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Propositional Modal Logic of

Finite Chains
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Abstract

The main purpose of this paper is to give a cut-free Gentzen-type sequential system
for K4.3G of finite chains. The cut-elimination theorem is proved both model-
theoretically and proof-theoretically.

§ 1. Introduction

There are thousands of modal logics, only a bit of which enjoy Gentzen-type
sequential formulations. Modal logics with cut-free sequential systems are even
fewer and it is often a challenging problem to find out such pleasant formula-
tions to a given modal logic. See Zeman [7] for the general reference and Sato
[5] for an example of recent such attempts. The main purpose of this paper
is to give a cut-free sequential system for K4.3G of Gabbay [2, § 25].

Formulas (of K4.3G) are constructed from propositional variables p and J_
(falsity) by using ID (implication) and D (necessity). Other connectives like A
(conjunction), V (disjunction) and H (negation) can be introduced as defined
symbols in the usual manner. A structure (for K4.3G) is a quadruple (S, R, s0, Ds\
where

(1) S is a nonempty finite set.
(2) R is an irreflexive transitive binary relation on S such that either xRy

or yRx for any distinct x, y^S.
(3) s0eS.

(4) For any seS, Ds assigns a truth-value 0 or 1 to every propositional
variable.

Given a structure (S, R} s0, Ds), the truth-value \\A\\s of a formula A at
is defined inductively as follows:
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(1) \\P\\s=Ds(p) for any prepositional variable p.
(2) ||JL||,=0.
(3) \\AHB\\.=1 iff \\A\\,=Q or ||B||.=1.
(4) \\nA\\s=l iff for any t^S such that sRt, \\A\\t=L

If |]yl|],0=l for any structure (5, R, SQ} Ds\ then A is called valid, notation:
i=A

K4.3G can be axiomatized by the classical prepositional calculus plus the
following axioms and inference rules.

(Al)
(A2)
(A3)
(A4)

We write I— K4.3G^4 if A is provable in the above formal system.

Theorem 1.1. For any formula A, [-K4.3G-4 iff \=A.

In the next section we present our sequential system SK4.3G and establish
its cut-freeness semantically while its purely syntactic proof is given in Section
3. Finally we admit that this paper was inspired by a cut-free sequential system
of Leivant [4] for the modal logic K4G of finite partial orders but its subtle
error in the proof of the cut-elimination theorem is corrected in our more general
context.

§ 2. Cut-free System for K4.3G

A sequent is an ordered pair (F, A] of (possibly empty) finite sets of formulas,
which we usually denote by F-*A. We use such self-explanatory notations as
A,F-*A,B for {A}\JF-*A\J {B} and nF for {nA: A^F} freely.

Our sequential formal system SK4.3G ("S" for "Sequential") consists of the
following axioms and inference rules :

Axioms : A-*A
JL->

Eules: ^ JT j^ (thin)

->
, F, TI-+A, A

A, F-+A, B
(=DR)
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, nr, nn-^n, nA-.nvA=d,n^A=0 and 77^0}

, where J=£0 in (GL4.3).

It is easy to show that the following rules are admissible in SK4.3G.

F^'A HD

HR)

A/\B,r->A
(AL)

A/\B, F-^A

r^A, A r-^A, B
(AR)

AVB,

^A, A
(VR)

r-^A, AVB
F-*A, B
r-^A, AVB

If F-^A is provable in SK4.36, we write l-sKtsG.T-*/'. We notice that the
rule (GL4.3) has the variable number of upper sequents, depending on the number
| / f [ . If |J|=1, our rule (GL4.3) degenerates into the rule (GL) of Leivant [4].

r, nr, HA-+A
(GL)

If |J| =2, then the rule (GL4.3) goes as follows:

r, nT} nA, nB->A, B r, nr, nA^A, nB r, nr, nB-^\3A, B
, nB

To deepen the reader's understanding of the rule (GL4.3), we shall show that

We have the following proof KI of the sequent D(D^4Z)5), n(B/\nBl)A)

B-+B
B-*A, B |nj

( }, HA, B/\UB-*A, B
( 't HA-+B,

( }



308 HlROKAZU NlSHIMURA

We have the following proof x2 of the sequent

A-+A . _ . .
(thin)

' ' "* (DR)n(DAlDB), HAllB, nA, A, U(B/\UBl^A)-^Bf\uB^>A
, nA-*n(B/\nB^>A) ^'

r-j /!_>£? r-1 / D A i—i D v / l \ \tllin;

We have the following proof 7T3 of the sequent E

^ (thin)
, B, ,

(:D }
-, B, ̂ ^^_^y ,^,_^ (GL43)

—7 (thin)

^ (AL)
^4 (=)R)), B/\

Therefore

(GL4.3)
(VR)

A sequent F-^A is called realizable if for some structure (S, R, s0, Ds),

0=1 for any A^F and ||5||,0=0 for any B^A. A sequent T->J which is
not realizable is called valid, notation:

Theorem 2.L (Soundness Theorem). For any sequent F-^A, if h-sK4.3GjT
then

Proof. By induction on a proof of F-^A.

Corollary 2,20 (Consistency). The empty sequent — > is not provable in SK4.3G.

Theorem 2030 (Completeness Theorem). For any sequent F-»A, if
then

Proof. Let F-^-A be the given sequent. We denote by Q the set of all
subformulas occurring in a formula of F^JA. A sequent II— >A is called Q-
saturated if it satisfies the following conditions:

(1)
(2)
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(3) For any A^Q—(IIVA\ h-sK4.3GT->,i, A and i-sK4.3G^, II-+A.

Assuming that k-sK4.3GF-^J, we shall show that {^F->J. We denote by
W(Q) the set of all 42-saturated sequents. Since t^sK4.3GF-»J, the sequent F-»J
can be extended to some rQ-*A^W(Q). For any set Z of formulas, (I)n denotes
the set of all formulas A such that nA^S. If (J0)n— 0> then let S={F0-^f0}.
If (A^0, ^SK4.3Gn(F0)n-»n(J0)o. Therefore, taking the rule (GL4.3) into con-
sideration, there exist two sets 2lt 22 of formulas such that :

(1) 2^0.
(2)
(3)
(4) ^SK4.3G(F0)D, n(r0)D,

The sequent (F0)n, D(/l))nj ull-^llj n%2 can be extended to some
We notice that :

(1) Cro)nC(/l)n (By C we denote the proper inclusion).
(3)
(3)

If (Ji)n=0, then we let S={ro->J0, ^-^Ji}. If (Ji)n=£0, we repeat the above
process. In any case we finally obtain a sequence {F^— ̂ JJ^o of W(Q) such
that:

(1) (/^ccr^c - c(A)n.
(2) (r,)ngr,+1 for any 0^i<*.
(3) (A)nSJi+iW(Ji+1)n for any O^^^-l.
(4) (Ji)n^0 for any i<k and (J*)D=0.

Set S={r<r+At,-9rk->Ak}. We let (r^A^R^^A,} iff /</. Let
-To->4o. We define DTA as follows:

Dri-»Ai(p}=l- iff P^Fi for any propositional variable />.

It is not difficult to show by induction on A^Q that for any Q^i^k,

(1) ||̂ ||r^-l if
(2) 11411/^=0 if

In particular, we can conclude that ro-+AQ is realizable and so is F->A.
This completes the proof.

Corollary 2.4. For GW^ formula A, hK4.3G^ iff F-sK4.3G->-^.

Corollary 2.5. T/zg following inference rule is admissible in SK4.3G.

F-+A, A A, II-* A . .
— T, n-**, A — ' (cut)
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In the next section we will give a purely syntactical proof of Corollary 2.5.

§3. Cut-Elimination Theorem

The main purpose of this section is to give a proof-theoretical proof of
Corollary 2.5 by amending Gentzen's original proof (for LK and LJ) such as
seen in Takeuti [6].

Theorem 3.L (Cut-elimination Theorem). The following inference is admis-
sible in SK4.3G.

r^,Ar_A.r^. (cut)

(r=r^T2 and J=JiUJ2)

For technical reasons we deal with a slightly modified version of SK4.3G,
say SK4.3G', which is obtainable from SK4.3G by restricting rules (thin) and
(DL) to the following (thin)n and (IDL)'

i, A B, r->j

and instead adopting as axioms sequents F-+A satisfying at least one of the
following conditions:

(1) p<^Fr\d for some propositional variable p.
(2)

Lemma 3.2. The following rule (thin L) is admissible in SK4.3G'.

-TV.- (thin L)

Proof. It is sufficient to deal with proof figures which contain only one (thin
L) as the last inference.

A,T-+A (thin L)

The proof is carried out by double induction mainly on the formula A and
secondly on the length of longest threads of the proof of F->A. Here we deal
only with a special case of (GL4.3) being the last inference of the proof of
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or, r, B->B
r_^n R

(thin L)A, nr-*nB

If A is not of the form DC, then (thin L) degenerates into (thin)D which is
of course admissible. If A is of the form DC, the above proof figure is trans-
formed into:

nc,n/rr,n^5 ^!n ?
(thin L)

DC, C, nr, F, UB-+B

Therefore the induction process works well.

Lemma 3.3. The following rule (thin R) is admissible in SK4.3G'.

-T^ A A (thin R)

Proof. It is sufficient to deal with proof figures which contain only one
(thin R) as the last inference.

A
(thin R)

The proof is carried out by double induction mainly on the formula A and
secondly on the length of longest threads of the proof of T-+A. Here we deal
only with a special case of (GL4.3) being the last inference of the proof of

nF->D5, A (thin R)

If A is not of the form DC, then (thin R) degenerates into (thin)D, which
is of course admissible. If A is of the form DC, the above proof figure is trans-
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formed into:

f ,m(GL4.3)

Therefore the induction process works well.

Lemma 3.4. The rule (thin) is admissible in SK4.3G'.

Proof. Follows readily from Lemmas 3.2 and 3.3.

Lemma 3.5- For any formula A, I— SK4.3G'A-»A

Proof. By induction on A. Here we deal only with the case of A being
of the form nB.

no o nR-^R (thin)
nn, n, un-^n

(GL4.3)

Proposition 3.6. For any sequent F-»A, h-sK4.3&T-^ iff

Proof. (1) If part : Trivial. (2) If only part : Use Lemmas 3.4 and 3.5.

Theorem 37. The following inference is admissible in SK4.3GX.

and A=

Proof. It is sufficient to deal with proof figures which contain only one
(cut) as the last inference. Thus we must consider the following proof figure TT.

.
( }

and A=

By the grade of a formula B, we mean the number of logical symbols
contained in B. By ^(TT) we denote the grade of the cut formula A. By
d\M we denote the number of formulas of the form nB that occur as sub-
formulas of formulas in F^JA^. We denote by 5f(7r) the number of formulas
of the form nB that occur in F^. Obviously d\W^d\W. We denote by 8tM
the number 3{(7r)—df(;r). By 3}(7r) we denote the number of formulas of the
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form UB that occur as subformulas in /1UJ2
3). We denote by <5?(;r) the number

of formulas of the form UB that occur in /I45. We denote by dr(7t] the number
S\(K)—S^(IC). We decree that <5U)=<5z(7r)+<5r(7r). By p f a ) we denote the number
of the longest threads that end with the left upper sequent /"I— >Ji, A and
contain the cut formula A consecutively. Similarly we denote by pr(7i} the
number of the longest threads that end with the right upper sequent A, rz-*Az
and contain the cut formula A consecutively. By p(ic) we mean the number
pi(7i}+pr(7t}. Now our proof proceeds by triple induction mainly on ^(TT), second-
ly on 5(;r) and thirdly on p(n). Since our proof is not by the usual double
induction on j(n] and ^(TT), we should be careful enough even in dealing with
classical cases.

(1) p(ri)=2\ Since in rule (GL4.3) the antecedent of the lower sequent is
contained in that of every upper sequent, A can be of the form D B only when
the right upper sequent uB, F2^J2 is an axiom sequent. In this case F-^A is
also an axiom sequent. Therefore the only nontrivial case we must consider
goes as follows :

A9r^Al9B (=)R) ^^ r2-^j2, A B, r2->4 (z)L)/

j^j ' z~^ 2 (cut)

This proof figure it is transformed into:

,, A A, r^A,, B
- (cut)

, .,(cut)

Since the grades of A and B are smaller than that of Al)B, the induction
process works well.

(2) p(7i}>2\ There are several nontrivial cases, which we shall consider
case by case in the following :

(2a) TT is of the following form:

, A A, T2^f2_ _ _ - (cut)

and A^A
l)-4) Repetition is not counted.
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Consider the following proof figure ^:

, B ( '
Since f(^i)=TM> d(Ki)^§W and p(it^<p(ic), we have a cut-free proof

of the sequent F-+A, B by induction hypothesis.
Consider the following proof figure x2:

, , , , Z

cTJ^j (cut)

Since T(^z)=TMt d(7T2)^d(7r) and p(K^<p(jc), we have a cut-free proof 7t'2
of the sequent C, jT—>J by induction hypothesis. Therefore

i, B } c, r-
C3L)'jBz>c, r->J

The following three cases are treated similarly to (2a).

(2b) piW^2 and the last inference of the proof of the left upper sequent
of (cut) is (ZDR).

(2c) pr(7c)^2 and the last inference of the proof of the right upper sequent
of (cut) is (IDL)'.

(2d) pT(^}^2 and the last inference of the proof of the right upper sequent
of (cut) is (DR).

(2e) The last inference of the proofs of both upper sequents of (cut) is

(GL4.3) :
We deal with the following special case, leaving the general treatment to

the reader.

, , - >
(GL4.3) - — - - - • "(GL4.3), nB 2, - t.(cut)Bf uc

2 and ^f=
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Consider the following proof figure KI :

nrlr rl9 nA, nB-*A, B nr2, r2, , ,
nF, r, nA, OB, nC-*B, c Ccut)

Since the grade of A is smaller than that of nA, there is a cut-free proof
of nT, F, nA, nB, nC-^B, C by induction hypothesis.

Consider the following proof figure 7T2 :

7
lf FlnB-^nA, B nT, F, nA, nB, nC-+B, C , N

[=]̂ r p nB nC_>B Q ' (CUt)

Since 7(^2)—TM and d(7T2)<<5(7r), there is a cut-free proof TC'Z of DF, F, nB, nC
-»B, C by induction hypothesis.

Consider the following proof figure 7r3:

nrlf T!, nr2, n^->5, DC

, F2, UA,A, DC->C

(cut)

Since T(^s)=TM and <5(7T3)<d(7r), there is a cut-free proof 713 of nF, F, nB
, DC by induction hypothesis and Lemma 3.4.
Consider the following proof figure 7r4:

, nB nF2, F2nA, A, nC->C
(cut), r, n>l, nC-^nB, c

Since rM<rW, there is a cut-free proof rci of nFt F, nA, nC-*nB,C
by induction hypothesis.

Consider the following proof figure 7T5 :

\r, nA, nc-*nB,c J . .
— (cut)} F, nC->nB,C

Since 7*(7r5)=7'(7r) and d(x5}<d(7t), there is a cut-free proof 7tf
5 of nF, F, nC

>nB, C by induction hypothesis. Therefore
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\ : .-' 1 /••:•' F*
nr, r, nB, nC->£, C -" nr, r, n.

9 »
""o"*

8->jB, nC

\ : .••
^3 V«-

nr, r, nC->n£, C
nF-^nB, nC (GL4.3)

Before leaving the above proof, the reader should realize that the main

reason for dealing with SK4.3G' instead of SK4.3G directly is to make the

secondary induction on d(n) work well. It seems that the secondary induction

of Theorem 3.4 (cut-elimination theorem) of Leivant [4] indeed works well for

cases like (a special case of) (2e) but fails to preserve the usual treatment of

classical cases like (2c).
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