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Semantical Analysis of Constructive PDL

By

Hirokazu NlSHIMURA*

§ 1. Introduction

Prepositional dynamic logic or PDL is an interesting arena of logical

research which was born to modal logic as his father and verification

logic in the tradition of Floyd/Hoare as his mother. Several completeness

proofs of PDL have been presented and the most recent one is Leivant's

[4], where constructive or intuitionistic PDL (simply CPDL) plays an

auxiliary role. The main purpose of this paper is to give a semantical

analysis of CPDL after the manner of Nishimura [5], In Section 2 we

give a Kripkian semantics to CPDL, with respect to which the semantical

completeness of a Gentzen-style system introduced in Section 3 is establish-

ed in Section 4. A secondary purpose of the paper is to show that the

existence of a test program A ? does not make our completeness proof so

tedious, contrary to Leivant's remarks.

§ 2. Formal Language and Semantics

There are letters at and pi (z = 0, 1, 2, • • • ) for atomic programs and

propositions respectively, for which we use a, b, ••• and p, q, ••- as syntactic

variables. We define the notions of a formula and a program by simul-

taneous induction as follows:

(1) Each atomic proposition p is a formula.

(2) If A and B are formulae, so are A/\B, A\/B, ~\A and A^B.

(3) If a, is a program and A is a formula, then [a] A is a formula.

(4) Each atomic program a is a program.
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(5) If a and $ are programs, so are

<*;/?, aU/? and a*.

(6) If A is a formula, then A ? is a program.

true is an abbreviation of pQIDpQ. We define an by induction on 72;

al = a and an+1 = an; a.

A sequent is an ordered pair (F, A) of finite sets of formulae, which

we usually denote by F-+A.

A structure is of the form (S, <|, p, TT) , where

(1) £ is a nonempty set;

(2) <[ is a partial order on S;

(3) p is a function assigning to each atomic program a binary relation

p(a) such that t<^s and (5, s') ep(<z) imply (t,s')^p(a) for any

s, s', t^S;

(4) TT is a function assigning a value in {0, 1} to each pair (t, p) , where

t^S and p is an atomic proposition, such that ft(s,p) =1 and s<X

imply 7t(s',p)=l for any 5, s'^S.

p and 7T are extended to all programs and formulae by simultaneous

induction as follows:

(1) p (a 1 13) = p (a) op (/?) (composition) .

(2) p (a U j8) = p (a) U p (0) (union) .

(3) p (a*) = p (true ?) U p (a) U p (a2) U p (a3) U • • • (iteration) .

(4) p(A?)={(s,t)(=SxS\ s<,t and n(t,A)=l}.

(5) TT(*, AA#) =1 iff n(t, A) =1 and n(t, B) =1.

(6) TT(*, A\/£) -1 iff TT(*, A) =1 or TT(^, 5) =1.

(7) 7c(t,~]A) =1 iff for all s^S, t<^s implies n(s,A) =0.

(8) TT(^, AD 5) =1 iff for all s^S, t<*s and n(s, A) =1 imply x(s, B)

= 1.

(9) 7T(^, [of|A)=l iff for any 5^5, (t,s)^p(a) implies 7T(5, A) =1.

We can readily see the following proposition.
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Proposition 2. 1. For any program a and any formula A, -we

have that:

(1) t<Ls and ( s , s f ) ^ p ( d ) imply (t,s')<^p(a) for any s,s',

(2) t<Ls and n(t, A) =1 imply TT(S, A) = 1.

Proof. By induction on a or A.

Our syntax is slightly redundant because A~D B can be regarded as an

abbreviation of [A ?~\B and similarly for ~~\A. However we do not neces-

sarily prefer to get rid of this redundancy because several subsystems of

our syntax (e.g., a test-free variant) are of interest.

A sequent F->A is called realizable if for some structure (5, <J3

p, 71) and some tE:S, we have that:

(1) n(t, A) =1 for any

(2) n(t, B)=0 for any #GE A.

A sequent F-+A which is not realizable is called valid (notation:

§ 3, Formal System

Our formal system LJP for CPDL consists of the following axioms

and inference rules:

Axioms: A-»A

J-l A

Rules: (extension)n, r-+A, 2
r^>A *•*-+* (cut)
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r-*j, A
, A\/B
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r-*A9 [A?] B

A proof P (in LJP) is a tree of sequents satisfying the following

conditions :

(1) The topmost sequents of P are axiom sequents.

(2) Every sequent in P except the lowest one is an upper sequent of

an inference rule whose lower sequent is also in P.

A sequent F— >A is said to be provable (in LJP) if there exists a

proof whose lowest sequent is F—*A. If a sequent F-^A is provable,

then we write \— F->A (in LJP). A sequent F->A which is not provable

is said to be consistent (in LJP) . A sequent F->A is called intuitio?iis-

tic if A consists of at most one formula. We denote by LJP' the formal

system obtained from LJP by allowing only intuitionistic sequents.

Proposition 3. 1. For any intuitionistic sequent F-^»A, \— F— >J

in LJP iff Y-T-+A in LJP'.

Proof. (1) if part: obvious.

(2) only if part: Prove that for any sequent F-+A, if \-F-*A in

LJP, then h/^AV-'-V^ in LJP7, where 4= {B,, • • • , Bm} .

Proposition 3. 2 (Soundness Theorem of LJP) . For any sequent

F-*A, if [-F-+A in LJP, then \=F->A.

Proof. By induction on a proof of F—>A.

§ 4. Completeness

The main purpose of this section is to establish the following theorem.

Theorem 4. 1 (Completeness Theorem for LJP) . Any consistent
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sequent P-^A is realizable.

A finite set 0 of formulae is called closed if it satisfies the following

conditions :

(1) If (A/\B)E^@, then Ae0 and

(2) If (A\/-B)e0, then AeE0 and

(3) If ~|Ae<5, then A^0.

(4) If (Az)S)e<5, then A^0 and Be (P.

(5) If [a]AGE0, then AeE<2>.

(6) If [a;/?]AeE<5, then [a] [/?] Ae<5.

(7) If [<2U/?]Ae0, then [oGAe0 and

(8) If [a*]AeE0, then [a][a*]Ae(P.

(9) If [A?]5e0, then Ae<D and Be (5.

In the rest of this section we fix such a closed set, say, (5. A

sequent P->A is called ®- saturated if it satisfies the following conditions:

(1) F~ >A is consistent.

(2) r\JJ = 0.

It is easy to see that for any 0-saturated sequent F->A, Fr}4 = 0.

Lemma 4. 2. Any consistent sequent P->A can be extended to

some consistent sequent F—>I such that @Cir\jI.

Corollary 4e 3. Any consistent sequent F->A, -where

can be extended to some ^-saturated sequent.

Now we define the ^-canonical Structure $((&) = (S, <J, p, TT) as

follows:

(1) S={P->A\r-*A is (^-saturated}.

(2) (A->4)^(A->^) iff AC/Y

(3) p (a) = { (A-> J15 T2^ J2) e 5x 5| { A | [a] A e A
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for each atomic program a.

(4) n(F-*A,p) =1 iff p^F for each atomic proposition p.

It is easy to see that $($) satisfies the conditions of the definition

of a structure. The rest of this section is devoted almost completely to

the proof of the following theorem, from which Theorem 4. 1 follows

at once.

Theorem 4. 4 (Fundamental Theorem of Q (0) ) . For any for-

mula A<=@ and any sequent F-+A of 5, 7l(F-*d, A) =1 if A<=F and

7T(r-»J, A) = 0 if A^A.

We define a notion of the test degree of a program a and a formula

A, denoted by td(ct) and td(A) respectively, by simultaneous induction

as follows:

(1) id (a) = td(p) =0 for any atomic program a and atomic proposition

P-

(2) td(A/\B) =td(A\JB) = td(AnB) = max{td(A), td(B)}.

(3) td(T\A)=td(A).

(4) td([o]A)=max{td(a), td(A)}.

(5) td(aifi=td(a\

(6) td(a*)=td(a).

(7) td(A?) =

Our strategy of the proof of Theorem 4. 4 is to prove the following

theorem by induction on z.

Theorem 4. 4 (z") . For any sequent F->A of S and any formula

AEE® such that td(A)<i, n(F-*A, A) -1 if A^F andn(F->A, A) -0

if

It is obvious that Theorem 4. 4 (0) holds vacuously. Hence what

we have to do is to prove Theorem 4.4 (z + 1), assuming Theorem 4. 4

(z) . To do it smoothly, we need several auxiliary notions and lemmas.

We define the notions of the characteristic formula 0(7"— >J) of a



434 HlROKAZU NlSHIMURA

sequent F-*A and of the characteristic formula 0(X) of a finite set

X of sequents as follows:

(1) (/.(r-^0=AA-AAn, where F = {Alt -,An}.

(2) 0(X)=0(A->4)V-V0(/T*->/7»), where

For any YCIS and any program <2, the weakest precondition of a,

with respect to Y, denoted wp(a, Y), is defined as follows:

wp(a, Y) = {s^S\ (s, t) ep(oO implies £e Y for any

For any X, YCIS and any program a, we say that a is partially

correct with respect to precondition X and postcondition Y (notation :

{X}a{Y}) if X^

Lemma 4. 5 (£+1). -For a?ry X, YQS and any program a such

that td(a)<i+I, if {X}a{Y}, then

Proof. The proof is carried out by induction on a. Here we deal

only with the following three critical cases.

(1) a is an atomic program, say, a:

Let X= {rj-*dj\l<^j<^n}. We assume, for the sake of simplicity,

that n = 2.

Suppose, for the sake of contradiction, that the sequent </>(/7
1-»J1)

— »[a]0(Y) is consistent, which implies that the sequent /\— > [a] 0(Y) is

also consistent. So the sequent {A\ [a] AeA}— »000 is also consistent,

for otherwise /\—»[a]0(Y) would be provable by rules (— »[ ]) and

(extension). By Lemma 4.2, the sequent {A\ [a] Ae A}— »0(Y) can be

extended to some consistent sequent F-^>A such that 0CI/7 U /. Then

it is easy to see that (A->Jlf r n^->ln^) ep(fl) . Since {Fl->Al}a{Y}

by assumption, (r fl 0-> J H ^) e Y. Hence

h 0 ( n <»-> J n «) ->0 ( Y) . (A)
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This implies that

This contradicts the assumption that the sequent F-+A is consistent

and 0(Y)eX Thus we can conclude that

A similar argument shows that

h0(/Y-»4)-i>]0ao. CD)
By using rule (V~ >) we can deduce from (C) and (D) that

h0(A^4)W(/V-»4)-» !>]</• 00, (E)

which was to be proved.

(2) a is of the form A ? :

Let X= {Fj— *Aj\ l<^j<,n}. We assume, for the sake of simplicity,

that n = 2. Suppose, for the sake of contradiction, that the sequent 0(/\

— ̂ J^)— >[A ?]</>(Y) is consistent, which implies that the sequent Fi~^>\_A ?]

0(Y) is also consistent. Hence the sequent A, F\— »</»(Y) is also con-

sistent, for otherwise the sequent Fl-^\_A ?]</>(Y) would be provable by

rule (-*[?]). By Lemma 4.2, the sequent A, Fl— ></>(30 can be ex-

tended to some consistent sequent jT— >A such that 0^F (J A. Since

td(A)<i, 7r(fn0->Jn0, A) =1 by Theorem 4. 4 (z) . Since ACf?

(A-> ̂ ) <: (f n (2)-> A n 0) . Therefore (f n ̂ ->I H 0) e Y. Hence

h0(rn^-*/n«)->0(Y). (A)

This implies that

This contradicts the assumption that the sequent F-+A is consistent

and 0(Y)€Ej. Thus we can conclude that

h-0(A-*A)->[A?]0(y). (C)
Similarly,

By using rule (V~~*)> we can deduce from (C) and (D) that
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^(A->/1i)V^(A-»4)-»[A?]0(Y), (E)

which was to be proved.

(3) a is of the form /?*:

Since XC^zvp(/3*, Y) by Assumption,

HKX)-»0(«#Gff*,Y)). (A)

Since {«#(£*, Y)}/3{wtfG9*,Y)},

h0(^(/?*,Y))->[/3]<K«4>0?*,Y)). (B)

Hence by using rule (—>[*]), we have that

\-4>(wp(P*,Y»-»[fi*W(wptf*,Y)). (C)

Since p (true ?) Q> (£*) , w£ (£*, Y) C Y.

Hence

h0(w/»G8*,Y))-»0(Y). (D)

By using rule (— > [ ]), we can deduce from (D) that

C8*]0(tt#G8*,Y))-»[j8*]0(Y). (E)

By using rule (cut) twice, we get from (A) , (C) and (E) that

Lemma 4. 6 (z + 1) . For any formula A any program a and

any sequents F-*A of S such that td(a) <z"+l, if [a]Ae J? ^Ae^ ^Aere

exists a sequent P'-*A' of S such that (T-+A, r'-*A')^p(a) and

Proof. Let X= {(ZT-*^) e5| Ae77}. Suppose, for the sake of

contradiction, that {F— >A}a{X}. Then by Lemma 4.5 (z'-fl)

H^(r-*J)->[a]^(X). (A)

It follows from the definition of X that

A. (B)

By using rules (cut) and (— > [ ]), we can deduce from (A) and

(B) that

J)-+[a\A. (C)
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It follows from (C) that

MA, (D)

which contradicts the assumption that the sequent F-*A is consistent and

. This completes the proof.

Lemma 4.7 (z"+l). For any formula A, any program a and

any sequents F-+A, /""— »J' of S such that td(a)<^i-\-\ and (T-*A,

, if [a]AeF, then Ae/7'.

Proof. Similar to that of Lemma 4.5 (z-f-1).

Now we are ready to complete the proof of Theorem 4.4 (z

Proof of Theorem 4.4 (z'-j-l). By induction on the construction

of a formula A&@. Use Lemmas 4.6 (z-j-1) and 4. 7 (f-f l) in dealing

with formulae of the form [a] A.

We have completed the proof of Theorem 4. 4. By combining Pro-

position 3. 2 and Theorem 4. 1, we have

Theorem 4. 8. For any sequent /"— >J,

The finite model property shown in Theorem 4. 4 establishes

Theorem 4,9 (Decidability of LJP) . LJP is decidable.
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