
Publ RIMS, Kyoto Univ.
20 (1984), 1091-1101

An Approach to the Theory of
Continuous Geometry the
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Abstract

Recently Boolean valued analysis (i.e., analysis based on Boolean valued set theory)
has been extensively studied by G. Takeuti [14-16]. The main purpose of this paper is to
show, by using this technique, that any continuous geometry can be viewed as an irreducible
continuous geometry in its center valued set theory. This makes the transition from irredu-
cible continuous geometries to reducible ones automatic.

§ 1* Introduction

Boolean valued set theory was Introduced in 1966 by D. Scott and R.
Solovay as a reformulation of P. J. Cohen's forcing techniques, which have
been applied successfully to many significant independence results of set theory.
Recently G. Takeuti [14-16] has applied this generalized set theory to various
areas of analysis like Hilbert spaces, von Neumann algebras, harmonic analy-
sis, etc. This approach reduces many formidable concepts and intractible the-
ories in analysis to much easier and more familiar ones (e.g., self-adjoint operators
as real numbers in a Boolean valued sense). The significance of Boolean algebras
in analysis has been recognized at latest since M. H. Stone's classical work in
the 1930s, but it is Boolean valued analysis that succeeded in showing its sig-
nificance in its full power. As a slogan, we may say that wherever there is a
complete Boolean algebra, there must be a Boolean valued analysis on it I

By the way, J. von Neumann [10] introduced continuous geometry in
the middle of the 1930s as a lattice-theoretical generalization of projective
geometry, whose subject had just turned out to be no other than irreducible
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finite-dimensional complemented modular lattices from a lattice-theoretical
viewpoint. He succeeded in developing a dimension theory for irreducible con-
tinuous geometries, but failed to generalize it to the reducible case. This
difficulty was overcome by some Japanese mathematicians, say, T. Iwamura [3]
and Y. Kawada et al. [6] in the middle of the 1940s.

The main purpose of this paper is to show that a possibly reducible con-
tinuous geometry is no other than an irreducible continuous geometry in some
Boolean valued sense. This viewpoint makes the transition from irreducible
to reducible continuous geometries automatic. In particular, it shows very
clearly why the dimensions of reducible continuous geometries should be
represented by real valued continuous functions on some appropriate topo-
logical space, while those of irreducible continuous geometries are represented
simply by real numbers. After reviewing Boolean valued analysis and continu-
ous geometry in Sections 2 and 3 respectively, we give the details of our ap-
proach in Section 4.

Last but not least, this paper was inspired most by G. Takeuti's [16] Boo-
lean valued approach to von Neumann algebras and S. Maeda's [9] treatment
of dimension theory. The results of this paper could be generalized, e.g., to
the framework of S. Maeda [9] without difficulty*, but here we prefer con-
centrating on one of the most typical cases to pursuing their full generalizations,,

§2. Boolean Valued Analysis

Let S be a complete Boolean algebra. We define V^ by transfinite
induction on ordinal « as follows:

(1)

(2) V(^ = {u\u: 3)(u)->® and S)(u)^ U

Then the Boolean valued universe F' ' of Scott-Solovay is defined as
follows:

F' '=\jv( \ where On is the class of all ordinal numbers.

F^ ' can be considered to be a Boolean valued model of set theory by
defining Qw^vJ and HM=V]] for u, v^V^ * with the following properties

Such a generalization has been attempted by K. Eda (Tsukuba University).
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(1) ffKevD= sup (v(y)Al[u=y'S)9
y^3)(v)

(2) \Lu = vQ= inf (if(jc)~K[*evI])A inf

and by assigning a Boolean value [M to each formula <p without free vari-
ables inductively as follows:

(i)

(2)

(3)

(4)

(5) ttHx?(*)I] = sup

The following theorem is fundamental to Boolean valued analysis.

Theorem 2.1. If ^ is a theorem ofZFC, then so is [M] = l.

Now we present several elementary properties of V^ ' without proofs.

Proposition 2.2.

(1) l&x^u <p(x)% = sup (n

(2) DVj:e«9<x)]]= inf

The class F of all sets can be embedded into F^ ' by transfinite induction as
follows.

Proposition 2.3, For x,.

jl

(O otherwise.

otherwise.

A subset {&<,>} of <B is called a partition of unity if sup b#=l and b
t&

0 for any a^/?. Given a partition of unity {h*} and a subset {M^} of
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it can be proved easily that:

Proposition 2 A There exists an element u of V^ such that \Lu=
for any a. Furthermore this u is determined uniquely in the sense that UM=V]]=
1 for any v^V^ ' with the above property.

The above u is denoted by S ujba or u^b^ ----- \-u<*nb*n if {b<»} is a finite
set. Then we have

Proposition 2,5, [[9(53 ii4§ft-)]]=sup
0

The techniques of partitions of unity gives the following two propositions.

Proposition 2,6 (The Maximum Principle). Let <p be a formula. Then there

exists au& V^ such that 0>(tt)]]=[l3* ?(*)]].

Proposition 2e7B Let <p(x) be a formula with only x as a free variable and

0>OOI] = 1 for some u e V(®\ Then

(1) ttV*(p(x)^(*))I] = inf
tt<PCiO]I=

(2) [I3je(rt*) A *(«))]]= sup

We define the interpretation X of X= {x \ <p(x)} with respect to

to be {weP^ )|H9>(w)]] = l}, assuming that it is not empty. For technical
convenience, if X is a set, then X^ ' is usually considered to be a set by choos-
ing a representative from an equivalence class {v^.V^ )|[[i/=v]] = l}. Then,
by Proposition 2.7, we have X(^ x {1} <= F(-®} and [IZ-X^ x {1}]]=1.

Let DCK(^}. A function g: D-^V^ is called extensional if QW=</']]^

ttg(rf)=^')Il for anY d, d'^D. A ̂ -valued set we F^ is said to be definite
if

w(W) = 1 for any

Then we have the following characterization theorem of extensional maps.

Theorem 2.8, Let u, v<EF be definite and D=3)(u). Then there is a

bijective correspondence between f e V^ ' satisfying \[f : u-* v]\ = 1 and extensional
maps <p : D-» v^ \ where v^ ' = {u \ \[u e vj = 1 } * . 77ze correspondence is given by
the relation \Lf(d)=<p(d)]^ = l for any

* This is also considered to be a set by the above method.
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We conclude this section by considering what the real numbers in F'"®'
look like. First of al!9 we note that the set of all natural numbers in V^' is

o) and the sel of all rational numbers in V^ is Q. We define a real number
to be the lower half line without the endpoint of a Dedekind cut. Thus "a is
a real number'9 is expressed formally by

Let Q be the Stone space of .3. Then 3$ is isomorphic to the clopen sub-
sets of J2, assigning a clopen set E(b) to each fte.3. Since .3 is complete,
the closure of every open subset of Q is open (cf. Ogasawara [11; Chapter 2,
§4]). In particular, every regular open subset of Q is clopen. Therefore, if
we denote the Borel a-field of J2 and the a-ideal of meager Borel subsets of
@ by S and c3 respectively, then .3 is tr-isomorphic to Sj<3 (cf. Takeuti and
Zaring [13; §3, Theorem 3.14]). For any S in S, we denote by [S] the cor-
responding element in .3 by this isomorphism. By using a similar argument
to Takeuti [14; Chapter 2, §2], we can establish a correspondence between R^

and the set BR(Q) of all real Borel functions on Q. The correspondence is
given by the relation ^j^u^=[{x^Q\r<f(x)}}. By identifying real Borel
functions on ® which are equal except meager sets, this correspondence can
be made bijective. Since every real Borel function on Q is equal to some real
continuous function on Q except meager sets (cf. Ogasawara [11; Chapter 2,
§4]) and no two different real continuous functions on @ can not be equal
even except meager sets (cf. Takeuti and Zaring [13; §3, Theorem 3.23]), we
have

Theorem 209e There is a bijective correspondence between R^ ' and
where CR(Q) denotes the set of all real continuous functions on Q.

§ 3. Continuous Geometry

Let L be a lattice. Then for any directed set D, a family {a8}8f=D of L

is called a monotone increasing system (a monotone decreasing system) if <^i^^2

implies a8^a&2 (a82^a8j resp.). A continuous geometry is a complete com-
plemented modular lattice L satisfying the following continuity axioms:

(1) sup (a8 A 6) — (sup a8)/\b
8e# seu

for any monotone increasing system {as}sez> of L;
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(2) inf(«8VZ>) = (inf08)Vfc
8eD sei>

for any monotone decreasing system {as}8eD of L.

Throughout the rest of this section, L is assumed to be a continuous geo-
metry unless stated to the contrary. An element z of L is called central if
(aVb)/\z=(a/\z)\/(b/\z) for any a, b^L. The set of all central elements
of L, which is known to be a complete Boolean algebra and to be closed under
sup and inf, is called the center of L and denoted by Z(L). Obviously 1, OEE
Z(L). If Z(L) -{1,0}, then L is called irreducible. Otherwise L is called reduc-
ible. For any element a^L, there is a least element z^Z(L) with respect to
the property a^z, which is called the central envelope of a and denoted by e(a).

Two elements a, b of L are called perspective and written 0~& if they
have a common complement, i.e., «VJC=6V^=1 and aAx=b/\x=Q for
some x£zL. It is known that perspectivity satisfies the transitive law in con-
tinuous geometry and so is an equivalence relation. We write a<b or b>a
if a^b^<b for some b^L. Then we have the following characterization
theorem of irreducibility in terms of ~* and < .

Theorem 3.1 (cf. Maeda [7; Chap. 4, §2]). A continuous geometry L is
irreducible iff one of the three relations a<b, a~b, b<a holds for any a, 6 EEL.

The fundamental theorem of the dimension theory for irreducible con-
tinuous geometries goes as follows:

Theorem 3.2 (cf. Maeda [7: Chap. 5, §2]). Let L be an irreducible con-
tinuous geometry. Then there exists a unique real valued function f on L such
that:

(1) 0^/(a)^l for any a<=L ;

(2) /(O) = 0 and /(I) = 1 ;

(3) f(aVb)+f(a/\b) =f(a)+f(b) for any a,

§4. The Construction of L from L

Let L be an arbitrary continuous geometry. Let 1B=Z(L). The main
purpose of this section is to construct a derived continuous geometry L in V^ '
and then to establish some correspondences between L and L, which will en-
able us to derive the dimension theory of reducible continuous geometries
from that of irreducible continuous geometries without much effort.
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Proposition 4.1. For any a, Z?eL, there is a largest central element z of

L with respect to the property a/\z=b/\z.

Proof. We write Z(a,b) for {z^Z(L)\a/\z=b/\z}. If zeZ(a,Z?) and
z^z'eZ(L) then a/\z'=a/\z/\z' '=b/\zAz'=b/\z' and so z'eZ(a,6). If

zl9 z2<EZ(a,b), then aA(z1Vz2)-(aAz1)V(aAz2)=(Z?Az1)V(^Az2)=-Z?A(z1V
z2) and so z1Vz2eZ(a,6). Therefore Z(a,b) is an ideal. Thus, using the
continuity axiom of continuous geometry, we have (sup Z(a,b))/\a= sup

z&5C0,&)

(z A a) = sup (z A Z?) =(sup Z(a,b)) A 6, which implies sup Z(a,b) e Z(a,b). This
ze-zc«,&:>

is the desired element.

For any a, b^L, we write e(a,&) for the element whose existence was
established in the above proposition.

Now we define a binary relation R on L in V^ ' as follows :

Then we have:
V

Proposition 4.2. [[/? z',y an equivalence relation on L\\ = 1 .

Proof. This follows readily from the fact that for any a, b, c e L,

(1) *««, «>v) = 1 ;

(2) R«fl, 6>v) = R«b, a>v) ;

(3) R«a, Z>
v

Therefore we can consider the quotient set of L with respect to the equiva-
lence relation R in V^ % which is denoted by L. For any aeL, the equivalence

class of a with respect to R in V^ ' is denoted by d. Then it is easy to see that:

Proposition 4.3. \[a=f>]\=e(a, b)for any a, b&L. In particular, \[a=b]\ =

1 iffa=b.

Proof. Jfl=b]\=\[aRb]\=e(a9b).

Now we consider partitions of unity in V^ \

Proposition 4 A For any partition of unity {z^} and any family {a&} of
L with the same index set, we have

2 a#za = (sup (afl>AzJ)~ .
<*
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Proof. It is easy to see, by dint of the continuity axiom, that

(sup foA

Therefore, z^e (sup (aa/\za), aJ=H(sup (a0,AzJ)~=aa$ by Proposition 43,
06 06

Corollary 4.5. (L)(^ = {a \ a e L} .

Now we would like to make L a lattice in V^ '.

Proposition 4.6. For any al9 a29 bl9

(1) Pi =

(2) [ft -

Proof. We deal only with (1). If ai/\z=a2/\z and b1/\z=b2Az for some
zeEZ(L), then (a1Vfe1)Az-(^1Az)V(61Az)-(a2Az)V(62Az)=(a2V62)Az.
Thus (1) follows readily by dint of Proposition 4.3.

By dint of Theorem 2.8 and the above proposition, we can safely define
lattice operations V and A on L in F' ' as follows :

(1) aVb = (aVb)~ ,

(2) a/\b = (a/\b)~ .

By dint of Corollary 4.3, it is almost trivial to see that:

Theorem 4.7 '. QX is a continuous geometry~Q=l.

We denote {z|z<EZ(L)> x {1} by Z> Then it is also trivial to see that:

Theorem 48. d The center oflisZ]\ = I.

Theorem 4.9. QX is an irreducible continuous geometry^ = 1 .

Proof. For z^Z(L), we have

Of = 1 V* = OD = 0* = lUVttz = 01 = zV ~lz = 1 •

Then the theorem follows from Theorems 4.7 and 4.8.

Now any theorem in irreducible continuous geometries can be transferred
automatically to that on L in V^ \ As an application of this principle, we can
obtain the fundamental theorem of the dimension theory for continuous geo-
metries in its general form from that for irreducible continuous geometries.
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Theorem 4.10. For any continuous geometry L, there exists a unique func-
tion f from L to CR(ti) (the value of f at a^L is denoted by fa rather than f (a))
satisfying the following properties :

(1) 0£f.(V)£lformy\>eB;

fl ffi>e£(z)
(2) For any central element zeL, fj$) = <

10 otherwise;

(3) /.v*(W+/.A*(W =/.(»+/*(W/0r any £e£ „

Proof. By using Theorem 2.8, we can easily see that there is a bijective
correspondence between real valued functions on L in F' ' and functions /
from L to CR(£) satisfying the following property (*).

(*) For any a, b&L and any zeZ(L), if a/\z=b/\zs then/fl and/6 co-
incide on E(z).

Since the functions / with the three properties of the theorem satisfies the prop-
erty (*), the theorem follows readily from Theorems 3.2 and 4.9.

We give some further correspondences between L and L.

Proposition 4.11. For any a^L, e

Proof. e(d)= 1 e(a, 0)- ~\ \[a=Q]\

For any a, b^L, we write a b iff for any z^Z(L)? either z/\a<z/\b

or zAa=z/\b=Q.

Proposition 48120 For any a,b^L,a b iff p> 5j —0.

For any a, b^L, we write a^b iff for any z<EZ(L), either z/\a<z/\b
or z/\a=z/\b=0.

Proposltloa 4012e For any a,b(=L, a^b iff\±a>Kl]=Q.

Proof. By Theorems 3.1 and 4.9, \[a>b\/a^b\/a<b^=l. Therefore

Theorem 4013. For any continuous geometry L, L is of type k (l^Sfc^oo)

iff L is of type kin V(®\

To conclude this section, we consider an intriguing problem whether
every irreducible continuous geometry in F' ' is of the form L for some ap-
propriate continuous geometry L. Our answer is positive.
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Theorem 4.14. Let J3 be an arbitrary complete Boolean algebra. Then
any irreducible continuous geometry in V^ ^ is, up to isomorphism, of the form
Lfor some continuous geometry L whose center is .3.

A / (n\

Proof. Let L be an irreducible continuous geometry in Fv '„ Let L=
{u^V^ '|[[tteZ,]] = l}. It is easy to see that L is a continuous geometry
with the derived lattice structure from L. Now we would like to determine
the center of L. It is easy to see that a^L is central iff [[a is centralj^l. But
since L is irreducible in V^ ', Qa is central]]=[[0=1 Vfl=0]]. Therefore, there
is a bijective correspondence between Z(L) and J25 assigning to z^Z(L) Qz=l]]
eJS and conversely assigning to x^J$ (lx+0 ~| x)eZ(L). Thus we can iden-
tify Z(L) with j2. Now it remains to show that Ha=b]\=e(a,b) for any a,
b^L. But, for any x^£B, we have \[(lx+Q~]x)/\a=(lx+0~}x)/\b]l=G[l A

fl=lA6IlAJc)V([[OAflr=OA6I])A"lJc)=([rfl=6I]Ax)V"|jc. Therefore (lx+
0 ~ x)^e(a, b) iff x^\[a=b]\. This completes the proof.

Theorems 4.9 and 4.14 show that continuous geometries in V whose center
is J3 and irreducible continuous geometries in V^ ^ are the same things from
different viewpoints. However the transition from one viewpoint to the other
is fruitful enough to yield seemingly formidable concepts and theorems from
simpler ones automatically.
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