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If C is a monoidal category and P an object in C, one can construct a category of P -intertwined objects
whose objects are pairs (A, σ) with A an object of C and

σ : A ⊗ P → P ⊗ A

an invertible morphism. This category naturally lifts the monoidal structure of C, in a similar fashion to
the monoidal structure of the center of C. If P is pivotal and a dual Q of P is chosen, then any invertible
morphism σ induces two Q-intertwinnings on the object A as follows.

(ev ⊗ A ⊗ Q) (Q ⊗ σ ⊗ Q) (Q ⊗ A ⊗ coev) : Q ⊗ A → A ⊗ Q

(Q ⊗ A ⊗ ev)
(
Q ⊗ σ−1 ⊗ Q

)
(coev ⊗ A ⊗ Q) : A ⊗ Q → Q ⊗ A

In order to obtain a closed monoidal category C (P, Q), whose monoidal structure is described in Theorem
4.1, one must restrict to the subcategory of pairs for which these induced Q-intertwinnings are inverses
to each other. The principal objective in this paper is to show that C (P, Q) lifts left and right closed
structures on C, when they exist (Theorem 4.2 and Corollary 4.3). The construction is also discussed in
the cases when C is rigid (Corollary 4.4), and when C has a pivotal structure compatible with P and Q
(Theorem 4.5).
This review is closed with a list of significant remarks.
• Pivotal categories were introduced in [D. N. Yetter, Contemp. Math. 134, 325–349 (1992; Zbl
0812.18005)] under the name of sovereign categories, their study being vital for topological field
theories [V. Turaev and A. Virelizier, Monoidal categories and topological field theory. Basel:
Birkhäuser/Springer (2017; Zbl 1423.18001)]. However, the study of individual objects in a monoidal
category having isomorphic left and right duals is indigenous to this paper. In [K. Shimizu, J. Alge-
bra 428, 357–402 (2015; Zbl 1394.18004)] Shimizu introduced the pivotal cover of a rigid monoidal
category in connection with Frobenius-Schur indicators discussed in [S.-H. Ng and P. Schauen-
burg, Adv. Math. 211, No. 1, 34–71 (2007; Zbl 1138.16017)]. This paper introduces the pivotal
cover Cpiv of an arbitrary monoidal category C in Definition 3.5 from a distinct viewpoint arising
in [A. Ghobadi, “Hopf algebroids, bimodule connections and noncommutative geometry”, Preprint,
arXiv:2001.08673]. The pivotal cover of a monoidal category is of pivotal pairs as objects and
suitable pivotal morphisms between them, so that any strong monoidal functor from a pivotal cat-
egory to the original category factors through the pivotal cover (Theorem 3.7). The construction of
Shimizu requires all objects to have left duals and a choice of distinguished left dual for each object,
while the construction in this paper gets rid of these issues by taking pivotal pairs as objects of
Cpiv.

• Duals of monoidal functors were introduced in [S. Majid, in: Category theory 1991. Proceedings
of an international summer category theory meeting, held in Montréal, Québec, Canada, June
23-30, 1991. Providence, RI: American Mathematical Society. 329–343 (1992; Zbl 0784.18004)] as a
generalization of the center of a monoidal category. Tannaka-Krein reconstruction for Hopf monads,
as described by K. Shimizu [“Tannaka theory and the FRT construction over non-commutative
algebras”, Preprint, arXiv:1912.13160], takes the data of a strong monoidal functor, producing
a Hopf monad whose module category recovers the dual of the monoidal functor. §6.3 shows that
pivotal pairs in monoidal category correspond to strict monoidal functors from the smallest pivotal
category Piv (1) into the category, from which one can recover the same Hopf monad structure
from the approach of Tannaka-Krein reconstruction. An additional result concerning the pivotal
structure of the dual monoidal category is also provided.

• The Hopf monads constructed in this paper should be the simplest examples generalizing the theory
of Hopf algebroids with bijective antipodes [G. Böhm and K. Szlachányi, J. Algebra 274, No. 2,
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708–750 (2004; Zbl 1080.16035)] to the monoidal setting. A categorical characterization of the
antipode for Hopf monads is essential. While antipodes for Hopf monads have been discussed in
both the rigid setting [A. Bruguières and A. Virelizier, Adv. Math. 215, No. 2, 679–733 (2007; Zbl
1168.18002)] and the general setting [G. Böhm and S. Lack, J. Pure Appl. Algebra 220, No. 6, 2177–
2213 (2016; Zbl 1353.18002)], neither cover the case of Hopf algebroids over noncommutative bases,
which admit bijective antipodes. When restricted to the category of bimodules over an arbitrary
algebra, Hopf monads in this paper correspond to Hopf algebroids which in fact admit involutory
antipodes (Example 5.9).

• It is shown in Theorem 5.4 that the Hopf monad constructed is augmented iff the pair P and Q is a
pivotal pair in the center of the monoidal category, so that the braided Hopf algebra corresponding
to every pivotal pair in the center of the monoidal category is constructed by putting the theory
of augmented Hopf monads [A. Bruguières et al., Adv. Math. 227, No. 2, 745–800 (2011; Zbl
1233.18002)] to use.

• The applications of this work are scattered throughout the article. §3 observes that Frobenius
bimodules [L. Kadison, New examples of Frobenius extensions. Providence, RI: American Math-
ematical Society (1999; Zbl 0929.16036)] and ambidextrous adjunctions are examples of pivotal
objects in monoidal categories. The author [“Unravelling the complex behavior of Mrk 421 with si-
multaneous X-ray and VHE observations during an extreme flaring activity in April 2013”, Preprint,
arXiv:2001.08678, §4.2] has presented several other examples, in the format of differential calculi,
where the space of 1-forms is a pivotal object in the monoidal category of bimodules over the algebra
of noncommutative functions. This setting is briefly explained in Example 3.3. The Hopf monad
constructed in this case becomes a Hopf algebroid (Example 5.9) which is a subalgebra of the Hopf
algebroid of differential operators in the above setting. Additionally, to construct the sheaf of dif-
ferential operators in this setting, the wedge product between the space of 1-forms and 2-forms is
required to be a pivotal morphism. A direct consequence of Example 3.6 is that any bicovariant
calculus over a Hopf algebra obeys this condition.

Reviewer: Hirokazu Nishimura (Tsukuba)
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