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1. INTRODUCTION AND NOTATIONS

We begin with recalling standard notation for the calculfigpseudodiferential operatorsDOS).
Throughout the article, we shall most often use spaces dfafjleymbols; a functiom € ¢~ (R" x RP)
is in SM(R" x RP) if for all multi-indices, S there exist,5 > 0 such that

(1.1) 10507a(%, &)l < Cap (™ ¥, xeR", £€RP, (&)= (L+£7)"2.

We write S™ = S™(R" x R"). ¢DOs of ordem, in Weyl quantization, are formally given by (seedif9]
or [Hor85, Chapter 18.5])

OB (@) u(x) = a"(x DU = (20" [ &5 Ha((c+ Y2 up) dy . ue s (RY)

We denote by#™(R"), or simply by¥™, the space of suaghDOs of ordem.

We consider a second-ordgDO defined by the Weyl quantization gfx, £). Assuming uniform ellip-
ticity and positivity forg(x, &), we study the following parabolic Cauchy problem
1.2) du+qg(t,x,Dy)u=0, O<t<T,
(1.3) U lt=0 = Uo,
for ug in L?(R") or in some Sobolev space. The solution operator of this Bapcoblem is denoted by
U,t),0<t <t <T. Here, we are interested in providing a representatiod (®f, t) in the form of a
multi-product ofyDOs.

Such a representation is motivated by the results of thenskesathor in the case of hyperbolic equations
[Le 06, Le 07]. If the symbot is only a function of, the solution of (1.2)—(1.3) is simply given by means
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of Fourier transformations as

ut. ) = 0" [[ 009 u) dy .
Following [Le 06], we then hope to have a good approximatiba(g x), for smallt, in the case wherg
depends also on bottandx:

ut, x) =~ (27)™" ff d YO g a00/28) y(y) dy o = p\(/{o)(x’ DU(X),
wherepg: py(x, &) 1= e "X 0 <t < t” < T, which is inS°. The infinitesimal approximation we
introduce is thus of pseuddtirential nature (as opposed to Fourier integral operatotie hyperbolic
case [Le 06]).
With such an infinitesimal operator, by iterations, we amnthed to introducing the following multi-
product ofyyDOs to approximate the solution operatéft’, t) of the Cauchy problem (1.2)—(1.3):
Pf o) (% Dx) if 0<t<t®,

1
(Ws t = )
’ B 0y (0% D) [ P8 gy 06 D) iF 100 <t < e,
i=k

wherep = (t@ t@ . t(N)}is a subdivision of [0T] with 0 = t©@ < t0) < ... < t™N) = T_ It should be
noted that in generqj‘(’tv,,,t,)(x, Dy), t' < t”, does not have semi-group properties.

In [Le 06], for the hyperbolic case, the standard quantirais used for the equation and for the ap-
proximation Ansatz. However, in the present parabolic ¢hiseapproach fails (see Remark 2.7 below).
Instead, the choice of Weyl quantization yields convergeesults of the Ansat#/y; ; comparable to those
in [Le 06, Le 07]. The convergence @y ; to the solution operatdd (t, 0) is shown in operator norm with
an estimate of the convergence rate depending on th&lér) regularity ofq(t, x, &) w.r.t. the evolution
parametet. See Theorem 3.8 in Section 3 below for a precise statement.

Such a convergence result thus yields a representatioreafdiution operator of the Cauchy problem
(1.2)-(1.3) by an infinite multi-product afDOs. The result relies (i) on the proof of the stability of
the multi-productWp; asN = [P grows toco (Proposition 3.1) and (ii) on a consistency estimate that
measures the infinitesimal error made by replatiriy, t) by p‘(’tv,!t)(x, D,) (Proposition 3.6). The stability in
fact follows from a sharp Sobolev-norm estimate ;ﬁmt)(x, D,) (see Theorem 2.2): fag e R, there exists
C > 0 such that

(14) ||p‘(l\tl,’t)(X, Dx)”(Hs,HS) <1+ C(t/ — t).

The Feéterman-Phong inequality plays an important role here.

The representation of the solution operator by multi-patslwf DO follows from the exact conver-
gence of the AnsatdVy; in some operator norm. We emphasize that the convergencdtam as not
up to a regularizing operator. A further interesting aspddhis result is that each constituting operator
of the multi-product is given explicitly. With such a produepresentation, we have in mind the devel-
opment of numerical schemes for practical applicationscedhe problem is discretized in space, the use
of fast Fourier transformations (FFT) can yield numericatihods with low computational complexity,
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with possibly microlocal approximations of the symbols unegtion as is sometimes done in the case of
hyperbolic equations (see for instance [dHLWO0O, LdHO1a, Q&b LdHO03]). We also anticipate that our
representation procedure can be used in theoretical pegpos

As described above, the first part of this article is devotethé parabolic Cauchy problem &' and
to the study of the properties of the approximation Ans#itz ;. In the second part, we shall consider
a parabolic problem on a compact Riemannian manifold withmwndaries. In this case, the operator
g"(x, Dy) is only considered of dlierential type, in particular for its full symbol to be knowragtly. In
each local chart we can define an infinitesimal approximaifdhe solution operator as is doneR? and
we combine these localDOs together with the help of a partition of unity. This yigld counterpart of
p‘(’tv,’t)(x, D,) for the manifold case (see Section 4.1) denotedPpy). In fact, the sharp estimate (1.4) still
holds inL? (s = 0) for this infinitesimal approximation (Theorem 4.4). Thegf of a consistency estimate
(Proposition 4.6) requires the analysis of tlkeet of changes of variables for Weyl symbols of the form of
e"-99, The choice we have made for the definitiorRyf ) is invariant through such changes of variables
up to a first-order precision w.r.t. the small paramétert’ —t, which is compatible with the kind of results
we are aiming at. With stability and consistency at handctherergence result then follows as in the case
of R™.

In the manifold case, the constitutigdpOs of the multi-product are given explicitly in each lochhcet.

We observe moreover that the computation of the action sithexal operators can be essentialy performed
as in the case dR", which is appealing for practical implementations.

Another approach to representation of the solution opeté{, t) can be found in the work of C. lwasaki
(see [Tsu74, Iwa77, lwa84]). Her work encompasses the dadegenerate parabolic operators, utilizes
multi-product ofyyDOs and analyses the symbol of the resulting operator, ulmgvork of Kumano-go
[Kg81]. However, the symbol of the solution operatd(t’,t) is finally obtained by solving a \Volterra
equation. Such integral equations also appear in relatekisvam the solution operator of parabolic equa-
tions (see e.g. [Gre71, ST84]). The alternative method wegnt here will be more suitable for applica-
tions because of the explicit aspect of the representatidhe step of the integral equation in the above
works makes the representation formula less explicit. Hewehe reader will note that the technique we
use in our approach here do not apply to the case of degemambolic equations like those treated in
[Tsu74, Iwa77, lwa84]. The question of the extension of thevergence and representation results we
present here to the case of degenerate parabolic equatipeara to us an interesting question.

Let us further recall some standard notions. We denote-(ay) the symplectic 2-form on the vector
spaceT *(R"):

(15) U((X’ é:)v (y’ T])) = <f» y> - <77’ X)a

and we denote byf, g} the Poisson bracket of two functions, i.e.

n
{f,gl = Zaﬁf 3x,9 - Oy f 95,0,
=1
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We shall use the notatiort*#o denote the composition of symbols in Weyl quantizatien,a"(x, D) o
b"(x, Dy) = (a#"'b)"(x, Dy). The following result is classical.

Proposition 1.1. Letae S™, b e S™. Then a#'b € S™™ and

(1.6)
k

i i
@#'0)(x.&) = Y (50((Dx De). (0. D)) alx b7 |,

j =0 n=¢

t (1 _ I’)k . i k+1
+ ﬂ—2nf = f @ tre) (EU((DX, D;), (Dy, DT))) a(x+rz,{)b(y +rt,7)drdz & dt dr o’
0 ®

whereZ(z 2,1, 7,&) = 2((t — £,2) — ({ — &.1)).

The result of Proposition 1.1 is to be understood in the sefsscillatory integrals (see e.g. {0,
Chapter 7.8], [AG91], [GS94] or [Kg81]). For the sake of cmimn we have introduced

f:ff forn>3, ne N.
(@) S——

ntimes

For the exposition to be self contained, we prove Propositid in Appendix A.
We sometimes use the notion of multiple symbols. A funcifné,y,n) € C*(R*® x RPt x R% x RP?)
is in S™M(R% x RPt x R% x RP?), if for all multi-indicesay, B1, @, B2, there exist€?#2 - 0 such that

12
1 05 0 alx £,y )l < CE% (@™ g™,

xe R%, ye R®, ¢ e RP e RP (see for instance [Kg81, Chapter 2]).

Forse R. We setE® := (D,)® = Op((¢)®), which realizes an isometry froid' (R") onto H ~S(R") for
anyr € R. We denote by.,.) and||.|| the inner product and the norm b#(R"), respectively ang - ||s for
the norm orH3(R"), s € R. For two Hilbert spaceK andL, we usd| - ||k, to denote the norm i£(K, L),
the set of bounded operators frdfinto L.

Our basic strategy is to obtain a bound §dpOs involving a small parametér> 0. In the following,
we say that an inequality holds uniformly rif it is the case wheih varies in [Q hpay] for somehpay > 0.

In the sequelC will denote a generic constant independerih,oirhose value may change from line to line.
The semi-norms
(1.8) Pos(@) = sup (&) ™ Pa5dla(x &)

(X£)eRMXRP »
endow a Fechet space structure 8'(R" x RP). In the case of a symbal, that depends on the parameter
h we shall say thady, is in 82‘5 uniformly in h if for all «, 8 the semi-nornp,s(ap) is uniformly bounded
in h. Similarly, we shall say that an operatéiis in ¥™ uniformly in h if its (Weyl) symbol is itself inS™
uniformly in h.

The outline of the article is as follows. Sections 2 and 3 amdted to the multi-product representation of
solutions orR". In Section 2 we prove the sharp Sobolev norm estimate (@hgh leads in Section 3 to the
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stability of the multi-product representation. We thenveroonvergence of the multi-product representation
in Section 3. Some of the results of these two sections makefummposition-like formulae, whose proofs
are provided in Appendix A. In Section 4, we address the mputiduct representation of solutions of a
second-order dierential parabolic problem on a compact Riemannian mahi#s in the previous sections
we prove stability (in theL? case) through a sharp operator norm estimate and we provergemce of
the multi-product representation. The convergence pregdires an analysis of theéfect of a change of
variables on symbols of the forem*), from one local chart to another, which we present in Appedi

2. A sHarp HS BoUND

We first make precise the assumption on the symgfxlé) mentioned in the introduction.

Assumption 2.1. The symbol q is of the formg gz + ¢z, where g € SI, j = 1,2, gp(x, &) is real-valued
and for some C 0 we have

p(x,&) > ClEP, xeR", £eR", |4 suyficiently large.

Consequently, for some > 0, we have
(21)  qx&) + Req(x. &) > Clg?, xeR", ¢£eR" | suficiently large, say| > ¢ > 0.
As is stated in the introduction, our main aim is to deal witl bperatop)/(x, Dx) where
Pn(x,£) = & "9,

It is well-known that theyDO py/(x, Dy) is uniformly H%-bounded inh, s € R. Actually we have the
following sharper estimate.

Theorem 2.2. Let se R. There exists a constant £ 0 such that

Pk (X, D)= 49 < 1+ Ch,

holds for all h> 0.
To prove Theorem 2.1 we shall need some preliminary results.

Lemma 2.3. (i) Let > 0and re S'. Then W?r py, is in S° uniformly in h.
(i) Leta andp be multi-indices such thaw + 8| > 1. Then, forany < m< 1, we haveﬁ‘;&? ph = h"pr”,
wherep™ is in S2™¥! uniformly in h.

Proof. We have
(h(g?y)legRedxs) < C;, xeR", ¢€R", hx>0,
forall j € N by (2.1), hence

h2Ir(x, &)pn(x. &) <C, xeR", ¢eR", h>0.
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For multi-indicese and we observe thdn'/za‘;a‘;(r(x, &)pn(x, &) is a linear combination of terms of the
form

HV2(0Rr) (X, (O X, ) -+ (BTG E) P, &),

fork>0,a0+ a1+ -+ax =a,Bo+B1+ -+ Bk =B and the absolute value of this term can be estimated
by

hk+'/2(§)'+2k‘w‘|ph(X, &) < C(f)"ﬁ', xeR", Ee R". hx>0,

by (2.1), which concludes the proof of (i). Far+g| > 1, 6§6§ph(x, &) is a linear combination of terms of
the form

@502 A)(x,£) - - - (5T A(% ) Ppn(x. &),
fork>1,a1+ - +ak=a,pB1+- -+ Bk =B, which can be rewritten d8",(x, £), where
An(%€) = @A) - 3PP O™ X ()?) " pr(x. ).

Since §5:9;'q) - - - (859}*q) € S*¥, we see thaty € S>™ ¥l uniformly in h by using (i). n

From Weyl Calculus and the previous lemma we have the foligwiomposition results for the symbol
Ph.
Proposition 2.4. Let r, be bounded in §1 € R, uniformly in h. We then have
(2.2) M #Pn = raph + 240 = rpy + A = rpy + %{rh, pn} +hA®,
(2:3) P #°11 = rpn + W2 = ropn + ) = rpn + %{ph, M} + i,

Where/lﬁo), yﬁo), /le?), and,&f?) are in S uniformly in h and/lﬁl) andpﬁl) are in S* uniformly in h.

To ease the reading of the article, the proof of Propositidrhas been placed in Appendix A. We apply
the result of Proposition 2.4 to prove the following lemma.

Lemma 2.5. We havepy, # (£)?S#Vpp, — (£)%5|pnl? = hk, with k, in S5 uniformly in h.

Proof. By Proposition 2.4 we have

1

1 n
P #pn = & pr+ o (O, pnf + M = @ o+ 5 ;(35,- (€)%%) O, pn + hayy

with A1 in S28 uniformly in h. We then obtain

—_ W S HW - HW S 1 C S
B # (£)2 #py, = Py # (<§>2 Pn+ z;(af@"’)ax, ph)+ hizn,
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with A2, in S28 uniformly in h. By Proposition 2.4 we have

Pr# (€)% pn) = &1l + % {Pr. ©%°pn} + Mz,

1 - s - s
= ©XIpn + 5 D (0 PRNE 505 P — (3 Pr) 9, (©7pr)) + .

=1

with Az in S28 uniformly in h. We also have
—#Wlna %) 9 —1n—a )9 h
P # 5 (0646 O Pr = 52 > Ph (96,46 Pr + Wa,
= =
with A4 in S23, uniformly in h, by Proposition 2.4. We have thus obtained
(2.4) B # (E2#pn = (@©FIp2 + 1D 4 2 Zn: 1®) 1+ ha
: Pn Pn = Pn 2i 'h i £ . h,j 5h,
]:
with Asp, in S28 uniformly in h, and with
n
I = (P, PAKE? = > (95, Pn 0, P — 0, ey PR)(E)™
=1

and
12) = (P 8y, Ph — P B, P) 9, O
We introducer := g, + Req; andg := Imq;. We have
(29 I = 202 o) fa, )
and
I2) = —2ih|pn[2(95,8) O, (&)

Sincea € S? andB € S' we then havea, ) € S% From Lemma 2.3, we thus obtaiff = hk", with
ki in S2° uniformly in h. We also have thaf?) = hk? with k) in S uniformly in h, which from (2.4)
concludes the proof. ]

We shall also need the following lemma.
Lemma 2.6. We have&)S#V |pn2 #V (£)S — (€)% pnl? = hk, with k, in S2 uniformly in h.

Proof. We setop = (£)S#" |pnl® #% (£)S. From Weyl calculus we have

on(x.E) = 72 f SEELLT S [pnf2(x + 2+ 1, £) dz & dit dr
@
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whereX(zt,{,7,&) = 2(z, 7 - &) — (t, { — &)). Arguing as in the proof of Proposition 1.1 in Appendix A we
write

pn(% E)—(EZIpnlA(x, &) = 772" f LT TS (IpnlP(x + 2+ 1, &) — |prlP(x ) dz d dt dr

@
1

26) = 5 Y [ €459, -0 )(0%®) @y P+ 12+ 0. dr dz o dt
0@

n
=1

by a first-order Taylor formula and integrations by partstw,;randr. Observing that we have

i . S S
0= ;(aﬁ. = 05 )(OXD) O lP(% D) |-,

i S
= 5 > / LT, — 0, )(0X(T)%) (x| PrlP) (X, €) dz & dit dr,
=1@
we can proceed as in the proof of Proposition 1.1 (integndijoparts w.r.tr in (2.6) and further integrations
by parts w.r.t andr) and conclude after noting thid,|* satisfies the properties listed in Lemma 2.3 like

Ph. L]

Remark 2.7. Note that the use of the Weyl quantization is crucial in treofs of Lemmata 2.5 and 2.6. The
use of the standard (left) quantization would only yieldsuteof the formpy, # (&) #pn — (&2 pnl? = hk,
with k, in S28 uniformly in h. Such a result would yield laz term in the statement of Theorem 2.2 and the
subsequent analysis would not carry through.

We now define the symbol(x, &) = %Z(Xf) for h > 0, and prove the following lemma.
Lemma 2.8. The symboly, is in S? uniformly in h.

Proof. We writeva(x, &) = 2 Req(x, £) J; € 2"Red4) dr, The integrand is it8° uniformly inr € [0, 1] and
hby Lemma 2.3 and Rge S?. n

Lemma 2.9. The symbol jpis such that
((IpP)¥(x Dy)u,u) < (L+ CHIIUIP,  ue LR,
for C > 0, uniformly in h> 0.

Proof. Lety € ¢ (R"), 0 < y <1, be such thag(¢) = 1if |¢] < . Then we write
Iphl2(x, &) = e 2NReaxs) — 2§ Red(xe) g=2(1-vEDReaxs) — (1 4 hy(x, £))e 2NExEIReqxs)

whereu(x, &) = —2y(£) Req(x, £) o e 2@Redxadr, From [Hor85, 18.1.10], the symbef 2@ Red(x4) jg
in S® uniformly inr andh; hence the symbal(x, £) is in S° uniformly in h. From [Hor85, Theorem 18.6.3]
and Lemma 2.3, it is thus ficient to prove the result witpn(x, &) replaced bypr(x, &) = e NI-x@)akxs),

We set

(X, &) = % (1 = [Pnl?(x, f)) ,
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for h > 0. From (the proof of) Lemma 2.8 we find tha{(%, £) is in S? uniformly in h. Since 1- y(¢) = 0
if |£] < ¢ and Rey(x, &) > 0 if |£] > ¢, we observe that,(x, &) > 0. Then the Fferman-Phong inequality
reads ([FP78], [lBr85, Corollary 18.6.11])

(7(x Du.u) > -ClulZ, ue L*R"),
for some non-negative constabthat can be chosen uniformly m This yields
IuliZ. = ((IBn®)"(x Dyu,u) = —ChiulZ,,  ue LX(RM,
which concludes the proof. ]
We are now ready to prove Theorem 2.2.

Proof of Theorem 2.2. We use the following commutative diagram,

e _PHD)

E(S)l lE(S)

12— 2

and prove that the operat®y, satisfieg| Ty 2.2 < 1+ Ch.
The Weyl symbol ofT; o Ty, is given by

Th = (&) S# P #Y(EFH P #Y (6)S.

By Lemmata 2.5 and 2.6, we havg = |pn|® + hks, with k, in S° uniformly in h. We note thaky(x, &) is
real valued. To estimate the operator norm off;, we write

IThul? = (Ty © Thu, 1) = ((1Pn?)"(x, Dx)u, u) + h(Ky(x, Dx)u, u)
< ((Ipn®"(x, Dx)u, u) + ChiulP?,

for C > 0 [HOr85, Theorem 18.6.3]. The result of Theorem 2.2 thus falwm Lemma 2.9. ]
Let m(x) be a smooth function that satisfies

(2.7) 0 < Myjn < M(X) < Mnax < 0,
along with all its derivatives. With such a functiom we define the following norm ob?(R")

1 may = [ P9
Rn
which is equivalent to the classidaf norm. We shall need the following result in Section 4.

Proposition 2.10. There exists a constant € 0 such that
1P (X, Dx)ull2rrmay < (1+ CH) [lUllz@nmdy ue L%(R"),

holds for all h> 0.
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Proof. We follow the proof of Lemma 2.9 and ugg(X, £) in place ofpn(x, £). We then set
i) = T (1 (e ).

Thenvh(x,€) > 0 is in S? uniformly in h. The Féferman-Phong inequality yields

(A(x. DU, U) = ~ClIulZ, 2 ~C' U2 o gy U € LAR").
This yields

Ul n g = (MBI (% DU, U) = ~C hlIUIE o e s U € L2R),
By Lemma 2.11 just below, we have
(M) Dx)u,u) = (Bn" (%, Dx) 0 Mo (BY(x, DU, u) + h(2*(x, D,)u, u),

with A(x, £) in S° uniformly in h and wherem stands for the associated multiplication operator here. We
conclude sincdy,” (x, Dy) = (B(x, Dy))". o

Lemma 2.11. Let f € ¢~ (R") be bounded along with all its derivatives. We have
Pn#"f #'py — flpnl® = hap,

with Ay, in S° uniformly in h.
Proof. From Proposition 2.4 we have
n
0= 100~ 51 D0 0+
=
with A1 in S° uniformly in h. By Proposition 2.4 we also have
PRA(Tn) = fIpnf + o (D £ po) + iy

= flpnl® + 5 Z (3, P) (3, T)Ph + (0, Pn) F (3, Pr) — (9, P F (9, Pn)) + M,

with A, in SO uniformly in h, and
Pr#" (0, T)0z, Pn) = Pr(d, F)0e pr + Muajn, j=1.....1,
with pjp in S° uniformly in h. 1t follows that

Pt #Vpn = flpnl* - = Z(«?x, F)(Pndg; P = Pn 3¢ Pn) + = T {Pn, Pn} + Mdap,

with A4 in SO uniformly in h. With the notation of the proof of Lemma 2.5 (see expressioB)f we have
(Pr. pn} = 2ih?prf? (. B} = hK,

with k™ in S° uniformly in h by Lemma 2.3, sincg is in S anda € S2. We also have

n
Z ax] f(mafj Ph— phﬁ.s,m) = hkﬁZ)’

=1



PSEUDODIFFERENTIAL MULTI-PRODUCT 11
with kff) in SO uniformly in h by Lemma 2.3. ]

3. MULTI-PRODUCT REPRESENTATION: STABILITY AND CONVERGENCE

We are interested in a representation of the solution opefi@tthe following parabolic Cauchy problem
(3.1) du+ag(t,x,Dyu=0, O0<t<T,
(32) Uli=o = Ug € Hs(Rn).

Here the symboti(t, X, ¢) is assumed to satisfy Assumption 2.1 uniformly w.r.t. theletion parametet
and to remain in a bounded domainSA ast varies. We then note that the result of the previous section
remains valid in this case, i.e., the const@nbbtained in Theorem 2.2 is uniform w.rtt. We denote by
U(t’, t) the solution operator to the evolution problem (3.1).

Following [Le 06], we introduce the following approximati@f U(t, 0). With p = (t©@ @), N} a
subdivision of [0 T] with 0 = t© < t® < ... < t™N) = T, we define the following multi-product

Pwo) if 0<t<t®),
1

P(t,t(k))l—lp(t(i)’t(i—l)) if 10 <t<tked),
i=k
wherePy y) is theyDO with Weyl symbolpg ) given by pe ¢ = e 990xE) for ¢/ > t:

P gV(X) = P (X DOV(X) = (27)™" f f Oy DaAta2Oy(y) dy ok

We shall prove the convergence®fy ; to U(t, 0) in some operator norms as well as its strong convergence.

(3.3) Way 1=

3.1. Stability. As a consequence of the estimate proven in Theorem 2.2 wemf@lowing proposition.
Proposition 3.1. Let se R. There exists K= 0 such that for every subdivisiop of [0, T], we have
Vte[0,T], Wil ps < €7

Proof. By Theorem 2.2, there exis&> 0 such that we ha\AHD(t/,t)H(HS,HS) < 1+C(t'-t)forallt’,t € [0, T],
t’ > t; we then obtain

N-1
W llgs e < | @+ =10,
i=0
SettingUy = In (Hi“i{)l(l + C(t(+D) - t(i)))), we then havéy, < SN C(t0+) — t0) = CT. We thus obtain
W tlls sy < €°T. u
3.2. Convergence. To obtain a convergence result we shall need the followisgmagtion on the regularity
of the symbolq(t, x, £) w.r.t. the evolution parametér

Assumption 3.2. The symbol {1, x, £) is in #%“([0, T], S2(R" x R"), i.e., Holder continuous w.r.t. t with
values in $, in the sense that, for sonde< o < 1,

qit’, x, &) —qt, x, &) = (' —t)* §(t',t, x. &), 0<t<t <T,
with §(t’, t, x, &) in S? uniformly in t and t.
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We now give some regularity properties for the approximafmsatzWy ; we have introduced.

Lemma 3.3. Let se Rand t’,t € [0, T], with t < t”. The map’t— Py, for t' € [t,t”], is Lipschitz
continuous with values il (HS(R"), HS2(R")). More precisely there exists € 0 such that, for all ve
HS(R") and 9,t@ € [t t"],

H(P(t(Z)'t) - P(t(l)’t)) (V)HH*Z < C |t(2) - t(1)| ||V||Hs.

Proof. We simply write
t@

(Peory — Peorg) () = —(2) " [ f f OO DUN2D ot (x+y)/2.€) V(y) dy d dt.

@

We thus obtain DO whose Weyl symbol is i8? uniformly w.r.t.t?® andt® and conclude with Theorem
18.6.3 in [Hbr85]. -

Lemma 3.4. Let se R, t”,t € [0, T], with t < t”, and let ve H3(R"). Then the map't— P (V) is in
o[t t7], H(R™) N @ ([t, t7], H=2(R™).

Proof. Lett® e [t,t”] and lete > 0. Chooser; € H3*?(R") such thatlv — vi||ys < e. Then fort®@ e [t,t”]

[Py = ProyMllys < [[Peanv = v)llys + [[Peonv = vl + [[Peanvi) = Paag(va)
(3.4) < 2(1+C(t” V)¢ + CJt? —tO] vl

Hs

The continuity of the map follows. EerentiatingP r(v) w.r.t.t’, we can prove that the resulting map-
dv P (V) is Lipschitz continuous with values if(HS2(R"), HS-2(R")) following the proof of Lemma 3.3:
there exist< > 0 such that for allv € HS*2(R")

|G Py = 0 Peovg)(W)|| 4> < C |t@ = tD] Wz

Here v Pyo yy meansdy P(t/,t)|t, We also see that the map— 0y P (V) is continuous fromH3(R")

=t() "
into HS2(R") with bounded continuity module: with e HS(R"), we make a similar choice as above for

vi € H*?(R") and obtain an estimate for
”at’ P2y (v) - oy Pew g (V)“H&Z

of the same form as in (3.4). ]

Gathering the results of the previous lemmata we obtaindhewing regularity result for the Ansatz
Wat.

Proposition 3.5. Let se R, let iy € H3(R"). Then the mag¥y ((Uo) is in #°([0, T], HS(RM) and piecewise
([0, T], H2(R").
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The following energy estimate holds for a functidt) that is in #°([0, T], HS(R") and piecewise
#*([0, T], H=2(RM) (by adapting the proof the energy estimate in Section6[EP82)):

T T

35) IR+ [IfOIfdt < c[ IFONEes + [ 1@ + o', x DY) FEOIE o |.
0 0

forall t € [0, T]. Once applied tol(t, 0) — Wy 1)(Uo) With ug € H3(R™) we obtain

T T
(U, 0) — W )(Wo)lIFer + f I(U(t. 0) — W )(Uo)llfys dt < Cf Il (@ +a"(t'. X. Dx)) W (Uo)I5» A
0 0

N—1 t(+1)
=C Z f Il (@ + a"(t', X, Dy)) Py 10y Wes 100 (Uo)IIFys-. At
=0 4
N_p 1D
(3.6) <C)] f 1@ +A"(t', X Dx)) P 1) s -2y At €T I1UolIFe,
=0 1)

where we have used the stability result of Proposition 3tlrerhains to estimate the Sobolev operator
norm of (0v + q"(t", X, Dx)) Py, for t” > t, which can be understood as estimating ¢basistencyf the
proposed approximation Ansatz. This is the object of thiefahg proposition.

Proposition 3.6. Let se R. There exists G 0 such thaf|(dy + g"(t’, X, Dx)) P t)llHs Hs2) < C(t" - 1)*, for
O<t<t'<T.

Proof. We have
(3.7) P yu(x) = —(21) ™" f f YO, (x +y)/2,£)e AL y(y) dy ok,
and thus the operatofi{ + g"(t’, X, Dx)) P 1) admits
oy =at'....) #pey — A, .. )Py
for its Weyl symbol. Since by Assumption 3.2 we have
qit’, x, &) —qt, x, &) = (' = )" §(t',t, x. &), 0<t<t <T,
with §(t', t, x, &) in S? uniformly int” andt. We can thus conclude with the following lemma. ]

Lemma 3.7. We have ¢"'p, — gp, = ha, with A in S? uniformly in h.

Proof. As in Section 2, we ignore the evolution parametierthe notation. The result is however uniform
w.r.t.t. By Proposition 2.4 we have

1
a#'ph =g + 5 (G pn) + hp,

with Ay, in S2 uniformly in h. We note however thdty, pn} = 0. ]



14 HIROSHI ISOZAKI AND JEROME LE ROUSSEAU

The result of Proposition 3.6 and estimate (3.6) yield
T 1
(3.8) I(U(t, 0) = Wy ) (Uo)llns2 + U Ut 0) = Wy 1) (Uo)lIis dt’) < CTET A lluollhs,
0

whereAy = max<j<n-1(t* — t0). This error estimate implies the following convergenceuits which
provides a representation dft, 0) by an infinite multi-product oy DOs: U(t, 0) = lim,, .o Wy . We now
state our main theorem.

Theorem 3.8. Assume that @, x, ¢) satisfies Assumptions 2.1 and 3.2. Then the approximaticatAn
Wy converges to the solution operatoftJ0) of the Cauchy probler8.1)—(3.2)n L(HS(R"), HS1*"(R"))
uniformly w.r.t. t asAy = max<j<n-1(t'** — t)) goes to 0 with a convergence rate of ora€d — r):

Wyt = Ut O)llgas ey < CAGT ", te[0,T], O<r<1,

The operatorWs, also converges to {#,0) in L?(0, T, L(HS(R™), H3(R™)) with a convergence rate of
order «:
T 3
([ 1= Ut 0Nt < .
Furthermore'Wy; ; strongly converges to (@, 0) in L(HS(R"), H(R™)) uniformly w.r.t. te [0, T].

Proof. The first two results are consequences of (3.8). The prodiefitst result for # 0 follows by
interpolation between Sobolev Spaces [LM68].

Letup € H(RM) and lets > 0. For the strong convergencektf(R") we choosel; € H*(R") such that
[lup — Up]lps < €. We then write

W 1(Uo) — U (L, 0)(Uo)llns < W t(Uo — Un)llks + I'We 1(ur) — U (L, O)(Un)llns
+U (L, 0)(Uo — un)llns < Ce + CAGIUllys,

from the case = 0 of the first part of the theorem and from the stabilityfy ; (Proposition 3.1). This
last estimate is uniform w.r.t.e [0, T] and yields the result. ]

4. MULTI-PRODUCT REPRESENTATION ON A COMPACT MANIFOLD

4.1. Notation and setting. We shall now consider the case of a parabolic equation am@mensional
compact? ™ -Riemannian manifold 1, g), whereg is a smooth Riemannian metric. We kebe a second-
order elliptic diferential operator oW whose principal part,, is given by the Laplace-Beltrami operator
on M, which reads

A =-g72d) (g%gijaj)7
in local coordinates, wherg = det(;;). Other uniformly-elliptic operators can be considerecchgnging

the metric. We choose here to focus on th@edéential case instead of the pseudtatential case because
the full symbol of the operator can then be completely deforethe manifoldM.
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We allow the operatoA to depend on an evolution paramete¥We shall thus assume that the metric is
itself time-dependent, yet continuous wi,tg = g(t, X), and satisfies

(4.1) O<c<gtXx)<C<oo, te[0,T], xeM.

For theL? norm onM, we shall use the metrig(0, X) as a reference metric. We sgi(x) = g(0, x). We

2(x)dxin local coordinates. The2-inner

then denote bylv the volume form which is given bglv = g;

product is then given bgu,w) = [, uw dv[Heb96].

Since we are going to consider an infinite produciZ®Os, a little attention should be paid to a finite
atlas. We shall use an atlag = (6}, ¥i)icsr of M, |7| < oo, with i : 6, — 6, whered; is a smooth bounded
open subset dR". Fori € I, we set

Ji=liel; 60020, J2:={leg; eI

which lists the neighboring charts and the “second”-nedgimy charts for the charty, y;). For technical
reasons, we shall assume that there exists a coarser flage/at (Ok, ¥ )kex Of M, Pk : Ok — Ox Cc R",
such that for each chari(yi) € .« there exists a char®(, Y«s) € 4, such that

U O € Oy,

leg®
i.e., Bk contains all the “second”-neighbors @f This is always possible by choosing the atlassufi-
ciently fine. We shall denote kgy(t), i € 7, the Weyl symbol ofA(t) in each local charti, ).

We set {)icr as a family of¢™ real-valued functions defined ovil such that the function@f)ig form
a partition of unity subordinated to the open coveriagd, i.e.,
supppi)c 6, O0<¢i <1 ieZ, and Z(piz =1
el
We denote
=W e=gioyt

and similarly, forl € 7, we shall set

& = (Yigy) ¢1s
with W\ as above, when there is no possible confusiok(0n

We setQ(t) as the elliptic operator oM defined through
AD = gioQ) o,
iel
The construction o can be done recursively: we wri@= Q, + Q1 + Qo, with Q a differential operator
of orderl, | = 0, 1, 2 and obtain
Q=A Q= —Z[%Qz] ogi, Qo= —Z[sﬂi,Qﬂ ° .
iel iel

The recursion stops after two iterations since we considiardntial operators here.
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In each local chartX, i), i € I, we denote by (t, X, &) the Weyl symbol ofQ(t), i.e.,
Yue (@), QMU =y (a'(t x DM ),

or equivalently

VEE €T (@), q'(t.x DU = (¥ (QOWT).
The symbolg;(t, x, £) is uniquely defined sinc€(t) is a diferential operator. We also lgk(t, x, £) be the
Weyl symbol ofQ(t) in the chart @y, W), k € K. From (4.1) we then have

Lemma 4.1. In each chart the symbol of(€) satisfies the properties of Assumption 2.1.

We set
pi’(t/,t)(X, &) = —(t’—t)q‘(t,x,f), ieZ, 0<t<t'<T, xe éi, £eR"
With these symbols i8°(g; x R"), we define the following/DOs onM:
(4.2) Pi,(t’,t)u =¢jo l//T ° p}/’v(t,’t)(x’ Dy) o (er)* o = ‘/’r o(@io p},,v(t',t)(x’ Dyx) 0 @) o ('J/rl)*9
(4.3) Pry = Z P,
iel
whereg; andg; are understood here as multiplication operators. The tgePg 1) is the counterpart of
the operatorp‘(’;’,’t)(x, Dy) introduced in Sections 2 and 3. We shall compose such apsriat the form of
a multi-product as is done in Section 3 to obtain a repretientaf the solution operator to the following
well-posed parabolic Cauchy problem s

(4.4) SuU+ADU=0, 0<t<T,
(45) Uli—o = Ug € HS(M)

We denote byJ (', t) the solution operator of (4.4)—(4.5) and we define the mpritiduct operatomVy; ; as
in (3.3) for a subdivisionp = {t@ t@, . t™N)} of [0, T]:

Pwo) if0<t< t(l),
1

P(t,t(k))np(t(i)‘t(i—l)) if tH <t<tkD,
i=k
We shall make the following regularity assumption on therapm A(t), which is equivalent to that made

in Section 3 (Assumption 3.2).

Assumption 4.2. The symbol of &) is Holder continuous of ordet, 0 < a < 1, w.r.t. t with values in &:
for each chart(@;, ¢) we have ac #°([0, T], S2(R" x R")), in the sense that,

ai(t,s ng) - a-I(t’ X»f) = (t/ _t)(l ai(t/9ts X,f)» 0 < t < t’ < T5

with &(t’, t, x, &) in S uniformly in t and t. Note that the same property then holds for the symba(tpf
in any chart.

This property naturally translates to the symbap($), i € 7.



PSEUDODIFFERENTIAL MULTI-PRODUCT 17

Remark 4.3. The form we have chosen for the opera®gry, can be motivated at this point. First, a natural
requirement is thalPyy = Id, which is achieved sincg}i.; goiz = 1. Second, the consistency analysis of
Proposition 3.6 gears towards havi(@j Py ) — A(t’) o P(t”t))|tr=t = 0, which is achieved here thanks to the
form we have chosen for theftirential operato€(t).

As in Section 3, we first need to address the stability of théimptoduct. Here, we shall only consider
thel? case.

4.2. L2 Stability. As in Section 2, we find a sharp estimate of tffenorm of the operatoP 1 over M.

Theorem 4.4. There exists a constant € 0 such that

1P yllizivy,zvy) < 1+ C(E = 1),
holdsforall0<t<t' <T.

Therefore, as in Section 3, we obtain the following stapil@sult for W .

Corollary 4.5. There exists K= 0 such that for every subdivisio of [0, T], we have
Vte [0, T Wy ey zov) < et
Proof of Theorem 4.4. We letu, w € L2(M). We have
(P-gu,w) = f G (Pl o 06 D@7 ) (W) dv= > f (@) P (% D) (@ilh) g5 *(x) dx
i€l j i€l §
whered (resp.wi) is the pullback oluls (resp.wiy) by l/’i_l- We now extend the symbqj(t,.) to R" x R"

to obtain a symbol satisfying Assumption 2.1 like its coupéet in Section 2. We still denote lay(t, .) this
extended symbol. Then, by Proposition 2.10, foii @ll7, there exist€; > 0 such that

|| p‘i’}’(t’,t)(x’ DX)”(LZ(R”,gé/Z dx),LZ(R”,gé/Z dX)) < 1 + Ci (t’ - t),
whereg is also extended frorf to R", yet still preserving Property (2.7). With = max.; C; (recall that
T is finite) we thus obtain
| (Pe—yu,w) | < (L+ C(t' - 1)) Z 16Nl 25, g2 g 11 Gill 25, g2 -
iel
A Cauchy-Schwarz inequality then yields

1
2

1
~ 2 ~
|(Pegu W)l < (14 C(F = 0) (Y IGIE, ;e g) (D 1B poey)
iel iel

Observing that
~ o~ 2 ~2~2  1/2 2,2 2
§ “‘piui”Lz(éi,gé/zdx) = § f‘Pi U go/ (X)dX= E f‘PiU dv= ||u||L2(M)’
iel >
(4

iel i€l pq
sinceYi.r ¢? = 1, we find

[ (Pa—u, w) | < (L+ C(t" = 1)) IWllL2(pg) [1UllL2ry
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Ficure 1. Change of variables bringing the analysis to the cl@gf(¥x)) for the charts
(i, ¥i) and @, ¢), j € Ji, and their neighboring charts.

which concludes the proof. ]

4.3. Consistency estimate.As in Section 3, Proposition 3.6, for the caseRS¥, we shall now analyze
the symbol of the operatoB{ + A(t"))Pw ) and prove the following proposition that corresponds to a
consistency estimate.

Proposition 4.6. Let0O<t <t' <T. We have
@ +Alt) o Py =t =)Ly,  with Lygy € W2(M),
and for all se R, there exists G 0 such that

(4'7) ”L(t',t)”(HS(M)!H&Z(M)) S C,

uniformly in t and t.

Proof. Foru e @ (M) we haveu = ¥;.; ¢?u. It thus suffices to takey € @ (M), with supp(i) c 6;, for
somei € 7, and to prove that we have

(Ov + Al))Pry(u) = (' = L w.n(U), Liw.y, € lI'2(/\’0,
and thatl; (v ) satisfies (4.7) uniformly i’ andt.

For concision we writeg Tor Gy here. Let us recall thagis the Weyl symbol ofQ(t) in the chart
Ok, i), k € K. We setpy y(x &) = e -04x)  Making use of the assumption made on the chart
(Oxqy, Pkiy), we consider the action of the change of variables Wy o l//j‘l on the operatorg; o
p‘]f"’(t,’t)(x, Dy) o §j € LIJO(?)j) for j € Ji (see Figure 1). By Lemma B.2, we obtain

Peyui = Py © ( Z @i o Ppy(*Dx) o @j) o (Fh)'u + (' = R ui,
i€Ji
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with (3)0 in Yo(M) uniformly int” andt. We then have

(4.8) Alt') o I:)(t’,t)ui = Z Z \P;(i) o ( @ro qw(t/, X, Dy) o S’bIQADj o ﬁall,t)(x, Dy) o sz ) o (\P;(:il))*ui

jeJi |€ji(2)
’ 1
+ ('~ DR Ui,
WhereRﬁtl,?t) is in W2(M) uniformly int” andt.

From (4.2) we have
d Pyt = ¥ o (@) o (@t )Pyen)'(x Dx) 0 &) o (W)U, j €T
which we may write
O Pigti =¥ © (&) © Af(t: X, Dx) o Ppy(x Dx) 0 ) o (W)
SO -i@ o RY o) oW u, el

whereR?) " is in W2(g;) uniformly int’ andt by Lemma 3.7. We choosg € ¢:°(6;) such thay; is equal

to one oﬁt ;)up[q;(j"). We then have
O Piw Ui =y} © (§j © a'(t, X, Dx) o xj o Pfpy(% Dx) o xj o &) o (1) U
+ (U =00 @ o RY g0 @) o i) u,  jed,
recalling thatq‘]fv(t, X, Dy) is a diterential operator, hence a local operator. Applying LemnatB y; o
p‘]!’V(t,’t)(x, Dy) o xj we obtain
O Pyt =W © (§) 0 G(t, X, D) o ¥j 0 Pl (% Dx) 0 % © @j) o (Wiegy) Ui + (t' — t)R(f’()t_t)ui, i€,
whereR®)

JAR)
differential operator, we finally obtain

(4.9) APyl = ) ¥y o (B 0 8"(t X D) o By y(x Dx) 0 §y) o (¥igh) "t + (' ~ ORE .
ieJi
WhereRg?t) is in W2(M) uniformly int” andt.
The operator&(y’, in (4.8) andR), in (4.9) will contribute to the operatdr; 1 and we discard them

from the subsequent analysis. Observe that we may changrithe overj € J; to sums ovelj € ji(z)
(4.8) and in (4.9) since we only consider the action of the dwerators on;.

is in ¥2(M) uniformly int’ andt andyj = (y; o ‘{’;(il))*)(j. Using again thag"(t, x, Dy) is a

Now that we have brought the analysis to the oper@a@t we shall consider and analyze the following

symbol,o v 1, which corresponds to the operat&’rlgé))* o (O +Alt")) o Py o Yiy ignoring the operators

tl,)t) and (3),0 as explained above:
_ ".#W"t #W" #W", ~ #W'\ tl #W" "A#W'* #W",
own(Xé) = Z Qi # QL ) H Py #'pj + Z QU ) # o ) #Y Py #1051

jE[fi(Z) j,|€:fi(2)

_.+@
=00y

keeping in mind that we only consider the action of the asdedioperator on‘}(;(}))*ui whose support is
compact and contained . (6;). We extend the symba(,.) to R" x R" to obtain a symbol satisfying
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Assumption 2.1 like its counterpart in Section 2. We stilhde byd(t, .) this extended symbol. We may
then use global symbols iR". As in the proof of Proposition 3.6, we may replag, ) by §(t’,.) by
Assumption 4.2. For the symboly (X, £), this yields an error term of the fornt’ (- t)“/lgs?t)(x, £), with
/lES?t)(X, &) in S? uniformly in t” andt, that will contribute to the operatay; ¢ . We thus discard this term
in the subsequent analysis and we still denoterpy(x, £) the modified symbol.

We now sefy = 1- ¥ s ¢* and we write

1 ~ Afer ~ A ~ ~ Py P a ~
oy = D, PR Py #'P - Y A )H & # By #'5)

jei(z) jle :]i(z)
I+
= > G, ) A - ) B P #E - DL G, ) HYG b # By #P,
je\yi(z) lje ~7i(2)
I+

= D A ) HEE H By '),

lLje ~7i(2)
I# ]

which yields
(4.10) Tro(%E) == D GiH AL ) # P #'G;

J.E:]i(z)
(4.10) SO A )56 B #B) - 8 By # )

lLjeg® @
] ::‘r(t’,t)(x’é:)

From Weyl calculus [18r85], since suppf) N supp(&’;(}))*ui) = 0, we find that the first term in the r.h.s. of
(4.10) can be written in the fornt’ (- t)AM(x, &), with A® in S2 uniformly in t’ andt, making use of the
composition formula (1.6) and Lemma 2.3.

Applying Proposition A.1 (withk = 1), we find

n .
| AN~ A~ ~ A ’
LACHEDY 5 (204857 =~ 210:,@D) D0 By + (1 = D2A(x ).

m=1
with 2@ in S° uniformly in t’ andt arguing as in the proof of Proposition 2.4 in Appendix A (gsin
Lemma 2.3 and Theorem 2.2.5 in [Kg81]). Therefore, we are lefwvith computing

..n
i LA A R R .
o= 5> D, M. ) # (205,208 ~ 819x, (@) Gen Pres ]
m=1 I j Eji(z)

..n
| ~ ~ ~ ~ Al A ’
=52 2, (0@ - #0x,@) At x O, By + X ~910(x.2).
m=1 lje -7i(2)
I

with A® in S? uniformly in t’ andt by the composition formula (1.6) and Lemma 2.3. Observirag th
the first term just obtained in fact vanishes, we finally hayey(x,£) = (' — t)A(x, &) with A(x, £) in S?
uniformly int” andt. This concludes the proof. [
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4.4. Convergence and representation theorem\We observe that the energy estimate (3.5) also holds for
the diferential operatoA(t) on M (since the proof relies on the Garding inequality which kdtat positive
elliptic operators onM). Combined with the I(?) stability result of Corollary 4.5 and the consistency
estimate of Proposition 4.6, the energy estimate yieldis, &sction 3, the following representation theorem
through the convergence a/y; to U(t, 0), the solution operator of the parabolic Cauchy problem)4
(4.5):U(t,0) = lima, .0 Wy in the following sense.

Theorem 4.7. Assume that @) satisfies Assumption 4.2. Then the approximation Ari#agz converges
to the solution operator (t, 0) of the Cauchy probler(#.4)—(4.5)in £(L2(M), H=**"(M)) uniformly w.r.t.
tasAy = maxyjn-1(t+! - t) goes to 0 with a convergence rate of oragf — r):

Wt = Ut O)lapny < CAGE, te[0,T], O<r<l

The operatorWy ; also converges to [0, 0) in L2(0, T, £(L?(M), L>(M))) with a convergence rate of order

a.
T , 1
([ 1w = UG O ) < g,

Furthermore Wy strongly converges to {t, 0) in £(L2(M), L2(M)) uniformly w.r.t. te [0, T].

APPENDIX A. PROOFS OF COMPOSITION-LIKE FORMULAE

We prove Proposition 1.1 and derive composition resultstfersymbolpn(x, &) = e 9%,

A.1. Proof of Proposition 1.1. From Weyl Calculus we have

(@#'b)(x, &) = =" f 2@ g(x + z O)b(x + t,7) dz & dt dr,
@
whereX(z, ,t,7,&) = 2((t — £,2) — (¢ — &,1)) (see [HOr85], p. 152). This yields

@#"b)(x.&) - (ab)(x.&) ==~ f 4 (a(x + 2 b(x + 1, 7) - a(x )b(x, 7)) dz & dt dr
@

1
n
= N f f &) (716, a(x -+ 12, DX + 11, 7) + (X + 12, ) bx + 11,7)) dr dz & dit dir
j=1 0 ®

by a first-order Taylor formula. In the first (resp. secondjrt¢hat we have obtained, we write

. i . ) i .
Zjéi(zi,t,nf) - _Eaﬁéi(z{,t,nf) (resp. tjeIZ(Lé,t,T,cf) - 5‘9 {jéi(zé,t,nf)).
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Integration by parts w.r.t- and{ in the oscillatory integral yields
n a-2n ! )
@#b)(c) - (ab)(x &) = ) o [ [ €566 (3, alx+ 12,00, blx + t.7)
=1 0 ®

— Oy, a(X +12,0)dg b(x + t,7)) dr dz & dt dr,

H

1
i—2n _
- m2 f f e2eLtm8) (D, D). (Dy. Do) (alx + 1z, O)b(y + rt, 7)) dr dz & di dir .
0

@

which gives the result of Proposition 1.1 fer= 0.To proceed further we integrate by parts wir.aind
obtain

(@#b)(x.£) — (ab)(x. &) = % f ¢XE4 9 ((Dy, D). (Dy. D)) (alx by, 7)) dz e dtar |
@

n_: _-2n 1 )
+ 3 T [@=n) [ et 0(D, D). (0, D)) (21 alx + 2. by + 11,7
j=1 0 @

+tja(x +12,)dy by + rt, 7)) dr dz &/ dt dr 'y_x

= iEO'((Dx, D;), (Dy, D)) (a(x, £)b(y, ,7))

y=x
n=¢

an (1Y 11 dr@stré) D..D/). (D..D z b t drd dt dr
r2(5) Of( —r)! (¢((Dx. D). (Dy. D)) (alx + 12, 2)by + 1. 7)) dr dz dt ditr |

which gives the result fok = 1. Formula 1.6 then follows from induction by integratiorr parts w.r.t.r

each time. ]

A.2. From amplitudes to symbols. Here we give a formula of the form of (1.6) to compute the Weyl
symbol of ayDO starting from an arbitrary amplitude.

Proposition A.1. Let ax,y, &) € ST(R" x R" x R") be the amplitude of #DO A, i.e.,

AU = @0 [[ €r9acy. o) uy) dy .
The Weyl symbol b of A, i.e./Ab%Y(x, Dy), is then given by

b(x,£) = €3(PyD-PxDg(y y, 5)'y_x e f f PEDa(x+ 2 x—20)dz

k (i<a P a>)j ( )‘
= A X = s aX, s
j=0 2 o % y=X

1
1-— k ) i k+1
+7r‘”f%ff e2'<“-f>(12<ax—ay,a§>) ax+rz,y—-rz,0)drdz o
0

The proof is analogous to that of Proposition 1.1 given above
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A.3. Proof of Proposition 2.4. We prove the results fap, #Yp,. The results foipy, #"ry, follow similarly.
We first use Proposition 1.1 fér= 0:
(A1)

-2n

i # P €) = (G E)Pa(x. ) +

1
n
foe'z(“”f) B Th(X+1Z,0) Oy, Pr(X + I, 7)
=19 @
— Oy, Tn(X +12,) O pa(x + 1t,7) ) dr dz & dit di.
By Lemma 2.3, we have
Ox;Pn = hvig), O, pn = hvg),

with vij) in S? andvfﬂ) in St uniformly in h. We thus observe that the last term in (A.1) can be written as a
linear combination of terms of the form

1
(A.2) h f f LTy, 117, van(X + 1, 7) dr dz dr dt dr,

wherev;  andv,, are respectively 8™ andS™ uniformly in h with my + mp = | + 1. Setting
1

Vh(X, )h(" Y, y’ é:’ T]) = fyl,h(rx + (1 - r))’z» g) V2,h(ry + (1 - r)y» 77) dr,
0

we see that it is a multiple symbol B™™(R?" x R" x R?" x R") and the term in (A.2) can be written as

s

hfe'z(“”f)vh(XJrZeX y+t.y.{,7)dzd dtdr
S=§=y=x

Applying Theorem 2.2.5 in [Kg81] twice (once for the intetioas w.r.t.z andr, a second time for the
integrations w.r.tt and/, recalling that(z £, t, 7, &) = 2((t — £,2) — (£ — &,t))) we obtain that the last term
in (A.1) is of the formh/lf})(x, &), Where/lf})(x, &) is in S"*1 uniformly in h.

Similarly, by Lemma 2.3, we write

By Pn = N2y, O, pn =27,

with ¥ in St andvﬁj) in SO uniformly in h. The same reasoning as above yields the last term in (A.1) is
of the formh%/lgo)(x, &), Where/lflo)(x, £)is in S" uniformly in h.

To now treat the last equality in (2.2) we use Propositionfdrk = 1:

1
(A.3) rh#'pr(x,€) = (rhpn)(X.€) + —-{fh, Pr}(X. €)

(2|)2 f(l r)z fepz(zgtrf) aln(xX+r1z, {)6xxkph(x+ rt,7)

1<), k<n@
- zax an(X+r1z, 4)62 w Pr(X+r1t,7) + a % (X + 1z, g)af & Pn(X+ rt,r)) drdz  dt dr.

Here, by Lemma 2.3, we write

K
2 P =i, 02 Prn=twin 92, pn =t
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wherevigjk), vﬁj()k), andvfﬂ'k) are respectively i$?, St, andS° uniformly in h. We can then conclude as above
with Theorem 2.2.5 in [Kg81] and find the last term in (A.3) bétformhi® with 2% in S' uniformly in

h. ]

APPENDIX B. EFFECT OF A CHANGE OF VARIABLES

B.1. Pseudodfferential calculus results. We shall be interested in transformation formulae for Wgyhs
bols under a change of variables and apply them to the pkatisymbols we consider in Section 4. We let
X andX be two open subsets &" and letk : X — X be a difeomorphism. We shall study thé&ect of the
change of variableg — «(x) on the symbok #"pn #"y in the Weyl quantization, wherg, = ™9, with g
satisfying the assumptions made in Section 4 aboveran@;’ (X).

We first consider general amplitudes before specializingegl symbols. Leg(x, y, £) be the amplitude
in ST(X x X x R") of A € ¥™(X) whose kernel is compactly supported. In particular, belae shall
considera(x, y, £) to be of the formy(x) x(y) &(x, y, &), with & € S™(X x X x R"). With ¢ € ¢;°(R") equal to
1 in a neighborhood of 0 we set

aO(X’ Y, é:) = {(X - y) a(X, \Z f)’ and aOO(Xv Y, é:) = (1 - g(X - y)) a(X’ \Z f)

If we setA, = (k1)* o Aok*, thenA, € ¥™(X). In fact, for supp() sufficiently small,A, = A, + Aw, With
A € ¥~=(X), and an amplitude o, is given by [GS94]

(B.1) 20,(%. Y, €) = ao(k (), € 1(y), k2%, ) 1) [ det™ Y ()| | dete2(x, ),

wherel:l(x, y) = (KEF(X, Y))1<ki<n iS defined through

G0 = K6W) = KOS = ).

=1

Note thatKTl(x, X) = (k1) (X) which implies thatz;'l(x, y) is indeed invertible in the support @ when
supp() is suficiently small. Note also that

— — 1 1y .
(B.2) Oy k2% Y)ly=x = By, K 1(X, Y)ly=x = Eaxj &Y, j=1,....n

Note that, for the operatdk.,, we can regularize its kernel by integration by parts andls@amplitude

. n
|
B.3 a¥0xy.6) = Lan(xy,é), with L= —— " (x —y)ds, keN,
(8.3) (.8) = Lau(xy.) oy 2400 e

in place ofa.(X,Y, £).
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By Proposition A.1 (withk = 1), the Weyl symbol of, is given by
(BA) a8 = e®POuPgy (xy &) =z f f & ag (x+zx-20)dz
y=X

i
= 0.(% %) + 5 (Ox = By, 06) B0,(%.¥. &),
| —
=, 0(%.£) =i 1(%.8)

1
. _
+a" (IE) ff EO (L - 1)((0x — Oy, 0p) %80, ) (X + 12,y —1Z,0)drdz | .
y=X
0
We now specialize to an amplitudéx’y, £) given by the Weyl quantization, i.e.,

a(x. Y, &) = x(X) x(y) b((x +Y)/2. ).

To simplify some notation we sét= «~. The symbok, o(x, £) is then given by
(B.5) aco(% &) = ¥(L(¥)? bL(X). W (LOE).

Lemma B.1. The symbol, 1(x, ¢) is given by

(%8 = XL Y () (GO0, W (L(E),
k=1
where

() = D Bk (L09) = D (02 k(LX) (B L1)(X):
=1

1<ml<n

Proof. From the definition ofy, ; in (B.4), and (B.1) we have

() = S0y~ iy, 96) (HLONLON BLOY + L2, {0 y) )

X |det(L) ()l | detc(x, y)"l)'yq’

where we have used thétis equal to one in a neighborhood of the origin. From (B.2),s&e that we
need not take into account the spatidfefientiations acting on the terr{({:l(x, y))~L. Similarly the spatial
differentiations acting on the cuffdunctionsy(L(x)) andy(L(y)) cancel each other, and so do the spatial
differentiations acting on the first variable of the symboNote also that the absolute values for the last
two terms can be removed beforéfdrentiation since their product yields 1 in the cgse x. To simplify
the notation we sdtl = ;;:E(X, X). We thus obtain
i ’ - ’ —
@a(%.€) = -5 Z X (L2 (@5L)(L(X. W (L(¥)€) (M) (9, detlL’ (x))) (detM) ™,
1<jk<n
From the multi-linearity of the determinant we find that

(9 detU' () (detM) ™ = 5" 3y Ly (%) ip(L(Y)).

1<pl<n
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which yields
W) == D KL09) (9 Lp(®) KoL) == D k(L) (95 Lpi(3) Kfe(L(¥)
1<j,pl<n 1<j,pl<n
= Z O (K (L(X)))s
1=1
sincex’(L(X)) L’(X) = Id. ]

B.2. Application to the operator y o p‘;]V(x, Dy) o x. We use the notation introduced above. In the case
b = e = p, thena(x, y, &) = y(x) x(y) e "€C/24) is an amplitude for the operatér= y o pY(x, Dx) o x
with Weyl symbola = y #'p, #"y. Making use of the form of the ampIituﬂ) in (B.3), we see that
Awx = hA, with A, in ¥°(X) uniformly in h, using Lemma 2.3.

We now focus on the operatofg andAg,. From (B.5) and Lemma B.1, the expression of the remainder
term in (B.4) and using Lemma 2.3 we obtain

B (k8 = (L. WD (1~ > ) (BaaL0O, W L)) + i,
k=1

with &, in S° uniformly in h. Similarly, if we denote by, the Weyl symbol of £1)* o q¥(x, D) o k*, we
have

®.7) Q0x.8) = AL0O, W LONE + 5 > 0 (PacL. WL +
k=1

whered, € S°. We now prove that after the change of variables «(x), for the operatog o Ph (X, Dy)oy =
a"(x, Dy), we may use the symbg(L(x)) #¥e"%x£) #% (L(x)) in place ofa,(x, &), the pullback of in the
Weyl quantization, yet remaining within a first-order pséan w.r.t. to the small parameter

Lemma B.2. We sety(x, &) = e "%*4) We have

() # B # (1)) (6 8) — % €) = (%, &),

whereAy, is in S° uniformly in h.

Proof. We setv(x,£) = IE Yhe1 fk(X)(ang)(L(X),tK’(L(X))f). Making use of (B.7), we write

Pr(%.£) = Pa(L(¥), W (L(¥)¢)e g ha(x)
1
= (L), W (L) (1 — (%, &) + (hv(x, £))? f e ™M a(1 ) dr) (1 + ha (%, ),
0

by two Taylor formulae, wherg; is in S° uniformly in h. From Lemmata 4.1 and 2.3 we obtain that
1

Pr(L09). T (L)) (hv(x. £))? f e ™1 - 1) dr = hua(x, &),
0
with 5 in SO uniformly in h. From (B.6) we hence obtain

(%) = (L) Pr(x. €) = hus,
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with u3 in SO uniformly in h. We conclude the proof with the following lemma singgahd py, are of the
same nature. |

Lemma B.3. Let¢ € €7 (X). We then have
¢ #'pn #'¢ — ¢*pn = han,

wherey, is in S° uniformly in h.

Proof. Sinceg(X)a(y)pn((X + y)/2,£) is an amplitude for the operator with Weyl symhio#” p, #¢, by
(B.4) we obtain

@#p#9)x.&) = [[ S D(x- D o(x+ D prlx ) dz &

1
= #mx8) - 3y [ [[a-ne e (o) ox- 12

1<jksng
— 204, ¢(X+12) By $(X — 12) + 05 $(X + 12) (X — rz)) 0% ¢ Pn(x.0) drdz .

We then conclude as in the proof of Proposition 2.4 in AppeAdbdy using Lemma 2.3 and Theorem 2.2.5
in [Kg81]. ]

Acknowledgements:We wish to thank L. Robbiano for discussions on pullbacks eyVgymbols. This
work was initiated while the second author was visiting thstitute of Mathematics at the University of
Tsukuba. The second author was partially supported by h&geNationale de la Recherche under grant
ANR JC07183284.

REFERENCES

[AG91] S. Alinhac and P. érard,Opérateurs Pseudo-Perentiels et Theoreme de Nash-Magdgditions du CNRS, 1991.

[CP82] J. Chazarain and A. Piriolntroduction to the Theory of Linear Partial Perential EquationsNorth-Holland, Amster-
dam, 1982.

[dHLWOO0] M. V. de Hoop, J. Le Rousseau, and R.-S. V@gneralization of the phase-screen approximation for ttegtering of
acoustic wavesiWave Motion31 (2000), 43-70.

[FP78] C. Féferman and D. H. Phon@n positivity of pseudo-flerential operatorsProc. Nat. Acad. Sci5(1978), 4673-4674.

[Gre71]  P. GreinerAn asymptotic expansion for the heat equatiarch. Rational Mech. Anak1(1971), 163-218.

[GS94] A. Grigis and J. $istrandMicrolocal Analysis for Djferential OperatorsCambridge University Press, Cambridge, 1994.

[Heb96] E. HebeySobolev Spaces on Riemannian Manifpldscture Notes in Mathematics, vol. 1635, Springer-VerBeglin,
1996.

[Hor79] L. HormanderThe Weyl calculus of pseudofg@rential operatorsComm. Pure Appl. Math32 (1979), 359-443.

[Hor85] , The Analysis of Linear Partial [Jierential Operatorsvol. Ill, Springer-Verlag, 1985, Second printing 1994.

[HOr90] , The Analysis of Linear Partial jerential Operatorssecond ed., vol. |, Springer-Verlag, 1990.

[lwa77]  C.lwasaki,The fundamental solution for pseudgfdiential operators of parabolic typeOsaka J. Mathl4 (1977), no. 3,
569-592.

, Construction of the fundamental solution for degeneratapalic systems and its application to construction of
a parametrix ofop., Osaka J. Math21(1984), no. 4, 931-954.

[Kg81] H. Kumano-goPseudo-Dfferential OperatorsMIT Press, Cambridge, 1981.

[LdHO1a] J. Le Rousseau and M. V. de Hodgodeling and imaging with the scalar generalized-screegpethms in isotropic
medig Geophysic$6 (2001), 1551-1568.

, Scalar generalized-screen algorithms in transverselyragc media with a vertical symmetry axiSeophysics

66 (2001), 1538-1550.

[lwa84]

[LdHO1b]




28 HIROSHI ISOZAKI AND JEROME LE ROUSSEAU

[LdHO3]

, Generalized-screen approximation and algorithm for thettering of elastic wave®. J. Mech. Appl. Math56
(2003), 1-33.

[Le 06] J. Le Rousseaurourier-integral-operator approximation of solutions pseudodjerential first-order hyperbolic equa-
tions I: convergence in Sobolev spac€smm. Partial Difterential Equation81 (2006), 867—906.

[Le 07] J. Le Roussea@n the convergence of some products of Fourier integral@joes, Asymptotic Anal51(2007), 189-207.

[LM68]  J.-L. Lions and E. Magene®roblémes aux Limites Non Homogénesl. 1, Dunod, 1968.

[ST84] Nancy K. Stanton and David S. Tartékd he heat equation for th&,-laplacian, Comm. Partial Diferential Equation8
(1984), no. 7, 597-686.

[Tay81] M. E. Taylor,Pseudodferential OperatorsPrinceton University Press, Princeton, New Jersey, 1981.

[Tsu74]  C. TsutsumiThe fundamental solution for a degenerate parabolic psaligierential operator Proc. Japan Acac0
(1974), 11-15.

UNIVERSITY OF TSUKUBA, INSTITUTE OF M ATHEMATICS, 1-1-1 TENNODAI TSukuBa IBARAKI 305-8571, dpaN

UNIVERSITES D'A 1Xx-MARSEILLE, UNIVERSITE DE PROVENCE, LABORATOIRE D'ANALYSE TopoLoGIE ProBaBiLITES, CNRS UMR 6632, 39
RUE F. brior-Curie, 13453 MARSEILLE CEDEX 13, FRANCE. ON A RESEARCH LEAVE AT LABORATOIRE PQeMmS, INRIA RocQueNcourT/ENSTA,
CNRS UMR 2706, RANCE. PART OF THIS WORK WAS DONE WHEN THE FIRST AUTHOR WAS ON A RESEARCH LEAVE AT UNIVERSITE PIERRE ET
MARIE Curig, LABORATOIRE JacQUES-Lours Lions, CNRS UMR 7598, Rkis, FRANCE.



