circuit.

In this chapter, we discuss the drawback of resolving the two-qubit operations layer

by layer in many existing approaches and show the importance of taking into account

gate commutation rules in Section 3.2. We provide the formulation of quantum circuit

mapping as an optimization problem with commutation rules and transformation rules of

running CNOT gates on non-adjacent qubits by choice of replacing with Bridge gates or

inserting SWAP gates in Section 3.3. Although SWAP and Bridge gates seem to require

different numbers of CNOT gates (three as in Fig. 3.2(a), and four as in Fig. 3.2(b)), a

Bridge gate results in running the CNOT gate, whereas a SWAP gate only swaps its two

qubits. Thus, the total number of additional CNOT gates to run a CNOT gate between

an unconnected qubit pair is the same for both SWAP and Bridge gates. However, the

SWAP gate permutes the ordering of the logical qubits, whereas the Bridge gate does not.

Depending on the sequence of gates afterwards, the selection of SWAP and Bridge gates

can affect the possibility of further reducing the additional CNOT gates in the mapping.

We provide an exact algorithm for quantum circuit mapping and a heuristic algorithm

for qubit routing, either of which leverages both of commutation rules and the Bridge

gate in Section 3.4. We show experimental results that confirm our heuristic algorithm

outperforms the state-of-the-art routing algorithms in Section 3.5.

10

3.2 Motivation

Many previous studies, such as [93, 94, 95], assumed a fixed-layer formulation, where the

layers of a quantum circuit are given as input and all gates in a layer must be mapped,

and when necessary resolved with SWAP gates, before any gate in the next layer. A layer

is defined as a set of CNOT gates that can be executed in parallel (see the left part of

Fig. 3.3).

layer 1 layer 2 layer 3

b1 •CX 1 CX 4

b2 •CX 3
Rz •

b3 •CX 2

b4

(b1, b2)

(b3, b4)

CX1

CX2
(b2, b3)

CX3

(b2, b1)

CX4

(b2)

Rz

(a) Standard DAG

(b1, b2)

(b3, b4)

(b2, b1)

(b2, b3)CX1

CX2

CX3

CX4

(b2)

Rz

(b) Extended DAG

Figure 3.3: Quantum circuit with three layers (left) and its dependency graphs (right)

q1 •CX 1 CX 4

q2 × •CX 2 CX 3 × •
q3 × • Rz ×
q4

q1 •CX 1 CX 4

q2 • × •CX 2 CX 3

q3 × • Rz

q4

Figure 3.4: Mapped circuits with two SWAP gates (left) and one SWAP gates (right)

The drawback of the fixed-layer approach can be seen from the circuit in Fig. 3.1(a)

when the coupling graph is as shown in Fig. 3.1(b). As shown in Fig. 3.4, the number of

additional SWAP gates by the fixed-layer formulation is two, but it is one if we allow to

be changed the order of gates by applying the standard commutation rules of quantum

gates illustrated in Fig. 3.5. The reason is as follows. For the circuit in Fig. 3.3, by the

Rz–control rule (Fig. 3.5(a)), we can move the CNOT gate CX 4 to the left so that it

precedes Rz. Now, the CNOT gates CX 3 and CX 4 share the control qubit, and by the

control–control rule (Fig. 3.5(b)) we can move CX 4 to the left. As a result, when bi is

mapped to qi, CX 1 and CX 4 can be applied before swapping b2 and b3 to run CX 2, CX 3,

and CX 5. This is not possible for the circuit with fixed layers in Fig. 3.3 because CX 4 in

layer 3 cannot precede CX 2 in layer 2.

Because the partial order of gates in a circuit is naturally modeled with a directed

acyclic graph (DAG), some studies [15, 96] have considered trivial commutation between

consecutive gates that do not share qubits. For example, Fig. 3.3(a) is a DAG representation

of the circuit in the left part of Fig. 3.3. We call this the standard-DAG formulation.

Although it is more flexible than the fixed-layer one, it still may fall into suboptimal

11

Rz • • Rz

=

(a) Rz–control

• • • •
=

(b) Control–control

• •
=

Rx Rx

(c) Rx–target

• •
• = •

(d) Target–target

Figure 3.5: Standard commutation rules of quantum gates

solutions: it leads to two additional SWAP gates for the circuit in Fig. 3.3.

To overcome this suboptimality problem, we propose a novel formulation taking into

account gate commutation rules in combination with the concept dependency graph (or

extended-DAG) that extends the standard-DAG, as discussed in the following sections.

For example, the dependency graph of the circuit in Fig. 3.3 is shown in Fig. 3.3(b).

3.3 Problem Formulation

We propose a formulation of quantum circuit mapping that takes into account gate

commutation and transformation rules to minimize the number of additional CNOT gates.

We first describe the notations used hereafter.

We use the term logical qubits to represent the qubits in the original quantum circuit

(denoted by B). This is not to be confused with the term logical qubits in the context

of quantum error correction. We use the term physical qubits to represent the qubits of

the quantum hardware (denoted by Q). For example, B = {bi} and Q = {qj} denote

logical qubits and physical qubits in Fig. 3.1(a) and 3.1(b), respectively. Similarly, we call

the input circuit the logical (quantum) circuit and its corresponding output of quantum

circuit mapping the physical (quantum) circuit. The physical circuit is equivalent to its

logical circuit in terms of computation but may contain additional gates due to coupling

constraints. A coupling graph C = (VC , EC) is a graph with physical qubits as nodes

VC(= Q) and coupled physical qubits as edges EC . We assume that |B| = |Q| by adding

ancillary qubits to B if |B| < |Q|.
A mapping of logical qubits to physical qubits can be seen as a permutation function

B → Q, which we call a layout. A logical/physical circuit can be seen as a list of gates

acting on logical/physical qubits. We say a physical circuit L̂ complies with a coupling

graph C if, for any CNOT gate in L̂, its control and target qubits are adjacent in C. A

mapping of a logical circuit L to a quantum computer with a coupling graph C can be

12

Initial layout
(b1, b2, b3, b4)
→ (q1, q2, q3, q4)

CNOT(q1, q2)
SWAP(q2, q3)
CNOT(q2, q4)
CNOT(q3, q2)

H(q3)
SWAP(q1 , q2)
CNOT(q3 , q2)

Logical quantum circuit Physical quantum circuit
CNOT(b1, b2)
CNOT(b3, b4)
CNOT(b2, b3)

H(b2)
CNOT(b2, b1)

=

Coupling graph

Commutation rules

Input Output

b1 •CX1 CX4

b2 •CX3

H •
b3 •CX2

b4

Figure 1: Logical quantum circuit

1

q1 (b1) • ⇥ (b3)

q2 (b2) ⇥ • ⇥ (b1)

q3 (b3) ⇥ • H • (b2)

q4 (b4) (b4)

Figure 1: Physical quantum circuit

1

Dependency graph

(b1, b2)

(b3, b4)

(b2, b1)(b2, b3)

CX1

CX2

CX3 CX4

(b2)

H=

Figure 3.6: Overview of our algorithms for Minimum CNOT Gate Mapping (MCGM)

represented by an initial layout l0 of qubits and a physical circuit L̂ that complies with C.

The objective of quantum circuit mapping is to find a cost-optimal physical circuit of a

logical circuit. In this chapter, we consider the number of additional CNOT gates as the

cost of mapping because they are usually much slower and noisier to run than single-qubit

gates.

The problem of finding a corresponding physical circuit of a logical circuit with the

minimum number of CNOT gates is formalized as follows.

Minimum CNOT Gate Mapping (MCGM) Given a logical circuit L, the coupling

graph C of a quantum hardware, and a set of commutation rules R, find an initial layout

l0 and an equivalent physical circuit L̂ with the fewest CNOT gates that complies with C.

Note that fixed-layer and standard-DAG formulations in many previous work can

be regarded as special cases of MCGM: the former with R = ∅, and the latter with R
containing trivial commutation between consecutive gates that do not share qubits. In the

next section, we propose algorithms that utilize the commutation rules in Fig. 3.5 for R
in MCGM because they are complete for rules involving two consecutive gates from the

universal gate set {Rx, Rz, CNOT}, and the transformation rules of CNOT gates with

SWAP or Bridge gates. Here Rx and Rz denote single-qubit rotation (respectively, around

the x-axis and z-axis) gates. Without loss of generality, we assume any input circuit is

composed of gates from the universal gate set.

3.4 Algorithms

We show how to solve the Minimum CNOT Gate Mapping (MCGM) with an exact

algorithm based on dynamic programming (DP), and a heuristic algorithm based on a

look-ahead scheme. These two algorithms complement each other. The exact algorithm

can obtain the optimal solutions but can only be used for small circuits because of its

long computational time. The heuristic algorithm can obtain good solutions for a larger

circuit within a reasonable amount of computational time. The building blocks of the

algorithms are dependency graphs and blocking gates, as explained below. Figure 3.6

shows an overview of our algorithms for MCGM.

13

3

4

5
7

8
6

9

1

2

Resolved gates: {1, 2}

Blocking gates: {3, 4}

Unresolved gates: {3, 4, 5, 6, 7, 8, 9}
Frontier

Figure 3.7: Blocking gates in dependency graph

Dependency Graph A dependency graph D = (VD, ED) is a DAG that represents the

precedence relation of the gates in an input circuit taking commutation rules into account.

The nodes VD correspond to the gates in the logical circuit, and the edges ED to the

dependencies in the order of gates. A gate gi must precede gj under the commutation

rules if and only if there exists a path from gi to gj on D. See Fig. 3.3 for examples of

dependency graphs: one for trivial commutation rules of gates that do not share qubits,

and the other for commutation rules in Fig. 3.5. The labels below a gate (node) in the

dependency graphs represent the logical qubits that the gate acts on, e.g., CX 1 acts on

(b1, b2).

We can construct a dependency graph D from a given logical quantum circuit straight-

forwardly as follows (see A.1 for the details). We check all pairs of the gates VD in the

circuit, and include an edge (gi, gj) in ED if the following conditions are satisfied: (1) gi

and gj share at least one logical qubit b, and (2) the set of gate symbols from gi to gj

on each shared b in the logical quantum circuit is not a subset of Rz, • (i.e, Rz gate and

control of CNOT gate) or a subset of Rx,⊕ (i.e., Rx gate and target of CNOT gate).

Blocking Gates Both exact and heuristic algorithms take the same strategy by resolving

the gates in the dependency graph D one by one. They maintain the progress by recording

blocking gates, which are defined as leading unresolved gates in D as shown in Fig. 3.7. For

given gates G (usually blocking gates), we define blocking gates from G for l by blocking

gates after running leading gates that comply with the coupling graph C repeatedly starting

from G under the layout l. At the beginning of mapping, the gates with no in-edges in D,

say G0, can be seen as blocking gates. For a given initial layout l, we define the initial

blocking gates for l (denoted by K0(l)) to be the blocking gates from G0 for l.

3.4.1 Exact Algorithm

We design an exact algorithm to solve MCGM based on DP. To achieve this, we define a

state similar to DP by (l,K), a pair of a layout l and blocking gates K.

A transition between a pair of states occurs when a SWAP or Bridge gate is inserted.

For example, let us consider the logical circuit and dependency graph as in Fig. 3.6 and

the coupling graph as in Fig. 3.1(b). Then, the blocking gates from {CX 1,CX 2} for an

initial layout l0 : (b1, b2, b3, b4) 7→ (q1, q2, q3, q4) is {CX 2}. This is because the leading CX 1

can be run, but CX 2 blocks the rest of the gates. If we choose the SWAP gate between

14

Algorithm 1 DP-based exact algorithm for MCGM

IN: A dependency graph D = (VD, ED) with logical qubits B, a coupling graph C = (VC , EC)
with physical qubits Q

OUT: The minimum number of SWAP and Bridge gates in mapping of D to C
1: S ← {(l,K0(l)) | layout l from B to Q} // active states
2: f(l,K)← 0 for all initial state (l,K) ∈ S
3: while True do
4: S′ ← ∅ // next active states
5: for state (l,K) in S do
6: for edge e in EC do
7: l′ ← layout after swapping e of l
8: K ′ ← blocking gates from K for l′

9: if f(l′,K ′) is not yet defined then
10: f(l′,K ′)← 1 + f(l,K)
11: S′ ← S′ ∪ {(l′,K ′)}
12: end if
13: if K ′ = ∅ then return f(l′,K ′)
14: end for
15: for CNOT gate g (acting on (bi, bj)) in K do
16: if distance between l(bi) and l(bj) on C = 2 then
17: l′ ← l // no change in layout
18: K ′ ← blocking gates from K \ {g} for l
19: Do the same procedure between line 9 and 13
20: end if
21: end for
22: end for
23: S ← S′

24: end while

b2 and b3, SWAP(b2, b3), (or equivalently SWAP(q2, q3) under l0), it changes the state

(l0, {CX 2}) to another state ((b1, b2, b3, b4) 7→ (q1, q3, q2, q4), {CX 4}). Alternately, we can

choose the Bridge gate from q3 = l0(b3) to q4 = l0(b4) via q2 to run CX 2 = CNOT(b3, b4),

where for simplicity we denote the mapping of a logical qubit bi to a physical qubit qj

under layout l0 as qj = l0(bi). The transformation of CNOT into a Bridge gate changes

the state (l0, {CX 2}) to another state (l0, ∅). That is, the transformation does not change

the layout but updates the blocking gates {CX 2} to ∅. After CX 2 is run as the Bridge

gate, all the remaining gates can be run under the same layout l0. This example shows

how Bridge gates are important to realize better mapping algorithms.

Let f(l,K) denote the minimum number of additional SWAP and Bridge gates required

to reach a state (l,K) starting from any initial state. Here an initial state is a state defined

by (l,K0(l)) for an initial layout l. The minimum number of SWAP and Bridge gates in a

mapping is thus the minimum value of f(l, ∅) for all possible ls. This can be computed as

follows. The algorithm first sets 0 to f of the initial states then checks the states that can

be reached with one SWAP or Bridge gate (and set 1 to fs of the states that have not yet

seen), those reached with two SWAP and/or Bridge gates (and set 2 to the newly checked

states), and so on. The algorithm terminates when it reaches a state whose set of blocking

gates is empty. Note that each state is activated at most once because of the minimality of

15

Algorithm 2 Look-ahead heuristic algorithm for MCGM

1: C: a coupling graph, D: a dependency graph
2: Initialize blocking gates K as the sources in D and layout l as the given initial layout.
3: loop
4: Run the gates complying with C and update K.
5: if K = ∅ then terminate
6: Compute the swap score for each edge in C.
7: Let (qs, qt) be the edge with the highest swap score.
8: Let (bs′ , bt′) 7→ (qs, qt) be the current mapping in l.
9: Let S ⊆ K be CNOT gates whose acting qubits has distance two in C for l.

10: if S is not empty and the highest swap score < 1 then
11: Transform some g ∈ S acting on (qs, qt) in l into Bridge gate between (qs, qt).
12: continue
13: end if
14: if the swap of the mapping at (qs, qt) in l decreases

∑
g∈K SP(g, l) then

15: Swap the mapping, i.e., (bs′ , bt′) 7→ (qt, qs).
16: else
17: Choose any ĝ ∈ K and add swap gates that strictly decrease c(l, {ĝ}) until ĝ is resolved.
18: end if
19: end loop

f . See Algorithm 1 for details. The optimal gate list L̂ can be obtained by recording the

gates resolved by each of the swaps that update f at line 10 and traversing from the last

state in the opposite direction.

3.4.2 Heuristic Algorithm

Our look-ahead heuristic algorithm takes into account not only the blocking gates but also

the other unresolved gates in the selection of a qubit pair to be swapped. The look-ahead

algorithm is different from those based on the fixed-layer formulation [94, 97] in the sense

that it does not require any definition of layers.

The idea of the look-ahead mechanism is as follows. With regards to a layout l, for each

unresolved two-qubit gate g we can compute the length of the shortest path between the two

qubits of g as the minimal number of SWAP gates required to apply g. Thus, the number

of SWAP gates of the layout l is proportional to the total length of the shortest paths of all

unresolved two-qubit gates. Slightly modifying the layout l with swapping (qi, qj), denoted

as l̃(qi, qj), may decrease the length of the shortest paths at some unresolved two-qubit

gates; but it may also increase those at other unresolved gates. The look-ahead heuristic

prefers modifying the layout so that the total length of the shortest paths is reduced.

The pseudocode of the look-ahead heuristic algorithm is shown in Algorithm 2, where

the lines from 9 to 13 are for considering Bridge gates. Like the exact one, the heuristic

algorithm also maintains a layout l and blocking gates K; however, unlike the exact one, we

assume that an initial layout is given. The heuristic algorithm updates K at the beginning

of each loop. If K is empty, it terminates. Otherwise, it selects a qubit pair to be swapped

on the basis of its swap score, i.e., the difference between the sum of the length of the

shortest paths before and after swapping the qubit pair. Note that the selected qubit pair

16

should be an edge of the coupling graph C. Let U be a subset of unresolved CNOT gates

including the current K and SP(g, l) be the length of the shortest path from the two qubits

of g with regards to the layout l. The (swap) score of a qubit pair (qi, qj) ∈ EC with l and

U is defined as follows:

score((qi, qj), l, U) = c(l, U)− c(l̃(qi, qj), U),

c(l, U) =
∑
g∈U

γ(g) SP(g, l),

where l̃(qi, qj) denotes the layout after swapping (qi, qj) from l and γ(g) denotes the weight

of the shortest path of the gate g. To prioritize swapping a qubit pair reducing shortest

paths of blocking gates and other unresolved gates close to them, we let γ(g) = 1 for g ∈ K
and γ(g) = αd(K,g) (0 < α < 1) for g /∈ K, where d(K, g) denotes the longest path length

among the paths from g′ ∈ K to g. At each loop of Algorithm 2, SWAP gates are added

at either line 15 or at line 17. The former always decreases the length of the shortest paths

of blocking gates, while the latter always decreases the size of K. This guarantees that the

algorithm terminates after a finite number of loops.

The algorithm can be extended to handle Bridge gates by defining the score for replacing

a non-adjacent CNOT with a Bridge gate. Since a Bridge gate does not change the layout,

we can define score((qi, qj), l, U) = 1 for any (qi, qj) such that (qi, qj) = (l(bi′), l(bj′)) for a

CNOT gate acting on (bi′ , bj′) and the distance between (qi, qj) is two. Such extension are

depicted at the lines from 9 to 13 in Algorithm 2.

3.5 Experiment

We conducted two sets of experiments: comparing the effectiveness of our formulation

against that of formulations with fewer commutation rules and one without Bridge gates,

and evaluating the performance of our heuristic algorithm against those of state-of-the-art

algorithms. Both were conducted on a laptop PC with an Intel Core i7-6820HQ 2.7 GHz

and 16 GB memory.

3.5.1 Comparison to other Formulations

In the first set of experiments, we compared the optimal numbers of additional gates

with our formulation to those with the other formulations; two formulations with fewer

commutation rules, i.e. the fixed-layer and standard-DAG, and one without Bridge gates.

We obtained the optimal numbers of additional gates by applying our exact algorithm

discussed in Section 3.4.1. To obtain the optimal numbers for the formulations with fewer

commutation rules, we added extra edges to the dependency graphs so that they represent

the fixed layers and standard-DAG, and then we applied our exact algorithm to them. We

used two sets of 10 random circuits with five or six qubits. Each circuit contained 100

17

Table 3.1: Comparison of averages of optimal numbers of additional SWAP and Bridge
gates of our formulation (in the Proposed column) and those of fixed-layer and standard-
DAG formulation for two sets of 10 random circuits with five or six qubits. The average
numbers of Bridge gates are stated in (·). The No-Bridge column lists the optimal numbers
of SWAP gates from the original formulation [92]. (|B|: Number of qubits used in circuit)

|B| Coupling Fixed-layer Std-DAG Proposed No-Bridge
5 ibmqx4 9.4 (3.4) 8.9 (2.6) 7.2 (1.1) 7.4
5 LNN 22.1 (6.3) 21.8 (7.0) 19.5 (4.4) 21.2
6 2× 3 11.8 (1.7) 11.7 (2.0) 10.1 (1.4) 10.7
6 LNN 28.2 (6.3) 27.5 (8.0) 23.7 (5.3) 26.4

gates in which each gate was either a Rz, H, or CNOT gate with probability of 25%, 25%,

or 50%, respectively. Here H is a single-qubit gate called the Hadamard gate.

Table 3.1 compares additional gates for our formulation and the other formulations.

Recall that each of SWAP and Bridge gate introduces three extra CNOT gates as in

Fig. 3.2(a) and 3.2(b), so the total number of additional CNOT gates is exactly three

times the number of additional SWAP and Bridge gates. By comparing our formulation

(Proposed) with the standard-DAG formulation (Std-DAG), we observed that Proposed

had fewer numbers of additional gates. We certainly succeeded in reducing the numbers

of additional SWAP and Bridge gates from standard-DAG formulation, which is slightly

better than fixed-layer formulation (Fixed-layer) as expected, for each of the coupling

architectures. By comparing Proposed with the original formulation without Bridge gates

(No-Bridge), we can see that Bridge gates indeed improve optimality of the formulation.

It is not surprising that the consideration of Bridge gates works best in LNN coupling

architecture, which have leaves in the coupling graph. Unfortunately, the runtime of the

exact algorithm grows exponentially with the number of qubits and gates; while all runs

for 5-qubit instances are within 1 minute, but those for 6-qubit instances are around 12

minutes.

We experimented with random circuits to see clearly the difference in formulations

and coupling architectures simultaneously in Table 3.1. We also conducted another set

of experiments with standard circuits on a fixed coupling constraint (see Appendix A.2

for the details), and confirmed that there exist some instances in which our formulation is

strictly better than the other formulations.

3.5.2 Comparison with other Heuristic Algorithms for Larger Circuits

In the second set of experiments, we evaluated the heuristic algorithm against two state-of-

the-art heuristic algorithms. One is a randomized heuristic algorithm (called QRAND)

implemented in Qiskit, which is a Python software development kit for quantum program-

ming [15]. The other is an A∗-based heuristic search algorithm (called ZPW) proposed by

Zulehner et al. [94]. Their C++ implementation is available to the public, including their

test circuit data, which originated from the RevLib benchmarks [98]. From their data,

18

Table 3.2: Comparison of numbers of additional SWAP and Bridge gates in mappings with our
proposed heuristic algorithm (Proposed), its original one without Bridge gates (No-Bridge), as
well as QRAND and ZPW for circuits with 10 to 16 qubits from RevLib benchmark. The fewest
(i.e. best) numbers are in bold. The compositions of the numbers of SWAP and Bridge gates of
Proposed are listed in the (#SWAP+Bridge) column. The runtime of Proposed are listed in the
Time column. (|B|: Number of qubits used in circuit)

Circuit name |B| #gates QRAND ZPW No-Bridge Proposed (#SWAP+Bridge) Time [s]
mini alu 305 10 173 80 46 40 41 (28+13) 0.5
qft 10 10 200 82 40 33 33 (33+0) 1.9
sys6-v0 111 10 215 116 67 46 34 (22+12) 0.6
rd73 140 10 230 100 58 49 34 (23+11) 0.6
ising model 10 10 480 18 14 12 12 (12+0) 0.7
rd73 252 10 5,321 2,054 1,541 1,212 999 (644+355) 20.1
sqn 258 10 10,223 4,060 2,867 2,254 1,875 (1,108+767) 57.5
sym9 148 10 21,504 8,001 5,907 4,456 3,770 (1,856+1,914) 237.5
max46 240 10 27,126 10,833 8,012 5,905 4,932 (2,573+2,359) 469.8
wim 266 11 986 385 269 225 155 (65+90) 4.8
dc1 220 11 1,914 721 548 446 329 (154+175) 6.4
z4 268 11 3,073 1,200 907 718 600 (364+236) 11.2
life 238 11 22,445 9,181 7,209 5,264 4,539 (2,638+1,901) 268.8
9symml 195 11 34,881 14,470 10,682 8,124 6,630 (3,909+2,721) 684.1
sym9 146 12 328 173 85 66 51 (33+18) 0.9
cm152a 212 12 1,221 423 341 269 175 (76+99) 4.3
sqrt8 260 12 3,009 1,263 956 728 587 (377+210) 11.8
cycle10 2 110 12 6,050 2,701 1,856 1,518 1,192 (725+467) 27.9
rd84 253 12 13,658 5,817 4,271 3,271 2,784 (1,777+1,007) 108.9
rd53 311 13 275 162 98 77 68 (53+15) 1.9
ising model 13 13 633 28 28 18 18 (18+0) 1.1
squar5 261 13 1,993 797 605 422 446 (285+161) 6.0
radd 250 13 3,213 1,347 951 721 623 (382+241) 11.3
adr4 197 13 3,439 1,529 1,044 806 675 (422+253) 12.6
root 255 13 17,159 7,172 5,417 4,070 3,516 (2,160+1,356) 152.4
dist 223 13 38,046 16,548 11,930 9,326 7,879 (4,952+2,927) 809.2
0410184 169 14 211 88 76 44 45 (35+10) 0.6
sym6 316 14 270 123 70 65 58 (41+17) 0.8
cm42a 207 14 1,776 677 494 402 321 (207+114) 8.9
cm85a 209 14 11,414 4,906 3,598 2,694 2,370 (1,395+975) 75.8
clip 206 14 33,827 14,845 11,011 8,187 6,855 (4,185+2,670) 624.1
sao2 257 14 38,577 16,974 12,511 9,188 7,479 (4,691+2,788) 780.2
rd84 142 15 343 192 103 67 56 (39+17) 1.0
misex1 241 15 4,813 1,844 1,520 1,216 1,067 (602+465) 21.8
square root 7 15 7,630 3,243 2,369 1,504 1,546 (1,393+153) 46.7
ham15 107 15 8,763 3,635 2,552 1,979 1,685 (980+705) 50.0
dc2 222 15 9,462 4,112 2,933 2,326 1,798 (1,099+699) 58.5
co14 215 15 17,936 8,423 6,566 4,318 3,294 (1,780+1,514) 183.9
cnt3-5 179 16 175 69 54 38 35 (23+12) 0.5
cnt3-5 180 16 485 183 124 98 88 (49+39) 3.0
qft 16 16 512 296 117 82 82 (82+0) 4.8
ising model 16 16 786 20 24 18 18 (18+0) 1.3
inc 237 16 10,619 4,351 3,138 2,542 2,098 (1,198+900) 68.3
mlp4 245 16 18,852 8,104 6,212 4,547 3,988 (2,495+1,493) 179.7

19

we chose 44 circuits with #qubits (|B|) ≥ 10 and #gates ≤ 50, 000 for the experiment.

For all the circuits, we computed the mappings to the ibmqx3 coupling architecture [99].

We implemented our algorithm on top of Qiskit 0.6. We set the parameter α = 0.5 and

restricted the g of d(K, g) to the gates within 10 steps from K.

The proposed heuristic algorithm outperformed QRAND and ZPW for all instances.

See Table 3.2 for all results. The numbers of additional SWAP and Bridge gates in the

mappings with the heuristic algorithm (Proposed) decreased by 10.0–72.3% (Avg. 53.2%)

and 10.9–49.8% (Avg. 34.6%) from those of QRAND and ZPW, respectively. Even

without Bridge gates (No-Bridge), in the mappings with commutation rules the numbers

of additional SWAP gates decreased by 10.0–72.3% (Avg. 45.5%) and 7.1–42.1% (Avg.

23.8%) from those of QRAND and ZPW, respectively. From the columns of Proposed and

No-Bridge, we can confirm that Bridge gates can find better mappings in almost all cases

except for a few small circuits. The numbers of additional gates decreased by 14.2% on

average. This implies, in spite of larger search space due to the consideration of Bridge

gates, the proposed heuristic algorithm can efficiently explore it to find better solutions.

All runs of the heuristic algorithm were less than 15 minutes.

Since we needed to give the initial layout l0 for our algorithm and QRAND, we used

the trivial layout l0 : (b1, . . . , b|Q|) 7→ (q1, . . . , q|Q|). The number of additional gates may

possibly be further reduced by finding a good initial layout for the heuristics. For our

algorithm, we added a post-processing to remove leading useless SWAP gates by changing

the given initial layout. The reverse traversal technique by Li et al. [96] can be applied

instead of the post-processing, and to find a better initial layout.

3.6 Related Work

There have been many studies of quantum circuit mapping, e.g., those dealing with the

mapping on 1D-chain (known as linear nearest neighbor (LNN)) topology [100, 101, 102,

103, 104, 105, 106], those on 2D-grid nearest neighbor topology [97, 107, 108, 109], and,

like ours, those on the general topology [83, 93, 94, 95, 96, 110, 111]. However, to the best

of our knowledge, those studies either did not fully consider the gate commutation rules or

did not consider transformation rules other than SWAP gates. As shown in Section 3.2, by

fixing the layers, previous studies, such as on mixed integer programming (MIP) [93], A∗

search [94], and dynamic programming (DP) [95], can fail to obtain optimal solutions.

To overcome this suboptimality problem, we propose a novel formulation taking into

account gate commutation rules in combination with the concept dependency graph that

extends the standard-DAG, as discussed in Section 3.4. The dependency graphs with

fewer commutation rules than those in Fig. 3.5 were first considered by Matsuo et al. [100].

Venturelli et al. [83] considered commutation rules specific to their circuits of interest

and proposed a solution based on a temporal planner; however, they did not provide

systematic methods exploiting the rules, unlike our approaches. Recently, Li et al. [96]

20

independently proposed a heuristic algorithm very similar to ours. To be precise, although

they do not explicitly consider commutation rules in their heuristic, it is easy to modify

their algorithm to take into account our proposed dependency graph. However, like other

mapping methods, they only use SWAP gates in mapping.

In addition, we consider Bridge gate as well as SWAP gate as a transformation rule used

in mapping. There are only a few studies considering Bridge gate (aka, chain template) in

qubit routing, e.g. [47, 95]. Although their main purpose was for the synthesis of quantum

circuit from a unitary matrix, Shende et al. [47] hinted that quantum circuit mapping

can be solved with only chain templates. Siraichi et al. [95] provided exact and heuristic

algorithms using both SWAP and Bridge gates, but they reported the implementation of

their heuristic did not perform well for non-synthetic circuits, which may be caused by not

using the dependency graph.

3.7 Summary

We addressed the problem of mapping quantum circuits to noisy quantum computers,

whose operations are limited by their coupling architecture, with as few additional gates as

possible. Our proposed solution to the mappings is to use gate commutation rules and gate

transformation rules in the form of SWAP and Bridge gates. Many previous studies did

not consider such gate commutation rules or Bridge gates to reduce additional gates in the

mappings. We developed exact and heuristic algorithms that take advantage of such rules.

Comparing them with the state-of-the-art circuit mapping algorithms, we demonstrated

that our proposed algorithms can find better mappings with fewer additional gates for the

circuits of a commonly used benchmark dataset.

21

Chapter 4

Quantum Circuit Scheduling

4.1 Overview

Quantum compilers take a quantum circuit and generate a corresponding sequence of

control instructions that are executable on the target hardware. For example, in the case

of quantum computers using superconducting qubits, a quantum operation is compiled

into several controls (e.g., a microwave pulse) for a certain period of time. In general, any

given quantum operation has its own processing time and occupies its acting qubits for

the duration as a computational resource. For this reason, scheduling, through which the

execution start time of each quantum operation is determined without any overlap, is an

essential task in quantum compilation. We call this task quantum circuit scheduling. In

this chapter, we aim to minimize the overall execution time. In the context of scheduling

tasks across multiple resources (qubits, in the case of circuit scheduling), the time between

the start of the first task and the end of the final task across all resources is known as the

makespan of the schedule. Schedule length, overall execution time, and makespan are used

interchangeably in this work.

Most of the previous studies on quantum compilers have handled circuit scheduling

within the context of its before and after tasks, e.g., qubit routing and control instruction

mapping [81, 82, 83, 84]. However, in practice, decomposing an entire compilation job

into independent tasks is becoming more common in the software architecture of quantum

compilers, similar to that of classical compilers, e.g., [15]. Therefore, we focus on the

following research question: How much can we optimize the resulting schedule in quantum

circuit scheduling by itself?

In this chapter1, we examine quantum circuit scheduling and analyze its theoretical

properties and practical usefulness. Our main contributions are as follows.

• We show that quantum circuit scheduling obtains greater degrees of freedom for opti-

mizing the resulting schedule by further considering the commutativity of particular

quantum operations (Section 4.2.1).

1Most of the contents in this chapter was published in [112].

22

• We demonstrate that quantum circuit scheduling can be reduced to a special type

of job-shop problem that has a disjunctive graph representation (Section 4.2.3) so

that we can formulate quantum circuit scheduling as Constraint Programming and

Mixed Integer Programming, which are common techniques for the job-shop problem

or scheduling in general (Section 4.3).

• We demonstrate through experiments with two common benchmark sets that the

consideration of commutativity in scheduling reduces the schedule length by up to

7.36% (Section 4.4).

4.2 Problem

4.2.1 Quantum Circuit Scheduling

We define quantum circuit scheduling as the problem of finding a schedule for a given

quantum circuit. A quantum circuit is a sequence of quantum operations. Many of them are

unitary operations called gates. Each of the gates has acting qubits and its own processing

time. A quantum circuit is given as a sequence: e.g., [H(1),CX (1, 2), X(2)]. Here, H(1)

denotes a Hadamard gate acting on qubit 1, CX (1, 2) denotes a Controlled-NOT (or

CNOT) gate acting on control qubit 1 and target qubit 2, and X(2) denotes a NOT gate

acting on qubit 2. Quantum circuits are typically depicted in a circuit diagram, as shown

in Fig. 4.1. For simplicity, we assume all of the operations have the same unit processing

Qubits

Operations

1

2

1 2 3

Figure 4.1: Diagram representation of a quantum circuit

time in Fig. 4.1. If we ignore commutation between gates, the gate dependency is linear,

i.e., H(1) must precede CX (1, 2) and CX (1, 2) must precede X(2), and we obtain a trivial

schedule whose length equals the sum of the three gates, as shown in the top of Fig. 4.2.

We call the graph representing the dependencies among gates in a circuit the dependency

graph. In contrast, if we consider that CX (1, 2) and X(2) commute, we have a different

dependency graph: H(1) must precede CX (1, 2), but there is no restriction on X(2), so

we can obtain a shorter schedule, as shown in the bottom of Fig. 4.2. This is compelling

evidence that commutation rules should be considered when scheduling circuit operations.

A schedule is defined by the start times of the operations in a given circuit. Any schedule

must satisfy two elementary constraints: precedence and non-overlap. The precedence

constraint restricts the execution order of operations to obey a partial order represented

23

H

X

H

X

q1:

q2:
time

H
CNOT

X

q1:

q2:
time

H
CNOT

X

X commutes with CNOT

Without commutation:

With commutation:

Figure 4.2: How gate commutation affects to quantum circuit scheduling

as a dependency graph. The non-overlap constraint allows only the processing of one

operation on a qubit at a time.

Generally, the supported basic operations and the processing times depend on the

target hardware. Hereafter, we assume that basic operations are given and that all circuits

have already been decomposed into them. We also assume that each processing time of

the basic operations is fixed and given as a parameter, while we allow it varies depending

on qubits to which the operation applies. The dependency graph of a provided quantum

circuit varies depending on which commutation rules are considered. Taking these details

into account, we formally define a quantum circuit scheduling problem as follows.

Quantum Circuit Scheduling Given a quantum circuit as a sequence of basic opera-

tions, each processing time of each operation, and a set of commutation rules between basic

operations, find a schedule that satisfies precedence and non-overlap constraints with the

minimum makespan.

4.2.2 Job-shop Problem and its Disjunctive Graph Representation

We review a basic version of the job-shop problem as follows. Let J = {J1, . . . , Jn} be a set

of n jobs and M = {M1, . . . ,Mm} be a set of m machines. Each job Jj has an operation

sequence Oj to be processed in a specific order, called the precedence constraint. We denote

the k-th operation in Oj by Ojk. Each operation Ojk requires exclusive use of a specific

machine for its processing time pjk, called the non-overlap constraint. A schedule is a set

of start (or completion) times for each operation tjk that satisfies both constraints. The

objective of the job-shop problem is minimization of the makespan.

The job-shop problem is often represented by a disjunctive graph G = (V,C∪D), where

• V is a set of nodes representing the operations Ojk,

• C is a set of conjunctive (directed) edges representing the order of the operations in

any job, and

24

• D is a set of disjunctive edges representing pairs of operations that must be processed

on the same machine.

For each node, the processing time and the required machine of its corresponding operation

is attached. Conjunctive edges C represent the precedence constraint and disjunctive edges

D represent the non-overlap constraint. Note that disjunctive edges whose direction is

fixed by some conjunctive edges can be omitted. That means any disjunctive edge can

be removed if there exists a path from one end of the edge to the other on a conjunctive

graph (V,C). Figure 4.3 shows an example of a disjunctive graph representing the job-shop

problem. The operation O11 must be processed in machine M1 and it takes 1 time unit.

The disjunctive edge (O12, O13) is omitted since its direction is fixed by the conjunctive

edge at the same place.

𝑂"" 𝑂"# 𝑂"$

𝑂#" 𝑂##

𝑀",𝑝"" = 1 𝑀#,𝑝"# = 1 𝑀#,𝑝"$ = 1

𝑀",𝑝#" = 2 𝑀#,𝑝## = 1

Conjunctive edge
Disjunctive edge

Figure 4.3: Disjunctive graph representation of a job-shop problem

On the basis of this disjunctive graph representation, the job-shop problem can be seen

as a problem of determining the direction of disjunctive edges while keeping the resulting

graph acyclic. This is equivalent to determining the ordering of the operations processed

on the same machine, and such ordering yields a unique schedule, called a semi-active

schedule [113], by sequencing operations as early as possible. Figure 4.4 shows two

Machine

𝑀"	:

𝑀$:

𝑂""

time
1 2 30

𝑂$"
𝑂"$ 𝑂"& 𝑂$$

4

𝑂"" 𝑂"$ 𝑂"&

𝑂$" 𝑂$$

𝑂"" 𝑂"$ 𝑂"&

𝑂$" 𝑂$$

Machine

𝑀"	:

𝑀$:

𝑂""

time
1 2 30

𝑂$"
𝑂"$ 𝑂"&𝑂$$

4 5

Solution A:

Solution B:

Figure 4.4: Two solutions to the job-shop problem in Fig. 4.3

solutions to the job-shop problem defined by the disjunctive graph depicted in Fig. 4.3. As

shown, a different selection of the direction of the disjunctive edges results in a different

solution. Among the operations {O12, O13, O22}, we cannot select {(O22, O12), (O13, O22)}

25

because it produces a cycle O12 → O13 → O22 → O12. In Solution A, the directed edge

(O11, O21) determines the order of operations processed on machine M1, and {(O12, O22),

(O13, O22)} determine that on machine M2.

4.2.3 Disjunctive Graph Representation of Quantum Circuit Scheduling

Technically, quantum circuit scheduling can be seen as a special type of job-shop problem

with the following properties: (1) one job has one operation, (2) a precedence constraint

is given as a partial ordering among all operations instead of total ordering of operations

per job, and (3) multiple machines (i.e., qubits) can be occupied by a single operation

at the same time. Those properties preserve enough conditions to represent the problem

by a disjunctive graph G = (V,C ∪D). For property (1), we need to define the problem

on operations without jobs, but this does not change the fact that nodes V represent

operations. For properties (2) and (3), we need to modify the definition of conjunctive

edges C and disjunctive edges D, respectively as follows.

The circuit scheduling can be represented by a disjunctive graph G = (V,C ∪D), where

• V is a set of nodes representing the quantum operations in a given circuit,

• C is a set of conjunctive edges representing dependencies among the operations, i.e.,

edges of the dependency graph, and

• D is a set of disjunctive edges representing pairs of operations that act on the same

qubit and (possibly) commute with one another.

For each operation (i.e., node) i ∈ V , the processing time pi and the acting qubits are

attached. Note that conjunctive graph (V,C) is a directed acyclic graph (DAG) given

as a dependency graph. Conjunctive edges C and disjunctive edges D still represent

the precedence constraint and non-overlap constraint, respectively. It is known that the

dependency graph for any circuit can be computationally constructed under several popular

commutation rules [91]. When provided with the dependency graph of a quantum circuit,

the disjunctive graph representation can be computationally constructed. In fact, it is

possible to define disjunctive edges by all the pairs of nodes that acting on the same

qubit. This definition is redundant, but there is no problem with including edges (pairs of

operations) that do not commute with one another. The point is that it must include all

of the commuting pairs. Starting from the redundant edges, we can define the minimal

disjunctive edges by removing edges that have a path on the conjunctive graph. However,

this comes at a significant computation cost. There is an in-between definition that picks

up operations acting on any qubit and splits them into sets of operations commuting each

other within each of the sets. We used this definition for the experiments discussed in

Section 4.4. Although this cannot provide the minimal edges because the operations within

a set may not commute each other when considering operations acting on the other qubits,

26

1 2 3

{1}, 𝑝! = 1 {1,2}, 𝑝" = 1 {2}, 𝑝# = 1

Conjunctive edge
Disjunctive edge

(a) Standard DAG

1 2

3

{1}, 𝑝! = 1 {1, 2}, 𝑝" = 1

{2}, 𝑝# = 1

(b) Extended DAG

Figure 4.5: Disjunctive graphs representing a quantum circuit scheduling problem for
different dependency graphs

it has fewer edges than the most redundant definition and requires less computation cost

than the minimal definition.

With the disjunctive graph representation of the circuit scheduling, we take the commu-

tation of operations into account on the basis of the difference of the dependency graph. We

call the dependency graph that considers only the trivial commutation between operations

not sharing their acting qubits standard DAG and the dependency graph that considers

commutation rules in addition to the trivial ones extended DAG.

Figure 4.5 shows disjunctive graphs representing two circuit scheduling problems that

have the same operations but different dependency (conjunctive) graphs (standard DAG

and extended DAG). In the case of extended DAG, we can select the order of O2 and O3,

while in standard DAG, all the orders among operations are fixed.

It generally holds that if we consider a standard DAG, there are no disjunctive edges,

i.e., D = ∅. This means there is a unique semi-active schedule because each ordering of the

operations processed on the same qubit is uniquely determined by the conjunctive DAG.

However, if we consider an extended DAG, we have fewer edges in C and some edges in D.

This creates the room for selecting a better ordering of the operations processed on the

same qubit, i.e., optimizing the schedule.

4.3 Formulation

We provide a Constraint Programming (CP) formulation and a Mixed Integer Programming

(MIP) formulation for the circuit scheduling problem defined in the previous section. By

solving them, we can find the optimal solution of circuit scheduling and analyze how much

we can improve the resulting schedule. In this section, we assume that the disjunctive

graph representation of circuit scheduling G = (V,C ∪D) for a given circuit has already

been constructed.

27

4.3.1 Constraint Programming Formulation

Let xi be an interval variable describing the start and end time of operation i ∈ V , whose

duration is fixed to its processing time pi. Using functions commonly supported by CP

solvers, e.g. interval var, quantum circuit scheduling is formulated as a CP:

minimize max{end of(xi) | ∀i ∈ V }
subject to end before start(xi, xj), ∀(i, j) ∈ C,

no overlap(xk, xl), ∀(k, l) ∈ D,
xi ≡ interval var(duration = pi), ∀i ∈ V.

Here end of(xi) takes the end time of xi, so the objective is the minimization of the

makespan. The constraint end before start(xi, xj) means the end time of xi must

precede the start time xj , so it represents the precedence constraint. The constraint

no overlap(xk, xl) means the interval xk must not overlap the interval xl, so it represents

the non-overlap constraint. Note that, for any operation pair (i, j) 6∈ D, the prece-

dence constraint guarantees no overlap between them. All of end of , end before start,

no overlap, and interval var are supported in the IBM ILOG CP Optimizer.

4.3.2 Mixed Integer Programming Formulation

Let xi be a variable representing the start time of operation i ∈ V and pi be a constant

parameter representing its processing time. Let t be a makespan of the schedule defined by

x. Let ykl be an indicator (Boolean) variable that takes True (1) if operation k precedes

operation l and False (0) if l precedes k. Using these, quantum circuit scheduling is

formulated as a MIP:

minimize t

subject to xi + pi ≤ xj , ∀(i, j) ∈ C,
ykl ⇒ xk + pk ≤ xl, ∀(k, l) ∈ D,
¬ykl ⇒ xl + pl ≤ xk, ∀(k, l) ∈ D,
xi + pi ≤ t, ∀i ∈ V,
0 ≤ xi ∈ R, ∀i ∈ V,
ykl ∈ {0, 1}, ∀(k, l) ∈ D.

The inequality xi +pi ≤ xj represents the precedence constraint. The two inequalities using

⇒ represent the non-overlap constraint. Note that the constraints with indicator variables

y can be translated into linear constraints by applying the so-called the big-M technique.

However, recent MIP solvers have the capability to handle such indicator constraints very

well, so we leave the formulation with indicator variables.

28

4.4 Experiment

We conducted two experiments. In the first one, we evaluate how much the consideration

of commutation between operations improves the schedule in circuit scheduling. In the

second one, we investigate how much the extent of improvement in scheduling can be

affected by the optimization level in a previous task.

4.4.1 Common Experimental Settings

Both of the experiments were conducted in a real compiling environment. As the target

quantum computing device for compilation, we used the ibmq johannesburg, which has 20

qubits (see [114] for the details). We implemented our scheduling algorithms within Qiskit

0.18.0 (Terra 0.13.0), which is an open-source quantum computing software development

framework [15].

We first transpiled all of the circuits to make them executable on the ibmq johannesburg,

i.e., we solved the circuit mapping problem to map given circuits onto the device topology.

For this, we used the “transpile()” function in Qiskit and set the ibmq johannesburg

backend, fixed the seed transpiler to 1, the optimization level to 2, and left the other

options as the default. During transpiling, all of the circuits were decomposed into the

basis gates {u1, u2, u3,CX }, which are elementary gates supported by the backend. Here

u1, u2, u3 are single-qubit gates and CX is a two-qubit gate. The execution time for each

gate (gate length) is provided as the backend properties. Note that it can differ depending

on which qubit(s) the gate acts on, e.g. the length of u3(1) can be different from that of

u3(2). We used those as of April 11, 2020.

We then applied our scheduling algorithms to the transpiled circuits. We used the real

processing time for each of the basis gates provided as backend properties. We considered

three commutation rules on the basis gates—u1(i)↔ CX (i, j), CX (i, j)↔ CX (i, k), and

CX (i, k)↔ CX (j, k)—in the construction of the extended DAGs for the transpiled circuits.

We used the IBM ILOG CP Optimizer and CPLEX 12.9.0 to solve the scheduling

problem based on the CP and MIP formulation described in Section 4.3, respectively.

4.4.2 Improvement by Considering Gate Commutation

In the first experiment, we quantified the significance of considering the commutation of

operations in circuit scheduling. Specifically, we evaluated the improvement by comparing

the best solutions (makespans) of the formulation constrained by standard DAG with those

by extended DAG as shown in Table 4.1.

For this experiment, we used quantum circuits from the test dataset provided by

Zulehner et al. [94], which originated from the RevLib benchmark [98]. We selected 16

circuits with 10–16 qubits and less than 1000 gates from among them. We used the

as-soon-as-possible heuristic scheduling algorithm implemented in Qiskit to find the unique

solutions from the standard DAG formulation (Std-DAG). We also used the CP solver with

29

Table 4.1: Comparison of makespans [dt] (1 dt = 2/9 ns) obtained by the formulation
based on standard DAG (Std-DAG) and those based on extended DAG (Ext-DAG) for 16
circuits from the RevLib benchmark. For the Ext-DAG formulation, the solutions by the
Constraint Programming solver with the time limit of ten seconds are listed. The Qubits
and Gates columns list the number of qubits and gates in the input circuits. The ∆ column
lists the improvement rate from Std-DAG to Ext-DAG.

Circuit name Qubits Gates Std-DAG Ext-DAG ∆

mini alu 305 10 173 24,940 24,308 2.53%
qft 10 10 200 24,358 24,074 1.17%
sys6-v0 111 10 215 30,604 30,114 1.60%
rd73 140 10 230 35,848 35,484 1.02%
ising model 10 10 480 4,210 4,210 0.00%
wim 266 11 986 141,914 138,658 2.29%
sym9 146 12 328 50,458 50,170 0.57%
rd53 311 13 275 40,420 40,164 0.63%
ising model 13 13 633 4,210 4,210 0.00%
0410184 169 14 211 40,356 39,074 3.18%
sym6 316 14 270 47,178 46,404 1.64%
rd84 142 15 343 39,812 38,490 3.32%
cnt3-5 179 16 175 19,630 19,366 1.34%
cnt3-5 180 16 485 69,854 68,326 2.19%
qft 16 16 512 50,674 50,088 1.16%
ising model 16 16 786 4,370 4,370 0.00%

a 10-sec time limit to find the best possible solutions from the extended DAG formulation

(Ext-DAG).

Looking at the ∆ column in Table 4.1, i.e., the improvement rates from Std-DAG

to Ext-DAG, we can see they were non-negative and varied depending on the circuit

structures from 0.00% to 3.32% (median 1.26%). These results demonstrate that the

commutation-aware formulation we proposed in Section 4.2.1 can improve the resulting

schedule length in a practical situation. Although they may look marginal, they may be

welcomed by those who have abundant time for compilation and need more optimization.

We also examined the MIP solver (with the same 10-sec time limit) to find solutions of

the Ext-DAG; however, all of the solutions were slightly worse or equal to those by the CP

solver. Hence, we omitted these results in Table 4.1. As for the solutions (i.e., makespans)

from the standard DAG formulation, we verified that those by the CP and MIP solvers

were exactly the same as those by the as-soon-as-possible heuristic scheduling algorithm

implemented in Qiskit as expected.

4.4.3 Performance Variation by Optimization Level of Previous Task

In the second experiment, we investigated how a previous task affects the solution quality in

the circuit scheduling task. To this end, as a previous task, we picked the gate decomposition

task that decomposes gates with three or more qubits into those with one or two qubits.

30

We changed the optimization level in the gate decomposition task and observed how it

affects the improvement rates of makespans from scheduling with standard DAG (Std-DAG)

compared to those with extended DAG (Ext-DAG), as shown in Table 4.2.

Table 4.2: Difference in improvement rates (∆ column) of makespans from scheduling with
standard DAG (Std-DAG) compared to those with extended DAG (Ext-DAG) using CP
solver after applying a naive gate decomposition or optimized gate decomposition.

Circuit name Naive gate decomposition Optimized gate decomposition
Std-DAG Ext-DAG ∆ Std-DAG Ext-DAG ∆

Mod 5 4 6,328 5,984 5.44% 6,016 5,578 7.28%
VBE-Adder 3 19,126 18,852 1.43% 11,416 11,148 2.35%
CSLA-MUX 3 22,238 21,438 3.60% 19,774 18,778 5.04%
RC-Adder 6 28,606 27,564 3.64% 20,408 18,906 7.36%
Mod-Red 21 33,160 32,348 2.45% 28,320 27,494 2.92%
Mod-Mult 55 13,942 13,740 1.45% 14,478 14,070 2.82%
Toff-Barenco 3 12,388 12,388 0.00% 4,812 4,812 0.00%
Toff-NC 3 9,108 9,108 0.00% 3,818 3,818 0.00%
Toff-Barenco 4 15,992 15,582 2.56% 9,006 8,678 3.64%
Toff-NC 4 12,272 11,834 3.57% 8,016 7,626 4.87%
Toff-Barenco 5 21,600 21,378 1.03% 19,424 19,138 1.47%
Toff-NC 5 13,536 12,984 4.08% 9,262 8,920 3.69%
Toff-Barenco 10 90,940 89,248 1.86% 59,282 57,282 3.37%
Toff-NC 10 43,156 42,546 1.41% 28,720 28,322 1.39%
GF(24)-Mult 33,160 32,492 2.01% 33,646 33,148 1.48%
GF(25)-Mult 37,948 36,480 3.87% 44,702 44,030 1.50%
GF(26)-Mult 63,856 61,870 3.11% 64,784 64,180 0.93%

For this experiment, we used 17 circuits from the test dataset provided by Nam et

al. [71]. To change the optimization level in the gate decomposition task, we used both

their input circuit data (with “ before” suffix in their file names) and output circuit data

after the heavy optimization proposed in [71] (with “ after heavy” suffix) as our input

circuits to be scheduled. Those correspond with the Naive gate decomposition column and

Optimized gate decomposition column, respectively. Note that, in the Naive case, gates are

decomposed by a simple rule-based algorithm implemented in Qiskit before scheduling. As

in the previous experiment, we used the as-soon-as-possible heuristic scheduling algorithm

implemented in Qiskit to find the unique solutions from the Std-DAG formulation and the

CP solver with a 10-sec time limit to find the best possible solutions from the Ext-DAG

formulation.

As shown in the two ∆ columns in Table 4.2, we can observe clear improvement from

Std-DAG to Ext-DAG no matter which gate decomposition algorithm we used before

circuit scheduling: Min: 0.00%–Median: 2.45%–Max: 5.44% (Naive) and Min: 0.00%–

Median: 2.82%–Max: 7.36% (Optimized). This again confirms that our commutation-aware

formulation proposed in Section 4.2.1 can improve the resulting schedule length in a practical

situation.

31

When we compare the improvement rates (∆ column) from scheduling after the naive

gate decomposition with those after the optimized gate decomposition in Table 4.2, there are

two key findings. First, they have a similar median: 2.45% (Naive) and 2.82% (Optimized).

This suggests that, on average, our commutation-aware scheduling can stably improve the

resulting schedule no matter how much circuits has been optimized in a previous task (at

least in the gate optimization task). Second, the improvement rates for each individual

circuit differs between Naive and Optimized. Specifically, they increase from Naive to

Optimized for ten circuits and decrease for five circuits. This suggests that the optimization

level of the previous task significantly affects the optimization gain in circuit scheduling.

Comparing the makespans in the Std- or Ext-DAG column under naive gate decompo-

sition with those under optimized gate decomposition in Table 4.2, we can see that they

decrease for 13 out of 17 circuits, as expected, but increase for four circuits. The latter

four exceptional cases stem from negative interference among optimization tasks before

scheduling, i.e., between gate decomposition and some tasks done within ‘transpile()‘ in

Qiskit, and they are not caused by any errors in the scheduling.

4.5 Related Work

The job-shop problem, also known as job shop scheduling, is a well known optimization

problem in computer science and operations research, and many variations of it have been

studied [115, 116]. See Section 4.2.2 for its definition. Algorithms to solve this problem

include exact ones such as branch-and-bound based on a Mixed Integer Programming

(MIP) formulation [117], heuristic ones such as shifting bottleneck [118], and meta-heuristic

ones such as simulated annealing [119]. In this chapter, we mainly focus on the exact

algorithm, as we want to determine the effect of optimizing quantum circuit scheduling.

Task scheduling, which is the scheduling of computational tasks on multiple classical

processors, has been extensively studied [120, 121]. A special type of task scheduling, DAG

(Directed Acyclic Graph) scheduling, which deals with heterogeneous processors [122, 123],

is most similar to quantum circuit scheduling, but it differs in the way that resource

constraints are handled. In DAG scheduling, every task can be executed on any processor

with a different cost, i.e., the resource constraint is soft, while in quantum circuit scheduling,

every quantum operation has fixed qubit operands that are not interchangeable, i.e., the

resource constraint is hard.

Quantum circuit mapping is a task that transforms a given circuit into an equivalent

circuit so that all two-qubit operations in it can be executed on limited pairs of qubits.

Schedule length can be approximated by circuit depth, which is the schedule length when

assuming all operations have the same unit processing time. Therefore, circuit mapping

with the objective of minimizing the circuit depth [93] or two-qubit gate depth [110, 124]

can be viewed as approximate circuit scheduling with circuit mapping. Although the

algorithms for this may be applicable to scheduling without circuit mapping, they provide

32

only approximate solutions, not the exact ones to circuit scheduling.

There are several studies on scheduling specialized for quantum computers based on

ion trap technology [75, 76, 77]. These works consider a combination of scheduling and

mapping under a hardware structure model, called macroblocks, and propose heuristic

algorithms to solve it.

Several studies have considered the commutation of quantum operations in schedul-

ing [81, 82, 83, 84]. Venturelli et al. [83] examined the scheduling of quantum operations as a

sub-problem of circuit mapping. They proposed an exact method using a temporal planner

and showed it works well for QAOA circuits, which have many commuting gates. Although

their method is applicable to circuit scheduling without circuit mapping, our methods

discussed in Section 4.3 are simpler and perform sufficiently well for the specific scheduling

problem considered in this chapter. Guerreschi and Park [81] proposed a two-step solution

that decomposes the problem with qubit routing and solves circuit scheduling (without

qubit routing) in the first step. They provide a list scheduling heuristic algorithm using

upward ranking but not any exact algorithm for scheduling. Other studies have considered

circuit scheduling as a subtask of circuit mapping [84] or control optimization [82]. While

they provide practical heuristic algorithms for solving the task that includes scheduling,

the exact algorithm for scheduling is not discussed.

4.6 Discussion

The basic version of the job-shop problem as a decision problem is known to be NP-

complete [125]. Since quantum circuit scheduling is a special variant of the job-shop

problem, as discussed in Section 4.2.3, it is not necessary for it to be NP-complete.

Identifying the theoretical complexity of circuit scheduling would be an interesting avenue

for future work.

Throughout this chapter, we have investigated how to minimize the overall execution

time of the resulting schedule. Although this certainly contributes to obtaining computa-

tional results with higher fidelity, there should be more direct approaches that attempt to

maximize the output fidelity by considering gate-dependent errors. In fact, such approaches

have recently proposed in quantum circuit mapping [126, 127, 128]. Utilizing techniques

like this for circuit scheduling is also left for future work.

The two formulations (CP/MIP) discussed in Section 4.3 are useful for the theoretical

best case analysis because their solvers implement exact algorithms that can find the optimal

solution in the long run. They may also be sufficient for certain practical applications,

since CP/MIP solvers usually implement problem-agnostic heuristic algorithms to find

the best possible solution within a limited time. However, for the use cases where the

compilation time is too critical to use CP/MIP solvers, it is worth considering heuristic

algorithms specialized for circuit scheduling. As an example, we provide a heuristic

algorithm based on the Heterogeneous-Earliest-Finish-Time (HEFT) algorithm for task

33

scheduling in Appendix A.3. Such a heuristic algorithm can complement the CP/MIP-based

approach.

4.7 Summary

We investigated quantum circuit scheduling, the problem of scheduling operations in a

given circuit with the shortest total execution time. We demonstrated that quantum

circuit scheduling can be interpreted as a special type of job-shop problem where we

consider the commutation between quantum operations to make room for optimization.

We provided a Constraint Programming formulation and showed through experiments

with real circuits and a compiler that solving quantum circuit scheduling independently

improved the schedule length by the modest rate up to 7.36%.

34

Chapter 5

Conclusion

Throughout this thesis, we have considered optimization problems arising in quantum

compiler tasks for noisy superconducting quantum computers. We focused on two of them,

quantum circuit mapping and quantum circuit scheduling, both of which are essential to

improve the quality of computational results. We provided their formulations as classical

optimization problems taking into account gate commutation, which had not been fully

considered in previous studies. We also provided exact and heuristic algorithms for solving

them. We examined how the consideration of gate commutation in our algorithms improves

the quality of solutions by computational experiments in practical settings.

In Chapter 3, we investigated quantum circuit mapping that minimizes the number

of additional CNOT gates. Our proposed solution is to use gate commutation rules and

gate transformation rules in the form of SWAP and Bridge gates. We developed exact and

heuristic algorithms that take advantage of such rules by employing dynamic programming

technique and look-ahead scheme, respectively. Comparing them with the state-of-the-

art circuit mapping algorithms, we demonstrated that our proposed algorithms can find

dramatically better mappings with much fewer additional CNOT gates for the circuits of a

commonly used benchmark dataset.

In Chapter 4, we investigated quantum circuit scheduling that minimizes the total

execution time. We demonstrated that the problem can be considered as an optimization

problem only when we consider gate commutation, and it can be interpreted as a special

type of job-shop problem. We provided Constraint Programming and Mixed Integer

Programming formulations as well as a heuristic algorithm based on the HEFT algorithm

well known in classical task scheduling. We showed through experiments with real circuits

and a compiler that solving quantum circuit scheduling independently improved the schedule

length. We also showed that, on average, our commutation-aware scheduling can stably

improve the resulting schedule no matter how much the circuits have been optimized in a

previous task (at least in the circuit synthesis task).

Our future work on optimization in quantum compilers is described as follows.

• Comparing optimization of one large task with that of multiple small tasks.

35

In this thesis, we decomposed an entire large compilation task into as many small

tasks as possible. For example, we split the quantum circuit mapping task into two

smaller tasks (qubit assignment and qubit routing) in Chapter 3. We also dealt

with the quantum circuit scheduling task independent of the circuit mapping task in

Chapter 4. This approach, handling multiple small tasks, makes it relatively easy to

design, implement and maintain efficient algorithms for optimizing the individual

tasks. On the other hand, considering a large problem that optimizes multiple tasks

at once would be better than considering small sub-problems that optimize each

task independently in the case when we are able to find the optimal solution of the

large problem. This suggests that it is worth considering whether we can develop

any efficient algorithm for the large problem that outperforms the combination of

algorithms for the small sub-problems.

• Designing objective functions that approximate fidelity better.

Considering objective functions that reflect the extent of errors that occur in quantum

computing devices during the computation of a given circuit would be another

important future direction. Although CNOT gate counts or schedule length, as we

considered in this thesis, approximates the real errors fairly well, neither of them

is sufficient to account for the qubit coherence errors proportional to the schedule

length (e.g., T1/T2 error) or the extra errors caused by the parallel execution of

gates (e.g., cross-talk error). For quantum circuit mapping, several approaches have

attempted to maximize the output fidelity by considering instruction-dependent

errors [126, 127, 128] or cross-talk errors [129]. Here, instruction means the pair of an

operation and its acting qubits. However, these are not fully successful yet, partially

because of the temporal variation in the error rate of each instruction, as reported

in [130]. Conversely, this direction would be worth pursuing all the more because

it seems to converge into the fundamentally hard problem of how to construct a

sufficiently accurate and efficiently computable error model of a target hardware.

• Taking quantum error correction into consideration.

In this thesis, we focused on compilers for noisy quantum computers and did not

address error correction. However, in order to achieve the fault-tolerant quantum

computing, compilers must have embedded processes for quantum error correction.

Such processes include encoding of a logical qubit onto physical qubits, transformation

of operations into those on the codes, and detection and correction of errors. The

details of those processes differ depending on the quantum error-correcting code

used, and how many basis gates are required in the resulting circuit differs as well.

Therefore, research on synthesis, mapping, or scheduling that takes error correction

into account needs to be conducted for each error-correcting code. Although there

have already been many studies on this topic, it is still an active area of research

because of rapid advances in research on quantum error-correcting codes.

36

Progress in software research for quantum computers, including the above topics on

compilers, as well as in hardware research, would accelerate the realization of fault-tolerant

quantum computers in the future.

37

Appendix A

Appendix

A.1 Construction of dependency graph

We give the algorithm for constructing dependency graph in Algorithm 3. Because it is

specifically tailored to the commutation rules shown in Fig. 3.5, the commutation rules are

not stated as input to the algorithm.

Algorithm 3 Constructing dependency graph

IN: List of gates L in a given logical circuit
OUT: Dependency graph D
1: VD ← {g | g ∈ L} // node set of D
2: ED ← ∅ // edge set of D
3: for all gate pair (gi, gj) such that i < j in L do
4: for all common acting qubit b of gi and gj do
5: S ← {s | symbol s between gi and gj on b}
6: if S 6⊆ {Rz, •} and S 6⊆ {Rx,⊕} then
7: ED ← ED ∪ {(gi, gj)}
8: end if
9: end for

10: end for
11: return (VD, ED)

Note that the dependency graph obtained by the algorithm is redundant. If necessary,

the minimal set of edges can be obtained by checking each of the edges in ED and removing

the edge (s, t) if there exists a path from s to t in the graph with reduced edge set excluding

(s, t).

A.2 Experimental comparison of formulations with standard

circuits

We give the results of experiments for comparing formulations using well-known standard

circuits in Table A.1. We used 10 circuits with five qubits from the same dataset mentioned

38

Table A.1: Comparison of optimal numbers of additional SWAP and Bridge gates of
our formulation (in the Proposed column) and those of fixed-layer and standard-DAG
formulation for ten RebLib benchmark circuits with five qubits under ibmqx4 coupling
architecture. The numbers of Bridge gates are stated in (·). The No-Bridge column lists
the optimal numbers of SWAP gates from the original formulation [92].

Circuit name #gates Fixed-layer Std-DAG Proposed No-Bridge
4mod7-v1 96 164 6 (0) 6 (0) 6 (0) 6
aj-e11 165 151 7 (2) 7 (2) 6 (1) 6
one-two-three-v0 98 146 6 (2) 6 (2) 6 (1) 6
one-two-three-v1 99 132 6 (4) 6 (4) 6 (4) 6
4 49 16 217 7 (0) 7 (0) 7 (1) 7
mod10 171 244 7 (0) 7 (0) 7 (0) 7
hwb4 49 233 8 (0) 8 (0) 8 (0) 8
one-two-three-v0 97 290 8 (1) 8 (1) 8 (1) 9
mini-alu 167 288 10 (0) 10 (0) 10 (0) 10
alu-v2 31 451 13 (4) 13 (4) 13 (4) 15

in Section 3.5.2, i.e. Zulehner et al.’s RevLib dataset [94]. For all the circuits, we computed

the mappings to the ibmqx4 coupling architecture [131]. The other settings of experiments

are same as those for the experiments in Section 3.5.1.

In contrast to the results using random circuits, the difference among formulations is

not so large but we can see our formulation (Proposed) yields strictly better solution quality

bound than two formulations with less commutation rules (Fixed-layer and Std-DAG) in

aj-e11 165, and than one without Bridge gates (No-Bridge) in one-two-three-v0 97 and

alu-v2 31.

A.3 HEFT algorithm for quantum circuit scheduling

We show how the Heterogeneous-Earliest-Finish-Time (HEFT) algorithm for task scheduling

can be used for quantum circuit scheduling with a slight modification. The original HEFT

algorithm is designed for scheduling with a soft resource constraint, i.e., every operation

can be executed on any processor with a different cost. We adjust it here so that it can

work with a hard resource constraint, i.e., every operation has fixed qubit operands that

are not interchangeable.

The original HEFT algorithm consists of two phases: an operation prioritizing phase

for computing the priorities of all operations based on upward ranking and a processor

selection phase for scheduling the highest priority operation at the moment on the processor,

which minimizes the operation’s finish time [120]. In the processor selection phase, the

algorithm considers the possibility of inserting an operation in the earliest idle time-slot

between two already scheduled operations. Only the idle time-slots that preserve precedence

constraints, i.e., that comply with the dependency graph, are considered in this phase.

This insertion-based policy allowing the insertion in the idle time-slot characterizes the

HEFT algorithm.

39

While keeping this insertion-based policy, we adjust the HEFT algorithm so that every

operation is assigned to the fixed qubits (i.e., processors in the original term), which means

we no longer need to select qubits in the processor selection phase. Note that it is necessary

for the adjusted HEFT algorithm to maintain scheduled time-slots across qubits, whereas

the original algorithm simply maintains the time-slots by processors. The process flow of

the HEFT algorithm for quantum circuit scheduling is shown in Algorithm 4.

Algorithm 4 HEFT algorithm for quantum circuit scheduling

1: G = (V,C): dependency graph of a quantum circuit scheduling problem
2: Compute upward rank r(u) for each operation u ∈ V by

r(u) = d(u) + max
v∈succ(u)

r(v)

where succ(u) is the set of immediate successors of u, d(u) is the duration of u, and r(e) = d(e)
for any exit operation e.

3: ready time(u) = 0 for all u ∈ V .
4: for all u ∈ V in descending order of r(u) do
5: Insert u at the start time t of the earliest idle time-slot (whose duration > d(u)) after
ready time(u).

6: for all v ∈ succ(u) do
7: ready time(v) = max(ready time(v), t+ d(u)).
8: end for
9: end for

We conducted experiments to check the solution quality of the adjusted HEFT algorithm

with the same benchmark sets and experimental settings as used in Section 4.4. For all of

the instances under the formulation with extended DAG (Ext-DAG), the HEFT algorithm

always succeeded in finding solutions slightly worse than or equal to those by the CP solver.

The medians of improvement rates from Std-DAG to Ext-DAG with the HEFT algorithm

(the CP solver) were 1.16% (1.26%) for circuits by Zulehner et al. [94] used in Table 4.1

and 1.67% (2.45%) and 2.35% (2.82%) for circuits by Nam et al. [71] used in Table 4.2

with naive and optimized gate decomposition, respectively. This suggests that the HEFT

algorithm is a good option for adding a bit more optimization in cases where not much

compilation time is available.

All the results of these latter two experiments are listed in Table A.2. We can see a

negative improvement at Toff-arenco 3 using optimized gate decomposition and the HEFT

algorithm. This can happen because considering further commutation in the formulation

with Ext-DAG yields a broader search space for algorithms, and it provides an opportunity

to find not only a better solution than Std-DAG but also a worse one. However, this is not

a big issue in practice in cases where we can afford to select the better of the solution by

the as-soon-as-possible algorithm with Std-DAG and that by the HEFT algorithm with

Ext-DAG.

40

Table A.2: Makespans and their improvement rates (∆) from scheduling with standard DAG
(Std-DAG) compared to those with extended DAG (Ext-DAG) using HEFT algorithm or CP solver
after applying a naive gate decomposition or optimized gate decomposition.

Circuit name Naive gate decomposition Optimized gate decomposition
Std-DAG Ext-DAG Std-DAG Ext-DAG

HEFT (∆) CP (∆) HEFT (∆) CP (∆)
Mod 5 4 6,328 6,076 (3.98%) 5,984 (5.44%) 6,016 5,670 (5.75%) 5,578 (7.28%)
VBE-Adder 3 19,126 18,972 (0.81%) 18,852 (1.43%) 11,416 11,148 (2.35%) 11,148 (2.35%)
CSLA-MUX 3 22,238 21,444 (3.57%) 21,438 (3.60%) 19,774 18,914 (4.35%) 18,778 (5.04%)
RC-Adder 6 28,606 27,584 (3.57%) 27,564 (3.64%) 20,408 19,136 (6.23%) 18,906 (7.36%)
Mod-Red 21 33,160 32,640 (1.57%) 32,348 (2.45%) 28,320 27,570 (2.65%) 27,494 (2.92%)
Mod-Mult 55 13,942 13,822 (0.86%) 13,740 (1.45%) 14,478 14,270 (1.44%) 14,070 (2.82%)
Toff-Barenco 3 12,388 12,388 (0.00%) 12,388 (0.00%) 4,812 4,998 (−3.87%) 4,812 (0.00%)
Toff-NC 3 9,108 9,108 (0.00%) 9,108 (0.00%) 3,818 3,818 (0.00%) 3,818 (0.00%)
Toff-Barenco 4 15,992 15,786 (1.29%) 15,582 (2.56%) 9,006 8,678 (3.64%) 8,678 (3.64%)
Toff-NC 4 12,272 11,834 (3.57%) 11,834 (3.57%) 8,016 7,698 (3.97%) 7,626 (4.87%)
Toff-Barenco 5 21,600 21,388 (0.98%) 21,378 (1.03%) 19,424 19,220 (1.05%) 19,138 (1.47%)
Toff-NC 5 13,536 13,002 (3.95%) 12,984 (4.08%) 9,262 8,920 (3.69%) 8,920 (3.69%)
Toff-Barenco 10 90,940 89,418 (1.67%) 89,248 (1.86%) 59,282 57,678 (2.71%) 57,282 (3.37%)
Toff-NC 10 43,156 42,600 (1.29%) 42,546 (1.41%) 28,720 28,494 (0.79%) 28,322 (1.39%)
GF(24)-Mult 33,160 32,508 (1.97%) 32,492 (2.01%) 33,646 33,160 (1.44%) 33,148 (1.48%)
GF(25)-Mult 37,948 36,734 (3.20%) 36,480 (3.87%) 44,702 44,464 (0.53%) 44,030 (1.50%)
GF(26)-Mult 63,856 62,174 (2.63%) 61,870 (3.11%) 64,784 64,278 (0.78%) 64,180 (0.93%)

41

Bibliography

[1] Richard P. Feynman. Simulating physics with computers. Int. J. Theor. Phys,

21(6/7), 1982.

[2] David Deutsch. Quantum theory, the Church–Turing principle and the universal

quantum computer. Proceedings of the Royal Society of London. A. Mathematical

and Physical Sciences, 400(1818):97–117, 1985.

[3] Peter W. Shor. Polynomial-time algorithms for prime factorization and discrete

logarithms on a quantum computer. SIAM Journal on Computing, 26(5):1484–1509,

1997.

[4] Lov K. Grover. A fast quantum mechanical algorithm for database search. In

Proceedings of the twenty-eighth annual ACM symposium on Theory of computing

(STOC96), pages 212–219, 1996.

[5] Aram W. Harrow, Avinatan Hassidim, and Seth Lloyd. Quantum algorithm for

linear systems of equations. Physical Review Letters, 103(15):150502+, 2009.

[6] Stephen Jordan. Quantum algorithm zoo. https://quantumalgorithmzoo.org/ (Ac-

cessed: 2020-11-07).

[7] IBM Quantum. IBM Quantum Experience. https://quantum-computing.ibm.com/

(accessed 2020-11-27).

[8] John Preskill. Quantum Computing in the NISQ era and beyond. Quantum, 2:79,

2018.

[9] Wikipedia. Quantum computing: Physical realizations. https://en.wikipedia.org/

wiki/Quantum computing#Physical realizations (Accessed: 2020-11-27).

[10] Isaac L. Chuang, Neil Gershenfeld, and Mark Kubinec. Experimental implementation

of fast quantum searching. Physical review letters, 80(15):3408, 1998.

[11] Michael A. Nielsen and Isaac L. Chuang. Quantum Computation and Quantum

Information. Cambridge University Press, 2002.

42

https://quantumalgorithmzoo.org/
https://quantum-computing.ibm.com/
https://en.wikipedia.org/wiki/Quantum_computing#Physical_realizations
https://en.wikipedia.org/wiki/Quantum_computing#Physical_realizations

[12] Microsoft. Azure Quantum. https://azure.microsoft.com/services/quantum/ (Ac-

cessed: 2020-11-27).

[13] Amazon. Braket. https://aws.amazon.com/braket/ (Accessed: 2020-11-27).

[14] Quantum AI team and collaborators. Cirq, October 2020. https://github.com/

quantumlib/Cirq (Accessed: 2020-11-07).

[15] Qiskit. Qiskit: An open-source framework for quantum computing, 2019. https:

//www.qiskit.org/ (Accessed: 2020-11-07).

[16] Rigetti. Forest SDK. https://pyquil-docs.rigetti.com/en/stable/ (Accessed: 2020-11-

07).

[17] Stefano Bettelli, Tommaso Calarco, and Luciano Serafini. Toward an architecture

for quantum programming. The European Physical Journal D-Atomic, Molecular,

Optical and Plasma Physics, 25(2):181–200, 2003.

[18] Krysta M. Svore, Alfred V. Aho, Andrew W. Cross, Isaac Chuang, and Igor L. Markov.

A layered software architecture for quantum computing design tools. Computer,

39(1):74–83, 2006.

[19] N. Cody Jones, Rodney Van Meter, Austin G. Fowler, Peter L. McMahon, Jungsang

Kim, Thaddeus D. Ladd, and Yoshihisa Yamamoto. Layered architecture for quantum

computing. Physical Review X, 2(3):031007, 2012.

[20] Frederic T. Chong, Diana Franklin, and Margaret Martonosi. Programming languages

and compiler design for realistic quantum hardware. Nature, 549(7671):180–187,

2017.

[21] Thomas Häner, Damian S. Steiger, Krysta Svore, and Matthias Troyer. A software

methodology for compiling quantum programs. Quantum Science and Technology,

3(2):020501, 2018.

[22] Prakash Murali, Norbert Matthias Linke, Margaret Martonosi, Ali Abhari-Javadi,

Nhung Hong Nguyen, and Cinthia Huerta Alderete. Full-stack, real-system quantum

computer studies: Architectural comparisons and design insights. In 2019 ACM/IEEE

46th Annual International Symposium on Computer Architecture (ISCA), pages 527–

540. IEEE, 2019.

[23] Damian S. Steiger, Thomas Häner, and Matthias Troyer. ProjectQ: an open source

software framework for quantum computing. Quantum, 2:49, 2018.

[24] Seyon Sivarajah, Silas Dilkes, Alexander Cowtan, Will Simmons, Alec Edgington,

and Ross Duncan. t|ket〉: A retargetable compiler for NISQ devices. Quantum

Science and Technology, 2020.

43

https://azure.microsoft.com/services/quantum/
https://aws.amazon.com/braket/
https://github.com/quantumlib/Cirq
https://github.com/quantumlib/Cirq
https://www.qiskit.org/
https://www.qiskit.org/
https://pyquil-docs.rigetti.com/en/stable/

[25] Microsoft. Quantum Development Kit. https://www.microsoft.com/en-us/quantum/

development-kit (Accessed: 2020-11-07).

[26] Xanadu. Strawberry Fields. https://strawberryfields.ai/ (Accessed: 2020-11-07).

[27] Amazon. Braket SDK. https://github.com/aws/amazon-braket-sdk-python (Ac-

cessed: 2020-11-07).

[28] Alwin Walter Zulehner. Design Automation for Quantum Computing. PhD thesis,

Universität Linz, 2019.

[29] David Elieser Deutsch. Quantum computational networks. Proceedings of the Royal

Society of London. A. Mathematical and Physical Sciences, 425(1868):73–90, 1989.

[30] A. Chi-Chih Yao. Quantum circuit complexity. In Proceedings of 1993 IEEE 34th

Annual Foundations of Computer Science, pages 352–361. IEEE, 1993.

[31] Simon J. Gay. Quantum programming languages: survey and bibliography. Mathe-

matical Structures in Computer Science, 16(4):581, 2006.

[32] Alexander S. Green, Peter LeFanu Lumsdaine, Neil J. Ross, Peter Selinger, and

Benôıt Valiron. Quipper: a scalable quantum programming language. In Proceed-

ings of the 34th ACM SIGPLAN conference on Programming language design and

implementation, pages 333–342, 2013.

[33] Ali Javadi-Abhari, Arvin Faruque, Mohammad J Dousti, Lukas Svec, Oana Catu,

Amlan Chakrabati, Chen-Fu Chiang, Seth Vanderwilt, John Black, and Fred Chong.

Scaffold: Quantum programming language. Technical report, Princeton Univ NJ

Dept of Computer Science, 2012.

[34] Ali Javadi-Abhari, Shruti Patil, Daniel Kudrow, Jeff Heckey, Alexey Lvov, Frederic T.

Chong, and Margaret Martonosi. ScaffCC: A framework for compilation and analysis

of quantum computing programs. In Proceedings of the 11th ACM Conference on

Computing Frontiers, pages 1–10, 2014.

[35] Robert S. Smith, Michael J. Curtis, and William J. Zeng. A practical quantum

instruction set architecture. arXiv preprint arXiv:1608.03355, 2016.

[36] Andrew W. Cross, Lev S. Bishop, John A. Smolin, and Jay M. Gambetta. Open

quantum assembly language. arXiv preprint arXiv:1707.03429, 2017.

[37] Andrew J. Landahl, Daniel S. Lobser, Benjamin C. A. Morrison, Kenneth M.

Rudinger, Antonio E. Russo, Jay W. Van Der Wall, and Peter Maunz. Jaqal,

the quantum assembly language for QSCOUT. arXiv preprint arXiv:2003.09382,

2020.

44

https://www.microsoft.com/en-us/quantum/development-kit
https://www.microsoft.com/en-us/quantum/development-kit
https://strawberryfields.ai/
https://github.com/aws/amazon-braket-sdk-python

[38] Bettina Heim, Mathias Soeken, Sarah Marshall, Chris Granade, Martin Roetteler,

Alan Geller, Matthias Troyer, and Krysta Svore. Quantum programming languages.

Nature Reviews Physics, pages 1–14, 2020.

[39] Wikipedia. Quantum programming. https://en.wikipedia.org/wiki/Quantum

programming (Accessed: 2020-11-07).

[40] Ken Matsumoto and Kazuyuki Amano. Representation of quantum circuits with

Clifford and π/8 gates. arXiv preprint arXiv:0806.3834, 2008.

[41] Vadym Kliuchnikov, Dmitri Maslov, and Michele Mosca. Asymptotically optimal

approximation of single qubit unitaries by Clifford and T circuits using a constant

number of ancillary qubits. Physical review letters, 110(19):190502, 2013.

[42] Neil J. Ross and Peter Selinger. Optimal ancilla-free Clifford+T approximation of

z-rotations. Quantum Information & Computation, 16(11-12):901–953, 2016.

[43] Mehdi Saeedi, Mona Arabzadeh, Morteza Saheb Zamani, and Mehdi Sedighi. Block-

based quantum-logic synthesis. Quantum Information & Computation, 11(3):262–277,

2011.

[44] Marc G. Davis, Ethan Smith, Ana Tudor, Koushik Sen, Irfan Siddiqi, and Costin

Iancu. Towards optimal topology aware quantum circuit synthesis. In 2020 IEEE

International Conference on Quantum Computing and Engineering (QCE), pages

223–234. IEEE, 2020.

[45] Matthew Amy, Dmitri Maslov, Michele Mosca, and Martin Roetteler. A meet-in-

the-middle algorithm for fast synthesis of depth-optimal quantum circuits. IEEE

Transactions on Computer-Aided Design of Integrated Circuits and Systems, 32(6):818–

830, 2013.

[46] Luke E. Heyfron and Earl T. Campbell. An efficient quantum compiler that reduces

T count. Quantum Science and Technology, 4(1):015004, 2018.

[47] Vivek V. Shende, Stephen S. Bullock, and Igor L. Markov. Synthesis of quantum-logic

circuits. IEEE Transactions on Computer-Aided Design of Integrated Circuits and

Systems, 25(6):1000–1010, 2006.

[48] M. Mottonen and Juha J. Vartiainen. Decompositions of general quantum gates.

arXiv preprint quant-ph/0504100, 2005.

[49] Charles H. Bennett. Logical reversibility of computation. IBM journal of Research

and Development, 17(6):525–532, 1973.

[50] Tommaso Toffoli. Reversible computing. In International Colloquium on Automata,

Languages, and Programming, pages 632–644. Springer, 1980.

45

https://en.wikipedia.org/wiki/Quantum_programming
https://en.wikipedia.org/wiki/Quantum_programming

[51] Mehdi Saeedi and Igor L. Markov. Synthesis and optimization of reversible circuits—a

survey. ACM Computing Surveys (CSUR), 45(2):1–34, 2013.

[52] Dmitry V. Zakablukov. On asymptotic gate complexity and depth of reversible

circuits without additional memory. Journal of Computer and System Sciences,

84:132–143, 2017.

[53] Dmitri Maslov. Optimal and asymptotically optimal NCT reversible circuits by the

gate types. Quantum Information & Computation, 16(13-14):1096–1112, 2016.

[54] Sergey Bravyi, Theodore J. Yoder, and Dmitri Maslov. Efficient ancilla-free re-

versible and quantum circuits for the Hidden Weighted Bit function. arXiv preprint

arXiv:2007.05469, 2020.

[55] Vlatko Vedral, Adriano Barenco, and Artur Ekert. Quantum networks for elementary

arithmetic operations. Physical Review A, 54(1):147, 1996.

[56] Steven A. Cuccaro, Thomas G. Draper, Samuel A. Kutin, and David Petrie Moulton.

A new quantum ripple-carry addition circuit. arXiv preprint quant-ph/0410184, 2004.

[57] Thomas G. Draper. Addition on a quantum computer. arXiv preprint quant-

ph/0008033, 2000.

[58] Thomas G. Draper, Samuel A. Kutin, Eric M. Rains, and Krysta M. Svore. A

logarithmic-depth quantum carry-lookahead adder. Quantum Information & Compu-

tation, 6(4):351–369, 2006.

[59] Craig Gidney. Halving the cost of quantum addition. Quantum, 2:74, 2018.

[60] David Beckman, Amalavoyal N. Chari, Srikrishna Devabhaktuni, and John Preskill.

Efficient networks for quantum factoring. Physical Review A, 54(2):1034, 1996.

[61] Rodney Van Meter and Kohei M. Itoh. Fast quantum modular exponentiation.

Physical Review A, 71(5):052320, 2005.

[62] Yasuhiro Takahashi and Noboru Kunihiro. A fast quantum circuit for addition with

few qubits. Quantum Information & Computation, 8(6):636–649, 2008.

[63] Igor L. Markov and Mehdi Saeedi. Faster quantum number factoring via circuit

synthesis. Physical Review A, 87(1):012310, 2013.

[64] Adriano Barenco, Charles H. Bennett, Richard Cleve, David P. DiVincenzo, Norman

Margolus, Peter Shor, Tycho Sleator, John A. Smolin, and Harald Weinfurter.

Elementary gates for quantum computation. Physical review A, 52(5):3457, 1995.

[65] Vivek V. Shende and Igor L. Markov. On the CNOT-cost of Toffoli gates. Quantum

Information & Computation, 9(5):461–486, 2009.

46

[66] Cody Jones. Low-overhead constructions for the fault-tolerant Toffoli gate. Physical

Review A, 87(2):022328, 2013.

[67] Dmitri Maslov. Advantages of using relative-phase Toffoli gates with an application

to multiple control Toffoli optimization. Physical Review A, 93(2):022311, 2016.

[68] Martin Plesch and Časlav Brukner. Quantum-state preparation with universal gate

decompositions. Physical Review A, 83(3):032302, 2011.

[69] Raban Iten, Roger Colbeck, Ivan Kukuljan, Jonathan Home, and Matthias Christandl.

Quantum circuits for isometries. Physical Review A, 93(3):032318, 2016.

[70] Dmitri Maslov, Gerhard W. Dueck, D. Michael Miller, and Camille Negrevergne.

Quantum circuit simplification and level compaction. IEEE Transactions on

Computer-Aided Design of Integrated Circuits and Systems, 27(3):436–444, 2008.

[71] Yunseong Nam, Neil J. Ross, Yuan Su, Andrew M. Childs, and Dmitri Maslov.

Automated optimization of large quantum circuits with continuous parameters. npj

Quantum Information, 4(1):23, 2018.

[72] Frank Leymann and Johanna Barzen. The bitter truth about gate-based quantum

algorithms in the NISQ era. Quantum Science and Technology, 5(4):044007, 2020.

[73] Andrew W. Cross, Lev S. Bishop, Sarah Sheldon, Paul D. Nation, and Jay M.

Gambetta. Validating quantum computers using randomized model circuits. Physical

Review A, 100(3):032328, 2019.

[74] Bochen Tan and Jason Cong. Optimality study of existing quantum computing

layout synthesis tools. arXiv preprint arXiv:2002.09783, 2020.

[75] Naser Mohammadzadeh, Morteza Saheb Zamani, and Mehdi Sedighi. Improving

latency of quantum circuits by gate exchanging. In Proceedings of 12th Euromicro

Conference on Digital System Design, Architectures, Methods and Tools, pages 67–73.

IEEE, 2009.

[76] Tayebeh Bahreini and Naser Mohammadzadeh. An MINLP model for scheduling

and placement of quantum circuits with a heuristic solution approach. ACM Journal

on Emerging Technologies in Computing Systems (JETC), 12(3):29, 2015.

[77] Xin-Chuan Wu, Dripto M. Debroy, Yongshan Ding, Jonathan M. Baker, Yuri

Alexeev, Kenneth R. Brown, and Frederic T. Chong. TILT: Achieving higher

fidelity on a trapped-ion linear-tape quantum computing architecture. arXiv preprint

arXiv:2010.15876, 2020.

[78] Dmitri Maslov, Sean M. Falconer, and Michele Mosca. Quantum circuit placement.

IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems,

27(4):752–763, 2008.

47

[79] Adi Botea, Akihiro Kishimoto, and Radu Marinescu. On the complexity of quantum

circuit compilation. In Eleventh Annual Symposium on Combinatorial Search, 2018.

[80] Marcos Yukio Siraichi, Vińıcius Fernandes dos Santos, Caroline Collange, and Fer-

nando Magno Quintão Pereira. Qubit allocation as a combination of subgraph

isomorphism and token swapping. Proceedings of the ACM on Programming Lan-

guages, 3(OOPSLA):1–29, 2019.

[81] Gian Giacomo Guerreschi and Jongsoo Park. Two-step approach to scheduling

quantum circuits. Quantum Science and Technology, 3(4):045003, 2018.

[82] Yunong Shi, Nelson Leung, Pranav Gokhale, Zane Rossi, David I. Schuster, Henry

Hoffmann, and Frederic T. Chong. Optimized compilation of aggregated instructions

for realistic quantum computers. In Proceedings of the Twenty-Fourth International

Conference on Architectural Support for Programming Languages and Operating

Systems, pages 1031–1044. ACM, 2019.

[83] Davide Venturelli, Minh Do, Eleanor Rieffel, and Jeremy Frank. Temporal planning

for compilation of quantum approximate optimization circuits. In Proceedings of the

International Joint Conference on Artificial Intelligence, pages 89–101, 2017.

[84] Tzvetan S. Metodi, Darshan D. Thaker, Andrew W. Cross, Frederic T. Chong,

and Isaac L. Chuang. Scheduling physical operations in a quantum information

processor. In Quantum Information and Computation IV, volume 6244, pages 210–221.

International Society for Optics and Photonics, SPIE, 2006.

[85] Pranav Gokhale, Ali Javadi-Abhari, Nathan Earnest, Yunong Shi, and Frederic T.

Chong. Optimized quantum compilation for near-term algorithms with openpulse.

arXiv preprint arXiv:2004.11205, 2020.

[86] Petar Jurcevic, Ali Javadi-Abhari, Lev S. Bishop, Isaac Lauer, Daniela F. Bogorin,

Markus Brink, Lauren Capelluto, Oktay Günlük, Toshinari Itoko, Naoki Kanazawa,

et al. Demonstration of Quantum Volume 64 on a superconducting quantum com-

puting system. arXiv preprint arXiv:2008.08571, 2020.

[87] Felix Motzoi, Jay M. Gambetta, Patrick Rebentrost, and Frank K. Wilhelm. Simple

pulses for elimination of leakage in weakly nonlinear qubits. Physical review letters,

103(11):110501, 2009.

[88] Max Werninghaus, Daniel J. Egger, Federico Roy, Shai Machnes, Frank K. Wilhelm,

and Stefan Filipp. Leakage reduction in fast superconducting qubit gates via optimal

control. arXiv preprint arXiv:2003.05952, 2020.

[89] Andre R. R. Carvalho, Harrison Ball, Michael J. Biercuk, Michael R. Hush, and Felix

Thomsen. Error-robust quantum logic optimization using a cloud quantum computer

interface. arXiv preprint arXiv:2010.08057, 2020.

48

[90] Nicolas Wittler, Federico Roy, Kevin Pack, Max Werninghaus, Anurag Saha Roy,

Daniel J. Egger, Stefan Filipp, Frank K. Wilhelm, and Shai Machnes. An integrated

tool-set for control, calibration and characterization of quantum devices applied to

superconducting qubits. arXiv preprint arXiv:2009.09866, 2020.

[91] Toshinari Itoko, Rudy Raymond, Takashi Imamichi, and Atsushi Matsuo. Opti-

mization of quantum circuit mapping using gate transformation and commutation.

Integration, 70:43–50, 2020.

[92] Toshinari Itoko, Rudy Raymond, Takashi Imamichi, Atsushi Matsuo, and Andrew W.

Cross. Quantum circuit compilers using gate commutation rules. In Proceedings of

the 24th Asia and South Pacific Design Automation Conference (ASP-DAC), pages

191–196. ACM, January 2019.

[93] Debjyoti Bhattacharjee and Anupam Chattopadhyay. Depth-optimal quantum circuit

placement for arbitrary topologies. arXiv:1703.08540, 2017.

[94] Alwin Zulehner, Alexandru Paler, and Robert Wille. An efficient methodology for

mapping quantum circuits to the IBM QX architectures. IEEE Transactions on

Computer Aided Design of Integrated Circuits and Systems (TCAD), 2018. Implemen-

tation with test data set is available at https://github.com/iic-jku/ibm qx mapping.

[95] Marcos Siraichi, Vinicius Fernandes Dos Santos, Sylvain Collange, and Fernando

Magno Quintão Pereira. Qubit allocation. In Proceedings of the International

Symposium on Code Generation and Optimization, pages 1–12, 2018.

[96] Gushu Li, Yufei Ding, and Yuan Xie. Tackling the qubit mapping problem for NISQ-

era quantum devices. In Proceedings of the Twenty-Fourth International Conference

on Architectural Support for Programming Languages and Operating Systems, pages

1001–1014. ACM, April 2019.

[97] Robert Wille, Oliver Keszocze, Marcel Walter, Patrick Rohrs, Anupam Chattopad-

hyay, and Rolf Drechsler. Look-ahead schemes for nearest neighbor optimization

of 1D and 2D quantum circuits. In Proceedings of the 21st Asia and South Pacific

Design Automation Conference (ASP-DAC), pages 292–297. IEEE, 2016.

[98] Mathias Soeken, Stefan Frehse, Robert Wille, and Rolf Drechsler. RevKit: An open

source toolkit for the design of reversible circuits. In Proceedings of the International

Workshop on Reversible Computation, pages 64–76. Springer, 2011. RevLib is available

at http://www.revlib.org.

[99] IBM Quantum. IBM Q 16 Rueschlikon V1.0.0 (ibmqx3). https://github.com/Qiskit/

ibmq-device-information/blob/master/backends/rueschlikon/V1/version log.md (Ac-

cessed: 2020-10-10).

49

https://github.com/iic-jku/ibm_qx_mapping
http://www.revlib.org
https://github.com/Qiskit/ibmq-device-information/blob/master/backends/rueschlikon/V1/version_log.md
https://github.com/Qiskit/ibmq-device-information/blob/master/backends/rueschlikon/V1/version_log.md

[100] Atsushi Matsuo and Shigeru Yamashita. Changing the gate order for optimal LNN

conversion. In Proceedings of the International Workshop on Reversible Computation,

pages 89–101. Springer, 2011.

[101] Yuichi Hirata, Masaki Nakanishi, Shigeru Yamashita, and Yasuhiko Nakashima. An

efficient conversion of quantum circuits to a linear nearest neighbor architecture.

Quantum Information & Computation, 11(1&2):142–166, 2011.

[102] Mehdi Saeedi, Robert Wille, and Rolf Drechsler. Synthesis of quantum circuits for

linear nearest neighbor architectures. Quantum Information Processing, 10(3):355–

377, 2011.

[103] Amlan Chakrabarti, Susmita Sur-Kolay, and Ayan Chaudhury. Linear nearest

neighbor synthesis of reversible circuits by graph partitioning. arXiv:1112.0564, 2011.

[104] Alireza Shafaei, Mehdi Saeedi, and Massoud Pedram. Optimization of quantum

circuits for interaction distance in linear nearest neighbor architectures. In Proceedings

of the 50th Design Automation Conference, page 41. ACM, 2013.

[105] Robert Wille, Aaron Lye, and Rolf Drechsler. Optimal SWAP gate insertion for

nearest neighbor quantum circuits. In Proceedings of the 19th Asia and South Pacific

Design Automation Conference (ASP-DAC), pages 489–494. IEEE, 2014.

[106] Md. Mazder Rahman and Gerhard W. Dueck. Synthesis of linear nearest neighbor

quantum circuits. arXiv:1508.05430, 2015.

[107] Alireza Shafaei, Mehdi Saeedi, and Massoud Pedram. Qubit placement to minimize

communication overhead in 2D quantum architectures. In Proceedings of the 19th

Asia and South Pacific Design Automation Conference (ASP-DAC), pages 495–500.

IEEE, 2014.

[108] Aaron Lye, Robert Wille, and Rolf Drechsler. Determining the minimal number of

swap gates for multi-dimensional nearest neighbor quantum circuits. In Proceedings

of the 20th Asia and South Pacific Design Automation Conference (ASP-DAC), pages

178–183. IEEE, 2015.

[109] Daniel Ruffinelli and Benjamı́n Barán. Linear nearest neighbor optimization in

quantum circuits: a multiobjective perspective. Quantum Information Processing,

16(9):220, 2017.

[110] Alexander Cowtan, Silas Dilkes, Ross Duncan, Alexandre Krajenbrink, Will Simmons,

and Seyon Sivarajah. On the qubit routing problem. In 14th Conference on the

Theory of Quantum Computation, Communication and Cryptography, 2019.

50

[111] Robert Wille, Lukas Burgholzer, and Alwin Zulehner. Mapping quantum circuits to

IBM QX architectures using the minimal number of SWAP and H operations. In

Proceedings of the 56th Design Automation Conference, page 142. ACM, 2019.

[112] Toshinari Itoko and Takashi Imamichi. Scheduling of operations in quantum compiler.

In 2020 IEEE International Conference on Quantum Computing and Engineering

(QCE), pages 337–344. IEEE, October 2020.

[113] Takeshi Yamada and Ryohei Nakano. Job-shop scheduling. In Genetic algorithms in

engineering systems, chapter 7, pages 134–160. The Institution of Electrical Engineers,

1997.

[114] Antonio D. Córcoles, Abhinav Kandala, Ali Javadi-Abhari, Douglas T. McClure,

Andrew W. Cross, Kristan Temme, Paul D. Nation, Matthias Steffen, and J. M.

Gambetta. Challenges and opportunities of near-term quantum computing systems.

Proceedings of the IEEE, 2019.

[115] Jacek B lażewicz, Wolfgang Domschke, and Erwin Pesch. The job shop scheduling

problem: Conventional and new solution techniques. European Journal of Operational

Research, 93(1):1–33, 1996.

[116] Jian Zhang, Guofu Ding, Yisheng Zou, Shengfeng Qin, and Jianlin Fu. Review of

job shop scheduling research and its new perspectives under Industry 4.0. Journal of

Intelligent Manufacturing, 30(4):1809–1830, 2019.

[117] Alan S. Manne. On the job-shop scheduling problem. Operations Research, 8(2):219–

223, 1960.

[118] Joseph Adams, Egon Balas, and Daniel Zawack. The shifting bottleneck procedure

for job shop scheduling. Management Science, 34(3):391–401, 1988.

[119] Peter J. M. van Laarhoven, Emile H. L. Aarts, and Jan Karel Lenstra. Job shop

scheduling by simulated annealing. Operations Research, 40(1):113–125, 1992.

[120] Haluk Topcuoglu, Salim Hariri, and Min-You Wu. Performance-effective and low-

complexity task scheduling for heterogeneous computing. IEEE Transactions on

Parallel and Distributed Systems, 13(3):260–274, 2002.

[121] Oliver Sinnen. Task scheduling for parallel systems. John Wiley & Sons, 2006.

[122] Louis-Claude Canon, Emmanuel Jeannot, Rizos Sakellariou, and Wei Zheng. Compar-

ative evaluation of the robustness of DAG scheduling heuristics. In Grid Computing,

pages 73–84. 2008.

[123] Christos Valouxis, Christos Gogos, Panayiotis Alefragis, George Goulas, Nikolaos

Voros, and Efthymios Housos. DAG scheduling using integer programming in

51

heterogeneous parallel execution environments. In Proceedings of the Multidisciplinary

International Conference on Scheduling: Theory and Applications (MISTA 2013),

pages 392–401, 2013.

[124] Andrew M. Childs, Eddie Schoute, and Cem M. Unsal. Circuit transformations for

quantum architectures. In 14th Conference on the Theory of Quantum Computation,

Communication and Cryptography, 2019.

[125] Michael R. Garey and David S. Johnson. Computers and intractability. W. H.

Freeman and Company, 1979.

[126] Swamit S. Tannu and Moinuddin K. Qureshi. Not all qubits are created equal: a case

for variability-aware policies for NISQ-era quantum computers. In Proceedings of the

Twenty-Fourth International Conference on Architectural Support for Programming

Languages and Operating Systems, pages 987–999, 2019.

[127] Prakash Murali, Jonathan M. Baker, Ali Javadi-Abhari, Frederic T. Chong, and

Margaret Martonosi. Noise-adaptive compiler mappings for noisy intermediate-scale

quantum computers. In Proceedings of the Twenty-Fourth International Conference

on Architectural Support for Programming Languages and Operating Systems, pages

1015–1029, 2019.

[128] Shin Nishio, Yulu Pan, Takahiko Satoh, Hideharu Amano, and Rodney Van Meter.

Extracting success from IBM’s 20-qubit machines using error-aware compilation.

ACM Journal on Emerging Technologies in Computing Systems (JETC), 16(3):1–25,

2020.

[129] Prakash Murali, David C. McKay, Margaret Martonosi, and Ali Javadi-Abhari.

Software mitigation of crosstalk on noisy intermediate-scale quantum computers. In

Proceedings of the Twenty-Fifth International Conference on Architectural Support

for Programming Languages and Operating Systems, pages 1001–1016, 2020.

[130] Ellis Wilson, Sudhakar Singh, and Frank Mueller. Just-in-time quantum circuit

transpilation reduces noise. In 2020 IEEE International Conference on Quantum

Computing and Engineering (QCE), pages 345–355, 2020.

[131] IBM Quantum. IBM Q 5 Tenerife V1.0.0 (ibmqx4). https://github.com/Qiskit/

ibmq-device-information/blob/master/backends/tenerife/V1/version log.md (Ac-

cessed: 2020-10-10).

52

https://github.com/Qiskit/ibmq-device-information/blob/master/backends/tenerife/V1/version_log.md
https://github.com/Qiskit/ibmq-device-information/blob/master/backends/tenerife/V1/version_log.md

List of Publications

Journals

1. Toshinari Itoko, Rudy Raymond, Takashi Imamichi, and Atsushi Matsuo. Opti-

mization of quantum circuit mapping using gate transformation and commutation.

Integration, 70:43–50, 2020.

International Conferences with Review

1. Toshinari Itoko, Rudy Raymond, Takashi Imamichi, Atsushi Matsuo, and Andrew

W. Cross. Quantum circuit compilers using gate commutation rules. In Proceedings

of the 24th Asia and South Pacific Design Automation Conference (ASP-DAC2019),

pages 191–196. ACM, January, 2019.

2. Toshinari Itoko and Takashi Imamichi. Scheduling of operations in quantum com-

piler. In Proceedings of the International Conference on Quantum Computing and

Engineering (QCE2020), pages 337–344. IEEE, October, 2020.

Unpublished Manuscripts

1. Petar Jurcevic, Ali Javadi-Abhari, Lev S. Bishop, Isaac Lauer, Daniela F. Bogorin,

Markus Brink, Lauren Capelluto, Oktay Günlük, Toshinari Itoko, Naoki Kanazawa, et

al. Demonstration of Quantum Volume 64 on a superconducting quantum computing

system. arXiv preprint arXiv:2008.08571, 2020.

53

	Introduction
	Quantum Computer
	Quantum Compiler
	Quantum Circuit Model
	Optimization of Quantum Circuits

	Overview of this Thesis

	Optimization Tasks in Quantum Compilers
	Quantum Circuit Synthesis
	Quantum Circuit Mapping
	Quantum Circuit Scheduling

	Quantum Circuit Mapping
	Overview
	Motivation
	Problem Formulation
	Algorithms
	Exact Algorithm
	Heuristic Algorithm

	Experiment
	Comparison to other Formulations
	Comparison with other Heuristic Algorithms for Larger Circuits

	Related Work
	Summary

	Quantum Circuit Scheduling
	Overview
	Problem
	Quantum Circuit Scheduling
	Job-shop Problem and its Disjunctive Graph Representation
	Disjunctive Graph Representation of Quantum Circuit Scheduling

	Formulation
	Constraint Programming Formulation
	Mixed Integer Programming Formulation

	Experiment
	Common Experimental Settings
	Improvement by Considering Gate Commutation
	Performance Variation by Optimization Level of Previous Task

	Related Work
	Discussion
	Summary

	Conclusion
	Appendix
	Appendix
	Construction of dependency graph
	Experimental comparison of formulations with standard circuits
	HEFT algorithm for quantum circuit scheduling

