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Fusion categories together with their many variants such as tensor, spherical, braided and modular
ones are a vast generalization of the representation theory of finite groups and finite-dimensional Hopf
algebras. The formal codegrees of a fusion category C, which are a finite collection of numerical invariants
associated to representations of the underlying Grothendieck ring, have proven to be critical, including
the Frobenius-Perron dimension FP dim (C) and global dimension dim (C) for spherical fusion categories.
Formal codegrees are highly restrictive from a number-theoretic viewpoint, since they are examples of
totally positive cyclotomic integers, and the less-familiar algebraic d-numbers [V. Ostrik, Math. Res. Lett.
16, No. 5–6, 895–901 (2009; Zbl 1204.18003), Definition 1.1].
This paper consisting of five sections aims to expand the general theory of formal codegrees of fusion
categories mainly contained in [V. Ostrik, Math. Res. Lett. 16, No. 5–6, 895–901 (2009; Zbl 1204.18003);
Contemp. Math. 728, 169–180 (2019; Zbl 1423.18023)]. It is shown (Theorem 3.1) that for each m ∈ Z≥1
there exist finitely many fusion categories C up to equivalence with N (dim (C)) = m, where, for a formal
codegree f ∈ N (f) denotes the norm of f , or the product of its Galois conjugates. This norm finiteness
holds also for FP dim (C) but because the set of all Frobenius-Perron dimensions of fusion categories is
a discrete subset of the positive real numbers [P. Bruillard et al., J. Am. Math. Soc. 29, No. 3, 857–881
(2016; Zbl 1344.18008), Corollary 3.13]. §4 observes that divisibility of algebraic d-numbers is equivalent
to divisibility of their norms. It is demonstrated (Theorem 4.4) that if f is a formal codegree of a fusion
category C which is not divisible by any rational integer, then the formal codegrees of C are precisely
the Galois orbits of f . There is merely one family of this type known, namely, C (sl2, κ − 2)ad for prime
κ ∈ Z≥3 coming from the representation theory of Uq (sl2) with q a root of unity [A. Schopieray, Contemp.
Math. 747, 1–26 (2020; Zbl 1436.18018)]. It is also demonstarated (Theorem 4.13) that if C is a spherical
fusion category with a formal degree f of square-free norm, then f ∈ Z or f = 1

2
(
5 ±

√
5
)
. A spherical

fusion category possessing either 1
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as a formal codegree is equivalent to one of the rank 2

spherical fusion categories Fib or its Galois conjugate Fibσ [V. Ostrik, Math. Res. Lett. 10, No. 2–3,
177–183 (2003; Zbl 1040.18003)].
§5 is concerned with applications of the above general theory to classification results of spherical fusion
categoriesspherical fusion categories. It was asked in [Z. Yu, “Pre-modular fusion categories of small global
dimensions”, Preprint, arXiv:2001.00785, Question 38] whether a spherical braided fusion category of
prime global dimension is pointed or equivalent to Fib ⊞ Fibσ. Theorem 5.12 answers this question
affirmatively, generalizing the result to arbitary number fields, which is to say that any spherical braided
fusion category whose global dimension has prime norm is pointed with the exception of Fib, Fibσ and
Fib ⊞ Fibσ. The reason why these exceptional cases can occur is that the categorical dimensions of their
simple objects are exceptional cases of a classical result of J. W. S. Cassels [J. Reine Angew. Math.
238, 112–131 (1969; Zbl 0179.35203), Lemma 3] on cyclotomic integers α such that the absolute trace of
|α|I2 is less than 2. In Theorem 5.5, the author removes the assumption of a braiding for spherical fusion
categories with global dimension whose norm is a safe prime, which is of the form p = 2q+1 with q ∈ Z≥1
being also prime. It is expected, but currently not established, that there exist infinitely many safe primes.
The reason why the exceptional spherical fusion categories can occur in this case is that all of their formal
codegrees are of the form p · u where u is one of the three totally positive algebraic integers of smallest
absolute trace, namely, 1 or 1

2
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. For any λ < 2, the proof of finiteness, and classification of totally

positive algebraic integers of absolute trace strictly less than λ is known as the Schur-Siegel-Smyth trace
problem [J. Aguirre and J. C. Peral, Lond. Math. Soc. Lect. Note Ser. 352, 1–19 (2008; Zbl 1266.11113)],
for which I. Schur [Math. Z. 1, 377–402 (1918; JFM 46.0128.03), Satz VIII] solved the finiteness problem
for λ =

√
e and C. L. Siegel [Ann. Math. (2) 46, 302–312 (1945; Zbl 0063.07009)] settled the classification

for λ = 3
2 , satisfying the incumbent purposes in this paper.

This paper lies in the tradition of the Schur-Siegel-Smyth trace problem and the results on absolute trace
of Cassels’ having been exploited in relation to fusion categories in the literature.
• S. Gelaki et al. [Algebra Number Theory 3, No. 8, 959–990 (2009; Zbl 1201.18006), Proposition
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6.2] used Siegel’s initial trace bound to investigate the number of zeros in the S-matrix of a weakly
integral modular tensor category, which can be seen as an extension of simple results for zeros of
characters of finite groups [F. Stan and A. Zaharescu, J. Reine Angew. Math. 637, 217–234 (2009;
Zbl 1242.11078)].

• Calegari, Morrison and Snyder [Zbl 1220.18004] improved upon Cassels result [J. W. S. Cassels,
J. Reine Angew. Math. 238, 112–131 (1969; Zbl 0179.35203), Lemma 3] as a means to classify the
smallest possible Frobenius-Perron dimensions of objects in fusion categories.

• F. Calegari and Z. Guo [Trans. Am. Math. Soc. 370, No. 9, 6515–6533 (2018; Zbl 1429.11195)]
made further improvements. This paper illuminates the necessity for algebraic number theory in
the study of fusion categories.
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