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Abstract

This paper deals with broadcasting in a network with t¢-locally bounded Byzantine
faults. One of the simplest broadcasting algorithms under Byzantine failures is
referred to as a certified propagation algorithm (CPA), which is the only algorithm
we know that does not use any global knowledge of the network topology. Hence, it
is worth focusing on a graph-theoretic parameter such that CPA will work correctly.
Using the theory of maximum adjacency (MA) ordering, a new graph-theoretic
parameter for CPA is proposed. Within a factor of two, this parameter approximates
the largest ¢ such that CPA works for ¢t-locally bounded Byzantine faults.
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1. Introduction

In bidirectional communication network, it is important to analyze the parame-
ters of the network for which a communication algorithm works correctly despite a
limited number of failures and with no knowledge of their locations. Of all possible
types of faults, Byzantine faults model the worst-case fault scenario. Byzantine fail-
ures demonstrate damaging behavior: they stop messages from being transmitted,
and they transmit by false messages maliciously. We assume that Byzantine failures
are restricted by the content of messages but they cannot affect schedules. Since
Byzantine failures represent worst-case faults, some algorithms working correctly in
networks with Byzantine failures can be safely used under any assumptions involv-
ing faults. Moreover, there are several other fault models depending on the number
and location of faults. One of these models is t-locally bounded, in which at most ¢
permanent malicious failures are permitted in the neighborhood of each vertex.
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In this paper, we deal with broadcasting in a network with t-locally bounded
Byzantine faults. Broadcasting is one of the most important procedures in com-
munications. It involves the task of transmitting a message that has originated at
one processor, called a source, to all other processors in the network. Fault-tolerant
broadcasting has been extensively studied (e.g. Pelc [4]). Koo [2] investigated broad-
casting in special networks under our fault model, and devised a simple broadcasting
algorithm that is referred to as a Certified Propagation Algorithm (CPA). Pelc—Peleg
[5] established a graph-theoretic parameter such that the CPA works correctly under
our fault model in any network. They also found a graph-theoretic parameter such
that no broadcast algorithm can work under our fault model. So far, CPA is the
only broadcast algorithm we know that works under t-locally bounded Byzantine
faults that does not use any global knowledge of the network topology. Hence, it is
worth focusing on a graph-theoretic parameter such that CPA will work correctly.
Using the theory of maximum adjacency (MA) ordering, we propose a new graph-
theoretic parameter for CPA. Within a factor of two, this parameter approximates
the largest ¢ such that CPA works for ¢t-locally bounded Byzantine faults.

2. Broadcast algorithm

We represent a communication network as a connected undirected graph G =
(V, E), where each vertex v € V corresponds to a processor and each edge e € F
corresponds to a communication line between processors. For v € V| let I'(v) be the
neighborhood of v including v, i.e., I'(v) = {u € V' | (v,u) € E}U{v}. For a positive
integer ¢, a subset W of V' is called t-local if [W NT'(v)| < t holds for any v € V.
Let us consider a broadcast algorithm from an arbitrary source vertex under any
t-local set of Byzantine faults. Two requirements of broadcast algorithms are that
they never cause a vertex to accept an incorrect message from a given source and
that they deliver the message to all the vertices. The assumption behind broadcast
algorithms is that the source is fault-free and that all vertices know which vertex is
the source. We call a broadcast algorithm t-locally fault-tolerant if it works correctly
from an arbitrary source under any t-local set of Byzantine faults.

The simplest t-locally fault-tolerant broadcast algorithm is CPA devised by Koo
2]. The following gives a precise formulation of CPA for a t-local set of faults.

Step 0 A given source s sends a message to all its neighbors I'(s) \ {s}.

Step 1 Each vertex in I'(s) \ {s} accepts the message received from source s, and
sends it to all its neighbors.

Step 2 If there is a vertex v € V'\I'(s) which has not accepted any message yet and
it receives t + 1 same messages from distinct neighbors, v accepts the message
and sends it to all its neighbors.

Step 3 If all the vertices accept the message, then stop. Otherwise, go to Step 2.



Pelc-Peleg [5] found a graph-theoretic parameter such that CPA works correctly.
For a graph G and for any s,v € V, define X(v) = [{u € V' | ds(u) < ds(v)}|, where
ds(v) is the shortest path length from s to v. Let X(G) = min{X,(v) | s € V v €

VAT(s)}-

Lemma 1 ([5]Lemma 2.1). For a graph G, CPA s t-locally fault-tolerant if t <
X(G)/2.

Pelc-Peleg [5] also established a different parameter LPC(G) such that, for a
graph G and for t > LPC(G), no broadcast algorithm can work under ¢-locally
bounded Byzantine faults. A subset C' of vertices is called a t-local pair cut if a
subgraph deleting C' has at least two connected components and C' can be partitioned
into two t-local sets. The parameter LPC/(G) is defined by the smallest nonnegative
integer ¢ such that G has a t-local pair cut.

Property 2. To compute LPC(G) is NP-hard.

PROOF. We transform a SET SPLITTING PROBLEM known as NP-hard [1] to a prob-
lem to compute LPC(G). Given a collection S of 3-element subsets of a finite set
X, the SET SPLITTING PROBLEM decides whether there is a partition of X into two
subsets X; and X5 such that no subset in & is entirely contained in either X; or Xo.

Let S+ be a multiple collection adding dummy subsets {v} to S such that the
cardinality of {s € S+ | s > v} is at least six for each v € X. A complete graph
with vertex set S+ and a copy of it are denoted by K, and K%, respectively. We
construct a graph G with vertex set V(G%) = V(K1) UV (K%, )UX and edge
set B(GY) = E(Ksy) U E(K5, ) U{(v,s),(v,8)v € X,s € S+,v € s}, where
is a node in V(K% ) which is a copy of s € S+. If a subgraph of G" deleting
C(C V(G®?)) has at least two connected components and X \ C' # (), C contains
['(v)NV(Ksy) or I'(v) NV (K%, ) for some v € X. Since each v € X has at least six
neighbor in both V(Ksy) and V(K5 ), C is a t-local pair cut with ¢ > 3. We next
consider the case of C'= X. We can partition X into two 2-local sets in G®7 | if and
only if the SET SPLITTING PROBLEM has a desired partition X; and X,. Therefore,
we have LPC(GSF) = 2, if and only if the SET SPLITTING PROBLEM has a desired
partition. O

3. MA ordering parameter

Using the theory of a maximum adjacency (MA) ordering [3], we establish a new
upper bound on t for which CPA is t-locally fault-tolerant. For any vertex v € V
and subset W C V of vertices, let §(W,v) = |[{(w,v) € E | w € W}|. An MA
ordering is defined by a total ordering o = (v, v, ..., v,) of vertices in V' such that
S(Wiq,v;) > 8(W;_1,v;) holds for all 4,7 with 1 < i < j < n, where W = () and
W; = {v1,v9,...,v;}. This ordering is also referred to as a legal ordering and as
a max-back ordering. In our case, with respect to source s, let W5 = I'(s) and
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0 = (vf,v5,...) be an MA ordering for V' \ T'(s), i.e., (W7, v7) > S(W7,v5)
holds for all 7, 7 with 1 <i < j < |V \T'(s)|, where W = {v{, v, ..., v7}. Although
such an ordering is not unique, we can define a graph-theoretical parameter from

arbitrary MA ordering.

Lemma 3. Let 0® = (vi,v5,...) be an MA ordering with respect to source s. Then,
the value of min{d(W$_,,v;) | k =1,2,...} is uniquely determined regardless of the
MA ordering.

PRrROOF. For distinct MA orderings o® = (v§,v5,...) and ¢° = (0,05, ...), assume
that min{s(W;_,,v5) | & = 1,2,...} < min{6(W;_,,0;) | k = 1,2,...}, where
Wp = {03,05,...,08}. Let min{0(W;_,,v3) | k = 1,2,...} = §(W;_,,v;) and
vg = 03, Since §(Wi_y,vf) < S(Wi_y,03) = 6(Wi_y,v5), we have W3 \ W, # 0.
Let v, be the vertex which has the smallest index in 6° among Wf,l \ W7 ;. From
the rule of choosing m, we obtain (VV;_l \We )NWe =01 e We_, CWs .
Thus

min{S(W;_y, 07) | k= 1,2,...} < (W5, 05) < S(Wi,, 03) < (W7, )

m—17 Ym

holds, which contradicts our assumption. O
Hence, a parameter X (G) = min{6(W;_,,v) | s € V,k =1,2,...} is well-defined.
Theorem 4. For a graph G, CPA is t-locally fault-tolerant if t < X (G)/2.

PRrOOF. With respect to a given source s, let 0 = (v{,v5,...) be an MA ordering
and W2 = {v?,v5,...,v5}. We have [W? , NT(vf)| = s(W2,,v8) > X(G) > 2t, for
any vertex v € V' \ I'(s). Thus, at the first iteration of CPA, Step 2 can select v?,
which receives at least ¢ + 1 same messages. By induction, we can show that, at the
1th iteration, Step 2 can select v and that, at the end of the ith iteration, W7 is a
set of vertices that accept the message. Hence, CPA works correctly. O

The following property shows that parameter X (G) is more efficient than X (G)
for the upper bound on ¢ for which CPA is ¢-locally fault-tolerant.

Property 5. For any graph G, X(G) > X(G) holds.

PRrROOF. Note that, for any s and o' € V \ I'(s'), Xy(v') > X(G) holds. Let
X(G) = 6(Wp_,,v5). If we assume X (G) < X (@), we obtain X,(vg) > 6(W7_,,v5),
which implies that there exists 0 that does not belong to W, and that is nearer from
s than v;. If there are many such vertices, we choose the one whose distance from
s is minimum, i.e., we choose a vertex attaining min{ds(v) | v € X (v}) \ W7, }.



Let the order of ¢ in ¢® be v} . From the definition of MA ordering, we have
S(Wg_q,v5) > 0(Wp ,vE,). Hence, we obtain

Xy(vp) 2 X(G) > X(G) = 6(Wiy,07) = 6(Wiy,vy,).

Thus, there exists a vertex v that does not belong to W ; and that is nearer from
s than v,. This fact contradicts the choice of v,. O

Moreover, we can show a graph G so that the difference between X(G) and X (G)
is large.

Example 1. For a positive integer h, graph G" has vertez set V(G") = {w1,wy, . .., wp, }U
{ur,ug, ..., up} and edge set E(G") = {(w;,u;) |1 <i<j<h}U{(usuj)|1<i<

J < h}U{(w;,w;) | 1<i<j<h}. Obviously, we obtain X (G") = X, (w,_1) =1

and X(Gh) = h — 1. Figure 1 shows graph G" with h = 5. Indeed, CPA works cor-
rectly on graph G" fort < [(h—1)/2] —1. However, fort > [(h—1)/2], CPA stops
before all the vertices accept the message if uy is the source and us, ..., Urp—1)/2]41

are Byzantine failures.

Figure 1: Graph G" with h =5

The parameter X (G) also establishes a lower bound on ¢ for which CPA does
not work correctly under any t-local set of Byzantine faults.

Theorem 6. For any graph G, CPA is not t-locally fault-tolerant if t > X(G)

PROOF. Assume that CPA is t-locally fault-tolerant for t > X(G). Let X(G) =
S(Wg_,,vi). With W, we denote a set of vertices that accept the message from s
before Step 2 of CPA selects vf. Since v] receives ¢ + 1 same messages, (W, v§) >t
holds. The fact §(W,vj) > o(W;_,vf) implies W \ W7 | # (. Let 0 be a vertex
selected first at Step 2 from W\ W}, and let W be a set of vertices that accept the
message before Step 2 selects ©. From the definition of ©, we have W C W;_,. There-

fore, we obtain 6(/1/17,17) < S(Wp_,,0) < 8(Wp_ |, v) = X(G) < t, which contradicts
that v receives at least ¢ + 1 messages. O



Pelc-Peleg[5] established by LPC(G) a lower bound on ¢ for which there was no
t-locally fault-tolerant algorithm. Since X (G) gives a lower bound for only CPA,
X (@) is expected to a better lower bound than LPC/(G). However, there exists no
relation between X (G) and LPC(G).

Example 2. Let G, be the cartesian product of the n'-complete graph K, and the
2-path Py. That is to say, the vertex set V(G,) is V(KL )UV (K2 )UV (K3,), where
K, (i = 1,2,3) are copies of K/, and the edge set E(G,/) is E(K})U E(K?) U
E(K3) U {(v'v?), (v} v?) | v € V(K,)}, where v' denotes a copy vertex of v in
K!,. Figure 2 shows graph G, with n’ = 5. For a source node s' in V(K}),
I(s') = V(K}) U{s*} and W,y_y = V(K}) U V(K?) holds. Hence, we have
S(Wy_1,v0) = 1 and X(G) = 1. Meanwhile, we shall show LPC(G,s) > [n'/4].
When a subgraph deleting C(C V(G,/)) has at least two connected components,
ICN(V(KL)UV(KZ))| >0 or |[CN(V(K2)UV(K3))| > n' holds. Without loss of
generality we assume that |CN(V(KL)UV(K?2))| > n'. If C can be partitioned into
two t-local sets, we have |C NV (K| < 2t fori = 1,2, since there exists a vertex
being adjacent to all of CNV (K',). Thus, we obtainn’ < |CN(V(KL)UV(K?2))| =
ICNV(K!)|+ |CNV(K?2)| < 4t, which implies that t > [n'/4]. Therefore, this
graph G,y with n' > 4 shows an example where X (G) is smaller than LPC(G).
Graph G, in Figure 2 shows an example where X (G) is larger than LPC(G). We
can verify X(GC) = 2. However, since C; U Cy is a 1-local pair cut for Cy = {z, 2’}
and Cy = {y,y'}, we obtain LPC(G.) = 1. Thus, when there exists one Byzantine

faulty vertex, no broadcast algorithm works. Hence, CPA does not work correctly
with one faulty Byzantine vertez.

G, withn' =5 G.

Figure 2: Examples of difference in inequality relation between X (G) and LPC(G)

From the above example, both X (G) and LPC(G) are used to determine whether

CPA is t-locally fault-tolerant. However, we can conclude that X (G) is most useful
than LPC(G). Although to compute LPC(G) is NP-hard as proved in Property 2,

X(G) is calculated efficiently. Indeed, an MA ordering with respect to a source can
be found in linear time [3]. So, we can obtain X (G) in O(|V|(|V] + |E|)) time.
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4. Conclusion

We presented new upper and lower bounds on t for which CPA is t-locally fault-
tolerant, using the theory of an MA ordering. Theorems 4 and 6 imply that X (G)
approximates the largest t such that CPA is t-locally fault-tolerant within a factor of
two. The MA ordering is known to derive algorithmic results attained in the area of
graph connectivity, where some other total orderings of vertices are also introduced.
It is open whether these total orderings get tighter bounds on ¢ for which CPA is
t-locally fault-tolerant.
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