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We here report the phylogenetic position of barthelonids, small anaerobic
flagellates previously examined using light microscopy alone. Barthelona
spp. were isolated from geographically distinct regions and we established
five laboratory strains. Transcriptomic data generated from one Barthelona
strain (PAP020) were used for large-scale, multi-gene phylogenetic (phylo-
genomic) analyses. Our analyses robustly placed strain PAP020 at the base
of the Fornicata clade, indicating that barthelonids represent a deep-branching
metamonad clade. Considering the anaerobic/microaerophilic nature of
barthelonids and preliminary electron microscopy observations on strain
PAP020, we suspected that barthelonids possess functionally and structurally
reduced mitochondria (i.e. mitochondrion-related organelles or MROs). The
metabolic pathways localized in the MRO of strain PAP020 were predicted
based on its transcriptomic data and compared with those in the MROs of
fornicates. We here propose that strain PAP020 is incapable of generating
ATP in the MRO, as no mitochondrial/MRO enzymes involved in substrate-
level phosphorylation were detected. Instead, we detected a putative
cytosolic ATP-generating enzyme (acetyl-CoA synthetase), suggesting that
strain PAP020 depends on ATP generated in the cytosol. We propose two
separate losses of substrate-level phosphorylation from the MRO in the
clade containing barthelonids and (other) fornicates.
1. Introduction
Elucidating the evolutionary relationships among themajor groups of eukaryotes is
one of themost fundamental but unsettled questions in biology. It iswidelyaccepted
that large-scale molecular data for phylogenetic analyses (so-called phylogenomic
data) are indispensable to inferancient splits in the treeof eukaryotes [1–3].Preparing
phylogenomic data has been greatly advanced by the recent technological improve-
ments in sequencing that generate a large amount ofmolecular data at an affordable
cost and in a reasonable time-frame [4,5]. Further, some recent phylogenomic ana-
lyses have included uncultured microbial eukaryotes (e.g. [6]), since the libraries
for sequencing of the whole-genome/transcriptome can be prepared from a small
number of cells (or even a single cell) isolated from an environmental sample [7,8].

Despite these advances in experimental techniques, it is realistic to assume that
no current phylogenomic analysis has covered the true diversity of eukaryotes.
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Figure 1. Light micrographs of Barthelona spp. examined in this study. Strains PAP020, FB11, LRM2, EYP1702 and PCE are shown in (a–e), respectively. Flagella are
marked by arrowheads. Scale bars, 10 µm.
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A large number of extant microbial eukaryotes have never been
examined using transcriptomic or genomic techniques, and
some of them may hold the keys to resolving important unan-
swered questions in eukaryotic phylogeny and evolution.
Thus, to reconstruct the evolutionary relationships among the
major eukaryotic assemblages to a resolution that is both accu-
rate and informative, the taxon sampling in phylogenomic
analyses has been improved by targeting two classes of organ-
isms: (i) novel microbial eukaryotes that represent lineages that
were previously unknown to science, and (ii) ‘orphan eukar-
yotes’ that had been reported before, but whose evolutionary
affiliations were unresolved by morphological examinations
and/or single-gene phylogenies [6,8–15].

Many of these ‘orphan eukaryotes’ were described based
solely on morphological information prior to the regular use of
gene sequences in phylogenetic/taxonomic studies. One such
organism is the small free-livingheterotrophic biflagellateBarthe-
lona vulgaris [16]. The initial description of B. vulgariswas based
on light microscopy observations of cells isolated from marine
sediment fromQuibray Bay, Australia, and maintained tempor-
arily in nominally anoxic crude culture [16]. The morphospecies
was later identified at different geographical locations [17,18] but
never examined with methods incorporating molecular data.
These past studies identified no specialmorphological similarity
between B. vulgaris and any eukaryotes described to date
[16–18]. Thus, to clarify the phylogenetic placement ofBarthelona
in the tree of eukaryotes, molecular phylogenetic analyses are
required, preferably at the ‘phylogenomic’ scale.

Wehere report five laboratory strains ofBarthelona (EYP1702,
FB11, LRM2, PAP020 and PCE; figure 1a–e) isolated from separ-
ate geographical regions, and infer their phylogenetic positions
assessed by analysing both small subunit ribosomal DNA
(SSU rDNA) and phylogenomic data. A SSU rDNA phylogeny
robustly united all of the Barthelona strains together, but the
precise placement of Barthelona spp. among other eukaryotes
remained inconclusive. To infer the precise phylogenetic pos-
ition of barthelonids, we obtained a transcriptome data from
strain PAP020, and analysed its phylogenetic position from a
eukaryote-widedataset containing148genes. The transcriptome
dataof strainPAP020were alsoused for reconstructing themeta-
bolic pathways in a functionally and structurally reduced
mitochondrion that is the result of adaptation to anaerobiosis.
2. Material and methods
(a) Isolation and cultivation
We established five laboratory strains of Barthelona sp. in this study
(figure 1a–e). Strains PAP020 and EYP1702 (figure 1a,d) were iso-
lated from anaerobic mangrove sediments collected at a seawater
lake in the Republic of Palau in November 2011 and October
2017, respectively. The laboratory cultures have been maintained
in mTYGM-9 medium (http://mcc.nies.go.jp/medium/ja/
mtygm9.pdf) with prey bacteria at 18–20°C. An anaerobic environ-
ment within the laboratory cultures was created by the respiration
of prey bacteria. LRM2 (figure 1b) was isolated from mud of a
defunct saltern (now normal salinity) on the Ebro Delta near San
Carles de la Ràpita, Catalonia, Spain, in February 2015. FB11
(figure 1c) was isolated from False Bay, an intertidal mud flat on
San Juan Island, WA, USA, in June 2015. PCE (figure 1e) was
isolated from intertidal sediment near Cavendish, PEI, Canada,
in July 2016. The established cultures were maintained with
co-cultured bacteria on 3%LB in sterile natural seawater at 18–21°C.
(b) SSU rDNA phylogenetic analysis
Total DNA samples of Barthelona sp. strains PAP020, EYP1702,
FB11, PCE and LRM2 were extracted from the cultured cells
using a DNeasy Plant mini kit (Qiagen) or NucleoSpin Tissue
kit (Macherey-Nagel). Near-complete SSU rDNA fragments
were amplified from each DNA sample by PCR, using either pri-
mers SR1 and SR12 [19] or 18F and 18R [20]. The amplification
programme consisted of 30 cycles of denaturation at 94°C for
30 s, annealing at 55°C for 30 s and extension at 72°C for 90 s.
The amplified product was gel-purified, cloned and sequenced
by the Sanger method.

We aligned the SSU rDNA sequences of the five Barthelona
strains with those of 91 phylogenetically diverse eukaryotes by
using MAFFT v. 7.205 [21,22]. After manual exclusion of ambigu-
ously aligned positions, 1573 nucleotide positions were subjected
to maximum-likelihood (ML) phylogenetic analyses by using
IQTREE v. 1.5.4 [23] with the GTR+R6 model, with ML bootstrap
percentage values (MLBPs) derived from500 non-parametric boot-
strap replicates. The SSU rDNA alignment was also subjected to
Bayesian phylogenetic analysis using MrBayes v. 3.2.3 [24] with
GTR+ Γ model. The Markov chain Monte Carlo (MCMC) run
was performedwith one cold and three heated chains with default
chain temperatures. We ran 3 000 000 generations, and sampled
log-likelihood scores and treeswith branch lengths every 1000 gen-
erations (stationaritywas confirmedby plotting the log-likelihoods
sampled during the MCMC). The first 25% generations were dis-
carded as burn-in. The consensus tree with branch lengths and
BPPs were calculated from the remaining trees.
(c) RNA-seq analyses
We conducted two RNA-seq runs of Barthelona sp. strain PAP020.
The sequence reads from the first analysis were used for a phylo-
genomic analysis assessing the position of Barthelona spp. in the
tree of eukaryotes, while those from the second sequencing run
were used for surveying the proteins localized in the mitochon-
drion-related organelle (MRO) in strain PAP020 (see below). As
bacteria in the culture medium of strain PAP020 were eliminated
carefully before the RNA preparation for the second RNA-seq
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analysis (see below), we anticipated that the second transcriptome
data would much less contaminated by bacterial sequences than
the first one, and thus bemore suitable for predicting themetabolic
pathways in the MRO.

For the first RNA-seq run, PAP020 cells, together with
bacterial cells in the culture medium, were harvested and subjected
to RNA extraction using TRIzol (Life Technologies) by following
the manufacturer’s protocol. We shipped the RNA sample to a
biotech company (Hokkaido SystemScience) for cDNA library con-
struction from the poly-A tailed RNAs and subsequent sequencing
using the Illumina HiSeq 2500 platform, which generated 2.9 × 107

paired-end 100 bp reads (2.9 Gb in total). The initial reads were
then assembled into 29 251 unique contigs by TRINITY [25,26].

For the second RNA-seq run, we separated PAP020 cells from
the bacterial cells in the culture medium by a gradient centrifu-
gation using Optiprep (Axis Shield), as reported previously [27],
with slight modifications (the Optiprep solution containing the
eukaryotic cells and bacteria was centrifuged at 2000g for 20 min,
instead of 800g for 20 min). Total RNAwas extracted from the har-
vested eukaryote-enriched fraction, using TRIzol, by following the
manufacturer’s protocol. Poly-A tailed RNAs in the RNA sample
described above were purified with a Dynabeads mRNA Purifi-
cation Kit (Thermo Fisher Scientific), and then used to construct
the cDNA library using the SMART-Seq v4 Ultra Low Input
RNA Kit for Sequencing (Takara Bio USA) and Nextera XT DNA
Library Preparation Kit (Illumina). The resultant cDNA library
was sequenced with the Illumina Miseq platform, yielding 3.7 ×
107 paired-end 300 bp sequence reads (8.6 Gb in total). These
were assembled into 21 286 unique contigs using TRINITY.
(d) Phylogenomic analyses
To elucidate the phylogenetic position of Barthelona sp. strain
PAP020, we prepared a phylogenomic alignment by updating an
existing dataset comprising 157 genes (see electronic supple-
mentary material, table S1) [10,15,28]. For each of these 157
genes, we added the homologous sequences retrieved from the
transcriptomic data of strain PAP020 (this study) and four forni-
cates (Carpediemonas membranifera, Aduncisulcus paluster, Kipferlia
bialata and Dysnectes brevis; [29]). Each single-gene alignment
was aligned individually by MAFFT v. 7.205 with the L-INS-i
algorithm followed by manual correction and exclusion of
ambiguously aligned positions. For each of the single-gene align-
ments, the ML phylogenetic tree was inferred by RAxML
v. 8.1.20 [30] under the LG + Γ + F model with robustness assessed
with a 100 replicate bootstrap analysis.

Individual single-gene trees were inspected to identify the
alignments bearing aberrant phylogenetic signal that disagreed
strongly with any of a set of well-established monophyletic assem-
blages in the tree of eukaryotes, namelyOpisthokonta,Amoebozoa,
Alveolata, Stramenopiles, Rhizaria, Rhodophyta, Chloroplastida,
Glaucophyta, Haptophyta, Cryptophyta, Jakobida, Euglenozoa,
Heterolobosea, Diplomonadida, Parabasalia and Malawimonadi-
dae. Nine out of the 157 single-gene alignments were found to
bear idiosyncratic phylogenetic signal and were excluded from
the phylogenomic analyses described below. After inspection
of single-gene alignments/trees, the remaining 148 single-gene
alignments (electronic supplementary material, table S1) were con-
catenated into a single phylogenomic alignment containing 83 taxa
with 38 816 unambiguously aligned amino acid positions (148-gene
alignment). The coverage for each single-gene alignment is
summarized in electronic supplementary material, table S1.

ML analyses of 148-gene alignment were conducted by using
IQTREE v. 1.5.4 with the LG+ Γ+ F +C60 + PMSF (posterior mean
site frequencies) model [31] and robustness evaluated with an ML
bootstrap analysis on 100 replicates. We also conducted a Bayesian
phylogenetic analysis with the CAT+GTR model using PHYLO-
BAYES v. 1.5a [32–34]. In this analysis, two MCMC runs were run
for 5000 cycles with ‘burn-in’ of 1250 (‘maxdiff’ value was 0.96743).
The consensus tree with branch lengths and Bayesian posterior
probabilities (BPPs) were calculated from the remaining trees.

The phylogenetic position of Barthelona sp. strain PAP020
inferred from the 148-gene alignment was assessed by an approxi-
mately unbiased (AU) test [35]. We modified the ML tree to
prepare four alternative tree topologies, in which strain PAP020
branches (i) at the base of the Parabasalia clade, (ii) at the base
of the clade of parabasalids and fornicates, (iii) with Paratrimastix
pyriformis, and (iv) at the base of the Metamonada clade. Site like-
lihood data were calculated over each of the five trees examined
(ML plus four alternative trees) using IQTREE and then analysed
in CONSEL v. 0.20 [36] with the default settings.

(e) Fast-site removal and gene subsampling analyses
Weevaluated the contribution of fast-evolving sites in the 148-gene
alignment to the position of Barthelona sp. strain PAP020. Individ-
ual rates for sites were calculated over the ML tree topology using
DIST_EST [37] with the LG+ Γ + Fmodel. Fast-evolving sites were
progressively removed from the original 148-gene alignment in
4000-position increments, and each of the resulting alignments
was subjected to 100 replicate rapid ML bootstrap analysis with
RAxML v. 8.1.20 with the LG + Γ + F model.

To evaluate the impact of gene subsampling on the position of
strain PAP020 deduced from the 148-gene alignment, we con-
ducted the analyses described below. Thirty out of the 148 genes
were randomly sampled and concatenated into a single alignment.
A ‘30-gene’ alignment was then subjected to an ML bootstrap
analysis (using the UFBOOT approximation with 1000 replicates)
using IQTREE with the LG + F + Γ model. This procedure was
repeated 60 times. Similarly, we subsampled 60 genes for 30
times, 90 genes for 20 times and 120 genes for 10 times, and all
of these alignments were subjected to the ML bootstrap analysis
described above.

( f ) Transmission electron microscopy observation of
Barthelona sp. strain PAP020 cells

We conducted preliminary transmission electron microscopy
(TEM) observation of Barthelona sp. strain PAP020, focusing on
the MROs. Cultivated cells were centrifuged and fixed for 1 h
at room temperature with a mixture of 2% (v/v) glutaraldehyde,
0.1 M sucrose and 0.1 M sodium cacodylate buffer (pH 7.2, SCB).
Fixed cells were washed with 0.2 M SCB three times. Cells were
post-fixed with 1% (v/v) OsO4 with 0.1 M SCB for 1 h at 4°C,
then washed with 0.2 M SCB two times. Dehydration was per-
formed using a graded series of 30–100% ethanol (v/v). After
dehydration, cells were placed in a 1 : 1 mixture of 100% ethanol
and acetone for 10 min and acetone for 10 min for two cycles.
Resin replacement was performed by a 1 : 1 mixture of acetone
and Agar Low Viscosity Resin R1078 (Agar Scientific Ltd,
Stansted, UK) for 30 min and resin for 2 h. Resin was poly-
merized by heating at 60°C for 8 h. Ultrathin sections were
prepared on a Reichert Ultracut S ultramicrotome (Leica, Wetzlar,
Germany), double stained with 2% (w/v) uranyl acetate and lead
citrate [38,39], and observed using a Hitachi H-7650 electron
microscope (Hitachi High-Technologies Corp., Tokyo, Japan)
equipped with a Veleta TEM CCD camera (Olympus Soft
Imaging System, Münster, Germany).

(g) Prediction of proteins localized in the
mitochondrion-related organelle in Barthelona sp.
strain PAP020

We searched for mRNA sequences encoding proteins predicted
to be localized to the MRO in Barthelona sp. strain PAP020, as
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well as those involved in anaerobic ATP generation. For this,
we searched among the contigs generated from the second
RNA-seq experiment by TBLASTN, using the hydrogenoso-
mal/MRO proteins in Trichomonas vaginalis, Giardia intestinalis
and other fornicates (e.g. K. bialata and D. brevis) [29], as well
as the mitochondrial proteins in Saccharomyces cerevisiae [40], as
the queries. The amino acid sequences deduced from the contigs
retrieved by the first BLAST searches were then subjected to
BLASTP analyses against the NCBI nr database to exclude false
positives. The domain structures of the putative MRO proteins
were examined using hmmscan v. 3.1 (http://hmmer.org). We
inspected each of the putative MRO proteins for potential mito-
chondrial targeting sequences using MitoFates [41] with default
parameters for the fungal sequences, and NommPred [42] with
parameters for canonical mitochondria and MRO. The transcript
levels of MRO gene candidates were calculated for transcripts
per kilobase million (TPM) by RSEM [43].
.Soc.B
287:20201538
3. Results and discussion
(a) Phylogenetic position of barthelonids
SSU rDNA sequences are valuable phylogenetic markers for
elucidating the close relatives of a eukaryote of interest, but
do not reliably resolve all deeper splits in the eukaryotic phy-
logeny. Overall, the ML and Bayesian phylogenetic analyses
of SSU rDNA resolved known major eukaryote groups with
moderate to high statistical support values. However, the
SSU rDNA phylogeny failed to recover the monophyly of
Amoebozoa or Apusomonadida, probably because long-
branch sequences (e.g.Dictyostelium discoideum and Thecamonas
trahens) were placed unstably, and in aberrant positions on the
ML tree. Deeper-order phylogenetic relationships, such as
Amorphea, SAR, Cryptista, Haptista, Discoba, Metamonada
and CRuMs, most of which were reconstructed exclusively in
phylogenomic studies, were also not recovered in the SSU
rDNA analysis shown here (figure 2), due to insufficient
phylogenetic signal in the single-gene (SSU rDNA) alignment.

In the SSU rDNA tree, all of the Barthelona sp. strains
(PAP020, EYP1702, FB11, PCE and LRM2) grouped together
with an ML bootstrap value (MLBP) of 83% and a BPP of
0.98. In this Barthelona clade, strains EYP1702 and PCE were
the earliest and second earliest diverging taxa, respectively,
and strains PAP020, LRM2 and FB11 formed a tight subclade.
The Barthelona clade was sister to a Fornicata clade com-
prising C. membranifera, K. bialata, D. brevis, Retortamonas sp.
and Giardia intestinalis (figure 2), but statistical support was
equivocal (MLBP 56%; BPP 0.86). This possible affinity
between Barthelona and fornicates in the SSU rDNA phylo-
geny is provocative, as both lineages thrive in oxygen-poor
environments and possess double-membrane-bounded
MROs instead of typical mitochondria (see figure 4a for
the putative MRO in strain PAP020) [43–48]. Thus, we
took a phylogenomic approach to resolve the position of
barthelonids more robustly within the tree of eukaryotes.

As anticipated, both ML and Bayesian phylogenetic
analyses of a multi-gene alignment comprising 148 genes
(148-gene alignment) provided deeper insights into the back-
bone of the tree of eukaryotes (figure 3a) than the SSU rDNA
analyses (figure 2). The backbone tree topology and statistical
support values (figure 3a) agreed largely with those reported
in prior studies [10,15,28], which analysed multi-gene align-
ments generated from the same core set of 157 single-gene
alignments with mostly similar taxon sampling. The topology
includes well-established clades including SAR, Amorphea,
Cryptista and Discoba, but, as is common, did not infer a
monophyletic Archaeplastida [8,49]. Likewise, the 148-gene
phylogeny recovered neither the clade of Telonema subtilis
and SAR (T-SAR) [8] nor that of centrohelids and haptophytes
(Haptista) [11]. We suspect that large proportions of missing
data in the sequence of T. subtilis and the single included cen-
trohelid (66% and 65% missing data, respectively), which
derived from the transcriptomic data generated by 454 pyro-
sequencing [50], hindered the recoveries of T-SAR and
Haptista in the 148-gene phylogeny.

The 148-gene phylogeny grouped Barthelona sp. strain
PAP020 and 6 fornicates together with an MLBP of 99% and
a BPP of 1.0 (figure 3a). In this clade, strain PAP020 occupied
the basal position, which was supported fully by both ML
and Bayesian analyses. The clade of strain PAP020 and forni-
cates was connected sequentially with parabasalids (MLBP
100%; BPP 0.70), then with Paratrimastix pyriformis (represent-
ing Preaxostyla), to form the Metamonada clade with an
MLBP of 98% and a BPP of 0.98 (figure 3a). Support for these
relationships was hardly affected by exclusion of rapidly evol-
ving alignment positions, until greater than 60% of sites were
excluded (electronic supplementary material, figure S2). We
also performed gene subsampling analyses to evaluate the
potential heterogeneity of phylogenetic signals among the
genes [51]. In the analyses of the alignments comprising 30 ran-
domly sampled genes (electronic supplementary material,
figure S3A), strain PAP020 displayed the phylogenetic affinity
to either parabasalids or fornicates, implying that two conflict-
ing phylogenetic signals, one uniting strain PAP020 and
parabasalids and the other uniting strain PAP020 and forni-
cates, are present in the genes considered here. We checked
the position of strain PAP020 in the 30-gene analyses in
which neither the affinity of strain PAP020 to fornicate nor
parabasalids received MLBPs greater than 50% (see the data
points highlighted by red arrowheads in electronic supplemen-
tary material, figure S3A). The ML analyses of five out of the
seven alignments corresponding to the aforementioned data
points recovered the clade of strain PAP020, fornicates, and
the relatively long-branching, data-poor rhizarianQuinquelocu-
lina sp., which was obviously misplaced, with high statistical
support (electronic supplementary material, figure S4A–G).
We suspected that Quinqueloculina sp. was artefactually
attracted to fornicates (and strain PAP020) by long-branch
attraction (LBA) [52,53]. Significantly, the putative LBA artefact
appeared to be overcome and PAP020 branching with forni-
cates increasingly dominated as the number of sampled
genes was increased to 60 then 90, while all samples of 120
genes except one recovered a PAP020 + Fornicata clade with
high statistical support (electronic supplementary material,
figure S3B–D). Altogether, we could find little evidence to
regard the phylogenetic affinity between strain PAP020 and
fornicates as an LBA artefact.

We applied the AU test to the ML tree and four alternative
trees, wherein strain PAP020 branched at the base of (i) the
Parabasalia clade, (ii) the clade of Fornicata + Parabasalia,
(iii) the Metamonada clade, and (iv) Preaxostyla (i.e. PAP020
was sister to Paratrimastix), and all of the alternative trees
were rejected (p = 0.0000; see the inset of figure 3b). In sum-
mary, the results from the phylogenetic analyses of the
148-gene alignment consistently and robustly indicated that
barthelonids are a previously overlooked Metamonada
lineage, which has a specific affinity with the Fornicata clade.
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(b) No ATP production in the mitochondrion-related
organelle of Barthelona sp. PAP020

All of the Barthelona strains assessed in this study (strains
PAP020, EYP1702, PCE, LRM2 and FB11) are grown under
oxygen-poor conditions in the laboratory. Our preliminary
ultrastructural observation of strain PAP020 did not reveal a
typicalmitochondrion. Instead, we observed a densely stained,
double membrane-bounded organelle (figure 4a). As all meta-
monads studied so far lack typical mitochondria, we suspect
that the double membrane-bounded organelle identified in
strain PAP020 is the MRO. Consistent with the anaerobic/
microaerophilic characteristics of the barthelonid strains, the
BLAST search considering yeast mitochondrial proteins as
queries detected almost no transcripts encoding any proteins
comprising the electron transfer chain or ATP synthase,
which are required for ATP generation under aerobic con-
ditions, in the transcriptome data of strain PAP020, except
NADH-quinone oxidoreductase subunits E and F (NuoE
and F; figure 4b).

According to the phylogenetic position of barthelonids
deduced from the SSU rDNA and 148-gene phylogeny
(figures 2 and 3), themetabolic pathways retained in the barthe-
lonid MROs are significant to infer the evolutionary history of
the MROs in the Fornicata clade. Leger et al. [29] proposed
that the ancestral fornicate species possessed an MRO with a
metabolic capacity similar to that of the hydrogenosomes
in parabasalids like Trichomonas vaginalis (The metabolic
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pathways in the Trichomonas hydrogenosome are schematically
shown in electronic supplementary material, figure S4). Thus,
we surveyed the transcriptomic data from strain PAP020 for
transcripts encoding hydrogenosomal/MRO proteins that are
homologous to Trichomonas proteins localized in the hydroge-
nosome. We additionally searched for the MRO proteins in
strain PAP020 by using yeast mitochondrial proteins as the
queries, albeit no additional candidate was detected. Strain
PAP020 was predicted to possess the MRO protein candidates
involved in hydrogen production, pyruvate metabolism,
amino acid metabolism, Fe–S cluster assembly, the antioxidant
system and protein modification (electronic supplementary
material, table S2). In figure 4b, we mapped the results from
the survey on the above-mentioned pathways in the Trichomo-
nas hydrogenosome—purple and grey ellipses represent the
proteins found and not found, respectively. Purple ellipses
with borders represent the MRO protein candidates predicted
to have a mitochondrial targeting signal (MTS). Although
the overall function of the MRO of strain PAP020 is similar to
that of the Trichomonas hydrogenosome, we failed to identify
some of the keyMRO proteins (figure 4b). For instance, chaper-
onin 60/10 (Cpn60/10), mitochondrial-processing peptidase
(MPPα/β), hydrogenase maturase (HydE/F/G) and both of
the two enzymes for anaerobic ATP generation through
substrate-level phosphorylation [acetate : succinate CoA trans-
ferase (ASCT) and succinyl-CoA synthase (SCS)] are missing
(figure 4b). Likewise, the PAP020 data provided no positive
support for the presence of the MRO-localized version of
malic enzyme (ME) or pyruvate : ferredoxin oxideoreductase
(PFO) (‘2’ in figure 4b; see below for the details). It is too
naive to accept the repertoire of MRO proteins predicted from
the transcriptome data at face value. At the same time, it is
highly unlikely that all of the proteins mentioned above are in
fact present in strain PAP020 but escaped detection in our
survey, as the quality of the transcriptome data generated in
this study is at least comparable to that of other fornicates,
such as C. membranifera, A. paluster, K. bialata and D. brevis (see
the BUSCO scores shown in electronic supplementarymaterial,
table S3). Indeed, our analysis identified the nucleotide
exchange factor for Hsp70 (GrpE), which was found in neither
K. bialata norD. brevis (electronic supplementary material, table
S4).

The MROs in diplomonads are believed to lack substrate-
level phosphorylation, as neither ASCT (which transfers
coenzyme A from acetyl-CoA to succinate) nor SCS (which
phosphorylates ADP to produce ATP coupled with converting
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succinyl-CoA back to succinate) was found in the genome
data of two extensively studied diplomonads, Giardia
intestinalis and Spironucleus salmonicida. Instead, diplomonads
are known to generate ATP by acetyl-CoA synthase in the
cytosol (ACS1). Similarly, neither ASCT nor SCS was found
in the transcriptome data of D. brevis, the closest relative of
diplomonads (while ACS1 was detected), Leger et al. [29] pro-
posed that anaerobic ATP synthesis was lost prior to the
separation of D. brevis and diplomonads. Significantly, strain
PAP020 appeared to be similar to D. brevis and G. intestinalis
in terms of the presence/absence of the enzymes involved in
ATP synthesis. Our survey of the transcriptome data from
strain PAP020 failed to detect ASCT or SCS, but did identify
two distinct acetyl-CoA synthases, both of which are likely
localized in the cytosol (see below for the details). These find-
ings prompt us to propose that strain PAP020 has lost
anaerobic ATP synthesis in the MRO but generates ATP in
the cytosol similar to diplomonads and D. brevis.

We here designated two distinct ACS sequences in strain
PAP020 as ACS2 and ACS3. Although the transcripts encoding
both ACS versions most likely cover their N-termini, neither of
them was predicted to bear the typical signal to be localized in
mitochondria or MROs (i.e. an inferred N-terminal transit pep-
tide). The abundances of the ACS2 and ACS3 transcripts in
strain PAP020 were 717.63 and 626.81 TPM [43], respectively,
implying that the two Barthelona ACS genes are indistinguish-
able at the transcription level. We subjected the two ACS
sequences to a phylogenetic analysis along with the homol-
ogues sampled from diverse bacteria, archaea and eukaryotes
(electronic supplementary material, figure S5). The PAP020
ACS2 sequence formed a cladewith fornicate ‘ACS2’ sequences,
which Leger et al. [29] proposed to be cytosolic enzymes. Thus,
we suggest that ACS2 ismost likely a cytosolic enzyme in strain
PAP020 as well. The ACS phylogeny recovered no strong affi-
nity between PAP020 ACS3 sequence and other homologues
(electronic supplementary material, figure S5). Neither of our
analyses on the ACS3 sequence provided any positive support
for MRO localization, and we tentatively consider ACS3 as a
cytosolic enzyme in strain PAP020. Altogether, we propose
that strain PAP020 depends entirely on ATP in the cytosol,
including by the two cytosol-localizing ACS.

We here propose that strain PAP020 retains pyruvate
metabolism in the cytosol, not in the MRO (figure 4b). Both
of the two PAP020 ME sequences appeared to be proceeded
by malate dehydrogenase (MDH) sequences, one of which
showed an apparent similarity to the cytosolic homologues
and the other to the bacterial homologues (shown as
‘ME*’). Further, no MTS was predicted in either of the two
MDH–ME fusion proteins (electronic supplementary
material, figure S6A). The analyses of the PFO sequences
found in strain PAP020 provide little support for their
MRO localization. The N-termini of two out of the three
PFO sequences are incomplete and their subcellular localiz-
ations remain uncertain, while no MTS was predicted for
the PFO sequence with the complete N-terminus (electronic
supplementary material, figure S6B). Altogether, we favour
the cytosolic localization of the two enzymes involved in
pyruvate metabolism in strain PAP020 over their localization
to the MRO (labels 20 and 2, respectively, in figure 4b). The
former possibility may not be totally unexpected, as both
enzymes were experimentally shown to be localized in the
cytosol in G. intestinalis [54–56]. To pursue the unsettled
issues regarding ATP synthesis and pyruvate metabolism in
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strain PAP020, the precise subcellular localization of ACS2,
ACS3, as well as MDH–ME and PFO, need to be confirmed
experimentally in the future.

Leger et al. [29] proposed a complex evolutionary history
for ATP-generating mechanisms in the Fornicata clade, as
follows. (i) The ancestral fornicate species possessed both
substrate-level phosphorylation in the MRO as well as
ACS2 in the cytosol. (ii) Substrate-level phosphorylation has
been inherited vertically by the extant fornicate species,
except D. brevis and diplomonads (see below). (iii) During
the evolution of Fornicata, the ancestral cytosol-localizing
ACS (i.e. ACS2) was replaced by an evolutionarily distinct
ACS (ACS1). (iv) The redundancy in the ATP-generating
system allowed the secondary loss of substrate-level phos-
phorylation in the MRO prior to the separation of the D.
brevis plus diplomonad clade. We here extend the scenario
proposed by Leger et al. [29] by incorporating the data from
Barthelona sp. strain PAP020 (figure 5). Acquisition of ACS2
was hypothesized at the base of the Fornicata clade [29],
but after assessing the data from stain PAP020, this particular
event needs to be pushed back at least to the common ancestor
of fornicates and barthelonids, as strain PAP020 and multiple
early branching CLOs (e.g. C. membranifera) share ACS2. It is
noteworthy that acquisition of ACS2 may extend back to the
last common metamonad ancestor, since a possibly directly
related ACS2 is also present in Paratrimastix (electronic sup-
plementary material, figure S5). Secondly, as barthelonids are
distantly related to D. brevis and diplomonads, loss of sub-
strate-level phosphorylation in barthelonid MROs, if this is
the case, can be assumed to have occurred independently
from the loss in the common ancestor ofD. brevis and diplomo-
nads (highlighted by blue diamonds in figure 5). Further,
barthelonids and the common ancestor of D. brevis and
diplomonads seem to have accommodated the loss of
MRO-localized substrate-level phosphorylation via possessing
evolutionarily distinct ACS homologues (ACS2 and ACS1,
represented by yellow and red lines, respectively, in figure 5).
Finally, pyruvate metabolism might have been relocated from
theMRO to the cytosol in strain PAP020 as seen inG. intestinalis
[54–56].
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